

Le Tang, ABB , April 22, 2013

## **HVDC** Technologies & ABB Experience

DOE Workshop – Applications for High-Voltage Direct Current Transmission Technologies



## Why is DC important in the Transmission Grid ? Capacitance and Inductance of Power Line



In cable > 50 km (>30 miles), most of AC current is needed to charge and discharge the "C" (capacitance) of the cable

**Overhead Line** 



In overhead lines > 200 km (>120 miles), most of AC voltage is needed to overcome the "L" (inductance) of the line





# Benefits of HVDC vs. HVAC



- Higher transmission capacity
- Possibility to use underground and subsea cables
- Lower losses on long distances



ABB

## HVDC technology development More power and lower losses

# 6 times HVDC Classic

Capacity up 6 times since 2000; Voltage up from +/- 100kV to +/-800kV since 1970

#### Xiangjiaba -Shanghai ± 800 kV UHVDC. World's most powerful link

commissioned

Capacity up 10 times; losses down from 3% to 1% per converter station since 2000

#### BorWin:

400 MW, 200km subsea and underground World's most remote offshore wind park





## **HVDC** Light







## ABB's track record of HVDC innovation Many firsts – some examples





## ABB's unique position in HVDC In-house converters, semiconductors, cables





## ABB - Leading Supplier of High Voltage DC Cables Market Segments





# Solid Dielectric Cables for HVDC transmission



#### 1999 Gotland 160 kV (±80 kV) 50 MW 43 miles

2000 Direct Link 160 kV (±80 kV) 3×60 MW 3×40 miles

#### 2002 Murray Link 300 kV (±150 kV), 220 MW 112 miles

## 2006

EstLink 300 kV (±150 kV), 350 MW 20 miles (+46 miles subsea)

#### 2009

BorWin 300 kV (±150 kV), 400 MW 47 miles (+80 miles subsea)

#### 2012

EWIP 400 kV (±200 kV), 500 MW 46 miles (+116 miles subsea)

#### 2007-2009 Type and PQ test 2500 mm<sup>2</sup> Cu or Al 640 kV (±320 kV), up to 1100 MW

#### 2013

DolWin1 640 kV (±320 kV), 800 MW 60 miles (+47 miles subsea)

#### 2015 NordBalt 600 kV (±300 kV), 700 MW 31 miles (+248 miles subsea)

#### 2015

DolWin 2 640 kV (±320 kV), 900 MW 56 miles (+28 miles subsea)



## ABB has more than half of the145 HVDC projects The track record of a global leader





## DC grid vision first conceived in 1999 Now a shared vision



### **Future developments**

Multi-taps / DC grids / Mixed AC/DC grids

## Why DC grids vs DC single links

- Optimize investment & system performance
- Need for renewable integration
- Technology advance

## How

 From point to point connections to small multi-terminal HVDC and taps to pancontinental HVDC grids

## Technology gaps to close

- DC breaker
- Control and protection
- Power flow control
- Cables with higher power ratings

## Other gaps to close

- Political consensus/Regulatory framework
- Funding and operation models



# HVDC breakers State of the art technology





# Hybrid DC Breaker Basic Design



Modular design of Main DC Breaker for improved reliability and enhanced functionality

Fast DC current measurement for control and protection

Disconnecting residual DC current breaker isolate arrester banks after fault clearance



## ABB's hybrid HVDC breaker How it works ?





- A. Normal operation. Power flow in the path with less resistance (=lower losses)
- B. Breaker started by power electronic breaker closing pushing the current flow into the lower path



C. Mechanical breaker opens to block the upper path



D. Main electronic breaker block in the lower path





# Power and productivity for a better world<sup>™</sup>

