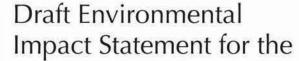
THE U.S. DEPARTMENT OF ENERGY

Draft Environmental Impact Statement for the

Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375-D)

Volume 2: Chapter 9 through Appendix J



U.S. DEPARTMENT OF ENERGY

Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375-D)

Volume 2: Chapter 9 through Appendix J

1				CONTENTS	
2					
3	~~				
4	CO	NTEN	TS		111
5	NO	T 4 TIC	NAT.		
6	NO	IAIIC)N		XX1X
7 8	CO	MWED	SION TA	ABLE	v v v i v i
9	CO	NVEK	SION IA	.DLE	XXXIV
9 10	VO	LIMI	7 1 · CHA	APTERS 1 THROUGH 8	
11	• •	LOWII	i. Ciia	I IERS I IIIROCOII o	
12	1	INTI	RODUCT	TION	1-1
13	2			ACTION AND ALTERNATIVES	
14	3			VE 1: NO ACTION	
15	4			VE 2: DISPOSAL IN A GEOLOGIC REPOSITORY	
16				STE ISOLATION PILOT PLANT	4-1
17	5			ON ELEMENTS COMMON TO ALTERNATIVES 3, 4, AND 5	
18	6			ITE: AFFECTED ENVIRONMENT AND CONSEQUENCES	
19				ATIVES 3, 4, AND 5	6-1
20	7			IONAL LABORATORY: AFFECTED ENVIRONMENT AND	
21		CON	ISEQUE	NCES OF ALTERNATIVES 3, 4, AND 5	7-1
22	8	LOS	ALAMO	OS NATIONAL LABORATORY: AFFECTED	
23		ENV	'IRONM	ENT AND CONSEQUENCES OF	
24		ALT	ERNATI	VES 3, 4, AND 5	8-1
25					
26	VO	LUMI	E 2: CHA	APTER 9 THROUGH APPENDIX J	
27					
28	9			ATIONAL SECURITY SITE: AFFECTED ENVIRONMENT	
29		ANI	CONSE	QUENCES OF ALTERNATIVES 3, 4, AND 5	9-1
30					
31		9.1	Affecte	d Environment	
32			9.1.1	Climate, Air Quality, and Noise	
33				9.1.1.1 Climate	
34				9.1.1.2 Existing Air Emissions	
35				9.1.1.3 Air Quality	
36				9.1.1.4 Existing Noise Environment	
37			9.1.2	Geology and Soils	
38				9.1.2.1 Geology	
39				9.1.2.2 Soils	
40				9.1.2.3 Mineral and Energy Resources	
41			9.1.3	Water Resources	
42				9.1.3.1 Surface Water	
43				9.1.3.2 Groundwater	
44			9.1.4	Human Health	
45			9.1.5	Ecology	
46			9.1.6	Socioeconomics	9-41
17					

1			CONTENTS (Cont.)	
2				
3				
4			9.1.6.1 Employment	
5			9.1.6.2 Unemployment	
6			9.1.6.3 Personal Income	
7			9.1.6.4 Population	
8			9.1.6.5 Housing	
9			9.1.6.6 Fiscal Conditions	
10			9.1.6.7 Public Services	
11		9.1.7	Environmental Justice	
12		9.1.8	Land Use	
13		9.1.9	Transportation	9-50
14		9.1.10	Cultural Resources	9-52
15		9.1.11	Waste Management	9-56
16	9.2	Environ	mental and Human Health Consequences	9-56
17		9.2.1	Climate and Air Quality	9-56
18			9.2.1.1 Construction	9-57
19			9.2.1.2 Operations	9-59
20		9.2.2	Geology and Soils	9-60
21			9.2.2.1 Construction	9-61
22			9.2.2.2 Operations	9-61
23		9.2.3	Water Resources	9-62
24			9.2.3.1 Construction	9-62
25			9.2.3.2 Operations	9-63
26		9.2.4	Human Health	9-63
27			9.2.4.1 Facility Accidents	9-63
28			9.2.4.2 Post-Closure	
29		9.2.5	Ecology	9-66
30		9.2.6	Socioeconomics	
31			9.2.6.1 Construction	9-68
32			9.2.6.2 Operations	
33		9.2.7	Environmental Justice	
34			9.2.7.1 Construction	
35			9.2.7.2 Operations	
36			9.2.7.3 Accidents	
37		9.2.8	Land Use	
38		9.2.9	Transportation	
39		<i>yy</i>	9.2.9.1 Collective Population Risk	
40			9.2.9.2 Highest-Exposed Individuals during	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
41			Routine Conditions	9-77
42			9.2.9.3 Accident Consequence Assessment	
43		9.2.10	Cultural Resources	
44		9.2.11	Waste Management	
45	9.3		ry of Potential Environmental Consequences and Huma	
46	7.3		mpacts	
40 17		i i cai tii i	111puv 10	J-10

