US DOE PEER REVIEW

Washington, D.C.

November 3, 2006

Long Island Bus Sodium Sulfur Battery Storage Project

Yan Kishinevsky
New York Power Authority

LI Bus Issues

LIPA Tariff	Time	Energy (\$/kWh)	Demand kW/month)
I, off peak	Mid-7am	\$ 0.0440	\$ -
	June - Sep Mon – Sat		
II, peak	10am -10pm	\$ 0.0762	\$ 34.350
III, intermediate	All other	\$ 0.0737	\$ 3.420

- Peak demand charge for four months of the year: \$34.35/kW plus fuel surcharge
- Current 3—shift operation
- High electric bills and administrative charges

Project Goals and Objectives

- Achieve cost savings by eliminating third shift while avoiding peak demand charges
- Increase back up power for the entire facility
- Reduce peak demand on the heavily loaded utility grid
- Demonstrate long term, commercial environment, high efficiency energy storage operation

Battery Storage Solution

1.0 MW, 6.5 MW-hr NGK NaS battery

Why NaS?

Advantages over DG and other Batteries:

- Ease of Operation & Maintenance
 - No moving parts, long service life
- Minimal Environmental Impact
 - No emissions, silent
- Versatility
 - Peak-shaving, load-leveling, and PQ mitigation
- Relatively Small Foot print
 - High efficiency, energy and power density

NAS Battony Characteristics

NA

628 Ah

NA

90

NA

515L x 91Φ

 $(20.3L \times 3.6\Phi)$

5.5 (12.1)

ry Modules

each 8s string

360 kWh ac

50 kW ac

85

3.4

2,270W x 1,740D x 720H

 $(89.4W \times 68.5D \times 28.4H)$

3500 (7920)

15 years: 4500 to 90%, 2500 to 100% DOD cycles

NAS battery Characteristics					
Characteristics	Individual NaS Cell	NaS G50 Battery Mod			
Nominal Voltage (dc)	2	64 or 128			
Operating Temperature	29	290 to 360°C			
Cell Arrangement		(8s x 5p) x 8s or			
("s" series; "p" parallel)	Single	(8s x 10p) x 4s			
		Internal fuse within			

Electrical Protection

Rated AC Capacity

Avg DC Efficiency, %

Dimensions, mm (in)

Weight, kg (lb)

Standby Heat Loss, kW

Projected Calendar & Cycle Life

Rated AC Power

1MW NAS Module Configuration

Site Description

- Natural gas refueling station for 220 buses
- 3 x 600 HP compressor load
- Dedicated LIPA feeder

LI Bus Gas Compressor Site

NAS Battery System Overview

Scope of Work

- Battery modules and enclosure
- Power Conditioning System (PCS)
- Integration of PCS with the battery system
- Balance of Plant (BOP) equipment and enclosures
- System interconnection and integration with the grid and load
- Installation, startup, training and commissioning
- Documentation and O&M manuals
- O&M and performance warranty during 18 month demonstration period

Project Team

- NYPA Overall project implementation
- MTA/Long Island Bus Host site, end user
- NGK Insulators, Inc. NaS battery manufacturer
- ABB PCS, Controls, Design and Installation
- DOE/NYSERDA Performance monitoring
- EPRI Technical assistance, technology transfer
- LIPA Grid Integration, technical assistance

Budget & Cofunding

Total Project Cost: \$3,850,000

DOE/NYSERDA \$1,000,000

EPRI* \$585,000

CEATI/NRCAN \$52,000

LIPA \$200,000+

APPA \$75,000

\$1,912,000

^{*} The following utilities are providing cofunding through EPRI: Con Ed, PSE&G, NYISO, FirstEnergy Corp., Hydro One, Hydro-Québec, SDG&E, Southern Company, TVA

Project Installation Snapshots

Battery Module

- Comprised of 320 individual battery cells
- Picture shows cover removed
- Variable series and parallel arrays to yield module DC voltages of 64 or 128 V
- Sand packing used between the cells for structure and heat sink
- Thermal management using electric heaters and vacuum insulation to maintain a minimum operating temperature of 290°C
- Standby loads about 3.4 kW when not in operation

PCS Units

System Performance Monitoring

(Data Management will be provided by DOE)

- System operating state durations
- AC voltage and current
- DC voltage, current, state of charge, and internal temperatures
- Ambient temperatures
- Auxiliary loads
- System response times to changes in operating conditions
- Energy and power into and out of the system for each AC phase in the system

System Performance Monitoring (continued)

- System loads
- System duty cycle count
- System failures and problems
- System conversion efficiencies during full and part-load operation
- Losses during periods of standby
- System response to abnormal events
- Data uploaded daily to central server
- All data time stamped to 1 second, with 15 minute averaging

Expected System Performance (light cycle)

Chart A: NAS Battery Expected Performance at 167 Cycles per Year

Expected System Performance (heavy cycle)

Chart B: NAS Battery Expected Performance at 300 Cycles per Year

Public Information Website

www.storagemonitoring.com

Interconnection Issues

- Keyspan review
- Grounding transformer
- Redundant GE F60 relay
- Direct Transfer Trip

Emergency Power Supply and Backup Power Issues

- PCS units will not operate in parallel
- PCS units not configured to handle compressor motor surge current
- Compressor start and load test analysis underway to determine options
- Backup power for battery thermal management system

Current Project Status

- Batteries, PCS and BOP installed
- Grounding transformer specified, to be installed by December
- Direct Transfer Trip specified, to be installed by November
- Initiate system start up in December
- Initiate monitoring in January
- Monitoring period is 18 months

THANK YOU