

Ceramic Coatings for Clad (The C³ Project)

Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

Kurt E. Sickafus, PI
Dept. of Materials Science and Engineering
University of Tennessee, Knoxville

Project Objective:

The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects:

- 1. During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement).
- 2. During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding.

Fabrication Techniques

Pennsylvania State University

Cathodic arc physical vapor deposition

University of Colorado Pulsed Liquid Injection

Los Alamos National Laboratory Electrospark deposition

- A voltage is applied to the cathode while a grounded trigger contacts the cathode to initiate the arc.
- Arc movement is constrained to the target face using magnets.
- cathode spots vary in size from about 1-10 microns, have a high current density (10⁶-10⁸ A-cm⁻²), and their lifetime is about 10 nanoseconds to 1 microsecond.
- Accumulation of these cathode spots creates a dense plasma of the cathode material.
- The high pressure of the cathode spot ejects ionized and molten material from the cathode surface into the chamber, thus forming the plasma.
- Plasma generation is proportional to the supplied current by the power supply.
- Plasma is ionized with energetic ions to promote the adhesion and formation of dense coatings on the substrate.

- Coatings will be made from liquid organic precursors with "silazane based" chemistries.
- Lead to amorphous ceramics constituted from Si-C-N-O.
- These materials develop graphene networks within them, which serve as diffusion barriers to atmospheric species.
- Coatings are being deposited primarily in a pulsed liquid injection reactor.
- "cold wall" reactor the precursor is nebulized through an ultrasonic nozzle and the polymer layer deposited on the substrate in this way is cured, in-situ, with a radiation furnace.
- The process is cycled to build up the thickness of the coating from a fraction of a micrometer up to a few micrometers.

- Electrospark deposition (ESD) is a pulsed micro-welding process.
- ESD equipment contains a capacitorbased power supply that produce short duration, high current pulses through a rotating rod consumable electrode.
- The consumable electrode material is deposited onto the work piece by means of electric sparks.
- The electrode is the anode and the substrate is the cathode.
- When the capacitor energy is released, the direct current generates a plasma arc at a high temperature (8000 to 25,000°C) between the tip of the electrode and the substrate.
- The plasma arc ionizes the consumable and a small quantity of molten electrode material is transferred onto the substrate.
- The transfer of material is rapid and the self-quenching is extremely fast.

Penn. State Deposition process (Gen 1)

Sample preparation:

- Flat plate Zirlo samples were sheared to approximately 1" x 2" using a bench shear.
- Tubes of Zirlo 2" long and 3/8" dia.
- Flat plate surfaces and edges were hand ground with 240 SiC grit.
- Process repeated with 600 SiC grit and 800 SiC grit paper to obtain a surface roughness (\sim 10 μ in Ra).
- Samples were marked with identification using a diamond scribe on one of the sides (PF##, P for Penn state, F for flat).
- Hole drilled through the samples for mounting in the autoclave system.
- Samples were ultrasonically cleaned in acetone for 20 minutes and N2 dried, followed by 20 minute ultrasonic clean in methanol and N2 drying.

Cathodic arc deposition of TiAlN (10-12 microns):

- TiAl alloy target with a ratio of 33 at% Ti to 67 at% Al (50-50 wt.%).
- Substrate temperature was 250°C.
- Deposition rate of 0.028 microns/min (1.68 microns/hour).
- Chamber base pressure of 2 x 10⁻⁶ mTorr.
- The samples were then ion etched in a 1.2×10^{-2} mTorr argon atmosphere at a -1000V bias.
- A metallic <u>Ti bond layer (200-1000 nm)</u> was deposited. Nitrogen gas was introduced into the chamber in order to react with the TiAl metallic vapor to form the TiAlN coatings.
- Primary deposition parameters used for monolithic TiAlN coatings (15 μ m): 12 mTorr N₂ pressure, -50V substrate bias, and 65 A and 60 A evaporator current for Ti and TiAl cathodes, respectively.

