Integrated Research Project FHR Overview for DOE Nuclear Energy Advisory Committee

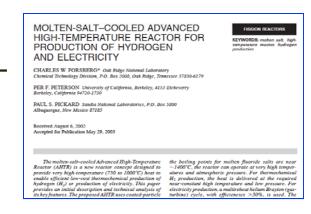
Per Peterson (UCB), Charles Forsberg (MIT), Lin-Win Hu (MIT), and Kumar Sridharan (UW)

13 June 2013

Passively-Safe Reactor

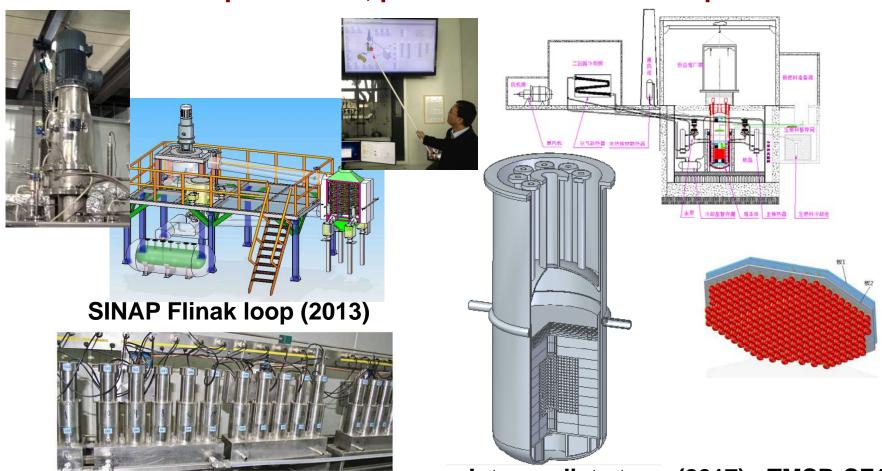
GE Power Systems 7FA Gas Turbine

Nuclear Air-Brayton Combined Cycle


High-Temperature Coated-Particle Fuel

Fluoride Salt-Cooled High-Temperature Reactor (FHR)

> High-Temp., Low-Pressure Liquid-Salt Coolant (Transparent)


FHR Historical Timeline

- Original concept: 2000
- Early studies: 2000-2010
 - ORNL (Forsberg), Peterson (UCB), INL
- UW salt work initiated 2006
- IRP Proposal: Early 2011
- Fukushima: March 2011
- Chinese Academy of Science: 2012
 - Decision to build 2-MWt FHR test reactor by 2017
 - Technical staff >400 people
 - Project management team built Chinese version of ANL Advanced Light Source
- American Nuclear Society ANS 20.1 FHR safety standard working group formed: 2012

SINAP is Developing a 2-MWth FHR Experimental Reactor by 2017

Uses solid pebble fuel, plans fluid fuel for subsequent reactors

Crown-ether Li-7 enrichment demonstrated (2013)

Intermediate term (2017): TMSR-SF1 experimental reactor w/ ordered pebble bed

400 MWth → BMR

900 MWth

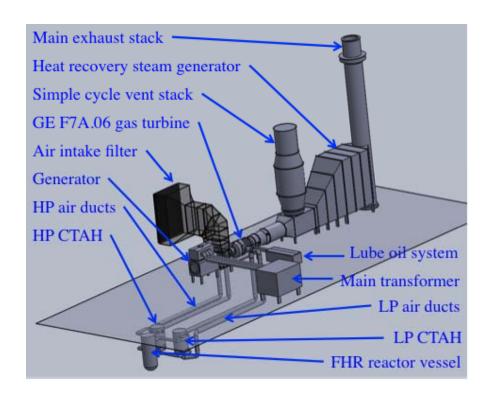
PB-AHTR

The motivation to study FHRs

Low pressure/high power density address key issues for helium-cooled HTRs

Leverages existing U.S. fuel and materials capabilities

- Low pressure/high temperature enable potential improvement vs. ALWRs
 - Design and license using same codes as ALWRs
 - Low pressure gives compact reactor buildings
 - High temperature enables use of gas Brayton cycles
- Key learning experience for young U.S. researchers
 - Opportunities to design and simulate new experimental facilities, including the CAS TMSR-SF1
 - Opportunity to learn fundamental principals for reactor safety

