

## Large-scale Diurnal Storage Study

#### Presentation at DOE ESS Peer Review November 2, 2010

Poonum Agrawal Sentech, Inc., now part of SRA International

Significant Work. Extraordinary People. SRA.



### **Project Objective**

- Characterize and assess emerging innovative bulk ES technologies and relevant applications
  - Focus on concepts using pumped storage or compressed air with capacities greater than 100 MW
- Recommend strategy for DOE to hasten the commercialization of these innovative technologies.

**Project Details** 



- Project Duration:
  - May through December 2010
- Sandia Delegated Representative:
  - Georgianne Huff
- Joint project with KEMA Consulting:
  - Poonum Agrawal, Sentech, Inc., now part of SRA International
  - Rick Fioravanti, KEMA Consulting
  - Paul Gordon, Sentech, Inc., now part of SRA International
  - Larry Markel, Sentech, Inc., now part of SRA International
  - Ali Nourai, KEMA Consulting
  - Nellie Tong, KEMA Consulting





- Technical Approach
- Application Selection for Bulk Energy Storage
- Application Requirements
- Technologies Reviewed
- Characteristics Reviewed
- Feasibility Assessment Methodology
- Feasibility Assessment Results
- Summary/Conclusions
- Future Tasks



## **Technical Approach**

- Identify relevant applications and needed requirements for bulk energy storage ✓
- 2. Characterize novel technologies ✓
- 3. Assess and screen technological feasibility  $\checkmark$
- 4. Analyze gaps and barriers (in process)
- 5. Recommend needed R&D (in process)



# **Application Selection**

- Evaluated 19 applications
- Applied two criteria to assess suitability
  - Discharge Duration
  - Frequency of Use
- Identified 6 applications appropriate for bulk energy storage



# **Application Requirements**

| Applications                                       | Capacity<br>(MW) |      | Discharge<br>Duration<br>(Hours) |      | Desirable<br>Minimum<br>Energy | Response<br>Time |
|----------------------------------------------------|------------------|------|----------------------------------|------|--------------------------------|------------------|
|                                                    | Low              | High | Low                              | High | Efficiency<br>(%)              | TIME             |
| Electric Energy Time-shift                         | 1                | ≥500 | 2                                | 8    | 75%                            | 2 hours          |
| Electric Supply Capacity                           | 1                | ≥500 | 4                                | 6    | 75%                            | 2 hours          |
| Load Following                                     | 1                | ≥500 | 2                                | 4    | 75%                            | 2 hours          |
| Renewable Energy Time Shift                        | <1               | ≥500 | 3                                | 5    | 75%                            | 2 hours          |
| Renewable Capacity Firming                         | <1               | ≥500 | 3                                | 5    | 75%                            | 5 minutes        |
| Wind Generation Grid<br>Integration- Long Duration | <1               | ≥500 | 1                                | 6    | 75%                            | 2 hours          |



### **Novel Technologies Reviewed**

#### Pumped Storage Hydropower

- 1. Aquifer
- 2. Archimedes' Screw Storage
- 3. Below Ground Reservoir
- 4. In ground storage pipe with piston
- 5. In-reservoir tube with bubbles
- 6. Energy Island
- 7. Ocean Pumped Storage
- 8. Variable-Speed

#### Compressed Air Energy Storage

- 1. Adiabatic
- 2. Diabatic Renewable
- 3. Near-isothermal
- 4. Liquid Air Energy Storage
- 5. Transportable CAES
- 6. Underwater CAES
- 7. Other: Adsorption Enhanced
- 8. Other: Hydrokinetic
- 9. Other: Vehicle compression



### **Characteristics Reviewed**

#### Business Characteristics

- 1. Commercial Status
- 2. Permitting
- 3. Siting
- 4. Capital Cost
- 5. Annual O&M Cost
- 6. Calendar Life
- 7. Construction Lead Time
- 8. Companies Involved
- 9. Studies/Project Installations

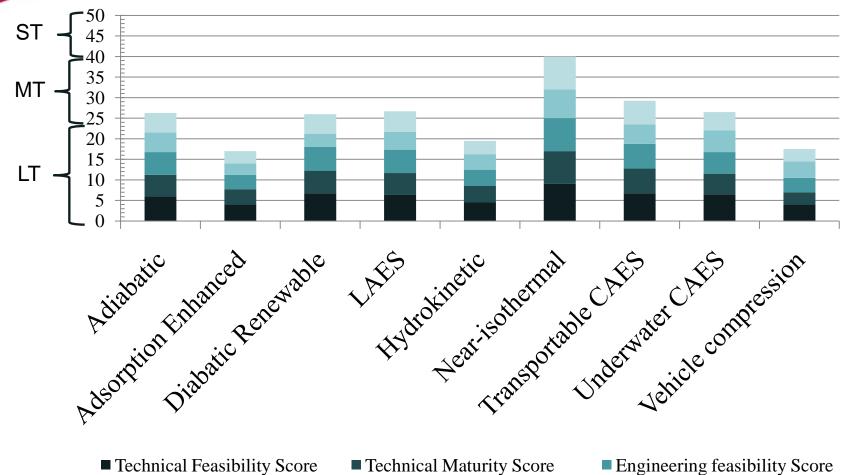
#### **Grid Characteristics**

- 1. Power
- 2. Energy
- 3. Energy Efficiency
- 4. Ramp Rate or Response Time
- 5. Other Features