1					CONTENTS (Cont.)	
2 3						
<i>3</i>		9.4	Cumula	itive Impact	ts	9-81
5		<i>7</i>	9.4.1	-	bly Foreseeable Future Actions	
6			<i>y</i> ,,,,,	9.4.1.1	Defense Programs-Related Facilities and Activities	
7				9.4.1.2	Non-Defense Research and Development	> 02
8				,	Program-Related Facilities and Activities	9-83
9				9.4.1.3	Work-for-Others Program-Related Facilities	,
10					and Activities.	9-84
11				9.4.1.4	Radioactive Waste Disposal Facilities	
12				9.4.1.5	Environmental Restoration Program-Related Activities	
13				9.4.1.6	Future Projects at NNSS	
14			9.4.2	Cumulati	ve Impacts from the GTCC Proposed Action at NNSS	
15		9.5	Settlem		nents and Consent Orders for NNSS	
16		9.6			apter 9	
17						
18	10	SAV	ANNAH	RIVER SI'	TE: AFFECTED ENVIRONMENT AND	
19		CON	SEQUEN	NCES OF A	ALTERNATIVES 4 AND 5	10-1
20						
21		10.1	Affecte		nent	
22			10.1.1	Climate,	Air Quality, and Noise	10-1
23					Climate	
24					Existing Air Emissions	
25					Air Quality	
26				10.1.1.4	Existing Noise Environment	
27			10.1.2	0.	and Soils	
28				10.1.2.1	<i>C</i> ,	
29					Soils	
30					Mineral and Energy Resources	
31			10.1.3		esources	
32				10.1.3.1		
33					Groundwater	
34			1011		Water Use	
35			10.1.4		Iealth	
36			10.1.5		······································	
37			10.1.6		nomics	
38					Employment	
39					Unemployment	
40 4.1					Personal Income	
41					Population	
42 12					Housing	
13 14					Fiscal Conditions	
14 15			10 1 7		Public Services	
45 46			10.1.7 10.1.8		nental Justice	
+0 17			10.1.8	Land USE	5	10-44

1				CONTENTS (Cont.)	
2					
3 4		10.1.9	Tuonanon	totion	10 46
5		10.1.9	-	tation Resources	
6		10.1.10			
7	10.2			anagement	
8	10.2	10.2.1		Human Health Consequences	
9		10.2.1		and Air Quality	
-					
10 11		10.2.2		Operations	
12		10.2.2		and Soils	
12 13				Construction	
13 14		10.2.2		Operations	
		10.2.3		esources	
15				Construction	
16		10.2.4		Operations	
17		10.2.4		Health	
18				Facility Accidents	
19		10.2.5		Post-Closure	
20		10.2.5		· · · · · · · · · · · · · · · · · · ·	
21		10.2.6		nomics	
22				Construction	
23		1007	10.2.6.2	1	
24		10.2.7		nental Justice	
25			10.2.7.1		
26			10.2.7.2	Operations	
27		10.20		Accidents	
28		10.2.8		2	
29		10.2.9		tation	
30				Collective Population Risk	10-72
31			10.2.9.2	Highest-Exposed Individuals during Routine	10.50
32			1000	Conditions	
33		10.5.10		Accident Consequence Assessment	
34		10.2.10		Resources	
35		10.2.11		anagement	10-78
36	10.3		•	tial Environmental Consequences and	
37	40.4			pacts	
38	10.4			ts	
39		10.4.1		bly Foreseeable Future Actions	
40			10.4.1.1	Mixed Oxide Fuel Fabrication Facility	
41			10.4.1.2	Spent Nuclear Fuel Management	
12			10.4.1.3	Highly Enriched Uranium	
43			10.4.1.4	Tritium Extraction Facility	
14			10.4.1.5	Salt Waste Processing Facilities	
45				Tank Closure	
46			10.4.1.7	Defense Waste Processing Facility	10-83
17					

