Evaluating the Effects of Managing Controllable Demand and Distributed Energy Resources Locally on System Performance and Costs

Tim Mount and Ray Zimmerman
Dyson School of Applied Economics and Management
Cornell University

Alejandro Dominguez-Garcia
Department of Electrical and Computer Engineering
University of Illinois, Urbana-Champaign
Collaborative Research on the Smart Grid

PSERC Researchers at Cornell

Engineers
- Lindsay Anderson
- Hsiao-Dong Chiang
- Andrew Hunter
- Bob Thomas
- Lang Tong
- Max Zhang
- Ray Zimmerman
- Judy Cardell, Smith College

Economists
- Wooyoung Jeon*
- Alberto Lamadrid*
- Jung Youn Mo*
- Surin Maneevitjit*
- Tim Mount
- Dick Schuler
- Bill Schulze
- Hao Lu*
- Dan Shawhan, RPI

* Graduate Student, University of Illinois
** Supported by PSERC
PART 1 (Wooyoung Jeon)
- Optimal hourly use of storage to minimize daily system costs
 - Exogenous wind generation
 - No network or reliability standards

PART II (Alberto Lamadrid)
- Optimal hourly use of deferrable demand at 5 load centers to minimize the expected daily system costs
- Optimal hourly use of storage collocated at 16 wind sites to minimize the expected daily system costs
 - Stochastic potential wind generation at 16 sites
 - NE Test Network (36 buses) with contingencies

PART III (Alejandro Dominguez-Garcia)
- Manage distributed resources locally in a hierarchical structure to deliver aggregated energy services efficiently
 - Use only information exchange among immediate neighbors
PART I: Optimize Hourly Storage with Exogenous Wind Generation and No Network
Demand for Electricity in New York City for a hot summer day (7/16/10)

- Cumulative Base Demand over 24 hrs: 208 Gwh
- Cumulative Temperature-Sensitive Demand (TSD): 74 Gwh
- TSD is 35% of the cumulative demand (and 35% of the peak system load)
- Consistent with EIA data (30% of the total electricity demand is used for cooling during the summer)

Use an econometric model to distinguish Temperature-Sensitive Demand (TSD) from Non-Temperature-Sensitive Demand (NTSD)

TSD is a potentially large source of deferrable demand
Simplified Optimization Criterion

\[\min_{P_{h}, T_{h}, T_{h}'} \sum_{t=1}^{24} EP_{t} \cdot CG + RP_{t} \cdot |\Delta CG| - P_{EIS} \cdot FEIS\]

\[SCL_{th} \leq \sum_{t=0}^{T'} Th_{t}^{+} - \sum_{t=0}^{T'} Th_{t}^{-} \leq SCU_{th}, \quad T' = 1, \ldots, 24\]

\[SCL_{Ph, t} \leq \sum_{t=0}^{T'} Ph_{t} \leq SCU_{Ph, t}, \quad T' = 1, \ldots, 24\]

\[HCL_{th}^{+} \leq Th_{t}^{+} \leq HCU_{th}^{+}, \quad \forall t = 1, \ldots, 24\]

\[HCL_{th}^{-} \leq Th_{t}^{-} \leq HCU_{th}^{-}, \quad \forall t = 1, \ldots, 24\]

\[HCL_{Ph}^{+} \leq Ph_{t} \leq HCU_{Ph}, \quad \forall t = 1, \ldots, 24\]

\[0 \leq \sum_{t=0}^{T'} Th_{t}^{+} - \sum_{t=1}^{T'+1} Th_{t}^{-} \quad \forall t = 1, \ldots, 24\]

\[C_{Th}^{-} \cdot Th_{t}^{-} \leq L_{C}^{C}, \quad \forall t = 1, \ldots, 24\]

\[L_{t} = L_{NC}^{C} + L_{C}^{C}\]

\[L_{C}^{C} = C_{Th}^{-} \cdot Th_{t}^{-} + AC_{t}\]

\[CG_{t} = L_{t} - W_{t} + C_{Th}^{+} \cdot Th_{t}^{+} - C_{Th}^{-} \cdot Th_{t}^{-} + H_{vac} \cdot C_{Th}^{-} \cdot Th_{t}^{-} + DP \cdot C_{Ph} \cdot Ph_{t}\]

\[= L_{NC}^{C} + L_{C}^{C} - C_{Th}^{-} \cdot Th_{t}^{-} - W_{t} + C_{Th}^{+} \cdot Th_{t}^{+} + H_{vac} \cdot C_{Th}^{-} \cdot Th_{t}^{-} + DP \cdot C_{Ph} \cdot Ph_{t}\]

\[= L_{NC}^{C} + AC_{t} - W_{t} + C_{Th}^{+} \cdot Th_{t}^{+} + H_{vac} \cdot C_{Th}^{-} \cdot Th_{t}^{-} + DP \cdot C_{Ph} \cdot Ph_{t}\]

\[EP_{t} = a + b \cdot CG_{t}\]

\[RP_{t} = c \cdot EP_{t} \cdot |\Delta CG_{t}|\]

