

Emissions from Traditional & Flywheel Plants for Regulation Services

Rick Fioravanti,

Johan Enslin & Gerard Thijssen

KEMA, Inc.

EESAT 2007, San Francisco, Sep. 24, 2007

Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL).

Outline

- Introduction
- Principles of Frequency Regulation
- Goal of Emissions Model
- Emissions Comparison Approach
- Generation Mix per ISO
- KEMA Emissions Tool
- Results of Emissions Study
- Conclusions

Introduction

Grid Regulation Ancillary Services

Data from Sandia Report 2002-1314

Power Supply and Demand

DEMAND

SUPPLY

Daily Supply and Demand Curve

Frequency Excursions with Spinning Reserve

$$E = (I\omega^2)/2 = (mr^2\omega^2)/2 = (m v^2)/2$$

Generation and Load Mismatch

Principles of Frequency Regulation

Traditional Generation
Option

PJM Area Control Error and Regulation

Electrical Energy Storage Plant

Flywheel Energy Storage

Beacon Power 20 MW Plant

Flywheel Regulation Cycle

Goal of Emissions Model

- Compare the emissions profile for a 20 MW Flywheel vs.
 Traditional Technologies for Regulation
- Emissions Comparison between:
 - Coal Power Plant Baseload and "Peaker" Mode
 - Natural Gas Plant Baseload and "Peaker" Mode
 - Pump Hydro Storage System
 - Flywheel Energy Storage System

- Comparisons in 3 ISO areas with generation mixes
 - California ISO
 - ISO New England
 - PJM Territory
- Emissions examined were CO₂, SO_x, NO_x

Emissions Comparison Approach

• Premise:

- Traditional coal and gas power plants operate *less efficiently* in ramping output in frequency regulation
 mode **Increased Emissions**.
- Flywheels and other energy storage devices use grid power at average emission profiles – Decreased Emissions.

Flywheel Approach:

- Examine Regulation Cycle through Charging,
 Discharging, Idling and Load Bank modes
- Calculate All flywheel losses and associated emissions from operation - Charging; Discharging; Idling and Load Bank.

Emissions Comparison Approach (2)

- Traditional Power Plant Approach
 - Coal and natural gas plants consume 0.5 1.5% more fuel for regulation services
 - Studies can improve accuracy of estimation
 - Emissions are calculated by examining the incremental increase in fuel (0.7%) use by power plants through heat rate calculations

Calculations

 Calculations are made by examining one cycle, one day, extrapolating over 1 year and a 20 year plant lifetime

Generation Mixes in Different Regions

Generation Type

KEMA Emissions Tool

Variables

Max Cycles per day	24	cycles
Size	20,000	kW
Heat Rate(PJM)	10,128	btu/kWh
Charge/Discharge Time	0.25	hr
Total System Losses	14%	Percentage
Percentage Regulation Compliance	98.3%	Percentage
Cycle Time with No Load	0.5	hr
Solar System Providing No Load Power Toggle	No	

Load bank energy can be used in other processes

Results of Emission Analyses

Flywheel Regulation Compared to

- Coal Power Plants
 - Large reductions in the CO₂, SO_x, and NO_x emissions for all ISOs.
 - Flywheel emission from losses in ISO generation mix.
 - Average generation mix include renewable generation
 - Generators use more fuel in ramping regulation mode
- Natural Gas Fired Power Plants
 - Mainly CO₂ emission reduction
 - Average emission rates still lower than natural gas plants
- Pumped Hydro Storage Systems
 - Emission savings occur in CO₂, SO_x, NO_x
 - Flywheel efficiency higher than the pump hydro storage
 - Both storage systems

Comparison of CO₂ Emissions

Flywheel Emission Savings Over 20-year Life: PJM						
	Coal		Natural Gas		Pumped Hydro	
	Baseload	Peaker	Baseload	Peaker		
CO2						
Flywheel	149,246	149,246	149,246	149,246	149,246	
Alternate Gen.	308,845	616,509	194,918	224,439	202,497	
Savings (Flywheel)	159,599	467,263	45,672	75,193	53,252	
Percent Savings	52%	76%	23%	34%	26%	