			CONTENTS (Cont.)	
		10.4.2	Cumulative Impacts from the GTCC Proposed Action at SRS	10-84
	10.5	Settleme		
	10.6			
			1	
11	WAS	TE ISOL	ATION PILOT PLANT VICINITY: AFFECTED	
	ENV	IRONME	ENT AND CONSEQUENCES OF ALTERNATIVES 3, 4, AND 5.	11-1
	11.1	Affected	d Environment	11-1
		11.1.1	Climate, Air Quality, and Noise	
		11.1.2	Geology and Soils	11-1
		11.1.3	Water Resources	11-3
		11.1.4	Human Health	11-3
		11.1.5	Ecology	11-4
		11.1.6	Socioeconomics	11-4
		11.1.7	Environmental Justice	11-4
		11.1.8	Land Use	11-5
		11.1.9	Transportation	11-5
		11.1.10	Cultural Resources	11-5
		11.1.11	Waste Management	11-8
	11.2	Environ		
		11.2.1	•	
		11.2.2	•	
		11.2.3	<u> </u>	
		11.2.0		
		11.2.4	•	
		11.2		
			· · · · · · · · · · · · · · · · · · ·	
		11 2 5		
		11.2.0		
		11 2 7		
		11.2.7		
		11 2 9		
		11.2.9		
			11.2.7.1 Conceive ropulation Kisk	11-23
	11	10.6 11 WAS ENV 11.1	10.5 Settlemen 10.6 Referen 10.6 Referen 11.0.6 Referen 11.1.1 Affected 11.1.1 11.1.2 11.1.3 11.1.4 11.1.5 11.1.6 11.1.7 11.1.8 11.1.9 11.1.10 11.1.11 11.2 Environ 11.2.1	10.4.2 Cumulative Impacts from the GTCC Proposed Action at SRS 10.5 Settlement Agreements and Consent Orders for SRS 10.6 References for Chapter 10 References for Chapter 10 WASTE ISOLATION PILOT PLANT VICINITY: AFFECTED ENVIRONMENT AND CONSEQUENCES OF ALTERNATIVES 3, 4, AND 5.

1			CONTENTS (Cont.)	
2				
3				
4			11.2.9.2 Highest-Exposed Individuals during	1 26
5			Routine Conditions	
6			11.2.9.3 Accident Consequence Assessment	
7			11.2.10 Cultural Resources	
8		11.2	11.2.11 Waste Management	1-31
9		11.3	Summary of Potential Environmental Consequences and	1 22
10		11 /	Human Health Impacts	
11		11.4	Cumulative Impacts	
12		11.5	Statutory and Regulatory Provisions Relevant to the EIS	
13 14		11.6	References for Chapter 11	1-30
15 16	12	GEN	ERIC DISPOSAL FACILITIES ON NONFEDERAL LANDS	12-1
17		12.1	Approach for Analyzing the Generic Commercial Sites	12_1
18		12.1	Human Health Impacts from Construction and Operation	12-1
19		12.2	of the Land Disposal Facilities at the Generic Commercial Sites	12_3
20		12.3	Post-Closure Period Human Health Impacts from the Land Disposal	12-3
21		12.3	Facilities at the Generic Commercial Sites	12-4
22		12.4	References for Chapter 12	
23		12.7	References for Chapter 12	2 1)
24	13	APPI	ICABLE LAWS, REGULATIONS, AND OTHER REQUIREMENTS	13-1
25	10			
26		13.1	Introduction	13-1
27		13.2	Background	
28		13.3	Applicable Federal Laws and Regulations	
29			13.3.1 Laws of General Applicability	
30			13.3.2 Statutes and Regulations Specific to the Disposal Alternatives	
31			13.3.2.1 Geologic Disposal	
32			13.3.2.2 Nongeologic Disposal	
33			13.3.2.3 Laws and Regulations Specific to the No Action	
34			Alternative1	3-10
35		13.4	Applicable Executive Orders	
36		13.5	Applicable U.S. Department of Energy Directives	
37		13.6	State Environmental Laws, Regulations, and Agreements	
38		13.7	Radioactive Material Packaging and Transportation Regulations1	
39		13.8	Consultations1	
40				
41	14	INDE	X	14-1
42				
43	APF	ENDI	X A: Summary of the Public Scoping Process for the GTCC LLRW	
44			and GTCC-Like Waste Environmental Impact Statement	A-1
45			1	
46		A.1	Public Scoping	A-1
47				