Penn. State coatings: as deposited

TiAlN $(9.24 \mu m)$ /Ti BC (600 nm)/ Zirlo

Sample list for Gen. 1 samples from Penn. State

	Sample ID	ARL/PSU ID	Description	
1	PF13	C131513-1H	TiAlN (~13mm) / Ti BC (200nm) coated zirlo	
2	PF18	C130515-1H	TiAlN (~13mm) / Ti BC (400nm) coated zirlo	
3	PF31	C130529-1F	TiAlN (TBD) / Ti BC (600nm) coated zirlo	
4	PF35	C130531-1E	TiAlN (TBD) / Ti BC (600nm) coated zirlo - NoRB	
5	PF36	C130531-1F	TiAlN (TBD) / Ti BC (600nm) coated zirlo	
6	PF4	C130508-1D	TiAlN (~13mm) / Ti BC (600nm) coated zirlo	
7	PF21	C130517-1F	TiAlN (~12mm) / Ti BC (600nm) coated zirlo (uncoated fixturing area sectioned)	
8	PF22	C130517-1G	TiAlN (~12mm) / Ti BC (600nm) coated zirlo	
9	PF28	C130521-1H	TiAlN (~14mm) / Ti BC (800nm) coated zirlo	
10	PT1	C131513-1A	TiAlN (~13mm) / Ti BC (200nm) coated zirlo	
11	PT5	C130515-1B	TiAlN (~13mm) / Ti BC (400nm) coated zirlo	
12	PT16	C130531-1A	TiAlN (TBD) / Ti BC (600nm) coated zirlo	
13	PT9	C130517-1C	TiAlN (~12mm) / Ti BC (600nm) coated zirlo	
14	PT11	C130521-1B	TiAlN (~14mm) / Ti BC (800nm) coated zirlo	

Primary test variable was titanium bond coating thickness

Westinghouse autoclave tests

Autoclave test parameters (ASTM: G2/G2M)

- Samples cleaned by ultrasonicating and dried.
- Samples submerged in ½ gallon of static water.
- Temperature raised to 360 °C for 3 days.
- Samples removed and weighed

Penn. State autoclave results (360 °C Water 3 days) (Gen 1) <u>Tubes</u>

Pre-test

Pre-test

Pre-test

PT1 PT5 PT9 PT11 PT16

25 mm

Penn. State autoclave results (360 °C Water 3 days) (Gen 1) <u>Flat plates</u>

Pre-test

Autoclave results (360 °C Water 3 days) (Gen 1) Weight gain

Penn. State autoclave results (360 °C Water 3 days) (Gen 1) **SEM**

(PF21): TiAlN (11.96 μm)/Ti BC (600 nm)/ Zirlo

Penn. State autoclave results (360 °C Water 3 days) (Gen 1) **SEM**

(PF35):TiAlN (9.24 μ m)/Ti BC (600 nm)/ Zirlo

Sample list for Gen. 2 samples from Penn. State

	Sample ID	ARL/PSU ID	Description		
1	PF59	C130620-1H	TiAlN (~12μm) / Ti BC (600nm) (35μin Ra) coated zirlo		
2	PF61	C130625-1C	TiAlN (~12μm) / Ti BC (600nm) (20μin Ra) coated zirlo		
3	PF65	C130625-1G	TiAlN (~12μm) / Ti BC (600nm) (4μin Ra) coated zirlo		
4	PF41	C130614-1E	TiAlN (~8μm) / Ti BC (600nm) (35μin Ra) coated zirlo		
5	PF43	C130614-1G	TiAlN (~8μm) / Ti BC (600nm) (20μin Ra) coated zirlo		
6	PF46	C130618-1F	TiAlN (~8μm) / Ti BC (600nm) (4μin Ra) coated zirlo		
7	PF49	C130620-1A	TiAlN (~4μm) / Ti BC (600nm) (35μin Ra) coated zirlo		
8	PF51	C130620-1C	TiAlN (~4μm) / Ti BC (600nm) (20μin Ra) coated zirlo		
9	PF53	C130620-1E	TiAlN (~4μm) / Ti BC (600nm) (10μin Ra) coated zirlo		
10	PF55	C130620-1G	TiAlN (~4μm) / Ti BC (600nm) (4μin Ra) coated zirlo		
11	PF69	C130627-1C	TiAIN (~4μm) / Ti BC (600nm) (10μin Ra) coated zirlo (two sided coating)		
12	PF71	C130627-1E	TiAlN (~4μm) / Ti BC (600nm) (10μin Ra) coated zirlo only one side coated		
13	PF73	C130627-1G	TiAlN (~4μm) / Ti BC (600nm) (4μin Ra) coated zirlo (two sided coating)		
14	PF75	C130627-1I	TiAlN (~4μm) / Ti BC (600nm) (4μin Ra) coated zirlo only one side coated		
15	PT19	C130614-1A	TiAlN (~8mm) / Ti BC (600nm) (35μin Ra) coated zirlo		
16	PT22	C130618-1B	TiAlN (~8mm) / Ti BC (600nm) (20μin Ra) coated zirlo		
17	PT23	C130618-1C	TiAlN (~8mm) / Ti BC (600nm) (4μin RA) coated zirlo		

<u>Primary test variable was TiAIN coating thickness and substrate surface</u> <u>roughness</u>

C130625-1A (PF59): TiAlN (~12 μm)/Ti BC (600 nm)/ Zirlo (35 μin Ra)

TiAlN deposited onto a zirlo substrate (a) Optical image of polished cross section in "as deposited" condition, (b) ESEM image after autoclave, and (c) ESEM image after autoclave testing.

