# **Evaluation of Lead-Carbon Devices for Utility Applications**

DOE Energy Storage Program Sandia Contract 659172

Paula Walmet Specialty Chemicals Division MeadWestvaco Corporation

**DOE Peer Review** 

**September 29, 2008** 

Washington D.C.



## **Program Overview**

Phase One: Explore possible advantages to carbon in energy storage

- Evaluate lead based energy storage technologies
- Develop carbon for lead based technologies
  - Increase cycle life for some applications
  - Improve charging characteristics

Phase Two: Investigate performance benefit and refine understanding

- Verify performance
- Focus on material properties/mechanisms that result in performance benefit

Phase Three: Determine best technology for application needs

Select best technology for 1 MW, 1 MWh utility demonstration



### **Program Participants**

### MeadWestvaco

Charleston, SC

Carbon Development Lab and Battery Testing



#### Springfield, MO

Frank Fleming
Bob Shirk
Michelle Cantrell
Manufacturing and Battery Testing
Battery Expertise



Genoa, OH

Joe Badger

Battery Testing (Std. Apps.)



### Washington, DC

Imre Gyuk Program Sponsor



### Sandia National Laboratories

#### Albuquerque, NM

Nancy Clark
Tom Hund
Jim Van Den Avyle
Battery Testing and Verification
Analytical Support



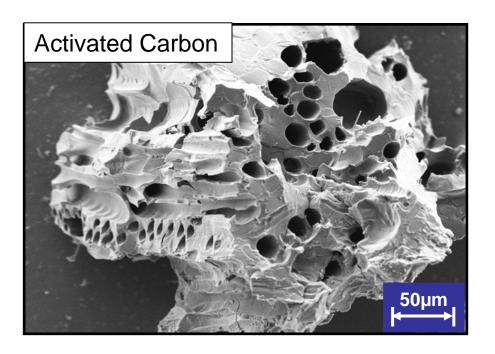
#### Fairfield, Australia

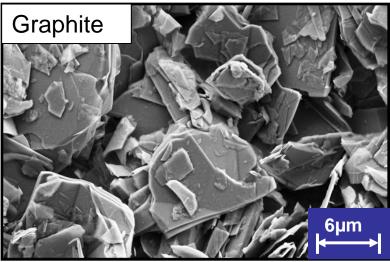
Dave Brown
Gel Battery Manufacturing

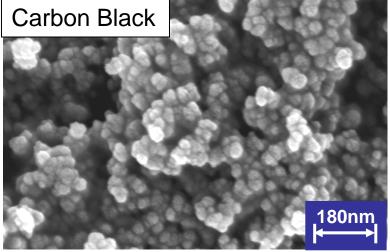


#### Hammond, IN

Matthew Spence
David Boden
Expander Development





#### Phoenix, AZ


Don Karner Russell Newnham Battery Testing (Utility/Cycling)



