DoE Peer Review 2008, September 29 - 30, Washington, D.C.

A High-efficiency Compact SiC-based Power Converter System

Timothy Lin

Aegis Technology Inc.

3300 A Westminster Ave., Santa Ana, CA 92703

DOE STTR Phase II (DE-FG02-05ER86234)

Research Institute: The University of Tennessee, Knoxville

Acknowledgement

- This project is sponsored by the Energy Storage Program, U.S. Department of Energy.
- DOE STTR project Phase I and ongoing Phase II (DE-FG02-05ER86234).
- Special thanks to Dr. Imre Gyuk, Manager, Energy Storage Program, U.S. Department of Energy, and Dr. Stanley Atcitty, Technical supervisor, Sandia National Laboratories.

Significance and Challenges

Advantages of SiC power electronics

- SiC technology will enable less conduction loss, higher temperature operation (>175°C) and high frequency operation(100 to 500kHz).
- Smaller volume, lighter weight, higher power density.
- Higher efficiency.

Challenge issues

- Specially designed drive circuit because of its switching ON
 OFF characteristics (normally ON for commercial SiC switch, JFETs).
- High temperature packaging.
- Limited current capability of SiC devices needing the paralleling of multiple devices.

Objective

- Develop a high-efficiency compact power inverter based on SiCbased semiconductor technology
 - High efficiency, small size, and light weight.
 - High power density, high temperature, and high frequency.
 - Scalable current ratings and power levels.
- Address associated technical issues and supporting technologies
 - Design, modeling and simulation.
 - Power modules by paralleling multiple SiC devices.
 - High-temperature package and thermal management.
 - High-frequency gate driver suitable for SiC power devices.
- Integrate the technologies for demonstration/test of a SiC inverter that can operate at high junction/environment temperatures
 - Analyze the benefits of using SiC power devices in a systematic level.
 - Explore potential applications (e.g. electric energy storage).

Approach and Work Scope

Up-to-date Accomplishments in Phase II

- ✓ DC-AC inverter design.
- ✓ Power module design/prototype.
- ✓ Packaging/Thermal management.
- ✓ Gate design/prototype.
- ✓ Modeling/characterization.
- ✓ Preliminary inverter prototype/testing.
- ✓ Preliminary commercialization.

Results - Inverter Design

Three-phase inverter

An inverter is interfaced with:

- 1) A large battery bank for energy storage.
- 2) An AC system.

Power Module Design and Prototype

- SiC power modules using commercial SiC devices
 - SiC diodes and SiC JFETs
- Device/module paralleling
 - Low current rating (e.g. 15-30 A), 2-4 ps. devices parallel into an array (for a single gate drive) to form a unit power module
 - High current rating (e.g. 80-100 A), 4-6
 ps. unit power modules parallel into an array of power modules

Power module integrated with gate drive

Design 1- Six packed, 3 phase

Design 2- Six packed, 3 phase

Packaging and Thermal Management

- Thermal packaging
 - AIN package substrate for high temperature packaging
 - Networking microchannel cooling and graphite foam heatsink
- Metallization for interconnect, die attachment and joining
 - Active metallization on AIN (vs. commercial CB AIN)
- Die attachment of SiC devices
 - Au-Sn (280 C)
- Joining Packaging and heatsink
 - Active brazing and metallization/soldering
- Wire bonding
 - Al or Au wires

Gate Drive

- Challenging issues/approach
 - Normally-on device of JFET for high frequency operation
 - Commercially available Si devices --> a Drive & Protect Circuit Board

A gate drive circuit design

A drive & protect circuit board

Modeling and Simulation

- Model power module/inverter performance (circuit/thermal modeling).
- Analyze system-level impacts of using SiC power devices compared with using Si power devices.

SiC JFET inverter simulation circuit

Inverter Prototype

- A 5 kVA DC-AC inverter prototype
- Integrate power module, package, and gate drive

A prototype of a 5 kVA SiC inverter

Characterization

Inverter power measurement circuit

Switching time measurement circuit

DC power source

Motor drive

Commercialization Efforts

Commercial Companies

- BSST (a subsidiary of Amerigon), brazing/packaging thermoelectrical (TE) modules for waste heat recovery in vehicles.
- Hamilton Sundstrand (a United Technologies Company), joining/high-efficiency heat exchanger for aerospace application.
- Ceradyne (a major ceramic company for armor, energy and engine applications), High-temperature bonding technology for oil-drilling ceramic parts.

Government Contracts

- NASA SBIR Projects on SiC inverters (Phase I and now II).
- Navy SBIR Project on SiC inverter for motor control (Phase I).
- Army SBIR Project on high-efficiency thermal management (Phase I and Phase II pending).
- DoE SBIR Project on an Innovative bonding method for high temperature, high power density SiC devices

Ongoing Work

- Converter fabrication, characterization and demonstration
 - Fabricate, test and characterize inverter
 - A power module array (1200V, 120 A) by paralleling module units of 1200 V, 20 A
 - Gate drive (Honeywell SOI-based high temperature drive)
 - · High- temperature thermal packaging
 - Analyze system-level impacts of the SiC inverter with similar Si inverters
 - Advantages of operations at high temperatures (smaller heatsink), power densities and frequencies (smaller passive component)
 - Technical/economical benefits in terms of performance and cost
- Application and commercialization
 - Electric storage system (battery, capacitors)
 - Transportation (traction drive, hybrid electric vehicles)
 - Distributed power systems (Fuel cells, micro turbine, nuclear energy, and renewable sources)
 - Potential products: SiC power modules and converters

Through this project, a high-efficiency compact affordable SiC inverter can be anticipated.

Appendix - Benefits of Using SiC devices

~ 95%

Energy efficiency

Size/weight

98-99%

SiC inverters with 25-50% size/weight of

Si ones depending on power levels.

Predicted by Modeling