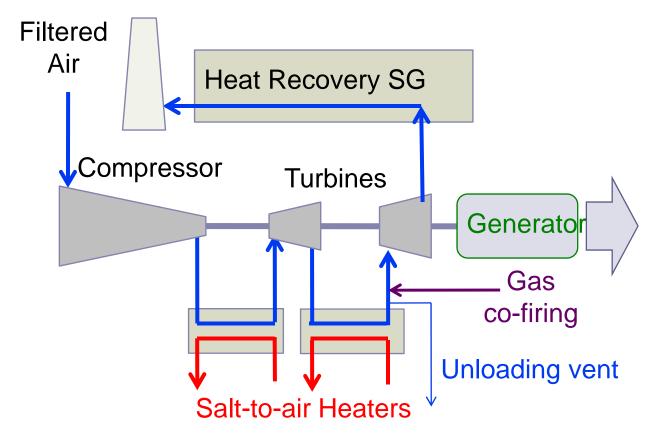

IRP FHR Uses a Nuclear Air-Brayton Combined Cycle (NACC) Power System

Similar to natural-gas combined cycle plants

Only FHRs couple to NACC because of 350 to 500°C

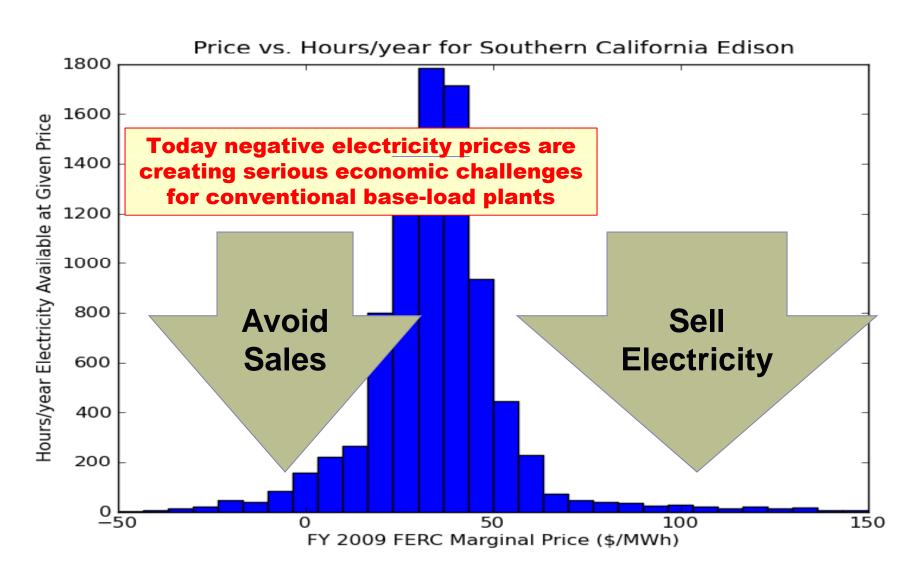
exit temperature from standard air compressor

- Current baseline:
 - GE F7A.06 gas turbine
 - Conventional heat recovery steam generator
 - 245 MWth reactor power
 - 104 MWe baseload
 - 240 MWe peaking (with gas co-firing)


FHR Couples to NACC, Super-Critical CO₂ and Steam: NACC Baseline Chosen to Meet Goals and Boost Revenue

Commercial Basis for FHR

MIT Lead


(More details in May 7 NEAC NRT Subcommittee briefing)

NACC Power System Maximizes Revenue in a Low-Carbon Nuclear-Renewable Future

- Base-load electricity
- Peak electricity with natural gas assist
- Sell steam if low electricity prices
- Stabilize grid with rapid response

>50% Increase in Plant Revenue With NACC Versus Base-Load Plant

UW-MIT Materials Testing

(More details in May 7 NEAC NRT Subcommittee briefing)

MIT and UW Division of Work

Identical Experiments with/without Neutrons to Sort Out Chemical Effects from Radiation Effects at 700°C

Wisconsin

Corrosion Models

Out of Reactor Test Loops

Small and Large Tests (No reactor limits)