1		CONTENTS (Cont.)	
2			
3			
4	APPENDI	IX B: GTCC LLRW and GTCC-Like Waste Inventories	B-1
5			
6	B.1	Summary of Waste Volumes	
7	B.2	Summary of Radionuclide Activities	
8	B.3	Physical Characteristics of the Wastes	
9		B.3.1 Activated Metals	
10		B.3.2 Sealed Sources	
11	D 4	B.3.3 Other Waste	
12 13	B.4 B.5	Assumed Waste Generation Times	
13 14	Б.Э	Packaging Assumptions	
14 15		B.5.1.1 Contact-Handled Waste	
15 16		B.5.1.2 Remote-Handled Waste	
17		B.5.2 Waste Isolation Pilot Plant	
18	B.6	Site Inventories and Shipments	
19	D .0	B.6.1 Land Disposal	
20		B.6.2 Deep Geologic Disposal at WIPP	
21	B.7	References	
22			
23	APPENDI	IX C: Impact Assessment Methodologies	C-1
24			
25	C.1	Air Quality and Noise	C-1
26		C.1.1 Air Quality	C-1
27		C.1.2 Noise	C-2
28	C.2	Geology and Soils	
29	C.3	Water Resources	
30	C.4	Human Health Risk	
31		C.4.1 Operations	
32		C.4.1.1 Receptors and Exposure Pathways	
33		C.4.1.2 Radiation Dose and Health Effects	
34		C.4.1.3 Sources of Data and Application of Software	
35		C.4.2 Facility Accidents	
36		C.4.2.1 Accidents Evaluated	
37	0.5	C.4.2.2 Human Health Impacts	
38	C.5	Ecological Resources	
39 40	C.6	Socioeconomics	
40 41		C.6.1 Impacts on Regional Employment and Income	
41 42			
42 43		C.6.3 Impacts on Housing C.6.4 Impacts on Community Services	
44		C.6.5 Impacts on Traffic	
45	C.7	Environmental Justice	
46	C.7 C.8	Land Use	
1 0	C.0	Laire Coommission	C 2c

1 2				CONTENTS (Cont.)	
3 4	C.9	Transpo	ortation Riv	sk Analysis	C-25
5	0.5	C.9.1		W	
6		0.7.1	C.9.1.1	Routine Transportation Risk	
7			C.9.1.2	•	
8		C.9.2		Risk Assessment Methodology	
9			C.9.2.1	Collective Population Risk	
10			C.9.2.2	Highest-Exposed Individual Risk	
11		C.9.3		t Assessment Methodology	
12			C.9.3.1	Radiological Accident Risk Assessment	
13			C.9.3.2	Vehicle-Related Accident Risk Assessment	
14			C.9.3.3	Accident Consequence Assessment	
15		C.9.4	Input Pa	rameters and Assumptions	
16			C.9.4.1	Route Characteristics	
17			C.9.4.2	Packaging	
18			C.9.4.3	Accident Characteristics	
19			C.9.4.4	Radiological Risk Assessment Input Parameters	
20				and Assumptions	C-40
21		C.9.5	Uncertai	nties and Conservatism in Estimated Impacts	
22			C.9.5.1	Uncertainties in the Waste Inventory and	
23				Characterization	C-44
24			C.9.5.2	Uncertainties in Defining the Shipment Configurations	C-44
25			C.9.5.3	Uncertainties in Determining the Route	C-45
26			C.9.5.4	Uncertainties in Calculating Radiation Doses	C-45
27			C.9.5.5	Uncertainties in Comparing Truck and Rail	
28				Transportation Modes	C-46
29	C.10	Cultura	l Resource	S	C-47
30	C.11	Waste N	Manageme	nt	C-48
31	C.12	Cumula	ative Impac	ets	C-48
32	C.13	Referen	nces		C-49
33					
34	APPENDI	X D: Co	nceptual I	Disposal Facility Designs	D-1
35					
36	D.1	Scope			D-1
37	D.2			d Packaging	
38		D.2.1	Contact-	Handled Waste	D-2
39		D.2.2	Remote-	Handled Waste	D-2
40	D.3	Land D	isposal Me	ethods	D-3
41		D.3.1	Trench I	Disposal	D-3
42			D.3.1.1	Conceptual Trench Design	D-3
43			D.3.1.2	Disposal Package Configurations	D-4
44		D.3.2	Borehole	e Disposal	
45			D.3.2.1	Conceptual Borehole Design	
46			D.3.2.2	Disposal Package Configurations	D-7
<i>4</i> 7					

