

The Global Nuclear Energy Partnership

Status of Industry Engagement

Nuclear Energy Advisory Committee (NEAC)

Dan Stout

Director of Nuclear Fuel Recycling
Office of Nuclear Energy

April 21, 2008

- Industry Engagement Activities
- Funding Opportunity Announcement (FOA)
 - Scope, Design Requirements, Selection Criteria
- Industry Teams Awarded Cooperative Agreements
- DOE Evaluation of Industry Deliverables
 - Overview, initial facilities, approaches, issues and summary
- Next Steps

GNEP Industry Engagement Activities

Expressions of Interest (2006)

- Requested August 2006
- Received responses in September 2006
- Description:
 - Confidence that large facilities could be deployed by 2020 (using mature technologies)
 - Submittals were "proprietary"

Siting studies (2007)

- Communities volunteer to host GNEP facilities
- Many communities "partnered" with industry teams

Funding Opportunity Announcement (FOA) (2007 – 2009)

- Issued May 2007 (Up to \$60M)
- Received applications June 2007
- Four teams selected for negotiations July 2007
- Four cooperative agreements awarded September 2007
 - September 2007 February 2008 (FY2007\$ -- approx. \$16M)
 - March 2008 September 2008 (FY2008\$ -- approx. \$18M)
 - October 2008 September 2009 (FY2009\$ -- up to \$26M)

Funding Opportunity Announcement (FOA)

Scope

Conceptual Design Studies

 Contains engineering design concepts and their associated scope, cost and schedule information for the initial nuclear fuel recycling center and initial advanced recycling reactor

Business Plan

 Details how the marketplace will facilitate DOE in developing and commercializing the needed advanced fuel cycle technologies and facilities to meet GNEP goals

Technology Development Roadmap

 Describes the state of readiness of the proposed technology and describes methods and plans to acquire needed technologies to support GNEP deployment

Communications Plan

 Contains scientific, technical and practical information relating to nuclear energy and the closing of the nuclear fuel cycle packaged in such a manner that costs and benefits can be easily understood by the public and other key stakeholders

Integrated applications sought

- Recipients should develop conceptual design studies for a nuclear fuel recycling center, an advanced recycling reactor or both
- The business plan, technology development roadmap and communications plan shall address the overall long-term GNEP goals
- An integrated technical and business approach will be given preferential consideration.

FOA Design Requirements (Initial GNEP Facilities)

- Commercial facilities will be licensed by the NRC and eligible for IAEA safeguards
- The nuclear fuel recycling center will not separate pure plutonium
- The advanced recycling reactor will be fast spectrum, sodium-cooled with ability to consume transuranics in fuel
- The advanced recycling reactor shall produce electricity
- The design effort shall identify products and their characteristics that are assumed to generate revenue in their business plan
- The nuclear fuel recycling center shall reduce the burden on the geologic repository
- All GNEP facilities shall meet applicable environmental and safety regulations

FOA Selection Criteria

Merit Review Criteria

- Applicant's organization and technical expertise
- Commercial Experience
 - Design, construction and operation of large-complex industrial facilities
 - Nuclear fuel design, qualification and fabrication
 - Generation and sale of electricity
 - · Licensing and regulation of nuclear facilities
 - Obtaining internal and/or external financing for large capital projects
- Business Modeling and Planning
- Technology Development
- Approach
- Schedule and Budget

Other Selection Factors

- Cost sharing
- Integrated technical and business approach
- Potential to enhance U.S. nuclear infrastructure

Industry Teams Awarded Cooperative Agreements

Energy Solutions, LLC

- Principles: The Shaw Group and Westinghouse Electric Company
- Additional members: AECL; BoozAllenHamilton; Nexia Solutions; NFS; Toshiba

GE-Hitachi Nuclear Americas, LLC

 Burns and Roe; Ernst and Young; Fluor Corporation; International Business Machines (IBM); KAERI; Lockheed Martin

General Atomics

 CH2M Hill; United Technologies Corporation – Hamilton-Sundstrand Rocketdyne Division; Russian consortium led by Kurchatov Institute; KAERI; Potomac Communications Group; LISTO

International Nuclear Recycling Alliance (INRA)