No Radiation

MIT

Primary Systems Models

In-core MIT research reactor irradiations at temperature

Small tests: Volume Constraints in Reactor

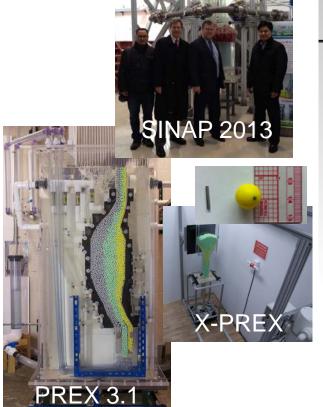
Full Neutron Flux

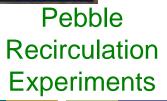
UW and MIT Completed Work for Starting Flibe Salt Experiments

Experiments starting following delivery of DOE flibe salt

UW Out-of-Reactor Experiments

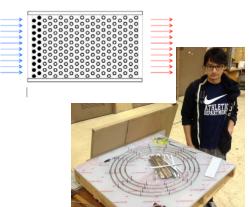
MIT In-Reactor Experiments




←MIT Irradiation Capsule

UCB FHR Thermal Hydraulics and Neutronics

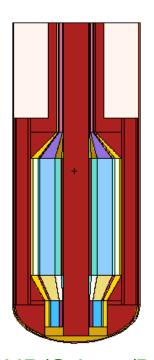
(More details in May 7 NEAC NRT Subcommittee briefing)

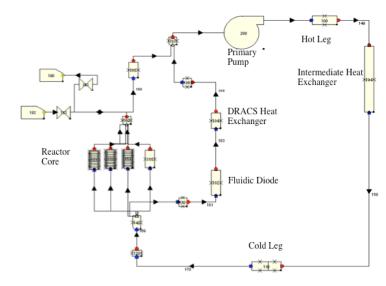

UCB work includes TH experiments

Compact Integral Effects Test (i.e. "APEX" for FHR)

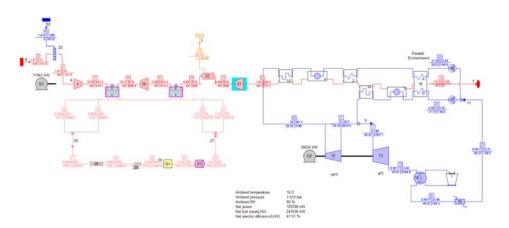
Coiled tube air heaters

Pebble heat transfer


Pebble friction


Natural circulation

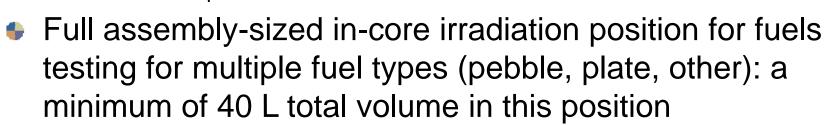
Various Separate Effects Tests

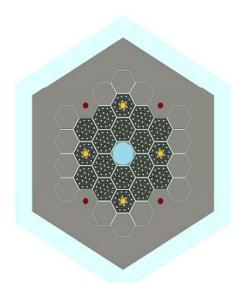

UCB Modeling and Simulation

MCNP/Origen/BEAU (Neutronics/Depletion)

RELAP/Flownex (Reactor Thermal Hydraulics)

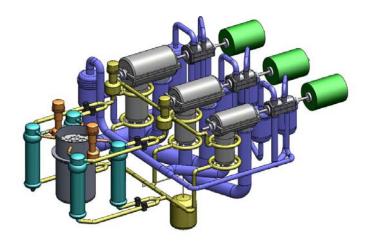
Thermoflex (Power Conversion)


Fluoride-salt-cooled Hightemperature Test Reactor: FHTR (MIT Lead)


The FHTR Equivalent of Dragon:
The First HTGR
20 MWt: United Kingdom
1964-1975

Current FHTR Design Requirements

- Peak flux 3X maximum commercial FHR
- Minimum cycle length of 0.5 y
- Negative power and void coefficients of reactivity
- Capability to operate with either FLiBe or NaF-ZrF₄ coolant