Flywheel Emission Savings Over 20-year Life: ISO-NE						
	Coal		Natural Gas		Pumped Hydro	
	Baseload	Peaker	Baseload	Peaker		
CO2						
Flywheel	106,697	106,697	106,697	106,697	106,697	
Alternate Gen.	304,759	608,354	197,359	227,249	144,766	
Savings (Flywheel)	198,062	501,657	90,662	120,552	38,070	
Percent Savings	65%	82%	46%	53%	26%	

Emissions in tons

Flywheel Emission Savings Over 20-year Life: CA-ISO						
	Coal		Natural Gas		Pumped Hydro	
	Baseload	Peaker	Baseload	Peaker		
CO2						
Flywheel	91,079	91,079	91,079	91,079	91,079	
Alternate Gen.	322,009	608,354	194,534	223,997	123,577	
Savings (Flywheel)	230,930	517,274	103,455	132,917	32,498	
Percent Savings	72%	85%	53%	59%	26%	

Emission Results for PJM

Flywheel Emission Savings Over 20-year Life: PJM						
	Со	al	Natural Gas		Pumped Hydro	
	Baseload	Peaker	Baseload	Peaker		
CO2						
Flywheel	149,246	149,246	149,246	149,246	149,246	
Alternate Gen.	308,845	616,509	194,918	224,439	202,497	
Savings (Flywheel)	159,599	467,263	45,672	75,193	53,252	
Percent Savings	52%	76%	23%	34%	26%	
SO2						
Flywheel	962	962	962	962	962	
Alternate Gen.	2,088	5,307	0	0	1,305	
Savings (Flywheel)	1,127	4,345	-962	-962	343	
Percent Savings	54%	82%	n/a	n/a	26%	
NOx						
Flywheel	259	259	259	259	259	
Alternate Gen.	543	1,381	105	154	351	
Savings (Flywheel)	284	1,122	-154	-105	92	
Percent Savings	52%	81%	-148%	-68%	26%	

Emissions in tons

Emission Results for ISO-NE

Flywheel Emission Savings Over 20-year Life: ISO-NE						
	Coal Natural Gas		Pumped Hydro			
	Baseload	Peaker	Baseload	Peaker		
CO2						
Flywheel	106,697	106,697	106,697	106,697	106,697	
Alternate Gen.	304,759	608,354	197,359	227,249	144,766	
Savings (Flywheel)	198,062	501,657	90,662	120,552	38,070	
Percent Savings	65%	82%	46%	53%	26%	
SO2						
Flywheel	270	270	270	270	270	
Alternate Gen.	1,300	3,303	0	0	367	
Savings (Flywheel)	1,030	3,033	-270	-270	96	
Percent Savings	79%	92%	n/a	n/a	26%	
NOx						
Flywheel	115	115	115	115	115	
Alternate Gen.	416	990	58	85	157	
Savings (Flywheel)	301	875	-58	-31	41	
Percent Savings	72%	88%	-101%	-36%	26%	

KEMA₹

Emission Results for CA-ISO

Flywheel Emission Savings Over 20-year Life: CA-ISO					
	Coal Natural Gas I		Pumped Hydro		
	Baseload	Peaker	Baseload	Peaker	
CO2					
Flywheel	91,079	91,079	91,079	91,079	91,079
Alternate Gen.	322,009	608,354	194,534	223,997	123,577
Savings (Flywheel)	230,930	517,274	103,455	132,917	32,498
Percent Savings	72%	85%	53%	59%	26%
SO2					
Flywheel	63	63	63	63	63
Alternate Gen.	1,103	2,803	0	0	85
Savings (Flywheel)	1,041	2,741	-63	-63	23
Percent Savings	94%	98%	n/a	n/a	27%
NOx					
Flywheel	64	64	64	64	64
Alternate Gen.	499	1,269	80	118	87
Savings (Flywheel)	435	1,205	16	54	23
Percent Savings	87%	95%	20%	46%	26%

CO₂ Emissions Summary

Conclusions

- A detailed emissions comparison model was developed by KEMA to evaluate the emissions from regulation technologies in different regions
- The emissions comparison estimates show highly favorable results for the flywheel for CO₂ emissions in all regions
- KEMA's model analysis showed that flywheel-based frequency regulation can be expected to create significantly less NO_x and SO₂ emissions for CA-ISO

Acknowledgements

- The authors and KEMA acknowledge the technical and financial contributions from:
 - Beacon Power
 - The U.S. Department of Energy (DOE)
 - Sandia National Laboratories