## **Feasibility Assessment**

- Technical Feasibility
- Technical Maturity
- Engineering Feasibility
- Economic Feasibility
- R&D Requirement

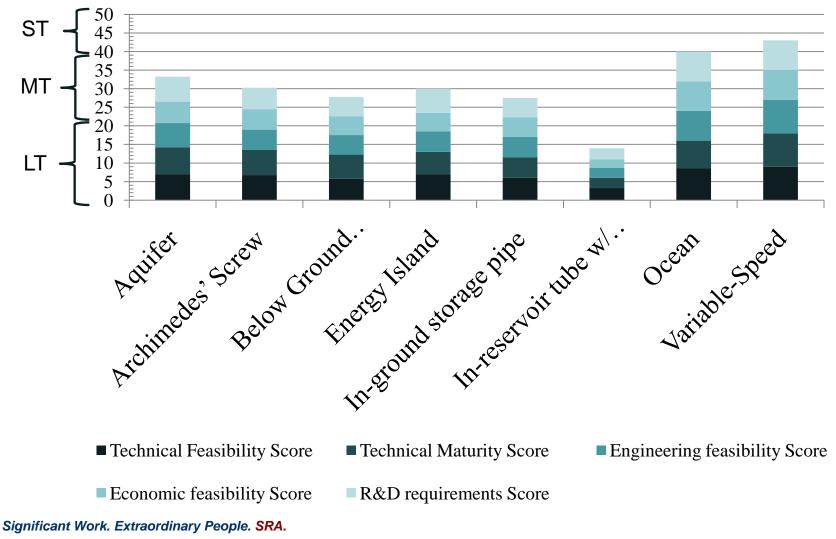



# **Screening Approach**

- Assessed each of the technologies by the 5 attributes and scored them on a scale of 1-10
- 4 reviewers
- Averaged scores, discussed and reconciled outliers
- Identified the technologies by development timeframe:
  - Score > 40: Short-term (< 5 years)</p>
  - Score between 25 and 40: Medium-term (between 5 10 years)
  - Score < 25: Long-term (> 5 years)



### **Feasibility Assessment Results - CAES**




- Technical Feasibility Score
- Technical Maturity Score
- R&D requirements Score
- Economic feasibility Score

Significant Work. Extraordinary People. SRA.



### **Feasibility Assessment Results - PSH**





## **Time to Commercialization**

|      | Short-term<br>(< five years)                          | Mid-Term<br>(5-10 years)                                                                                                                      | Long-term<br>(>10 years)                                                                                          |
|------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| PSH  | <ul> <li>Ocean</li> <li>Variable<br/>Speed</li> </ul> | <ul> <li>Aquifer</li> <li>Archimedes' Screw</li> <li>Below Ground Reservoir</li> <li>Energy Island</li> <li>In-ground storage pipe</li> </ul> | <ul> <li>In-reservoir tube with<br/>bubbles</li> </ul>                                                            |
| CAES | <ul> <li>Near<br/>Isothermal</li> </ul>               | <ul> <li>Adiabatic</li> <li>Diabatic Renewable</li> <li>Liquid Air Energy Storage</li> <li>Underwater</li> </ul>                              | <ul> <li>Adsorption Enhanced</li> <li>Hydrokinetic</li> <li>Transportable</li> <li>Vehicle compression</li> </ul> |



## Summary/Conclusions

Based on the preliminary assessment it is recommended that DOE fund R&D, demonstration and incentives for commercialization based on the timeframe for development for each technology.

|                                  |                                     | Time to Commercialization    |                          |                          |
|----------------------------------|-------------------------------------|------------------------------|--------------------------|--------------------------|
|                                  |                                     | Short-term<br>(< five years) | Mid-Term<br>(5-10 years) | Long-term<br>(>10 years) |
| Type of<br>Government<br>Support | R&D funding                         |                              | $\checkmark$             | $\checkmark$             |
|                                  | Funding for Demonstrations          | $\checkmark$                 | $\checkmark$             | $\checkmark$             |
|                                  | Incentives for<br>Commercialization | $\checkmark$                 |                          |                          |





- Incorporate feedback from peer review
- Complete gap and barrier assessment
- Develop R&D recommendations
- Complete final report by November 2010
- Present final results to DOE Energy Storage and Wind and Hydropower Programs by December 2010



### **Contact Information**

## Poonum Agrawal

Sentech, Inc., now part of SRA International Poonum\_agrawal@sra.com 703-582-6082



### Ali Nourai

KEMA Consulting Ali.nourai@kema.com 614-940-7847

