Value of Storage with Increased Renewable Penetration Presenter: Jim Brainard Jesse Roach

Sandia National Laboratories Energy Infrastructure and DER John Boyes (Manager)

Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Problem Statement

Renewable energy portfolio standards

- High penetration of intermittent and variable renewable generation on the grid
- Utilities constrained by NERC Control Performance Standards
- Requires additional resources to match generation with load

Mitigation of impacts with energy storage

 At what level of renewable penetration does
 energy storage become an attractive value
 proposition?

Conceptual Approach

 Develop a simplified dispatch model that simulates load distribution among a given set of generators to evaluate value of storage with increasing renewable generation

 Identify renewable penetration thresholds where storage becomes economically viable

ACE Fines + Generation Costs > Storage Costs

– Quantification of generation costs

Fuel costs, start-up and shut-down costs, ramping costs

Area Control Error (ACE) and associated NERC fines

Quantification of storage costs

Flywheels and compressed air energy storage (CAES)

Other types of storage to be considered (generic storage implementation)

Dispatch Model

Model Details

- System dynamics model in PowerSim Studio
 - Tracks power flow and accumulates energy

- Spatially lumped

- No transmission losses or transmission constraints are considered
- Simulation Settings:
 - Time Step = 1 minute
 - Duration = up to 1 month
- Approximates the New Mexico Balance Area
 - Generator specifications
 - Load and wind data

Dispatch Model

Dispatchable Generator Control

- Priority dispatch of generators based on order of maintenance and operation costs
 - Coal \$/MW < CC \$/MW < GT \$/MW</p>
 - Nuclear always on
 - Exchanges occur in blocks and only during peak hours
- Generation limits of individual generators are constrained by look-up tables

Keeps generators within operational limits

Generator response to load is limited by generator specific ramp rates

Dispatch Model

Generator Data

Generator Type	Number of Units	Per Unit Min-Max Capacity (MW)	Load Follow and Regulation (% of Capacity)	Maximum Ramp Rates (MW/min)
Nuclear	1	200	0	0
Coal [*]	3	320-400	20	10
CC Gas	1	140-200	30	20
Gas Turbine	6	60-100	40	30
Interchange*	NA	NA	NA	NA

Load and Wind Data

Data Type	Source	Duration	Time Step	Statistics		
Load	New Mexico Balance Area	July 1 to July 31 2007	1 Minute	Range = 1403-2541 MW Average = 1929 MW SD = 301 MW		
Wind	New Mexico Wind Farm	July 1 to July 31 2007	10 Minute	Range = 0 – 189 MW Average = 28 MW SD = 28 MW		
Load and Wind Generation Data MW 2,500 2,000 1,500 1,500 1,000 500 0 0 0 0 0 0 0 0 0 0 0 0						
		Time				

Dispatch profile- no wind generation

Dispatch profile – wind at 5% of total generation

Dispatch profile – wind at 10% of total generation

Cumulative ACE & NERC Violations as Wind Penetration Increases

Summary and Conclusions

Approach

- Use a simplified, yet robust dispatch model that
 - Incorporates New Mexico Balance Area load and wind generation data
 - Distributes the load among a suite of generators
 - Quantifies increased generation costs with increased penetration of intermittent and variable renewable generation
 - Fuel, startup, shut down, ramping, standby, etc)
 - Tracks and quantifies NERC penalties and violations
 - Quantifies storage costs

Summary and Conclusions

Status

- Dispatch model has been constructed

- Accurately distributes a load among a suite of generators
- Quantifies duty cycle metrics for each of the generators
 - Cumulative energy production, ramping and non ramping duration, spinning reserves, number of start-ups, and shut down durations, etc.
- Quantifies energy exchanges
 - Cumulative exchanges, duration, and number of exchanges
- ♦ Tracks ACE violations

Next Steps

 Add day ahead unit commitment and hour ahead automatic generating control commitment

Generation data related tasks

- Investigate ways to upscale wind generation data

- Add April load and wind generation data
- Add PV data

 Incorporate a NERC violation sensitive standby and spinning reserve routine

 Dispatch becomes more conservative as number of violations in a month approaches critical level

Next Steps

Add storage component

User defined storage performance characteristics:

- Capacity, efficiency, self decay, max charge and discharge rates, max ramp rates, other?
- Include default values from CAES, flywheel, battery, and pumped hydro technologies

Add economics

- Generation and NERC Fines
- Storage