1		CONTENTS (Cont.)	
2			
3			5 .0
4		D.3.3 Vault Disposal	
5		D.3.3.1 Conceptual Vault Design	
6	5 .4	D.3.3.2 Disposal Package Configurations	
7	D.4	Conceptual Facility Layouts	
8		D.4.1 Trench Disposal	
9		D.4.2 Borehole Disposal	
10	D. 7	D.4.3 Vault Disposal	
11	D.5	Staffing and Cost Estimates	
12		D.5.1 Construction	
13		D.5.2 Operations	
14		D.5.2.1 Staffing-Level Methodology	
15	D.C	D.5.2.2 Operational Data	
16	D.6	Resource Estimates	
17		D.6.1 Construction	
18		D.6.2 Operations	
19 20		D.6.2.1 Materials	
	D.7		
21 22	D./	Facility Emissions and Wastes	
23		D.7.2 Operations	
24	D.8	Transportation	
25	D .0	D.8.1 Construction	
26		D.8.2 Operations	
27	D.9	Waste Isolation Pilot Plant	
28	D .9	D.9.1 Construction	
29		D.9.2 Operations	
30	D.10	References	
31	2.13		2 07
32	APPENDE	X E: Evaluation of Long-Term Human Health Impacts for the No Action	
33		Alternative and the Land Disposal Alternatives	E-1
34			
35	E.1	RESRAD-OFFSITE Computer Code	E-3
36	E.2	Simulation Approach for the Land Disposal Alternatives	E-7
37		E.2.1 Exposure Scenario and Pathways	
38		E.2.2 Assumptions Related to Leaching from the Wastes	E-9
39		E.2.3 Assumptions Related to Radionuclide Release Rates	
40	E.3	Simulation Approach for the No Action Alternative	
41		E.3.1 Exposure Scenario and Pathways	
42		E.3.2 Assumptions Related to Leaching from the Wastes	
43		E.3.3 Assumptions Related to Radionuclide Release Rates	
44	E.4	Input Parameters for RESRAD-OFFSITE Evaluations	
45	E.5	Results	E-18
46			

1		CONTENTS (Cont.)	
2			
3	F (0		F 20
4		sitivity Analysis	
5 6	E.7 Ref	erences	E-83
7	ADDENIDIV E	Consultation Correspondence for the Draft Environmental Impact	
8	ALI ENDIA I.	Statement for the Disposal of Greater-Than-Class C Low-Level	
9		Radioactive Waste and GTCC-Like Waste	F-1
10		Tradioactive waste and GTCC Like waste	1 1
11	APPENDIX G:	Tribal Narratives	G-1
12			
13	Consolida	ted Group of Tribes and Organizations Tribal Narrative for the	
14	Nevada Te	est Site	G-3
15		Tribe Narrative for EIS, Department of Energy, Hanford Site	G-43
16		ews on Environmental Resource Areas, Los Alamos Meeting	
17		EIS Writers	G-79
18		nput from NEPA Analysis for Confederated Tribes of the Umatilla	
19		servation (CTUIR) at Hanford	G-93
20		Overview and Perspectives Developed during Tribal Narrative	
21	Workshop	, Hanford, WA	G-137
22			
23	APPENDIX H:	Public Distribution for the Draft Environmental Impact Statement	
24		for the Disposal of Greater-Than-Class C Low-Level Radioactive	
25		Waste and GTCC-Like Waste	H-1
26			
27	APPENDIX I:	List of Preparers	I-1
28			
29	APPENDIX J:	Contractor Disclosure Statement	J-1
30			
31			
32			

