

PEER REVIEW 2007

DOE(SNL)/CEC Energy Storage Program FY07 Projects

September 27, 2007 San Francisco, CA

Daniel R. Borneo, PE Sandia National Laboratories

Presentation Outline

DOE(SNL)/CEC Collaboration

- Background of DOE(SNL)/CEC Collaboration
- FY07 Project Review
 - Zinc Bromine Battery (ZBB) Demonstration
 - Palmdale Super capacitor Demonstration
 - Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration
 - Beacon Flywheel Energy Storage System (FESS)

Background of DOE(SNL)/CEC Collaboration

- Memorandum of Understanding Between CEC and DOE (SNL).
 - In Place since 2004
 - Provides support to CEC in the implementation of Electrical Energy Storage Projects.
 - Project development and coordination
 - Technology transfer
 - Data Acquisition System (DAS) management
 - Monitor and analyze system performance
 - Provide economic evaluation of technology

DOE(SNL)/CEC FY07 Projects Zinc Bromine Battery (ZBB) Energy Storage Demonstration

Overview

- Peak shaving project initiated in 2004
 - 2 MW/2 MWhr Zinc Bromine Battery demonstration

Objective

- Allow for Substation deferral
 - Demonstrate that Zinc Bromine battery system can cost effectively provide peak shaving

Technology

- Presently testing 500-kWh Zinc Bromine battery system
 - Two strings of five 50-kWh battery modules
 - 500 kWh dc capacity
 - 250 kW ac continuous; 500 kW ac peak

DOE(SNL)/CEC FY07 Projects Zinc Bromine Battery (ZBB) Energy Storage **Demonstration**

ZBB's 50 kWh module

ZBB's 500 kWh system (10 - 50 kwh modules)

DOE(SNL)/CEC FY07 Projects Zinc Bromine Battery (ZBB) Energy Storage Demonstration

Status

- ZBB finished field testing of initial system at the DUIT facility in 2006
- ZBB installed upgraded 500 kWh system at DUIT summer 2007
- Presently system is in 40 day reliability testing
- Upon successful completion of 40 day test, determination will be made whether to install additional 500 kWh systems for further evaluation

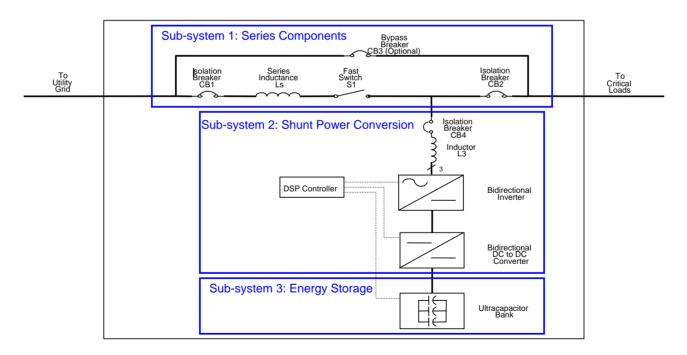
DOE/SNL Role

- Collect electrical data during demonstration and provide performance analysis
- Conduct economic evaluation of system

Overview

- System developed by Northern Power (Distributed Energy Systems) to provide voltage ride through and conditioning
 - Energy storage
 - PF correction
 - Harmonics

Objective


- Develop and demonstrate an ultracapacitor based Electrical Energy Storage System for power reliability and power quality applications
 - Power outage ride-through capabilities
 - Power factor correction
 - Power conditioning

Technology

Ultracapacitor system provides 450 KW for 30 seconds

Status

- System is assembled at Barre Plant
- Operation acceptance test and factory commissioning completed
- Unit will be shipped to the Palmdale site where a functional acceptance test will take place in Q4 CY07

DOE/SNL Role

- Technical advisor for storage technology
- Collect electrical data during demonstration and provide performance analysis
- Conduct economic evaluation of system
- Conducted Factory commissioning test

Overview

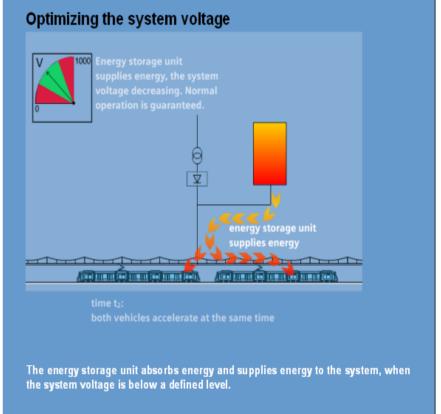
- Voltage stabilization project
 - New power configuration needed to accommodate heavier and more powerful train cars
 - -Existing configuration 1 MW SS located every 2 miles
 - -New configuration 2 MW SS every mile

Objective

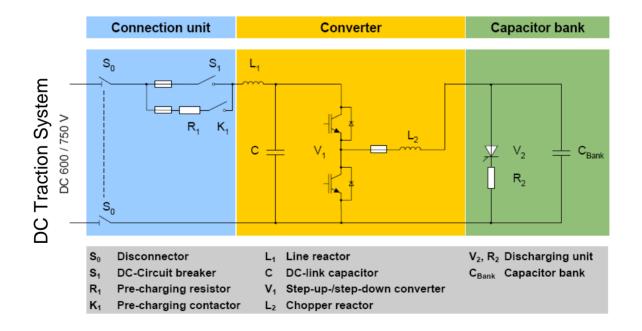
- Avoid cost of new substation by incorporating Static Energy Storage (SES) into existing lines and new expansions
 - Provide Voltage stabilization
 - Estimated 65 VDC increase from 600 V to 665V on 750 VDC system
 - Reduce Energy consumption
 - Estimated 35 55kWh energy savings
 - •7-10% energy reduction