- Principle team members: AREVA and Mitsubishi Heavy Industries (MHI)
- Additional primary team members: Japan Nuclear Fuel Limited (JNFL); Battelle Memorial Institute; BWX Technologies Inc.; Washington Group International

Evaluation of Industry Deliverables – Overview

Expectations exceeded – information enormously beneficial

- Seven feet of reports
- Built upon large prior investment and extensive experience

Fast Reactors

- Technology development is needed to demonstrate safety, reliability and economics
- Government-funded demo reactor could be deployed in 2020-2025 timeframe

Separations

 Technologies exist that do not separate pure plutonium that can be deployed in the 2020-2025 timeframe producing fuel for existing light water reactors (LWRs)

Business Plans

- Integrated recycling and waste management approaches suggested
- Utility waste fund pays, requiring minimal U.S. government investment
- Requires substantial legislative and regulatory changes

Technology Development Plans require additional work

Range of risk in proposed cost, schedule and projected performance vary significantly

Initial Advanced Recycling Reactor

- Sodium-cooled fast reactors; one team included gas-cooled reactors
- Designs of fast reactors range in size from 300 MWe to 500 MWe
- Technology readiness levels vary broadly
- Deployment between 2020 and 2025
- Costs range from \$2 billion to \$4.5 billion

Initial Nuclear Fuel Recycling Center

- Various separations technologies aqueous and electro-chemical
- Two teams proposed the initial separations facility co-extract uranium with plutonium while two propose group transuranic separations
- Initial facility capacities range from 50 to 2000 MT/year
- Technology readiness levels vary broadly
- Deployment between 2020 to 2028
- Costs range from \$400M to \$20B (not an apples to apples comparison)

Approaches

Multiple paths to closing the fuel cycle described

- Some small-scale distributed system with integrated FR and separations
- Some large-scale centralized separations facilities
- All teams support two tier approaches using thermal reactors and fast reactors

Submissions suggested that government take a fresh look at nuclear waste management – an integrated approach including recycling and repositories

- All suggested that the establishment of a government corporation with access to the nuclear utility waste fund could result in effective management of the construction and operation of recycle facilities and repositories
- Would substantially reduce investment required by the U.S. government
- Actions would require significant changes to legislation and regulations

Potential Regulatory, Legislative and Programmatic Issues Presented by Industry

Legislation

- NWPA amendments for new disposal strategies, waste forms, and NWF modifications
- Enabling legislation to create a government entity similar to TVA

Regulation

- NRC updating of 10 CFR 70 to support one-step licensing of reprocessing facilities
- Revision of 10 CFR 50/52 for fast reactors
- Modifications to EPA standard 40 CFR 190
 - Reconsideration of gaseous/aqueous emission standards for the entire fuel-cycle taking into account the impacts of commercial recycling

Programmatic

- Recycle of U/Pu or U/Pu/Np in commercial LWRs
- Reconsideration of TRU limits for GTCC wastes following a risk-based approach
- Revaluation of NRC categories and safeguards classification of actinide mixtures
- Export licensing for U and possibly Am/Cm targets in CANDU reactors

Meaningful incremental steps can be taken in the near-term to fully close the fuel cycle in the United States

Fast Reactors

 Government-funded prototype reactor can be deployed in the 2020 – 2025 timeframe and is needed to demonstrate safety, reliability and economics before wide-spread commercial deployment of fast reactors is possible

Nuclear Fuel Recycling Centers

- Technologies exist that do not separate pure plutonium and can be deployed in 2020-2025 timeframe producing fuel for existing light water reactors (LWRs)
- A business case has been made where recycling can begin with reduced cost to the taxpayer, using the nuclear waste fund
 - All teams support establishing a new government entity with access to the nuclear waste fund to manage used nuclear fuel

Next Steps

Continuation 1 funding (March – September 2008)

- Energy Solutions \$5.9 million (Total \$10.2M)
- General Electric-Hitachi \$5.5 million (Total \$10.3M)
- General Atomics \$1.3 million (Total \$2.9M)
- INRA \$5.7 million (Total \$11.3M)

Received updated summaries April 11, 2008

Will be posted on Web Site in late April or early May

Continuation #2 funding decision September 2008

- FY2009 total funding target for industry up to \$26 million
- Will focus on maturing conceptual designs and technology development roadmaps

■ DOE developing acquisition plans in 2008 and 2009

