Program Overview

Presented to the EM SSAB Chairs June 16, 2011

Paul Dixon (ASCEM Multi-Laboratory Program Manager) Mark Williamson (EM-32 ASCEM Program Manager)

Environmental Management

safety 🛠 performance 🛠 cleanup 🛠 closure

Advanced Simulation Capability for Environmental Management (ASCEM)

- A State-of-the-art tool for predicting contaminant fate and transport through natural and engineered systems
- The modular and open source design will facilitate a new approach for integrated modeling and site characterization
- Will enable robust and standardized future performance and risk assessments for EM cleanup and closure

ASCEM Challenge and Impact

> Challenge

- **Reduce time required and financial cost of remedial actions** at sites within EM complex by providing scientifically defensible modeling and simulation tools that accurately address complex environmental management situations
- **Develop an integrated, high-performance computer modeling capability** to simulate multiphase, multi-component, multi-scale flow and contaminant transport, waste degradation and contaminant release, including
- **Provide tools for decision making:** parameter estimation, visualization, uncertainty quantification, data management, risk analysis, and decision support
- Leverage investments made by SC, NE, RW, and FE as well as other Federal agencies to capitalize on significant investments and reduce the lifecycle development time and costs

➤ Impact

- Near-term: *technically underpin*" existing site RA's and PA's
- Inform strategic data collection for model improvement
- Scientifically defensible and standardized EM RA's and PA's

ASCEM Is Delivered Through a National Laboratory Consortium

Advanced Simulation Capability for Environmental Management (ASCEM)

ASCEM website: http://ascemdoe.org/

ASCEM Organized Around Three Thrust Areas

High Performance Computing

- The ASCEM HPC simulator, Amanzi, will allow for flow and reactive transport on both structured and unstructured grids, and include physical processes such as:
 - Biochemical Reaction Processes
 - Thermal Effects
 - Radioactive decay
 - Mechanical Effects
 - Source Term Degradation
 - Cementitious waste and structures
 - Waste tanks and metal wastes
 - Transport of Colloids (future work)

Platform and Integrated Toolsets

ASCEM will include capabilities for:

- Model Setup
- <u>Data Management</u>
- <u>Uncertainty Quantification</u>
- <u>Visualization</u>
- Parameter Estimation
- Decision Support
- Risk Analysis

These tools will allow users to quickly and efficiently create and analyze simulation data assisting highlighting relevant processes and parameters allowing for informed decision making.

Site Applications Scope

- Provide site data for model development, testing and validation
- Conduct demonstrations of the Platform and HPC simulator
- Establish and maintain interfaces with end users
- Solicit input to requirements specification and development activities

User Interactions Helped Shape ASCEM Development

Engaged DOE EM end users

- Performance Assessment
 Community of Practice and Low
 Level Waste Disposal Facility Federal
 Review Group meetings
- Interviews at Hanford, Los Alamos, Oak Ridge, Nevada Nuclear Security Site, Portsmouth/Paducah, Savannah River and West Valley sites
- Consulted National Laboratories

> Used recommendations as early input to requirements

- A graded approach is needed
- Consider role of modeling as input for regulatory decision making
- Take advantage of HPC to reduce need for simplifications
- Recognize data needs as model complexity increases

nplifications creases

User Steering Committee

- > Chartered in October 2010, first formal meeting on January 24, 2011
- Objective to enhance the potential for successful implementation of ASCEM tools by encouraging input from management and key staff at contractors, regulators and DOE oversight organizations

> Membership:

Michael Graham, Chair	LANL, Environmental Programs	Bruce Crowe	NNSS, EM Science Advisor
Chris McKenney	US NRC, PA Branch Chief	Elizabeth Phillips	DOE Oak Ridge
Marty Letourneau	EM-41, LFRG Chair	Tom Gaughan/Cathy Lewis	SRNS, Area Closure Projects
Andrew Wallo III	DOE HS-20	Mark Layton	SRR, Tank Closure PA
Pat Nakagawa	LANL, Environmental Programs	Karthik Subramanian	URS
Cheryl Whalen	Washington Dept. of Ecology	Rich Bonczek	DOE PPPO, LFRG Representative
Alaa Aly/Moses Jaraysi	CHPRC, Modeling Integration	Frank DiSanza	DOE NNSS, LFRG Representative
Susan Eberlein	WRPS, Tank Closure PA	Roger Seitz, Coordinator	SRNL, Performance Assessment

User Steering Committee Recommendations

- Clearly articulate near-and longer-term objectives and establish metrics for success
- Focus on identifying a set of near-term positive impacts (e.g., targeted applications, visualization tools, guidance on uncertainty quantification)
- Maintain focus on fit-for-purpose toolset designed to support EMrelated decision-making during and at the end of the modeling process
- Enhance sustainability by engaging in an annual work planning process that considers contractor and regulatory schedules for modeling and supporting activities around the DOE Complex
- Look for opportunities for demonstrations at small and large DOE sites beyond Applied Field Research Sites, Science Focus Areas and Integrated Field Research Challenges. (Dae Chung Memo to Sites)
 ASCEM

ASCEM Leveraging

In addition to primary ASCEM code development, significant leveraging of investments by Advanced Simulation and Computing (ASC /DOE NNSA) and Advanced Scientific Computing Research (ASCR/DOE SC)

> Examples include:

- VisIt visualization and graphic analysis tool developed by ASC and ASCR SciDAC Program
- Velo: Data Management
- PSUADE uncertainty analysis tool developed by ASC
- Trilinos Framework services for parallel programming and integrated software packages developed by ASC and ASCR SciDAC program
- PETSc Portable, Extensible Toolkit for Scientific Computation developed by ASCR SciDAC Program
- BoxLib parallel AMR framework developed by ASCR Base Math and SciDAC
- MFD Mimetic Finite Difference discretization methods developed by ASCR Applied Mathematics Program
- Geochemistry Toolset Use algorithms developed by computational scientists funded through DOE SC

ASCEM Coordination with other DOE offices

- As the request of Under Secretary Christina Johnson a workshop was held in September 2010 to investigate possible leveraging with Fossil Energy's NRAP program. (Report available on ASCEM website)
- At the request of EM-1 and acting NE-1, a workshop was held in February 2011 to investigate possible leveraging with Nuclear Energy's NEAMS program. (The workshop available on ASCEM website)
- Continue to work with the Office of Science to insure maximum leveraging between the two programs. Science is requiring all SFA, IFRC and SciDAC proposal renewals and new proposal include a strong tie to ASCEM. Started joint data management initiative between SC and EM.

ASCEM Relationship to the AFRIs

- ASCEM Site Applications engages AFRIs through Working Groups (Leads Shown)
- Active interfaces include Deep Vadose Zone and Attenuation-Based Remedies for the Subsurface AFRIs
- Remediation of Mercury and Industrial Contaminants Working Group in planning stage

ASCEM FY2010 A Year in Review

✓ Initiate technical part of Project after January 2010 kickoff meeting

✓ Completed assembly of team, extensive work planning, requirements definition, and design

Engaged a broad spectrum of end users for input to requirements and design

✓ Performed Phase 1 demonstration at Savannah River Site F Area

✓ Assembled open source components over four months to support Phase I demonstration

✓ Developed a new open-source HPC Simulator in four months:

- leveraged and enhanced existing open-source tools and the Trilinos framework

- implemented several key components from scratch

ASCE

Quality Assurance Graded Approach with Code Development

ASCEN

ASCEM 2010 to 2015 Program

> 2010 Prototype: Demonstration of individual ASCEM modules

- Impact: Engage end users in development of prototype integrated, open source PA capability
- > 2011-2012 ASCEM Version 1: Integration of ASCEM Modules
 - Impact: First prototype of an integrated, open source simulation capability for EM demonstrated

> 2013 ASCEM Version 2: Applied Phase and End User Engagement

- Impact: Version 2.0 of an integrated, open source simulation capability released to science and EM community for application
- 2014 ASCEM Version 3: Applied Phase and Initiation of Regulatory Quality Assurance V&V Testing
 - Impact: Version 3.0 of integrated, open source simulation capability demonstrated
- > 2015 ASCEM Version 4: Regulatory Code Release and Training
 - Impact: Fully integrated, open source simulation capability released and maintained

Looking forward: FY 2011 Work Scope Details

- Focus on product development and integration of components for ASCEM User Release 1.0 and Phase II Demonstration
- Conduct technical peer review in FY11
- Continue working groups for SRS F Area, Hanford Deep Vadose Zone, and Waste Tank Performance Assessment
- Continue interactions with EM Performance Assessment Community, DOE SC SBR, FE-NRAP, and NE-NEAMS/Repository Programs
- Strengthen linkages with DOE EM small sites (LANL established; West Valley, Paducah/Portsmouth, Grand Junction, Nevada Test Site and Brookhaven)
- Strengthen integration of ASCEM with the EM-32 Applied Field Research Centers

More Information about ASCEM

- ASCEM Site Applications Thrust Site Selection Task 'Select Phase I Demonstration' Milestone 2010, ASCEM-SITE-091310-01, 2010
 - Summary of salient features of candidate sites and the selection process
- Mathematical Formulation Requirements and Specifications for the Process Models, ASCEM-HPC-101510-01, 2010
 - Contains the general mathematical description for the process models envisioned for the final ASCEM product
- System Requirements for ASCEM Platform and Integrated Toolsets, ASCEM-PIT-102710-03, 2010
 - Describes use cases and requirements for the Platform toolsets
- > ASCEM Phase 1 Demonstration, ASCEM-SITE-102010-01, 2010
 - Phase 1 Demonstration report describing the accomplishments from the first year

Questions

Data Management Phase I Accomplishments: Interactive Map of Wells for Each Aquifer

Uncertainty Quantification Demo

Uncertainty Quantification Phase I Accomplishments

Visualization Demo

Initial Desiccation Test Geophysical Monitoring

Preliminary Electrical Resistance Tomography Characterization

B: time_kapse_ERT.exo

-0.1532

- 0.003596

Max: 1.937 Min: 0.0005509

- In the vadose zone, electrical resistivity is primarily governed by porosity, saturation, pore fluid conductivity, and to a lesser degree temperature.
- Pre-desiccation ERT images of the site are shown in two different views above (middle and right).
- Higher conductivity lenses (warmer colors) are diagnostic of finer grained materials with higher saturations and fluid conductivities.

High Performance Monitoring: 3D time-lapse desiccation imaging at the BC Cribs Area

- The time-lapse images above show the change in 3D subsurface conductivity during desiccation in terms of percent change from background.
- The changes in conductivity are caused by decreases in saturation during desiccation

Pseudocolor DB: time_lapse_ERT.exo Time:40608 Var: var 1.000

> - 0.5000 - 0.000

--0.5000

-1.000 Max: 0.08328 Min: -0.1405 \$7640

Back to Presentation