Manage storage capacity to minimize the daily cost of energy and ramping to meet (load – wind generation)

- Linear cost function for energy
- Linear cost function for ramping
- Cooling demand can be met by AC and/or thermal storage (deferrable demand)
- AC can be used to charge storage during off-peak periods at night
Glossary for the Optimization

\[EP_t : \text{Energy Price at } t \]
\[RP_t : \text{Ramping Price at } t \]
\[L_t : \text{Base Load at } t \]
\[W_t : \text{Wind Load at } t \]
\[Th_t : \text{Load stored or discharged by THERMAL Storage at } t \]
\[Ph_t : \text{Load stored or discharged by PHEV Storage at } t \]
\[C_{Th} : \text{Charging Efficiency of THERMAL Storage} \]
\[C_{Ph} : \text{Charging Efficiency of PHEV Storage} \]
\[AC_t : \text{Air Conditioning Load at } t \]
\[L^{NC}_t : \text{Load for Non-Cooling at } t \]
\[L^C_t : \text{Load for Cooling at } t \]
\[FEIS : \text{Final Energy In Storage} \]
\[DP : \text{Driving Profile} \]
\[SCL : \text{Storage Capacity Lower bound} \]
\[SCU : \text{Storage Capacity Upper bound} \]
\[HCL : \text{Hourly Charging Lower bound} \]
\[HCU : \text{Hourly Charging Upper bound} \]
\[a, b : \text{Estimated from market data} \]
\[c : \text{Scaling parameter for Ramping Price, } \frac{1}{100} \]
The Effect of Adding Storage Capacity on Total Conventional Generation

INPUT ASSUMPTIONS
- Daily demand for a typical summer day in New York City
- Total Conventional Generation = Load – Wind Generation = Net Load
- Wind data are from NREL → hourly variability of generation and less wind during the on-peak period in the daytime
- Wind capacity is 2GW (20% of the Peak System Load that provides 12% of the total daily generated energy)

CONCLUSIONS - Adding storage (deferrable demand)
1) flattens the daily pattern of conventional generation → lower peak load
2) mitigates the variability of wind generation → less ramping by conventional sources
3) reduces the day/night price arbitrage → need other economic incentives
Hourly Energy Purchased and Consumed (10GWh of Storage)

- The energy consumed by customers does not change with deferrable demand
- The energy purchased = generation from wind + conventional sources
- Deferrable demand →
 1) More energy is purchased off-peak at night and the peak load is lower
 2) Provides ramping services to mitigate the variability of wind generation
Composition of the Cooling Demand
Direct (AC) v Stored (THERMAL)

- Deferrable Cooling Demand = 6.2% of TSD
- AC delivers all cooling needed at night (and charges the thermal storage)
- Mix of AC and thermal storage deliver cooling during the day AND reduce the ramping by conventional generators
Pay for services used and get paid for services provided → What happens?

<table>
<thead>
<tr>
<th></th>
<th>Ramping Payment ($1000)</th>
<th>Energy Payment ($1000)</th>
<th>Total Payment ($1000)</th>
<th>Total Energy (MWh)</th>
<th>Average Payment ($/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) CD</td>
<td>2,120</td>
<td>18,920</td>
<td>21,041</td>
<td>214,911</td>
<td>98</td>
</tr>
<tr>
<td>2) WG</td>
<td>1,735</td>
<td>-2,154</td>
<td>-419</td>
<td>27,070</td>
<td>-15</td>
</tr>
<tr>
<td>3) CG</td>
<td>-1,125</td>
<td>-17,236</td>
<td>-18,361</td>
<td>196,822</td>
<td>-93</td>
</tr>
<tr>
<td>4) DD</td>
<td>-2,730</td>
<td>470</td>
<td>-2,261</td>
<td>12,296</td>
<td>-184</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Buyers</td>
<td>(1)+(2) = 3,855</td>
<td>(1)+(4) = 19,390</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppliers</td>
<td>(3)+(4) = -3,855</td>
<td>(2)+(3) = -19,390</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Positive (Negative) payments indicate Paying (Being Paid) for a service
- CD, Conventional Demand and DD, Deferrable Demand
- WG, Wind Generation and CG, Conventional Generation
- The System Cost of ramping is caused by ramping CG
- WG accounts for 11% of Energy Supply and 45% of Ramping Demand
- DD accounts for 2% of Energy Demand and 71% of Ramping Supply
PART II: Optimize Hourly Storage with Stochastic Wind Generation and the NE Test Network Using the Multi-Period SuperOPF
North Eastern Test Network (NETNet)

