

Status Update on the NYSERDA/DOE Joint Energy Storage Initiative Projects

Jeff Lamoree – EnerNex

This project is part of the Joint Energy Storage Initiative between the New York State Energy Research and Development Authority (NYSERDA) and the Energy Storage Systems Program of the U.S. Department of Energy (DOE/ESS), and managed by Sandia National Laboratories (SNL).

Acknowledgements

- The Data Acquisition and Analysis for these demonstration projects is funded by the U.S. Department of Energy.
 - Project Manager Georgianne Peek, Sandia
 National Lab

Acknowledgements - cont

- Joe Sayer NYSERDA
- Mark Schneider DCEC
- Ib Olsen Gaia Power Technologies
- Jim Arseneaux Beacon Power

Project Statement

- Core Requirements PON 846
 - The proposed Energy Storage System (ESS) must include a Data Acquisition System (DAS) for the purpose of providing system operating data to be used for evaluation and generation of reports on the overall performance of the EES.

Approach

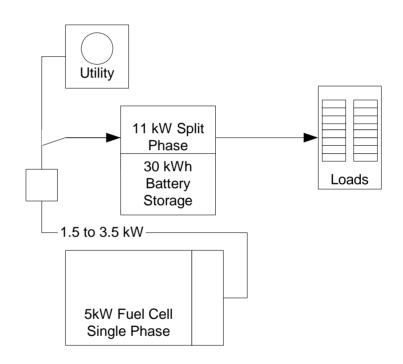
- Transport to monitoring center via secure communications link over Internet
- Convert data from vendor systems into standard formats
 - IEEE 1159.3 PQDIF
 - IEC 61850 data models for metering
- Expose via dynamically generated tables, graphs on demand on project web site
- Provide project information, archived data and real-time data on open project web site
 - www.storagemonitoring.com

Projects

- Gaia Power Technologies/Delaware Valley Electric Cooperative
- Beacon Power
- New York Power Authority/ABB
- Gaia Power/Princeton Power

Site 1

Gaia Power Technologies/Delaware
 County Electric Cooperative, Inc. – Edge
 of grid residential application that includes
 an 11 kW Power Tower battery-based
 energy storage and delivery system fed by
 a Plug Power 5 kW fuel cell in Delhi, NY



Timeline

- Gaia Power Tower and Plug Power Fuel Cell installed in June, 2005
- System operational in July 2005
- Fuel cell shut down in June, 2006, removed July, 2006
- System restarted in September, 2006 with grid supplying Power Tower
- Briggs 15 kW generator installed in March, 2007
- Monitoring continued until April, 2007

Operation

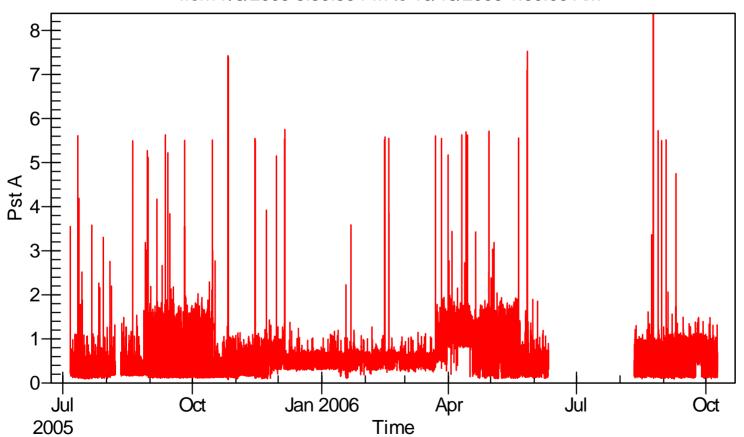
- Fuel cell supplied about 2kW to the Power Tower on a continuous basis
- Power Tower continuously supplied house load unless either leg went above 5.5kW or 45 amps
- If load went above, load shedding relaying operated, followed by full load transfer back to grid

