535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

High Power Density Silicon Carbide Power Electronic Converters

DOE Energy Storage & Power Electronics Research Programs
September 29 - 30, 2008

Marcelo Schupbach, Ph.D. Chief Technical Officer

APEI, Inc. 535 Research Center Blvd. Fayetteville, AR 72701

Phone: (479)-443-5759

Email: mschupb@apei.net
Website: www.apei.net

Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through the Small Business Innovation Research (SBIR) program and managed by Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000

Overview

- Broader Impact of SiC-based Power Converter
- Development of 10-kVA SiC Inverter
 - APEI's Goals
 - SiC Power Devices Selection and Characterization
 - Testing of 10-kVA All SiC Inverter Prototype
- Summary

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

Advantages of Silicon Carbide (SiC)

Theoretical Electrical Advantages

- Very high voltage blocking
- Very low switching losses (up to 1/10th of Silicon)
- Low on-resistance
- ➤ Up to 10s of GHz switching range

Theoretical Thermal Advantages

- SiC device theoretical limit exceeds 600 °C
 Very high power densities can be achieved with these junction temperatures
- SiC has a very high thermal conductivity excellent for power devices and thermal transfer, increases power density
- Disadvantage: No device packaging technology exists to take full advantage of thermal capabilities
 - Requires packaging advances in die attach, interconnects, and reliability

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

DOE ESS Phase II SBIR (FY06)

- Phase II started on August 2006
- Goals of Phase II:
 - 1. Develop a higher power SiC-based fully-functional multi-purpose inverter
 - 2. Improved efficiency (>96%)
 - 3. Large weight and volume reduction
 - 4. Similar functionality
- Ratings of Phase II Prototype
 - Power: 10 kVA
 - VDC from 350V to 700 V
 - Efficiency > 96%
 - Ambient Temperature > 75 °C
 - Weight << 100 lbs
 - Volume << 2.5 cubic foot
 - Other Important parameters:
 - Maximum AC current ~ 31 Arms
 - AC output current THD < 5 %
 - Maximum DC current ~32 A

SiC Devices Presently "Available"

SiC Diodes

- > Several commercial products available
- Schottky diodes from Cree, Inc. and Infineon (SiCED)
 - 300V, 600V and 1200V
 - 20+A and recently 50+A single die

SiC Controllable Switches

- Normally-off: VJFETs (Lower Voltage), BJTs, MOSFETs and Thyristors
- Normally-on: VJFETs (also MESFETs and SIT)
- > SiC normally-on VJFETs is one of the most mature
 - 1200V and 1600V 50+A per die (SiCED)
 - 600V and 1200V up to 20A per die (Microsemi)
 - SiC SuperJFET, 1200V/50 die (GeneSiC)
- SiC BJTs 1200V up to 20A per die (TranSiC, also Cree)
- SiC MOSFETs 600V,900V and 1200V up to 30A (Cree, Northrop Grumman, Rohm)

Characterization of SiC Devices

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

10-kVA Three-Phase Inverter Prototypes

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

Comparison of Used Si and SiC Devices

Si IGBT Brick

Device Area

SiC SiC JFE T T

SIC VJFET Brick

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

Characterization of SiC Inverter

Efficiency Measurements on SiC Inverter

- Variable Resistive Load
- Various LC Output Filters were used
- > Several Switching Frequencies: 8 kHz, 10 kHz and 20 k Hz
- PWM Generation: Sine Triangular and Space Vector
- Multiple DC Bus Voltages From 450 VDC to 600 VDC
- Measurements were taken under constant ma.

Efficiency Characterization

Potential For Size Optimization

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

Potential For Size Optimization

535 W. Research Center Blvd, Suite 209 · Fayetteville, AR 72701 · Phone: (479) 443-5759 · Fax: (479) 575-7446

Potential Size Reduction

10-kVA Si IGBT Inverter

Estimated CEC Efficiency = 96%
Junction Temperature = 100 °C
Switching Frequency = 10 kHz
Estimated Power Loss = 230 W
Heatsink Dimension = 18"x7"x3"
Volume = 378 in³

10 kHZ LC Filter

Dimensions: 5.75"x8"x5" Volume: 230 in³

10-kVA SiC VJFET Inverter

Estimated CEC Efficiency = 96%
Junction Temperature = 300 °C
Switching Frequency = 30 kHz
Estimated Power Loss = 230 W
Heatsink Dimension = 7"x5"x1"
Volume = 35 in³ (~ 10x reduction)

30 kHZ LC Filter

Dimensions: 5"x5"x3" Volume: ~ 75 in³ (~ 3x reduction)

Summary

- Goal of Phase II work
 - Develop a 10-kVA all-SiC three-phase inverter
 - System efficiency (>96%)
 - Weight and volume minimization options
- > Contributions of Phase II work up to this point
 - Design, fabrication, testing and characterization of 10-kVA all SiC Inverter
 - Selection and full characterization of used SiC devices (i.e., static and dynamic characterization vs. temperature, statistical dispersion)
 - Paralleling of multiple SiC devices
 - Developed high temperature (300+ °C) SiC device packaging technology (i.e., wire bonds, die attach, substrate and encapsulation)
 - Developed of gate driver circuitry

Summary

- Contributions of Phase II work up to this point (Cont.)
 - Demonstration of high efficiency operation:
 - Multiple output filters and PWM modulation schemes were compared.
 - Performance comparison to "equivalent" Si system
 - Measured SiC system showed an ECE = 98.3% and EE = 98.1%
 - Demonstration that important weight and volume minimization are possible (tradeoff studies)

> Future work

 SiC system characterization while operating at high junction temperature (250+ °C)

Summary

- SiC device technology has the potential of greatly increase the performance of power converters
 - Higher efficiency
 - Smaller size
 - Higher reliability
 - And ultimate lower cost
- Where do we go from here?
 - Higher voltage and higher power applications
 - Power capability of single-chip devices
 - Advances in key components
 - Reliable packaging technologies
 - SiC Cost

Acknowledgments

- Department of Energy (DOE)
 - Energy Storage System Program, directed by Dr. Imre Gyuk
 - Sandia National Laboratories, Dr. Stan Atcitty
- APEI's Partners
 - GeneSiC
 - State of Arkansas
 - Northrop Grumman Advanced Technology Center