Reduced NPCC System (Allen, Lang and Ilic (2008))
NREL Wind Site Clusters (EWITS)

New England

New York State
Modeling the Inherently Stochastic Behavior of Potential Wind Generation

Steps:
1. Select a sample of days (24 hours) using NREL wind speed data (EWITS) for 16 sites in New York State and New England
2. For each hour of the day, use the K means algorithm to pick K representative wind speeds (scenarios)
3. Assign the sample days to the nearest mean for hour t and then estimate transition probabilities from hour $t-1$ to hour t for $t = 1, 2, \ldots, 24$
System Characteristics of the NE Test Network

<table>
<thead>
<tr>
<th>NYNE GENERATING CAPACITY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peaking (GW)</td>
<td>37</td>
</tr>
<tr>
<td>Baseload (GW)</td>
<td>26</td>
</tr>
<tr>
<td>Fixed Imports (GW)</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL (GW)</td>
<td>66</td>
</tr>
<tr>
<td>New Wind (GW)</td>
<td>32</td>
</tr>
<tr>
<td>Storage Capacity (GW)</td>
<td>23</td>
</tr>
<tr>
<td>Storage Energy (GWh)</td>
<td>136</td>
</tr>
<tr>
<td>Peak Load (GW)</td>
<td>60</td>
</tr>
<tr>
<td>Average Load (GW)</td>
<td>49</td>
</tr>
</tbody>
</table>

Case 1: No Wind: Initial system
Case 2: Wind, 32 GW of wind capacity at 16 locations added.
Case 3: Case 2 + Deferrable Demand (DD) at five load centers with a total capacity of 23GW (136GWh)
Case 4: Case 2 + Energy Storage System (ESS) collocated at the wind sites with a total capacity of 23GW (136GWh)

Characteristics of Wind Input

- Wind/conventional capacity 48%
- Capacity factor of wind 21%
- Expected potential wind generation could supply 13% of the daily energy purchased by customers

NYNE GENERATING CAPACITY

- Peaking (GW): 37
- Baseload (GW): 26
- Fixed Imports (GW): 3
- TOTAL (GW): 66
- New Wind (GW): 32
- Storage Capacity (GW): 23
- Storage Energy (GWh): 136
- Peak Load (GW): 60
- Average Load (GW): 49
Summary of the Optimum Results

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>E[Wind Generation] MWh</td>
<td>-</td>
<td>137,518</td>
<td>147,732</td>
<td>153,091</td>
</tr>
<tr>
<td>E[Net System Benefits] (k$/day)</td>
<td>8,885,100</td>
<td>8,896,269</td>
<td>9,112,041</td>
<td>8,998,212</td>
</tr>
<tr>
<td>E[Operating Costs] (k$/day)</td>
<td>50,280</td>
<td>41,933</td>
<td>41,785</td>
<td>40,733</td>
</tr>
<tr>
<td>E[Ramping Costs] (k$/day)</td>
<td>499</td>
<td>1,383</td>
<td>1,104</td>
<td>1,068</td>
</tr>
<tr>
<td>E[Gen. Net Revenue] (k$/day)</td>
<td>77,183</td>
<td>52,528</td>
<td>53,804</td>
<td>53,328</td>
</tr>
<tr>
<td>E[ISO Surplus] (k$/day)</td>
<td>8,477</td>
<td>8,837</td>
<td>-5,133</td>
<td>8,163</td>
</tr>
<tr>
<td>E[Payments by Customers] (k$/day)</td>
<td>135,940</td>
<td>113,430</td>
<td>102,829</td>
<td>114,823</td>
</tr>
<tr>
<td>Max Conventional Capacity (MW)</td>
<td>58,550</td>
<td>57,004</td>
<td>50,919</td>
<td>58,310</td>
</tr>
<tr>
<td>Storage Discharge at Peak (MW)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4,751</td>
</tr>
</tbody>
</table>

COMPARING THE FOUR WIND, CASES 2-4
- Little difference in E[Operating Costs] and in E[Ramping Costs]
- Little difference in the E[Generator Net Revenue]
- E[ISO Surplus] is lower in Case 3 because there is much less congestion
- E[Payments by Customers] are also lower for Case 3

WHY IS DEFERRABLE DEMAND (CASE 3) THE BEST FOR CUSTOMERS?
- Peak Generating Capacity (conventional MW for System Adequacy) is lower

 Cornell University

 CERTS
 Consortium for Electric Reliability Technology Solutions
Hourly Dispatch of Wind and Prices

Total Dispatch of Wind Generation, E[MW]

Nodal Prices Paid for Wind, E[$/MWh]

The main differences in dispatch occur from midnight to 5:00AM: Case 2 has the largest amount of wind spilled.

