EESAT 2007, September 23-26, 2005, San Francisco, CA

An SiC Power Converter System -

Thermal Management and High Temperature Packaging

Timothy Lin, Chunhu Tan, Bob Liu Aegis Technology Inc., Santa Ana, CA

Project funded through DoE STTR Project (DE-FG02-05ER86234)

Technical partner: Dr. Leon Tolbert

Supervisor: Dr. Stan Atcitty and Dr. Imre Gyuk

Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through the Small Business Innovation Research (SBIR) program and managed by Sandia National Laboratories (SNL).

Overview of Aegis Technology Inc. (ATI)

- Design, development and manufacturing capabilities
- Operation since 2002
 - President/CEO: Mr. Bob Liu
 - Chief Scientist: Dr. Timothy Lin
 - 10 employees with 5 Ph.D/M.S Scientists & Engineers
- Key technologies
 - SiC Power Electronics and Thermal Management
 - Nanocomposites and Advanced Manufacturing
- Contact information
 - Website: www.aegistech.net
 - Main email: aegiste1400@earthlink.net
 - Tel: 714-554-5511 (Lab), 265-1238 (O); F: 714-554-9935

Capability

Research & Development

Recent technology development

- 10 SBIR/STTR (Phase I & II) contracts since 2003
- SiC power electronics and thermal management
 - SiC power inverters, high temperature packages and heatsink
- Nanocomposites (ceramics, metals, semiconductors)
 - High strength and/or high thermal conductivity, low density

Design, modeling, processing, and prototype

Strategic partners for commercialization of SBIR/STTR

- Powerex Inc. (Youngwood, PA) for SiC-based power electronics
- Cercom Inc. (Vista, CA) for Nanostructured metal matrix composites

Technical partners

- University of California at Irvine
- University of Tennessee at Knoxville

Objectives of the DoE STTR Project

- Develop an innovative power converter using high temperature, high power density SiC devices.
 - High efficiency, small size, and light weight
 - High power density, high temperature, and high frequency
 - Scalable current ratings for various motor controls
- Insert the technology for the applications in electric energy storage, motor control, and others.

Why SiC Power Devices

SiC power devices are superior to Si devices

- Operable at higher temperatures (500°C vs. 140°C of Si)
- Higher breakdown voltages (1200 V vs. 300 V of Si)
- Excellent reverse recovery characteristics (low switching losses)
- Operable at higher switching frequencies (more than 100 KHz vs. less than 20 KHz for high power applications)
- Higher thermal conductivity (4.9 W/cmK vs. 1.5 W/cmK of Si)
- Radiation-hard

SiC-based power electronic systems

- High efficiency
- Light weight
- Small size (e.g. smaller heatsink, capacitor, and inductor)

Challenging Issues

- Limited availability (diode/JFET) and current rating of SiC power devices (diode<15 A, JFET < 7A)
 - Paralleling of multiple devices and new layout/circuit design
- Thermal management
 - High temperature, high power density packaging
- Gate drivers
 - High temperature, high frequency capabilities
- Passive components and system integration
- Technical/economical impacts
 - High cost of SiC devices vs. Reduced power loss, heatsink and passive components

Approach

- Device
 - Utilize commercially available SiC devices
- Circuit and Modeling
 - Design suitable SiC circuit of power modules
 - Modeling and simulation
- Package (thermal management) and gate drive
 - Develop high temperature package, high-efficiency heatsink
 - Develop high temperature gate drive
- System integration/demonstration/testing/applications
 - Select high temperature auxiliary devices /components (capacitor etc.)
 - Integrate power module, gate drive/control, packaging/passive components

Converter Design

- Battery: Lead acid battery
- Converter: SiC devices (JFET, Schottky diode)

Schematics of the SiC inverter

Power Module Prototype

Half-bridge and 6-packed

New design of Power Module layout -> Small dimension

High-temperature Packages & Thermal Management

Package substrate

Heatsink

Package assembly

Package with Carbon foam heatsink Test setup -> Package & heatsink

Thermal Management

High temperature, high power density package

- High temperature AlN package
 - High thermal conductivity, Low CTE matchable with SiC High thermal shock resistance and insulation
 - High-temperature metallization for die attachment and heatsink
- High efficiency passive heatsink
 - Active cooling (e.g. networking microchannel heatsink)
 - A critical issue in thermal management of some applications
 - Space is constrained
 - Airflow is not available directly
- Passive cooling is more attractive

No pumping needed-> no power use, no noise, improved reliability

Thermal Management (cont.)

1. A passive thermal management based on a heat pipe-enforced heatsink

Self-contained, compact, reliable

A heat pipe-enhanced heatsink along with radiator that can also be cold end such as enclosure or case.

2. Phase change material (PCM)/graphite foam heat exchanger (passive cooling)

- High thermal conductivity, interconnected pores acting like network microchannel ->High convective heat transfer
- Integrated with PCM utilizing latent heat of phase change (solid ->liquid) to absorb waste heat from chips

Circuit Modeling & Simulation

Modeling

Battery model,

Power loss model, and System thermal model

Simulation

Gate Drive and Control

- Challenging issues
 - Normally-on device of JFET for high frequency operation
 - High-temperature capability
- Approach
 - Commercially available Si devices
 - High temperature SOI technology
 - Atmel's High Temperature BCD-on-SOI technology
- Phase I work
 - Commercial (IXYS IC chip IXDD414)
- Phase II work
 - A novel BCD (Bipolar-CMOS-DMOS)
 design based on SOI process
 to implement the gate driver

Gate drivers are necessary for driving the power switches in any power converter

SOI-based High-voltage High-temperature Gate Driver

- 1. Fully integrated gate drivers for high temperature applications
- 2. The novel BCD on SOI process offered by ATMEL corporation
- 3. Switching frequency: 20 kHz, Output voltage: -5V ~ 30V, Load capacitance: 10nF, Ambient temperature range: -40°C to 200°C

Gate drive chip

Gate driver circuit

Converter Fabrication and Characterization

- Design/build SiC converter
 - A 1200 V, 20 A all-SiC power module/inverter using JFETs and Schottky diodes
 - Scale up to 1200 V, 120 A
 - Implement high-temperature capacitors
- Test, characterize, and converter

Test setup of power modul

Ongoing Work and Summary

• Converter fabrication and characterization

- Utilize technology/components currently available or demonstrated in Phase I
 - A power module array (1200V, 120 A) by paralleling modules of 1200 V, 20 A
 - Gate drive (Atmel's High Temperature BCD-on-SOI technology)
 - High- temperature thermal packaging
- Fabricate, characterize and file-test the inverter

Modeling and system analysis

- Analyze the device/system-level impacts of the SiC inverter with similar Si inverter
- Advantages of operations at high temperatures (smaller heatsink), power densities and frequencies (smaller passive component)
- Technical/economical benefits in terms of efficiency, size and cost

Application and commercialization

- Electric storage system (battery, capacitors)
- Transportation (traction drive, hybrid electric vehicles)
- Power systems (Fuel cells, micro turbine, renewable sources)
- Document the benefits in terms of performance and costs for potential customers

Through this project, a high-efficiency compact affordable SiC inverter can be anticipated