535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

Very High Temperature (400+ °C) High-Power Silicon Carbide (SiC) Power Electronics Converter

DOE Energy Storage & Power Electronics Research Programs
October 8, 2009

Marcelo Schupbach, Ph.D.

Chief Technology Officer

APEI, Inc. 535 Research Center Blvd. Fayetteville, AR 72701

Phone: (479)-443-5759

Email: mschupb@apei.net

Website: www.apei.net

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

Overview

- Broader Impact of SiC-based Power Converter
- Phase I Review
- Phase II Review
- Related Activities
- Summary

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

Advantages of Silicon Carbide (SiC)

Theoretical Electrical Advantages

- Very high voltage blocking
- Very low switching losses (up to 1/10th of Silicon)
- Low on-resistance
- ➤ Up to 10s of GHz switching range

Theoretical Thermal Advantages

- SiC device theoretical limit exceeds 600 C
 Very high power densities can be achieved with these junction temperatures
- SiC has a very high thermal conductivity excellent for power devices and thermal transfer, increases power density
- Disadvantage: No device packaging technology exists to take full advantage of thermal capabilities
 - Requires packaging advances in die attach, interconnects, and reliability

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

Leg A low side driver

Leg A low side

Leg A high side

Phase I: Very High Temperature (400+ °C) High-Power Silicon Carbide (SiC) Power Electronics Converter

 DOE SBIR, Topic: 1.a Wide Band Gap Power Converter Application (FY05)

- Goals
 - Multi-chip power module
 - High temperature operation
 - Size reduction
 - 3-kW 120V single-phase inverter (250 °C+)

Leg B high side driver

Leg B low side driver

Digital Control

> 90% efficiency (estimated)

Leg B high side

DOE ESS Phase I SBIR Review

APEI, Inc.'s SiC-based MCPM power inverter module has an estimated power density of 11 W/in³ (using only passive cooling)

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

DOE ESS Phase II SBIR

- Title: High Power Density (100 kW) Silicon Carbide (SiC)
 Three-Phase Inverter (FY06)
- Goals of Phase II:
 - 1. Develop a higher power SiC-based fully-functional multi-purpose inverter
 - 2. Improved efficiency (> 96%)
 - 3. Large weight and volume reduction
 - 4. Similar functionality
- Due to limited power of single SiC dies (switches), power target was reduced to ~ 10 kVA
- Solar inverter range
- Ratings of Phase II Prototype
 - Power: 10 kVA
 - VDC from 350 V to 700 V
 - Efficiency > 96%
 - Ambient Temperature > 75 °C
 - Weight << 100 lbs
 - Volume << 2.5 cubic foot

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

Comparison of Used Si and SiC Devices

Si IGBT Brick

SIC VJFET Brick

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

10-kVA Three-Phase Inverter Prototypes

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

Characterization of SiC Inverter

Efficiency Measurements on SiC Inverter

- Variable resistive load
- Various LC output filters were used
- Several switching frequencies: 8 kHz, 10 kHz and 20 k Hz
- > PWM generation: sine triangular and space vector
- Multiple DC bus voltages from 450 VDC to 600 VDC
- Measurements were taken under constant ma

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

Inverter Efficiency Comparison

	Efficiency			Passive Cooling System	
	California Energy Commission	European	Peak	Heat Sink Size Volume (cm³) / Weight (kg)	Volumetric Power Density (W/cm³)
Si IGBT Inverter	95.0 %	94.8 %	95.5 %	7 / 6.12	1.75
SiC JFET Inverter	98.3 %	98.1 %	98.6 %	7 / 6.12	1.75
SiC JFET Inverter @ 150 °C	97.5 %	97.3 %	97.8 %	2.3 / 1.4	8.6

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

High Power Density Characterization

Three phase SiC inverter efficiency vs. temperature

Three phase inverter operating at ~233 °C

- ☐ Heatsink Dimension = 7" × 5" × 1"
- □Volume = 35 in³ (~ 10× reduction)

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

- 1200V/150A SiC Half Bridge Intelligent Power Modules -

SiC Module

- 8 parallel SiC DMOSFETs per "switch position"
- Includes miniaturized integrated high temperature gate driver
- Module demo operation at 250 °C junction
- Packaging operational to 300 °C junction

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

1200V/150A SiC Half Bridge Intelligent Power Modules

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

- SiC Power Module Demonstration -

Demonstration System

300 V DC bus input

- 60 V DC motor

60 A peak current

15 kHz switching frequency

250 °C junction temperature

DC Motor Load

Filters

SiC Power Module processing 4 kW (Open for Thermal Imaging)

Voltage Regulator for PWM Control

ite Drive wer Supply

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

Summary

Goal of Phase II Work

- Develop a higher power (10-kVA) all-SiC three-phase inverter
- System efficiency (>96%)
- Weight and volume minimization options

Contributions of Phase II Work

- Design, fabrication, testing and characterization of 10-kVA all SiC Inverter
 - Selection and full characterization of used SiC devices (i.e., static and dynamic characterization vs. temperature, statistical dispersion)
 - Paralleling of multiple SiC devices
 - Developed high temperature (300+ °C) SiC device packaging technology (i.e., wire bonds, die attach, substrate and encapsulation)
 - Developed of gate driver circuitry

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

Summary

- Contributions of Phase II Work (Cont.)
 - Demonstration of high efficiency operation:
 - Multiple output filters and PWM modulation schemes were compared
 - Performance comparison to "equivalent" Si system
 - Measured SiC system showed an <u>CEC = 98.3% and EE = 98.1%</u>
 - Demonstration that important weight and volume minimization are possible (tradeoff studies)
- SiC device technology has the potential of greatly increase the performance of power converters
 - Higher efficiency
 - Smaller size
 - Higher reliability
 - And ultimate lower cost
- Developed technology received a 2009 R&D 100 award

Acknowledgments

- APEI's Partners
 - GeneSiC
 - State of Arkansas
 - Rohm Corp.
 - University of Arkansas
- Energy Storage System Program, Dr. Imre Gyuk
- Sandia National Laboratories, Dr. Stan Atcitty