Project Summary

Month	System Mode	
July, 2005	Fuel Cell ON (But new stack was installed during the last week	
	of month)	
August	Fuel Cell ON (Net metering but back to full mode on Aug 30 th)	
September	Fuel Cell ON	
October	Fuel Cell ON (Until Oct 26 th when outage occurred)	
November	Fuel Cell ON (Primarily netmetering then set to OFF position	
	followed by brief operation on Nov 22 nd)	
December	Fuel Cell OFF	
January, 2006	Fuel Cell OFF (Set back to ON position on Jan 15 th)	
February	Fuel Cell ON (Net metering)	
March	Fuel Cell ON (Net metering, Power Tower switched ON March	
	$(23^{\rm rd})$	
April	Fuel Cell ON (Net metering)	
May	Fuel Cell ON (May 20 th , switched to Bypass)	
June	Fuel Cell OFF (June 5 th), Bypass	
July	Fuel Cell Removed (July 27 th), Bypass	
August	Bypass	
September	Grid Feeding Power Tower, Power Tower Feeding Loads	
March, 2007	15kW Generator ON	
May	Equipment Removed	

Lessons Learned

- Edge of grid residential application successfully proven
- Battery energy storage system worked as designed
 - Round trip efficiency of approximately 39%
- However, several power quality issues emerged
 - Load shedding relay caused 2 cycle interruptions
 - Inverter operation of Power Tower in combination with a weak grid caused severe voltage flicker that caused homeowner to put system into bypass on numerous occasions

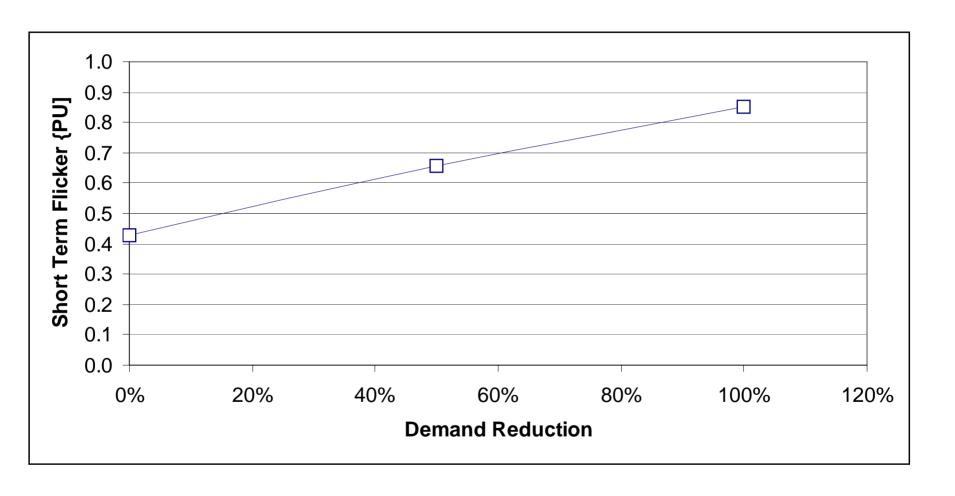

Flicker Problem

- After operating for a while the house owner started to complain about flicker in his light sources
 - Local project manager could not see any flicker
 - Lead project manager could not see any flicker
 - Gaia technical service engineer could see flicker
- Anecdotally the flicker was worse when energy storage was powered by fuel cell, but still present when energy storage powered by utility
 - House owner did not see any flicker when energy storage was bypassed

Flicker Measurements

SS PQ Main Panel - Pst A

from 7/5/2005 3:59:59 PM to 10/15/2006 1:00:00 AM



Gaia Test Results

- The grid at the test side was measured to have a short term flicker around 0.5
- Introducing the energy storage device increased the flicker with more than 80% on the input side and an additional 3% on the output side
- Using the fuel cell as source increased the flicker with 13%

Energy Source	Energy Storage	Short Ter	Short Term Flicker	
		Before Energy Storage	After Energy Storage	
Weak Grid	No	0.47	Not Active	
Weak Grid	Yes - Demand Reduction	0.87	0.90	
Fuel Cell	Yes - Demand Reduction	0.95	0.97	