# Carbon Types



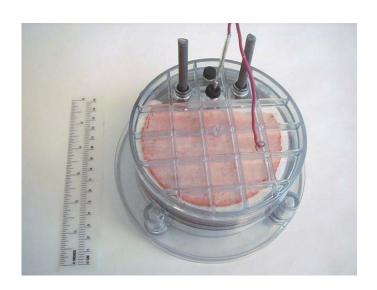




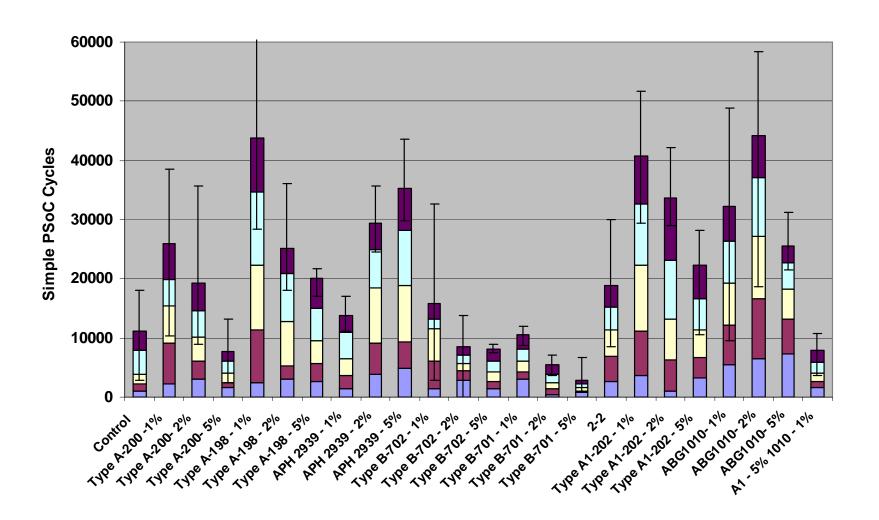


## Phase 2 Previous Findings

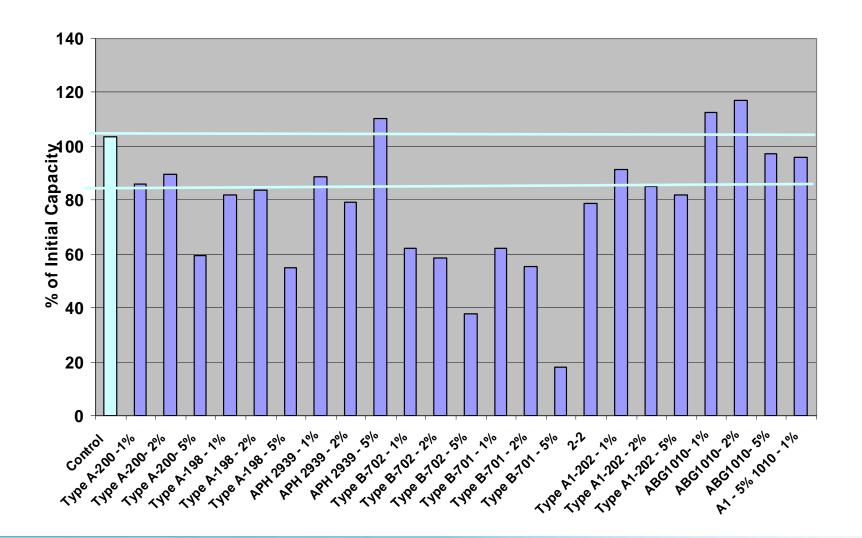
### NorthStar AGM Batteries


- No clear performance improvements from the carbon modifications tested or carbon purification
- The graphite/carbon black mix had the best cycling performance under the Advanced PSoC conditions.




| Group # | Loading | Carbon Type                       |  |  |
|---------|---------|-----------------------------------|--|--|
| 21      | 0%      | STD                               |  |  |
| 1       | 1%      |                                   |  |  |
| 2       | 2%      | Type A X070200                    |  |  |
| 3       | 5%      |                                   |  |  |
| 5       | 1%      |                                   |  |  |
| 6       | 2%      | Type A X070198                    |  |  |
| 7       | 5%      |                                   |  |  |
| 8       | 1%      |                                   |  |  |
| 9       | 2%      | APH 2939                          |  |  |
| 10      | 5%      |                                   |  |  |
| 11      | 1%      |                                   |  |  |
| 12      | 2%      | Type B X070702                    |  |  |
| 13      | 5%      |                                   |  |  |
| 14      | 1%      |                                   |  |  |
| 15      | 2%      | Type B X070701                    |  |  |
| 16      | 5%      |                                   |  |  |
| 17      | 2%      | 2-2                               |  |  |
| 18      | 1%      |                                   |  |  |
| 19      | 2%      | Type A1 X070202                   |  |  |
| 20      | 5%      |                                   |  |  |
| 22      | 1%      |                                   |  |  |
| 23      | 2%      | ABG1010                           |  |  |
| 24      | 5%      |                                   |  |  |
| 25      | 6%      | Type A1 X070202 - 5% ABG1010 - 1% |  |  |