Technology

- 1MW Siemens Static
 Energy Storage
 System SITRAS®
 SES
 - BCAP 3000 Maxwell UltraCapacitor
 - 1MW for 20 second

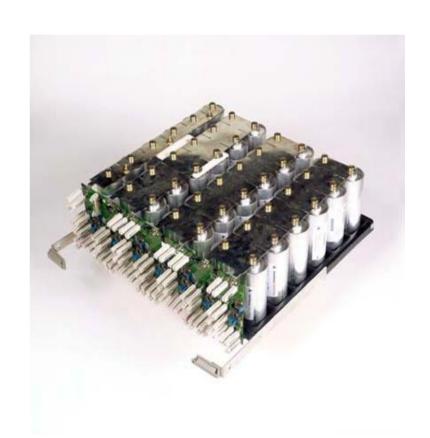


Dresden-Hellerau (Container Version)

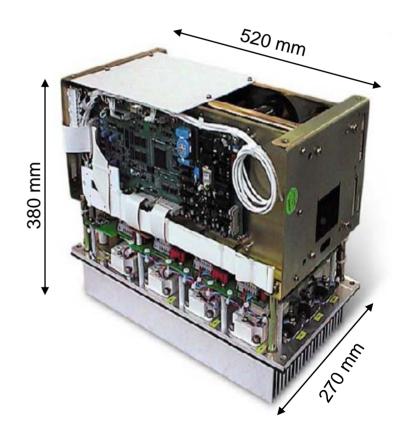


Static Energy Storage System SITRAS® SES

Design: Single-line diagram



Static Energy Storage System SITRAS® SES


- Capacitor bank consist of 30 Watchdog modules
 - Each module consists of 7 function blocks supervising capacitors connected in parallel.
- Technical data of the capacitor
 - Voltage 2.7 V; capacity 3,000 F
 - Double-layer capacitors

- Static Energy Storage
 System SITRAS® SES
 - Converter: IGBT converter module

Status

- Phase I started in 2005 and included:
 - RT light rail system model simulation by Siemens
 Transportation Systems started in 2006 that analyzes the
 potential benefit of SES at specific locations
 - Detailed data collection and analysis by RT for input to the Siemens model
 - Detailed billing study by SMUD for all 34 RT substations

– Phase II started in 2007 and includes:

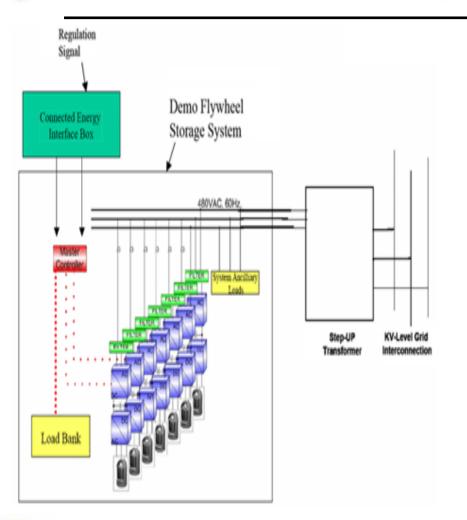
- Additional Data collection and cost analysis
- SES operational for summer/Fall 2008
- 15 month demonstration of SES System on Sacramento RT Light Rail Folsom Line

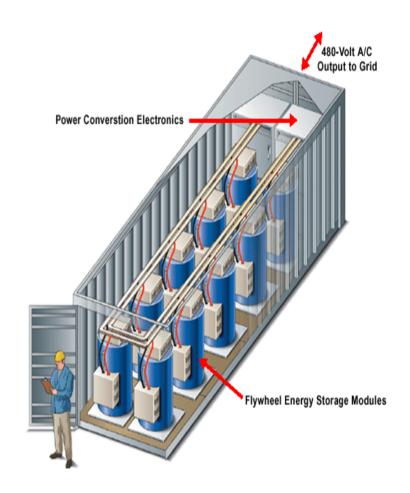
DOE/SNL Role

- Technical advisor for storage technology
- Collect electrical data during demonstration and provide performance analysis
- Conduct economic evaluation of system

DOE(SNL)/CEC FY07 Projects Beacon Flywheel Energy Storage System (FESS)

Overview


- 100 KW 15 minute Power unit successfully demonstrated over 18 month test period (2005/06)
 - 7 ea. 15 KW flywheel units
- Objective
 - Show efficacy of flywheel technology for grid-scale frequency regulation
- Technology
 - Kinetic Energy Flywheel
 - Fast response
 - Full "up" or "down" regulation < 4seconds vs. 5-minutes for conventional technology



DOE(SNL)/CEC FY07 Projects Beacon Flywheel Energy Storage System (FESS)

DOE(SNL)/CEC FY07 Projects Beacon Flywheel Energy Storage System (FESS)

Status

- Demonstration of 100 KW system successfully completed Dec 2006
- Final reports in progress

DOE/SNL Role

- Technical advisor for storage technology
- Capture electrical data during testing, provide performance analysis
- Economic benefit/cost evaluation of commercial-scale plant
- Facilitate commercialization

DOE(SNL)/CEC FY07 Projects Summary

- DOE/SNL continues to provide support to new and ongoing energy storage businesses and technologies
 - Technical performance and economic feasibility analysis
 - Technical consulting and advisory role
- Upcoming Projects
 - NaS battery installation
 - CEC/PG&E collaboration
 - VRB Battery
 - CEC/SMUD/Sprint Collaboration