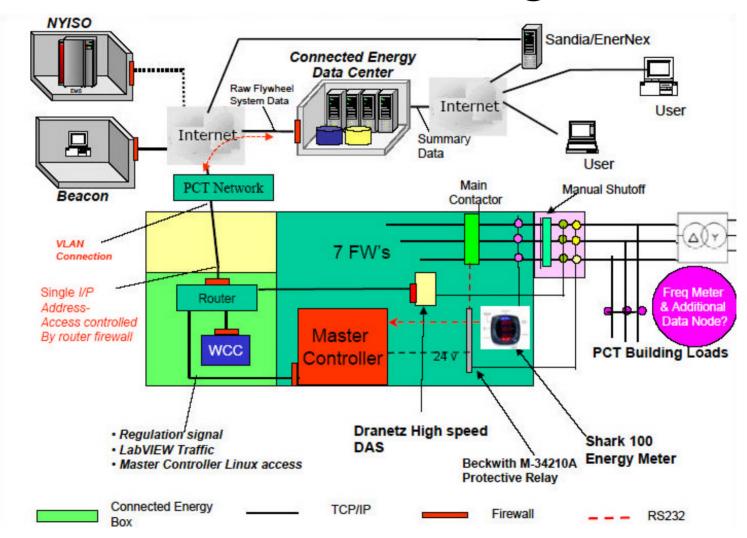
Gaia Test Results - cont

Conclusions

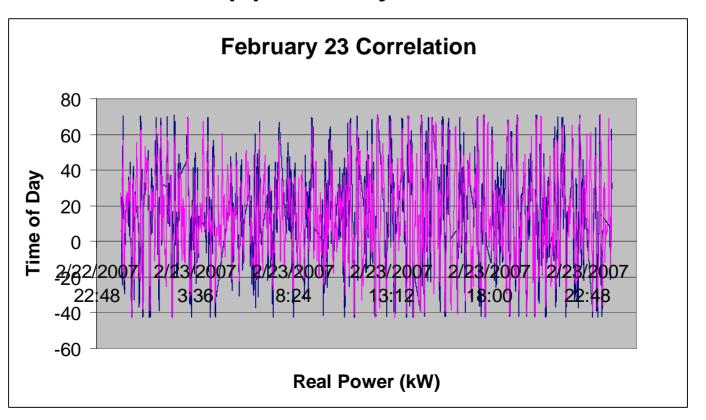
- Introduction of an energy storage device used for demand reduction (current source) increased the short term flicker at a residence
- The magnitude of the short term flicker was a function of the "strength" of the source and of the level of demand reduction
 - A weak source increased the flicker
 - Increased demand reduction increased the flicker
- When used as voltage source the energy storage device had short term flicker values significant lower than the grid
 - Using the fuel cell as a DC source rather than an AC source would most likely have solved the flicker issue

Site 2

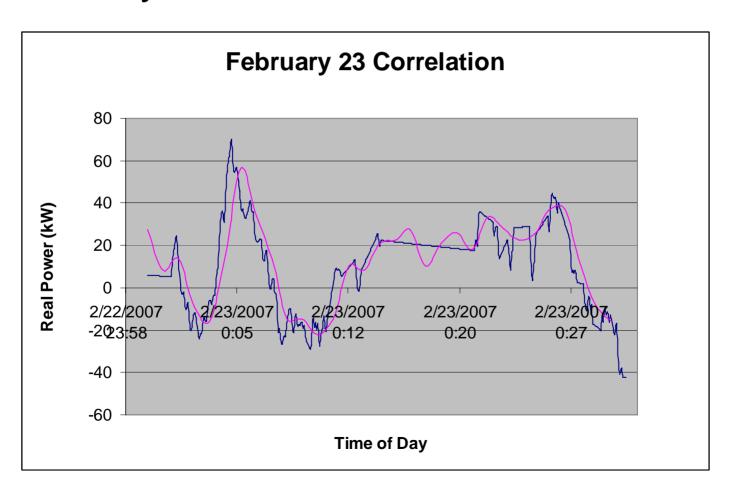
 Beacon Power – Grid frequency regulation demonstration at an industrial facility in Amsterdam, NY, using 7 flywheels producing 100 kW for 15 minutes