1 2		FIGURES	
3	9.1-1	Map Showing Location of Frenchman Flat and GTCC Reference	
5	<i>7.1 1</i>	Location at NNSS	9-2
7 8	9.1.1-1	Wind Rose at the Area 5 North Station at NNSS, 1994–2004	9-5
9 10 11	9.1.2-1	Location of NNSS within the Great Basin Desert in the Basin and Range Physiographic Province	9-11
12 13	9.1.2-2	Topographic Features of the Frenchman Flat Region	9-12
14 15	9.1.2-3	Stratigraphic Column for NNSS and Vicinity	9-14
16 17	9.1.2-4	Location of Pilot Wells within Area 5 Radioactive Waste Management Site	9-16
18 19	9.1.2-5	Surface Geologic Map and Seismic Fault Lines at Frenchman Flat	
20 21	9.1.2-6	Volcanic Features in the NNSS Region	
22 23	9.1.3-1	Natural Springs and Seeps on NNSS	
24 25	9.1.3-2	Correlation of Stratigraphic and Hydrostratigraphic Units at NNSS	9-24
26 27 28	9.1.3-3	Hydrostratigraphic Cross Section through Central Frenchman Flat Showing the Alluvial Aquifer and Playa Confining Units	9-28
29 30	9.1.3-4	Locations of Underground Nuclear Testing at Frenchman Flat	9-30
31 32 33	9.1.7-1	Minority Population Concentrations in Census Block Groups within an 80-km Radius of the GTCC Reference Location at NNSS	9-48
34 35 36	9.1.7-2	Low-Income Population Concentrations in Census Block Groups within an 80-km Radius of the GTCC Reference Location at NNSS	
37 38	10.1-1	GTCC Reference Location at SRS	10-2
39 40 41	10.1.1-1	Wind Rose at the 61-m Level for the SRS H-Area Meteorological Tower, South Carolina, 1992–1996	10-3
42 43	10.1.2-1	Location of SRS on the Atlantic Coastal Plain near the Fall Line	
44 45	10.1.2-2	Geologic Map of the GTCC Reference Location at SRS	
46 47	10.1.2-3	Stratigraphic Column for SRS and Vicinity	10-14

1		FIGURES (Cont.)	
2 3			
3 4 5	10.1.2-4	Seismic Fault Lines and Locations of On-Site Earthquakes at SRS	10-16
6 7	10.1.3-1	Major Surface Water Stream Systems and the 100-Year Floodplain at SRS	10-19
8 9	10.1.3-2	Hydrogeologic Units at SRS	10-25
10 11	10.1.3-3	Groundwater Flow System at SRS	10-26
12 13 14	10.1.3-4	Water Table Elevation in the Vicinity of the General Separations Area at SRS	10-27
15 16 17	10.1.3-5	Measured Hydraulic Head in the Upper Aquifer Zone of the Three Runs Aquifer	10-30
18 19	10.1.3-6	Measured Hydraulic Head in the Gordon Aquifer	10-31
20 21 22	10.1.3-7	Sources of Artificial Groundwater Recharge within the General Separations Area	10-32
23 24 25	10.1.7-1	Minority Population Concentrations in Census Block Groups within an 80-km Radius of the GTCC Reference Location at SRS	10-47
26 27 28	10.1.7-2	Low-Income Population Concentrations in Census Block Groups within an 80-km Radius of the GTCC Reference Location at SRS	10-48
29 30 31 32	10.2.4-1	Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 10,000 Years of Disposal for the Trench and Vault Disposal Methods at SRS	10-64
33 34 35	10.2.4-2	Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 100,000 Years of Disposal for the Trench and Vault Disposal Methods at SRS	10-64
363738	11.1-1	WIPP Vicinity GTCC Reference Locations	11-2
39 40	11.1.8-1	Potash Leases in the Vicinity of WIPP	11-6
41 42	11.1.8-2	Map of Oil Wells within 1.6 km of WIPP Land Withdrawal Boundary	11-7
43 44 45 46 47	11.2.4-1	Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 100,000 Years of Disposal for the Three Land Disposal Methods at the WIPP Vicinity	11-19

