

Nuclear Energy Enabling Technologies (NEET)

Advanced Sensors and Instrumentation (ASI) Annual Project Review

Micro Pocket Fission Detectors (MPFD) Troy Unruh Idaho National Laboratory

May 21-22, 2013

Project Overview

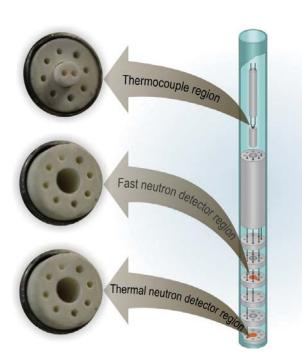
Nuclear Energy

Goal and Objectives

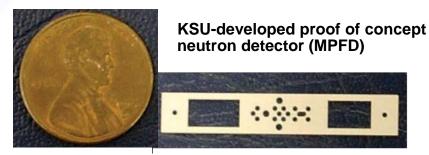
 Develop, fabricate, and evaluate the performance of prototype, high temperature, compact, multi-purpose, fast and thermal fission chambers with integral temperature sensors

Participants

- » Troy Unruh and Joy Rempe; Idaho National Laboratory
- » Philip Ugorowski, Douglas McGregor, and Michael Reichenberger; Kansas State University
- » Jean-François Villard; Commissariate a l'energie atomique


DOE-R&D programs benefitting from this work

 FCRD, ATR NSUF, ARC, SMR, NGNP, LWR/Reactor Safety (new), and LWRS/ Industry Programs


Technology Impact

Nuclear Energy

Robust and compact multi-purpose advanced neutron detector sorely needed to support planned DOE-NE and industry fuel and material irradiations at high temperatures and high pressures in high flux US MTRs

Three-year project to yield prototype ready for DOE-NE program irradiations

Although original KSU MPFD prototypes <u>not suitable</u> for high flux MTR irradiations, KSU evaluations demonstrated that concept can simultaneously detect thermal and fast neutron flux and temperature

Research Plan

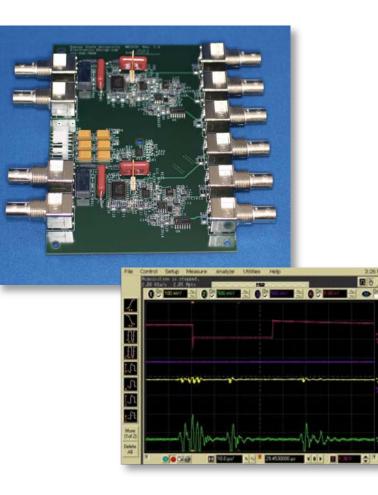
Nuclear Energy

FY 2012: \$375K Initial Design and Fabrication

- Collect input from DOE-NE programs and define sensor survivability requirements (INL)
- MPFD redesign for HTIR-TC (INL, KSU, CEA)
- Develop detector evaluation plan (INL, KSU, and CEA)
- Issued "NEET Micro-Pocket Fission Detector FY 2012 Status Report," INL/EXT-12-27274, Milestone Number M3CT-12IN0703013 (INL, KSU)

FY 2013: \$192K Prototype construction and initial evaluation

- Evaluate prototype design at HTTL (INL, KSU)
- Initial evaluation of detectors (INL, KSU, and CEA)
- Issue "NEET Micro-Pocket Fission Detector –FY 2013 Status Report " Sept. 2013 (INL, KSU)
- Journal and conference papers, patents (Micro Pocket Fission Detector, IDR-2291) (INL, KSU)


FY 2014: \$473K Final construction and evaluation/recommendations

- Final evaluation of detectors (INL, KSU, and CEA)
- Build multiple MPFD string (INL, KSU)
- Results documented in final project report Sept. 2014 (INL, KSU, CEA)

FY 2012 Accomplishments

Nuclear Energy

FY2012 (Completed)

- Developed enhanced MPFD design to accommodate INL-developed HTIR-TCs and improve robustness for higher temperature, long-duration high flux irradiations
- Procured materials and initiated fabrication activities
- First-generation amplifier board assembled and tested using initial KSU-designed MPFD in KSU TRIGA
- Fissile depositions started at KSU
- Issued "NEET Micro-Pocket Fission Detector – FY 2012 Status Report," INL/EXT-12-27274, September 2012.

FY2013 Activities

Nuclear Energy

Fabricate prototype

- Fissile deposit characterization
- Refine construction techniques

Evaluate survivability

- High temperature furnaces
- High pressure/high temperature autoclave

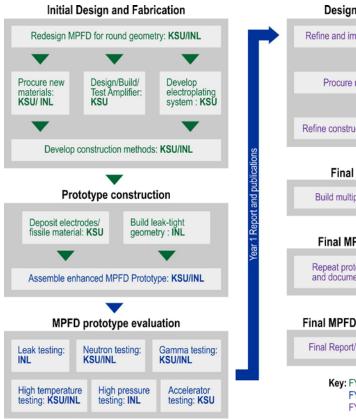
Device response

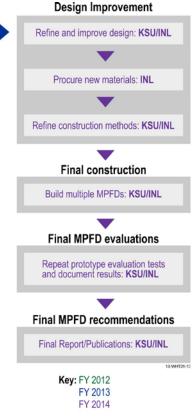
- Gamma irradiator
- Reactors and neutron sources