#### **Research Cells**


- 3-Plate (2P:1N)
- Type/Loading
- Simple PSoC cycling













- Activated carbons perform better at low loading (1%)
- Graphitic carbons perform better at mid to high levels (2%, 5%)
- Larger particle size activated carbons perform better
- Unwashed activated carbon shows good performance
- Mesoporous activated carbon performs better than microporous
- Synthetic expanded graphite performs better than natural flake at mid-loading (2%)
- Natural flake graphite performs better than synthetic expanded at high loading (5%)
- Mesoporous activated carbon (low loading) and graphite (high loading) are ideal



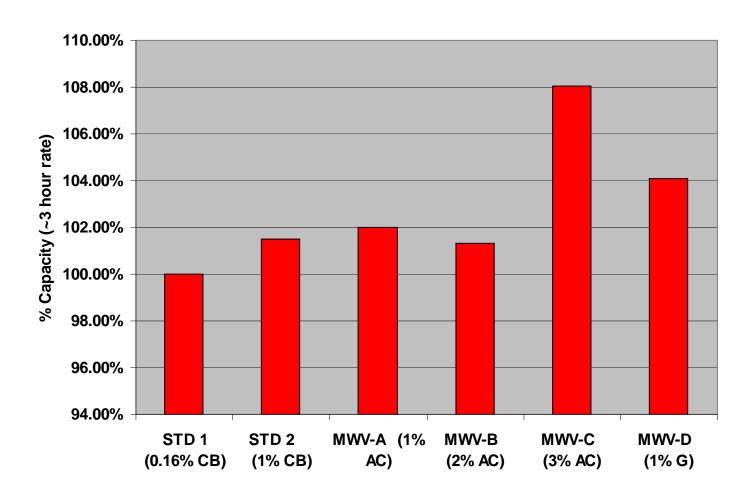
## Phase 2: Battery Energy Gel Batteries

| <b>Battery Description</b> | Carbon | Type     |
|----------------------------|--------|----------|
| STD 1                      | 0.16%  | СВ       |
| STD 2                      | 1%     | СВ       |
| MWV-A                      | 1%     | MWV AC   |
| MWV-B                      | 2%     | MWV AC   |
| MWV-C                      | 3%     | MWV AC   |
| MWV-D                      | 1%     | Graphite |

#### **Cycle Testing**

Advanced PSoC: 50% - 53% SoC
 Aker Wade: 35% - 65% SoC
 Utility: 30% - 80% SoC

#### **Gel VRLA Batteries**


(Silica/Acid Electrolyte)

- ✓ Increased Cycle Life
- √ Improved Charge Efficiency
- ✓ Improved Heat Dissipation
- ✓ No Acid Stratification Ideal for Wide PSoC Cycling





## Phase 2: Battery Energy Gel Batteries





# Phase 2: Battery Energy Gel Batteries Advanced PSoC Cycling Results

| Battery           | Initial Capacity | End Capacity | Post-EQ<br>Capacity | % Retained<br>Post-EQ |
|-------------------|------------------|--------------|---------------------|-----------------------|
| STD 1<br>0.16% CB | 62.0             | 43.5         | 52.8                | 85.2                  |
| STD 2<br>1% CB    | 58.8             | 41.5         | 46.7                | 79.0                  |
| MWV A<br>1% AC    | 64.7             | 36.4         | 50.9                | 78.7                  |
| MWV B<br>2% AC    | 65.7             | 42.2         | 54.0                | 82.2                  |
| MWV C<br>3% AC    | 66.0             | 42.0         | 54.4                | 82.4                  |
| MWV D<br>1% G     | 60.6             | 40.3         | 46.7                | 79.0                  |

