A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage

Lead: University of Southern California, Loker Hydrocarbon Research Institute **Sub-Awardee**: Jet Propulsion Laboratory, California Institute of Technology ARPA-E GRIDS Program

Advantages of the Iron-Air Battery

- Extremely Low Cost Materials
- Environmentally friendly
- Abundant raw materials all over the world
- High Theoretical Specific Energy, 764 Wh/kg
- Iron electrode is robust to cycling

Overall Objective

Demonstrate a high-performance *iron-air rechargeable battery* that meets the targets for Large-Scale Electrical Energy Storage

Desired Characteristic	State-of-Art	Performance Target
Round trip energy efficiency	50%	80%
Cycle life, cycles	1000-2000	5000

Year	Key Milestones & Deliverables	
Year 1	 Complete design of iron electrode 	
	 Demonstrate feasibility bi-functional air electrode materials 	
Year 2	 Complete selection of additives and catalysts 	
	•Complete characterization of CO ₂ system.	
Year 3	• Fabricate cell incorporating advancements	
	• Demonstration of Proof-of-concept iron-air	
	cell	

Demonstrated Iron Electrodes with capacity of 0.3 Ah/g

Results

Identified Electrode and Electrolyte

Additives that increase charging efficiency to 96%