Initiated INL patent paperwork

Publications

- ICEM 2013 (ASME student sponsored)
- NIM publication (in preparation)
- Issue "NEET Micro-Pocket Fission Detector FY 2013 Status Report," in Sept 2013





Planned Accomplishments

Nuclear Energy

FY2013: (In Progress)

- Test prototype survivability in high temperature furnaces and high pressure/high temperature autoclave environments
- Test device response in y and neutron fields
- Conference and Journal Publications
- Issue "NEET Micro-Pocket Fission Detector – FY 2013 Status Report"

FY2014 (Planned)

- Refine prototype design (as required)
- Evaluate final prototype in various radiation fields (transient testing)
- Conference and Journal Publications
- Issue final program report

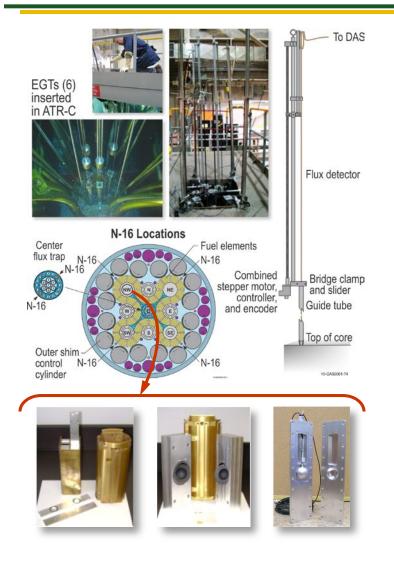
Approach

Crosscutting Benefits

Nuclear Energy

Collected list of customer requirements through interactions with cognizant leads in NGNP, ARC, SMR, LWRS, FCRD, TREAT restart, and ATR NSUF programs

- Neutron sensitive (BOTH fast and thermal)
- Temperature sensitive with integral high-temperature thermocouple
- Compact size
- Radiation resistant
- High temperature and pressure compatibility using appropriate materials
- High accuracy, high resolution
- Flexibility (variable sensitivities, lifetimes and detector responses)
- Fast response
- Long lifetime


State-of-the-art sensor positions U.S. for leadership in irradiation testing

- Minimizes flux perturbation associated with typical real-time in-core sensors
- Permits 3D modeling and triangulation of data for validation
- Higher fidelity data for modeling and simulation of materials and fuels
- Potential to increase US MTR customer base (DOE-NE, NR, industry, regulators, etc.)

Crosscutting Benefits (Cont.)

Nuclear Energy

FCRD

- Enables in-pile measurement of fast flux, thermal flux, and temperature in high temperature irradiation tests and in transient tests
- Multi-purpose sensors provide high accuracy data required for validating new multi-scale fuel models

ATR NSUF

- Enables in-pile measurement of fast flux, thermal flux, and temperature in high temperature ATR NSUF irradiations
- Provides US MTR users high accuracy, high temperature flux and temperature data
- Ideally suited for cross-calibrations using specialized fixturing from previous NSUF detector calibration project

Examples

Crosscutting Benefits (Cont.)

Nuclear Energy

- Enables in-pile measurement of fast flux, thermal flux, and temperature in high temperature irradiation tests and on-line monitoring of conditions in first plant
- Multi-purpose sensors provide real-time data to validate model predictions during irradiation and during reactor operation

LWRS / Industry Programs

- Enables in-pile measurement of fast flux, thermal flux, and temperature in fuels and materials irradiation tests
- Multi-purpose sensors provide data required for demonstrating performance of accident tolerant fuels during irradiation testing during steady-state and transient conditions
- Multi-purpose sensors provide real-time data for characterizing conditions during materials irradiations.

Examples

Crosscutting Benefits (Cont.)

Nuclear Energy

- Enables in-pile measurement of fast flux, thermal flux, and temperature in high temperature irradiation tests
- Multi-purpose sensors provide data for validating new multi-scale models.
- Long lifetime sensor ideal for in-vessel operational measurements where vessel stays closed

Advanced SMR

- Enables in-pile measurement of fast flux, thermal flux, and temperature in high temperature irradiation tests
- Multi-purpose sensors provide high temperature real-time data to validate fuel and material properties during irradiation
- Long lifetime sensor ideal for in-vessel operational measurements where vessel stays closed

Transition to Competitive Research

Nuclear Energy

Enables sensors to meet DOE-NE and industry irradiation requirements

- Compact size
- Multiple parameter measurement (e.g., temperature, fast flux, and thermal flux)
- Radiation resistant
- High temperature compatibility with appropriate materials
- High accuracy
- High resolution
- Flexibility (variable applications, sensitivities, resolution, accuracies, etc.)

Anticipated hand-off to occur at end of program

• Demonstrate long duration irradiation performance in ATR NSUF awarded or specific DOE NE or industry program irradiation test.

Conclusion

Nuclear Energy

- Compact, multi-purpose advanced neutron detector is essential for high temperature, high pressure, high flux irradiations identified by LWRS, NGNP, ATR NSUF, FCRD, and Industry Programs
- Data from fast response, accurate, miniature neutron detector will be a critical tool for validating new high-fidelity multi-scale codes under development by DOE-NE