Autoclave results (360 °C Water 3 days) (Gen 2) Weight gain

Univ. Colorado autoclave results (360 °C Water 3 days) (Gen 2) **SEM**

Modeling efforts at Penn. State

- Considered fuel performance based on possible coating on cladding.
 - Determined Effective Full Power Days (EPFD) penalty.
 - Fuel enrichment percentage to match a reference cycle length
 - Increase of centerline temperature
- Results indicate that thickness more than composition responsible for penalties.

Cycle Length Penalty (EPFD)
derived from coatings
as a function of their composition
and thickness

Fuel Enrichment (%) that matches the reference cycle length as a function of composition and thickness. Reference fuel 4.5% enrichment.

Centerline Fuel Temperature increase (°C) in steady-state conditions as a function of coatings composition and thickness

Coating	10 μm	50 μm	100 μm
Ti ₃ AlC ₂	-3.7	-19.0	-39.8
Ti ₂ AlC	-3.7	-17.4	-35.0
Nb ₂ AIC	-2.8	-14.5	-28.0
TiAIN	-3.4	-16.9	-35.3

Coating	10 μm	50 μm	100 μm
Ti ₃ AlC ₂	4.53	4.70	4.9
Ti ₂ AlC	4.53	4.68	4.84
Nb ₂ AIC	4.52	4.64	4.8
TiAIN	4.53	4.68	4.86

Coating	10 μm	50 μm	100 μm
Ti ₃ AlC ₂	0.1	0.7	1.5
Ti ₂ AlC	0.2	0.9	1.8
Nb ₂ AIC	0.2	1.1	2.1
TiAIN	1.3	6.4	12.8

Future Plans

- Penn. State Univ.:
 - Surface preparation of Zirlo
 - MAX phase coatings
- University of Colorado:
 - Further characterization the bond coat
 - Greater adhesion of the Si-C-N-O bond coat
- Los Alamos Natl. Lab. (LANL):
 - Thermal spray MAX phase coatings on Zirlo
- Univ. of Tennessee:
 - Magnetron sputtering of combinatorial MAX phase films
 - GXRD and XSEM of as deposited and autoclaved samples from Univ. Colorado and LANL
 - Explore ion-beam techniques to modify the surface of Zirlo (With Univ. Michigan)
- UK:
 - Fabrication of sputtering targets of MAX phase compounds
 - Hot Iso-static Pressing (HIP) of coatings

More advanced characterization efforts

Thanks

Thickness, μm Coating ${\rm Ti_3AlC_2}$ -0.5-4.2 Ti_2AlC -0.4-3.410 $\mathrm{Nb_2AlC}$ -0.4-3.6TiAlN-0.4-3.6 ZrC-0.1-0.9 $\rm Ti_3AlC_2$ -2.3-20.1 ${
m Ti_2AlC}$ -2.0-17.950 $\mathrm{Nb_2AlC}$ -1.9-16.7TiAlN -2.1-18.7ZrC-0.8 -7.0 ${\rm Ti_3AlC_2}$ -4.6 -40.5 Ti_2AlC -4.2-37.1100 $\mathrm{Nb_2AlC}$ -3.9 -34.3 TiAlN -36.9-4.2ZrC-1.4 -12.3

Thickness, µm	Coating	T_{cl} , K	$\Delta T_{cl},K$
No Coat	1354.8	0	
	$\mathrm{Ti_3AlC_2}$	1354.9	+0.1
	${ m Ti_2AlC}$	1355.0	+0.2
10	Nb_2AlC	1355.0	+0.2
	TiAlN	1356.1	+1.3
	ZrC	1355.1	+0.3
	${ m Ti_3AlC_2}$	1355.5	+0.7
	Ti ₂ AlC	1355.7	+0.9
50	$\mathrm{Nb_2AlC}$	1355.9	+1.1
	TiAlN	1361.2	+6.4
	ZrC	1356.4	+1.6
	$\mathrm{Ti_{3}AlC_{2}}$	1356.2	+1.4
	$\mathrm{Ti_{2}AlC}$	1356.6	+1.8
100	Nb_2AlC	1356.9	+2.1
	TiAlN	1367.6	+12.8
	ZrC	1358.0	+3.2