Cycling performance: MWV C > MWVB > MWVA > STD 1, 2 > MWV D



# Phase 2: Battery Energy Gel Batteries Aker Wade Cycling Results

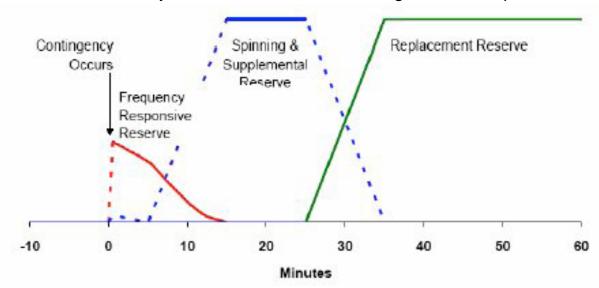
| Battery           | Initial Capacity (Ah)   | End Capacity (Ah) (after 13 weeks of cycling) | % Retained           |
|-------------------|-------------------------|-----------------------------------------------|----------------------|
| STD 1<br>0.16% CB | 99.7<br>100.2<br>101.0  | 103.5<br>104.0<br>104.7                       | 104%<br>104%<br>104% |
| STD 2<br>1% CB    | 104.1<br>102.8<br>102.9 | 100.1<br>101.8<br>102.7                       | 96%<br>99%<br>100%   |
| MWV A<br>1% AC    | 92.4<br>94.9            | 91.8<br>92.9                                  | 99%<br>98%           |
| MWV B<br>2% AC    | 105.4<br>103.9          | 97.6<br>98.3                                  | 93%<br>95%           |
| MWV C<br>3% AC    | 109.3<br>106.9<br>106.8 | 102.3<br>101.8<br>101.7                       | 94%<br>95%<br>95%    |
| MWV D<br>1% G     | 109.5<br>108.3<br>108.3 | 105.3<br>106.5<br>107.1                       | 96%<br>98%<br>99%    |

Cycling results: All batteries did well, STD 1 was the best



# Phase 2: Battery Energy Gel Batteries Utility Cycling Results

| Battery  | Initial Capacity<br>(Ah) | Capacity (Ah)<br>after 13 weeks<br>AW cycling | Capacity (Ah)<br>after 3 months<br>utility cycling | % Retained after utility cycling |
|----------|--------------------------|-----------------------------------------------|----------------------------------------------------|----------------------------------|
| STD 1    | 99.7                     | 103.5                                         | 101.0                                              | 101%                             |
| 0.16% CB | 100.2                    | 104.0                                         | 103.0                                              | 103%                             |
| MWV C    | 109.3                    | 102.3                                         | 94.8                                               | 87%                              |
| 3% AC    | 106.9                    | 101.8                                         | 93.9                                               | 88%                              |


- Previous work showed that a standard AGM battery did not perform well under a utility cycle (<40% of initial capacity after 10 weeks)</li>
- Gel batteries are more suited for this type of utility cycling
- The carbon tested above did not provide cycle life performance benefit compared with STD 1



## Phase 3: Utility Frequency Regulator

- Don Karner (ETA) prepared a conceptual design and cost forecast for a 1 MW, 1MWh utility frequency regulator (UFR) utilizing battery energy storage
- UFR designed to support equalization of power supply/demand on a utility electric grid
- UFR will be dispatched to minimize Area Control Error and operate as Frequency Responsive Reserve to provide short-term electric system frequency regulation

Electric System Area Control Error Regulation Components





## Phase 3: Utility Frequency Regulator

- Based on the utility cycling results, the Battery Energy STD1 gel battery should provide a minimum of 2 to 3 years of continuous service at the assumed regulator power to energy ratio
- Gel batteries are the preferred battery product for the UFR



# Phase 3: Utility Frequency Regulator Capital Cost Estimates

Power Inverter \$172,000

Battery & Management System \$1,759,000

System Integration \$1,797,000

Total Recurring Cost \$3,728,000

Non-Recurring Cost \$439,200



# Phase 3: Utility Frequency Regulator Suggested Next Steps

- To determine if the UFR is cost effective, an estimate of the revenue should be made
- Based on this estimate, the power/energy ratio should be optimized and the design adjusted accordingly
- Further gel battery testing should be completed to better define the optimum battery design/size and estimate operating costs

# THANK YOU