1		FIGURES (Cont.)	
2 3			
5 5 6 7	12.3-1	Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault Disposal Facility in Region I	12-13
8 9 10 11	12.3-2	Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 100,000 Years of Disposal in a Commercial Vault Disposal Facility in Region I	12-13
12 13 14 15	12.3-3	Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault or Trench Disposal Facility in Region II	12-14
16 17 18	12.3-4	Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 100,000 Years of Disposal in a Commercial Vault or Trench Disposal Facility in Region II	12-14
19 20 21 22 23	12.3-5	Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault Disposal Facility in Region III	12-15
24 25 26 27	12.3-6	Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 100,000 Years of Disposal in a Commercial Vault Disposal Facility in Region III	12-15
28 29 30 31	12.3-7	Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 100,000 Years of Disposal in a Commercial Borehole, Trench, or Vault Disposal Facility in Region IV	12-16
32 33	A-1	GTCC EIS NEPA Process	A-1
34 35	B-1	Comparison of GTCC Waste with Other Radioactive Wastes	В-8
36 37	C-1	Technical Approach for the Transportation Risk Assessment	C-26
38 39 40	C-2	Scheme for NUREG-0170 Classification by Accident Severity Category for Truck Accidents	C-38
41 42 43	C-3	Scheme for NUREG-0170 Classification by Accident Severity Category for Rail Accidents	C-39
44 45 46	D-1	Cross Section of a Conceptual Trench Disposal Unit	D-4

1		FIGURES (Cont.)	
2 3			
5 4 5	D-2	Top View of a 10-m Section of a Trench Packed with Contact-Handled Waste	. D-5
6 7 8	D-3	Top View of a 10-m Section of a Trench for Disposal of Remote-Handled Waste	. D-6
9 10	D-4	Cross Section of a Conceptual 40-m Borehole	. D-7
11 12 13 14	D-5	Process Schematic for Drilling a Large-Diameter Borehole by Using a Bucket Auger	. D-8
15 16 17	D-6	Top View of Single-Interval Packing Arrangements in 2.4-m-Diameter Boreholes for Different Container Types	. D-9
17 18 19	D-7	Cross Section of a Conceptual Above-Grade Vault Design	. D-11
20 21	D-8	Conceptual Cover Systems for a Vault Disposal Facility	. D-11
22 23 24	D-9	Top View of a Single-Layer Packing Arrangement of Contact-Handled Waste in 208-L 7-Drum Packs in Vault Cells	. D-13
25 26 27	D-10	Top View of a Single-Layer Packing Arrangement of Contact-Handled Waste in Standard Waste Boxes in Vault Cells	. D-14
28 29	D-11	Top View of a Vault Cell for Disposal of Remote-Handled Waste	. D-15
30 31	D-12	Layout of a Conceptual Trench Disposal Facility	. D-16
32 33	D-13	Layout of a Conceptual Borehole Disposal Facility	. D-17
34 35	D-14	Layout of a Conceptual Vault Disposal Facility	. D-18
36 37 38	E-1	Environmental Release Mechanisms and Exposure Pathways Considered in RESRAD-OFFSITE	. E-4
39 40	E-2	Exposure Pathways Associated with the Use of Contaminated Groundwater	. E-9
41 42 43	E-3	Comparison of Annual Doses for the Base Case and Cases I and II for Trench Disposal of Stored Group 1 GTCC-Like Other Waste - CH at SRS	. E-23
44 45 46 47	E-4	Comparison of Annual Doses for Cases III, IV, and V for Trench Disposal of Stored Group 1 GTCC-Like Other Waste - CH at SRS	. E-23

1		FIGURES (Cont.)
2		
3		
4	E-5	Comparison of Annual Doses for Cases VI, VII, and VIII for Trench
5		Disposal of Stored Group 1 GTCC-Like Other Waste - CH at SRS E-24
6		
7	E-6	Comparison of Annual Doses for the Base Case and Cases III and VI for
8		Trench Disposal of Stored Group 1 GTCC-Like Other Waste - CH at SRS E-25
9		
10	E-7	Comparison of Annual Doses for Cases I, IV, and VII for Trench
11		Disposal of Stored Group 1 GTCC-Like Other Waste - CH at SRS E-25
12		
13	E-8	Comparison of Annual Doses for Cases II, V, and VIII for Trench
14		Disposal of Stored Group 1 GTCC-Like Other Waste - CH at SRS E-26
15		
16	E-9	Comparison of Annual Doses for the Base Case and Cases IX and X for
17		Trench Disposal of Stored Group 1 GTCC-Like Other Waste - CH at SRS E-27
18		