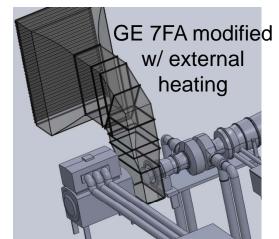


- Multiple additional test positions for high-temperature materials irradiations
- Less than 20% U-235 enrichment with TRISO fuel

Commercial Reactor Design

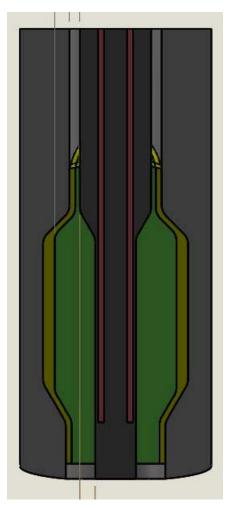
UCB Lead

Goal is to update the 2008 UCB point design


High-Level Functional Requirements for UCB PB-FHR Commercial Prototype Design

Have capability to provide additional grid support services

besides reliable nuclear base-load generation


 Design to drive a credible nuclear air Brayton combined cycle (NACC) w/ natural gas co-fire

- No alternative off-site power required
- Capable to black-start grids
- Use GE 7FA gas turbine
- Validate performance predictions w/ Thermoflex
- All components rail shippable
- Maximize the simplicity and credibility of the baseline design
 - Have credible strategies for:
 - In-service inspection and maintenance
 - Safety analysis and licensing
 - Materials and component development and procurement
 - Carry forward design alternatives where warranted

Nominal PB-FHR Design Parameters

- Annular pebble bed core with center reflector
 - Core inlet/outlet temperatures 600°C/700°C
 - Control elements in channels in center reflector
 - Shutdown elements cruciform blades insert into pebble bed
- Reactor vessel 3.5-m OD, 10.0-m high
 - Power density 3.5 x higher than S-PRISM
- Power level: 247 MWth, 103 MWe (base load), 240 MWe (peak w/ gas co-fire)
- Power conversion: GE 7FA gas turbine w/ HRSG
- Air heaters: Two 3.5-m OD, 8.0-m high CTAHs, direct heating
- Tritium control and recovery
 - Control: Kanthal coating on air side of CTAHs
 - Recovery: Compact flibe spray column

PB-FHR core and reflectors

Preconceptual design description by August, 2013

Path Forward

IRP Will Continue Engaging Students and Professors

- ~15 students working on IRP (masters and PhDs)
- Non-project students engaged
 - Part of design classes at MIT and UCB
 - Students in other departments with related projects
 - Workshops and other IRP projects involve other students
- Multiple professors beyond IRP principals

4th FHR Workshop, MIT, Oct. 2012

Key Question: What FHR Activities after 2014?

Large Incentive for the U.S. to Work With CAS

Selection soon for new SINAP campus for TMSR

- IRP working with CAS under DOE MOU
- Need for approval of TMSR/ORNL CRADA
- Plan for 2014 TMSR Summer School in Shanghai
 - Model on successful INL/ORNL MeV Summer School
- Large incentive for agreement to exchange test reactor data for each side to validate their safety codes

We Believe Strong Case to Continue²⁴ DOE investment in FHR R&D Efforts

Major Facilities Being Built But Limited Data by End of IRP; More Time Required for Test and Irradiation Data

Includes Procedures, Approved QA plans, and Safety Analysis (Such MIT Reactor for 700°C Experiments)

Conclusions

- Developed strong and unique FHR market case
- Major experiments to begin this year
- ANS 20.1 FHR Safety
 Standard under development
- Engagement of universities, national laboratories, vendors and international collaborators
- Opportunities for students to study a new technology

HIGH-TEMPERATURE
REACTORS (FHRs) FOR
BASE-LOAD AND PEAK
ELECTRICITY, GRID
STABILIZATION, AND
PROCESS HEAT

A Joint Project of the Massachusetts Institute of
Technology (MIT), University of California at Berkeley
(UCB), and University of Wisconsin (UW)

Charles Forsberg (MIT), Lin-wen Hu (MIT).
Per F. Peterson (UCB), and Kurner Sridheren (UW)

January 2013
MIT-ANP-TR-147

FLUORIDE-SALT-COOLED

Need to Work with DOE on the Actions Beyond the IRP