Novel Regenerative Fuel Cells based on Anion Exchange Membranes for Affordable Renewable Energy Storage

PI: Dr. Katherine Ayers, Proton Energy Systems, kayers@protononsite.com

Approach

Electrolyzer Leverage Proton experience in large scale electrolysis and regenerative fuel cells for microgrid energy storage New membrane chemistry to eliminate PGM and semi-precious metals Hydrogen storage Lower current density for improved efficiency Oxygen storage Fuel cell Strategy **Technology Stage** DC power to microgrid Commercially Increased **Ultra-low** Efficiency for Mature loading **Higher Current** High Stability/ structures Reliability Density Membrane-Based Alkaline **Lower Current** Electrolysis Early Stage Non-noble Density for Materials metals for **Improved** Development reduced cost Efficiency

Key Challenges and Progress

Fuel Cell Durability:

- Anode flooding and cathode dehydration due to reactions and slow membrane water transport
- Examining GDL parameters, ionomer chemistry, and flow rates

Modeling providing important insights in water transport

Non-PGM catalysts (electrolyzer)

- Translation from RDE to cell results requires MEA process understanding
- Challenge in synthesis of non-carbon supports with desired particle size range

Non-PGM catalysts approaching performance target on anode, still working on cathode

Key Supporting Advances, 2012

5000 psi Operational Prototype

40% Cost Reduced Stack Platform

GDE Approach for Milder Membrane Processing

Stack Development for MW Electrolyzer

Fuel Cell Approaching Targets

Components arriving
for system build
(Previously demonstrated RFC
system of similar size shown)

Electrolysis Cell Outperforming
Commercial AEM