Deferrable demand and ESS reduce the range of nodal prices by mitigating wind variability and flattening the load profile.
Hourly Payments to Wind Generators

Similar revenues during the daytime for Cases 2-4

Case 2
Nodal prices driven down to zero at 4:00AM

Case 2u
Nodal prices higher at night with no congestion

Case 3
Higher system load at night increases the nodal prices

Case 4
Wind generation stored at night does not reduce the nodal prices but still gets paid
Composition of the Optimum Daily E[Pattern of Generation] for Cases 1 and 2

Case 1
Ramping for the daily load profile is provided by oil and natural gas capacity

Case 2
Wind displaces mainly oil and natural gas capacity and this capacity also provides additional ramping services to mitigate wind variability
Composition of the Optimum Daily E[Pattern of Generation] for Cases 3 and 4

Case 3: Base + 32GW Wind + 136GWh Deferrable Demand

Case 4: Base + 32GW Wind + 136GWh Collocated Storage

Case 3 v Case 2
More wind is dispatched and the daily load pattern is flatter (lower peak energy)

Case 4 v Case 2
Even more wind is dispatched but the peak energy delivered is unchanged
Why isn’t Storage used more for Peak Shaving/Valley Filling in Case 4?

Case 4: Base + ESS with STOCHASTIC WIND

With stochastic wind, it is optimum to use storage mainly for ramping.
Still true if ramping costs are set to zero \rightarrow a physical ramping reserve is needed.

With deterministic wind, it is now optimum to use storage mainly for peak shaving/valley filling \rightarrow STOCHASTIC INPUTS MATTER!
Next Steps for Research Using the Multi-period SuperOPF

• Extend the analysis to cover operations for a full year to evaluate the Total Annual System Costs, including capital costs, and the Net Benefits of different cases
• Use a combination of the stochastic characteristics of loads as well as potential wind generation as inputs
• Model the physical characteristics of storage and deferrable demand explicitly to provide more accurate constraints on the aggregate demand for and supply of energy services at nodes
• Model the behavior of Aggregators of Residential Customers (ARC) explicitly to compare the performance of a hierarchical structure of control for Distributed Energy Resources (DER) versus centralized control by a system operator
• Compare the performance of a rolling time horizon with non-binding price projections versus the day-ahead/real-time market structure currently being modeled
PART III: Manage Distributed Resources Locally to Deliver Aggregated Energy Services Efficiently
Enabling Distribution-level Markets: Interaction between DSOs and DERs

• Study of suitable communication/control architectures that would enable the implementation of the distribution-level portion of an envisioned hierarchical market structure; two potential solutions:

 – **Centralized architecture** in which each Distributed Energy Resource (DER) is directly controlled by a Distribution System Operator (DSO):
 • Requires a communication network connecting DSO with each DER
 • Requires up-to-date knowledge by the DSO of DER availability on the distribution side

 – **Distributed architecture** potentially offers several advantages:
 • Easy and affordable deployment (no requirement for communication infrastructure between the DSO and various DERs)
 • Ability for the DSO to handle incomplete knowledge of the available DERs
 • Potential resiliency to faults and/or unpredictable DER behavior
The (Perhaps Naïve) Starting Point: DER Economic Dispatch (ED)

- Consider n DERs with constraints on the amount of active (or reactive power) they can provide.
- Denote by X the total amount of active (or reactive power) they need to collectively provide (i.e. demanded by the DSO).
- Assume the cost of each DER is quadratic. Then, the DER ED problem can be formulated as:

$$\text{minimize} \quad \sum_{j=1}^{n} \frac{(x_j - \alpha_j)^2}{2\beta_j}$$

subject to

$$\sum_{j=1}^{n} x_j = X$$

$$0 < x_j \leq x_j \leq \bar{x}_j, \ \forall j$$
A Distributed Solution to the DER ED Problem [D-G, Cady, Hadjicostis, ‘12]

- The objective is to solve the DER ED problem without relying on the DSO having access to all the data defining the problem; instead, the computations are distributed as necessary to solve the problem.
- To this end, we assume that each DER is equipped with a processor that can perform simple computations, and can exchange information with neighboring DERs.
 - In particular, the information exchange between nodes (DERs) can be described by a directed graph.

Exchange of information between the DERs and the DSO

Experimental validation: DER Communication and computation hardware