Nanoscale Stable Precipitation-Strengthened Steels for Nuclear Applications

Nuclear Energy Enabling Technologies (NEET) Reactor Materials

LANL - K.D. Clarke (PI), A.J. Clarke, R.D. Field, S.A. Maloy, Y. Wang, R.E. Hackenberg
NETL - O.N. Dogan, P.D. Jablonski
CSM - K.O. Findley, J.G. Speer, K. Tippey
NU - S. Vaynman, M.E. Fine

DOE-NE Materials Crosscut Coordination Meeting, August 20, 2013
Overview

- **Background**
- **Investigative Team**
- **Materials Processing Strategies**
 - Colorado School of Mines (CSM)
 - Northwestern University (NU)
- **Material production**
- **Experimental Plan**
 - Thermal studies
 - Mechanical testing
 - Irradiation studies
 - Characterization

Application

Theory/Models

Characterization/Testing
Project Background and Objectives

- Thermal conductivity
- Compatibility
- High-temperature strength
- Ductility
- Creep resistance
- Irradiation resistance
- Affordability

Create precipitation-hardened steels with improved thermal stability.

- Develop alloying strategies to improve irradiation performance of steels.
- Manufacture by conventional methods, with focus on manufacturability and affordability.
- Produce desired microstructures: stable precipitates and dislocation structures.
- Perform ion-beam experiments to determine irradiation resistance.
- Examine microstructural effects on mechanical properties.
Partnership - CSM, NU, NETL and LANL

- **NETL**
 - Produce and process steels with desired compositions and microstructures
 - Thermodynamic/kinetic expertise for alloy design

- **CSM - Advanced Steel Processing and Products Research Center**
 - Global leader in automotive and structural steel development
 - History of developing novel steels using thermal/mechanical processing

- **NU - Infrastructure Technology Institute**
 - Pioneers of tailored-precipitation hardened steels for structural uses
 - Understanding of precipitation strengthening and kinetic control

- **LANL**
 - Materials Science & Technology: Metallurgy (MST-6) steel physical metallurgy expertise
 - Facilities for materials characterization
 - Irradiation testing (IBML)
Advanced High-Cr martensitic or ferritic-martensitic steels

- Traditional material in reactors
- Optimize alloying and deformation processing for strength and creep resistance

Material Design Strategies - CSM and LANL

- **Base alloy, NF616 - Normalized and Tempered**
 - Lower C content to promote MX precipitation over $M_{23}C_6$
 - More resistant to coarsening
 - Excellent creep strength
 - Increased Mn and N
 - Stabilize austenite for thermomechanical processing
 - Coarsening resistance (VN)
 - Mo, W alloying optimized for solid solution strengthening

What is effect of C content on precipitation, aging stability, and resulting mechanical behavior?

To what extent can excess N improve austenite stability and coarsening resistance?
Material Design Strategies - CSM and LANL

- **Thermomechanical Processing (TMP)**
 - Thermal solutionizing treatments
 - Cooling rate
 - Hot- or warm-working

- **Initial Material supplied by NETL**
Material Design Strategies - CSM and LANL

- Thermomechanical Processing (TMP)
 - Recrystallized controlled rolling
 - Decrease austenite grain size for nucleation sites
 - Decrease martensite packet/block size for strength
 - Increased interfacial area
 - Controlled rolling
 - Retain dislocation substructure for nucleation sites
 - Increased strength
 - Martensite warm working
 - Precipitate orientation relationship to matrix altered
 - Control precipitate growth kinetics

- Laboratory-scale processing for promising processing routes
Material Design Strategies - NU and LANL

- **Novel Tailored-Precipitate Ferritic (TPF) steels**
 - Designed nanoscale fine Al, Cu, Nb, or Mo-based precipitates plus deformation processing.
 - Optimize for strength, corrosion resistance, irradiation resistance, weldability, and thermal stability.
Material Design Strategies - NU and LANL

- Corrosion resistant structural steels tailored at NU
 - 1.3-2.5 Cu, 2.7Ni, 0.6Al
 - YS = 1000 Mpa
 - EI% = > 20%
 - Impact energy > 70 J at -40 °C
 - Unique structure - Ni-Al “shell”
 - Initial irradiation testing being initiated

- NU results suggest NiAl precipitates can be optimized for irradiation resistance (i.e., 17-7 PH stainless steels)
 - Meets strength and ductility requirements
 - Precipitate morphology shown to be adjustable with processing
 - High-temperature stability (700 °C)
 - Mo impedes morphology change/coalescence - Mo migrates to interface

- Nb or V carbide optimization

Material Design Strategies - NU and LANL

- Design precipitates for application to nuclear reactors
 - Alloys have been designed to take advantage of NiAl precipitate stability
 - NiAl - stable ordered phase (B2 structure)
 - Wide composition band possible - computational and experimental verification
 - Quaternary alloying strategies, Mo
 - Control lattice parameter mismatch
 - Slow coarsening rate
 - Shape control
 - Size control
 - Examination of Nb and V carbide behavior
 - Thermomechanical processing

Can FeNiAl alloys be further optimized for use in irradiation-resistant materials?

Material Design Strategies - NU and LANL

- **Weldability**
 - Previous steels have been extremely weldable, which is rare in advanced, high-strength materials. Important for manufacturability.
 - Controlled carbon equivalent and ability to control temperature during welding - no brittle heat affected zone
Tailored-Precipitate Ferritic Steels (TPF)
- NiAl - alloys have been produced at NETL
 - Four 5kg heats
 - 2.8Ni, 2.3Al
 - 2.6Ni, 3.0Al
 - 0.08C, 0.1Nb
 - 0.08C, 0.1V
- Aging studies underway at NU - test thermal stability and mechanical properties as a function of time and temperature
- Irradiation studies being initiated at LANL

Advanced Hi-Cr ferritic or ferritic-martensitic steels
- NF616 produced at NETL
- Thermomechanical examinations underway at CSM
- Irradiation studies being initiated at LANL
Experimental Plan - CSM, NU, NETL, and LANL

- Material Production and Thermomechanical processing

- Aging studies (CSM, NU)
 - 650 °C up to 5000 hours (>200 days)
 - Microstructural and mechanical evaluations to determine best-performing materials

- Mechanical Testing (CSM, NU, LANL)
 - Tensile testing to 700 °C
 - Creep-rupture testing
 - Nano-indentation

- Irradiation, Ion Beam Materials Laboratory (IBML) at LANL
 - Irradiation processes being determined
 - Mechanical and Microstructural response

- Microstructural Characterization and Interpretation (CSM, NU, LANL, NETL)
 - Precipitate analysis via TEM and EDS, along with 3DAP
 - EBSD for texture and grain-boundary type information
 - Understand relationships between processing, microstructure, and properties
Summary

- Develop stable nano-precipitates for reactor applications
- Use flexible processes and tailored compositions to produce desired microstructures
- Characterize microstructures with advanced techniques
- Optimize microstructures for reactor applications
- Initial iterations of materials designed and produced through conventional steelmaking processes
- First stages of testing underway