Timeline

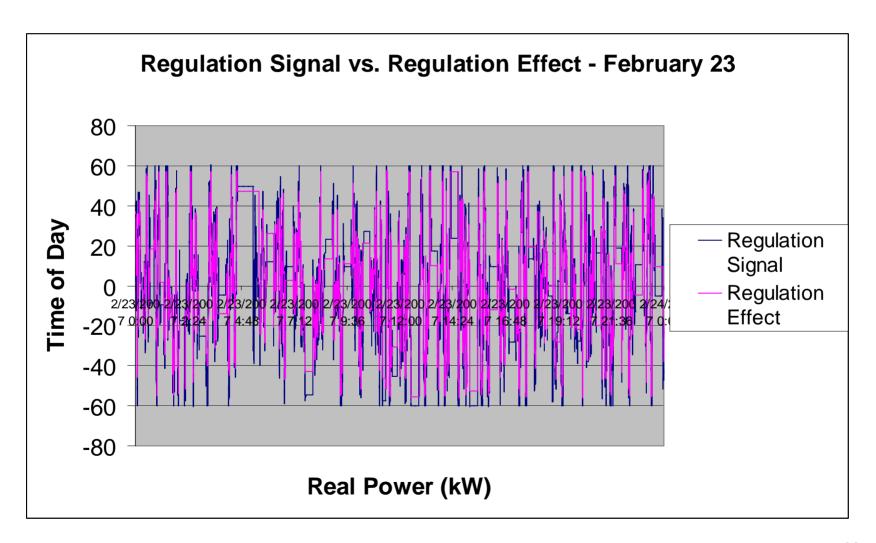

- Service entrance monitored at PCT,
 Amsterdam, NY from Feb June, 2006
- Smart Energy Matrix (EM) flywheel system installed in June
- Approximately 1 month of system commissioning and testing
- Monitoring continued through March, 2007 when it was agreed enough data had been collected

DAS Block Diagram

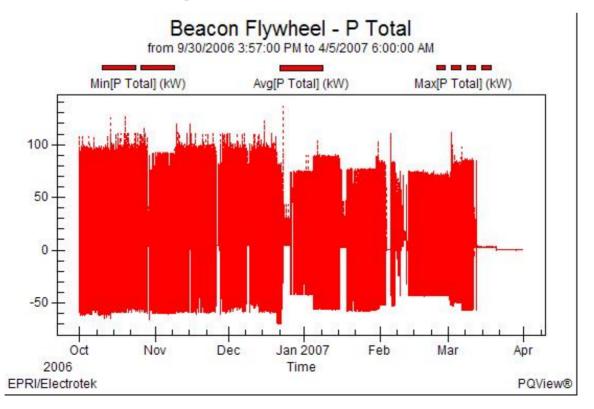

Status

 Dranetz was used to verify extensive on board DAS supplied by Beacon Power

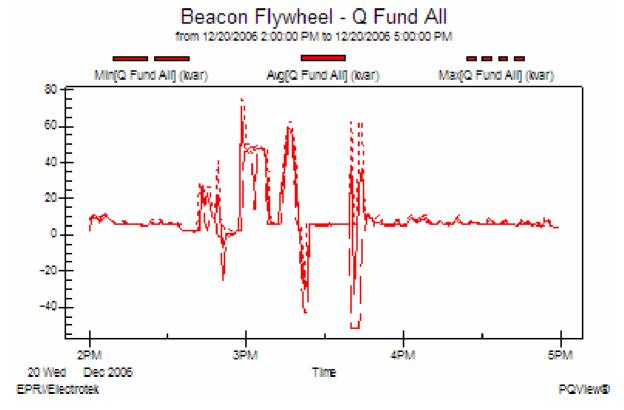
Status - Cont


February 23 verification correlation

Lessons Learned


 Beacon Power has successfully shown that the EM flywheel system can react to a frequency signal and inject or absorb power as needed assuming energy is available from storage system

Lessons Learned - cont


Lessons Learned - cont

 One thing to note is that for example on February 23, only 4 of the 7 flywheels were in operation limiting the output power to 60 kW.

Lesson Learned - cont

 As an additional benefit, Beacon Power was able to show that the flywheel system could be used as a reactive power compensation device.

Site 3

 New York Power Authority/ABB – Peakshaving and emergency backup application utilizing a 1 MW/7.2 MWh commercial-scale sodium-sulfur (NAS) battery system at a Long Island Bus facility

Status

 Signal points list finalized in July, 2006

Signal		
Grid RMS Voltage		
Grid RMS Current		
Grid Real Power		
Grid Reactive Power		
Grid Apparent Power		
PCS Real Power		
PCS Reactive Power		
PCS Apparent Power		
Load Real Power		
Load Reactive Power		
Load Apparent Power		
PCS Real Energy Accumulated – Absorbed Real Energy		
PCS Reactive Energy Accumulated – Absorbed Reactive Energy (Inductive)		
PCS Real Energy Accumulated – Discharged Real Energy		
PCS Reactive Energy Accumulated – Discharged Reactive Energy (Capacative)		
System Charge / Discharge Cycle Counter		
System Operational Mode		

Status - cont

- The process for retrieving, converting and posting the data is complete.
- We are waiting for input on what data is restricted.
- We are ready to go as soon as data becomes available.

Site 4

- Gaia and Princeton Power are in production for four 75kW/225kWh Power Tower units.
- The project will demonstrate peak shaving at an industrial customer in the DCEC territory.
- Kickoff meeting was held on June 26.
- DAS configuration is expected to be similar to the NYPA/ABB project at LIBUS.

Thank You