

FACTS Control for Long- and Short-Term Energy Storage

Mehdi Ferdowsi

Missouri University of Science and Technology

Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000.

Issues

- Short- and Long-Term Energy Storage
- Storage Integration

Cyber Security

Part I

UPQC Integrated with an EC & DC-DC Converter

Unified Power Quality Controller

 Provides bi-directional protection for load and system

Left-Shunt (LS) UPQC

Right-Shunt (RS) UPQC

PSCAD Results

Short-Circuit Fault

UPQC + DC-DC Converter Fed by EC/BESSs

- EC/BESS can provide better performance in fault ride through
- Increased operating range for better THD reduction
- Increased operating range for power factor correction

Part II

Hybrid Energy Storage

Systems: BESS + ECs

Hybrid Energy Storage System with Multiple Converters

Double-Input Converters (DIC)

- They integrate different power sources while each one is allowed to have a different power rating
- Decreased Cost; Increased Reliability

Derivation of DICs Using H-Bridge Cell

Double-Input Buck-Buck

Double-Input Buck-Buckboost

Double-Input Buckboost-Buckboost

Double-Input Buck-Buck Converter

Simplified Double-Input Buck-Buck Converter

Voltage Transfer Ratios

Buck-Buck

$$V_O = d_1 * V_1 + d_2 * V_2$$

Buck-Buckboost

$$V_O = \frac{d_1}{1 - d_2} * V_1 + \frac{d_2}{1 - d_2} * V_2$$

Buckboost-Buckboost

$$V_{O} = \frac{d_{1}}{1 - d_{1} - d_{2} + \frac{T_{2}}{T}} *V_{1} + \frac{d_{2}}{1 - d_{1} - d_{2} + \frac{T_{2}}{T}} *V_{2}$$

Part III

Detecting and Preventing Interference in Cooperating Power Electronics

Distributed Control

- Each power electronics subsystem contributes to the overall system operation.
- Previous work showed the sensitivity of the system to the controllers
 - Failed or compromised controllers can cause serious power system failures
- Cyber and physical interactions cause new vulnerabilities:
 - Frequency domain interactions
 - Confidentiality interactions

FACTS Interaction Laboratory

- FACTS Interaction Laboratory
 - Real FACTS Devices and Programmable Load
 - Real-Time Simulated Large Power System

Information Flow

Explicit Communication

Information Flow Security in CPS

- The physical nature of a security boundary tends to expose information outside the cyber world.
- The timing pattern could expose high-level system behaviors since time is global and can be observed by all the security levels.

Summary

- UPQC Provides a bidirectional ac-ac interface between the bulk power system and distributed energy resources
- DIC Provides long and short-term energy storage capabilities to improve performance in both the bulk and distributed systems
- CPS Determines and mitigate vulnerabilities in power electronic based systems in the bulk power grid

Special Thanks

- Imre Gyuk DOE
- Stan Atcitty Sandia National Laboratories
- John Boyes Sandia National Laboratories