NAS Battery Performance at Charleston, WV

A Presentation to

DOE Peer Review Program

November 2, 2006

Ali Nourai American Electric Power

Partners

American Electric Power

- Owner & Operator of DESS
- Project Management
- Site Work
- Permits

NGK Insulators

Manufacturer of NAS Battery System

S&C Electric Company

- PCS
- System Integration

DOE/Sandia

Partial Sponsor

Overview- First MW-Scale NAS Application Outside Japan

Went into Contract with NGK and S&C The Storage Unit Started Operation in

Sept 2005 June 2006

Distributed Energy Storage System (DESS) Project

1.2 MW Peak Shaving

Justifications

1) Corporate Strategy

2) Distribution Capital Deferral

3) A Relatively Quick Solution

4) Relocate-able to other Sites

Total Cost

Under \$2,400 / kW, Installed

DOE Support

Covered Non-Repeat Expenses

AEP Outlook on Future Grid

Charleston Site

- 1. Needed A Transformer Upgrade before Summer 2006
- 2. Internal Policy Required Building Another Substation with Feeders
- 3. Cost of New Substation was High (\$2 million)
- 4. Could not finish the upgrade in time for Summer Peak
- 5. Conventional Solution Is Not Relocate-able
- 6. A 1.2 MW, 7.2 MWh Relocate-able DESS was Authorized (< \$2.4 million)

Installation of DESS Parts

DESS Sketch and Connection to Grid

DESS Cost - DOE/Sandia Role in Removing the Initial Deployment Hurdles

Cost Components

Immediate Benefits - Reduced Peak Load

Three Highest Peak Days

Chemical Substation: Transformer Load Three Worst Days of Summer (7/19, 8/2, and 8/3/2006)

Immediate Benefits - Reduced Peak Loads

DESS Down Times - Unscheduled

Immediate Benefits - Load Shape

Three Worst Months

Effective Peak Load Reduction - Less than 1MVA

Actual Reduction in the Feeder Load due to a 1.0 MW Discharge (June - Sept, 2006)

Immediate Benefit — Load factor Improvement

Immediate Tangible Benefits of the First AEP DESS

Transformer Temperature Control

Transformer Load, Hot Spot and Top Oil Temperature Chemical Substation - July 21, 2006

*Based on measured/calculated load and measured ambient temperature, Hot Spot and Top Oil temperature are calculated by using PTLoad 6.1, EPRI software.

Energy Savings in the PJM Market

Daily Energy Savings from AEP Energy Storage

DESS was not put on the Market but made other generators more available

Energy Savings in the PJM Market

Estimated Monthly Savings from AEP Energy Storage

Conclusions

- WAS Installed and Operational in Just 9 Months
- Helped Shave Transformer Peak Loads for 8.5 hours a day
- Kept Transformer temperature down by several degrees C
- Improved the Feeder's Load Factor from 0.75 to 0.80, in average
- Potentially provided a PJM Market Energy Value of \$24,000 in 3 months
- Up and running 85% of days during its first three months
- Helps AEP build more Confidence on this Energy Storage Technology

Going Forward - On this Project

- 1. Have already changed the DESS schedule to a **Double-Discharge** profile for winter load
- 2. Continue to provide **Performance Data** and its analysis to DOE/Sandia until October 2007

Work with DOE/Sandia for using DESS to improve **Electric Service Reliability**

- DESS may be an effective way to address reliability issues associated with the aging utility infrastructure
- In many cases, deployment of DESS would be much quicker than using conventional solutions