1		TABLES	
2 3			
4 5 6 7	9.1.1-1	Annual Emissions of Criteria Pollutants and Volatile Organic Compounds from Selected Major Facilities and Total Point and Area Source Emissions in Nye County, Including NNSS	9-7
8 9	9.1.1-2	Annual Emissions of Criteria Air Pollutants, Volatile Organic Compounds, and Hazardous Air Pollutants at NNSS, 2002–2006	9-8
10 11 12 13 14	9.1.1-3	National Ambient Air Quality Standards or Nevada State Ambient Air Quality Standards and Highest Background Levels Representative of the GTCC Reference Location at NNSS	9-9
15 16 17	9.1.3-1	Hydrostratigraphic Data from Pilot Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3	9-25
18 19	9.1.3-2	Hydrostratigraphic Data from Drill Hole ER-5-3#2	9-26
20 21	9.1.3-3	Hydrostratigraphic Data from Drill Hole ER-5-4#2	9-26
22 23	9.1.3-4	List of Underground Nuclear Tests Conducted at Frenchman Flat	9-31
24 25 26	9.1.4-1	Estimated Annual Radiation Doses to Workers and the General Public at NNSS	9-33
27 28 29	9.1.5-1	Federally and State-Listed Threatened, Endangered, and Other Special-Status Species on or Adjacent to NNSS	9-39
30 31	9.1.6-1	NNSS County and ROI Employment by Industry in 2005	9-41
32 33 34	9.1.6-2	NNSS Average County, ROI, and State Unemployment Rates in Selected Years	9-42
35 36	9.1.6-3	NNSS County, ROI, and State Personal Income in Selected Years	9-43
37 38	9.1.6-4	NNSS County, ROI, and State Population in Selected Years	9-43
39 40	9.1.6-5	NNSS County, ROI, and State Housing Characteristics in Selected Years	9-45
41 42	9.1.6-6	NNSS County, ROI, and State Public Service Expenditures in 2006	9-45
43 44	9.1.6-7	NNSS County, ROI, and State Public Service Employment in 2006	9-46
45 46 47	9.1.6-8	NNSS County, ROI, and State Education Employment in 2006	9-46

1		TABLES (Cont.)	
2 3			
5 4 5	9.1.6-9	NNSS County, ROI, and State Medical Employment in 2006	9-46
6 7	9.1.7-1	Minority and Low-Income Populations within an 80-km Radius of NNSS	9-50
8 9	9.1.9-1	Traffic Counts in the Vicinity of NNSS	9-51
10 11 12 13	9.2.1-1	Peak-Year Emissions of Criteria Pollutants, Volatile Organic Compounds, and Carbon Dioxide from Construction of the Three Land Disposal Facilities at NNSS	9-57
14 15 16 17	9.2.1-2	Annual Emissions of Criteria Pollutants, Volatile Organic Compounds, and Carbon Dioxide from Operations of the Three Land Disposal Facilities at NNSS	9-60
17 18 19 20	9.2.4-1	Estimated Radiological Human Health Impacts from Hypothetical Facility Accidents at NNSS	9-64
21 22 23	9.2.6-1	Effects of GTCC Facility Construction and Operations on Socioeconomics at the ROI for NNSS	9-69
24 25 26	9.2.9-1	Estimated Collective Population Transportation Risks for Shipment of GTCC LLRW and GTCC-Like Waste by Truck for Disposal at NNSS	9-73
27 28 29	9.2.9-2	Estimated Collective Population Transportation Risks for Shipment of GTCC LLRW and GTCC-Like Waste by Rail for Disposal at NNSS	9-75
30 31 32 33	10.1.1-1	Annual Emissions of Criteria Pollutants and Volatile Organic Compounds from Selected Major Facilities and Total Point and Area Source Emissions in Counties Encompassing SRS	10-6
34 35 36	10.1.1-2	Annual Emissions of Criteria Pollutants and Volatile Organic Compounds Estimated by SRS for the Period 2003–2005	10-7
37 38 39 40	10.1.1-3	National Ambient Air Quality Standards or South Carolina State Ambient Air Quality Standards and Highest Background Levels Representative of the GTCC Reference Location at SRS, 2003–2007	10-8
41 42	10.1.1-4	Maximum Allowable Noise Levels in Aiken County, South Carolina	10-10
43 44 45	10.1.3-1	Water Quality Data for Upper Three Runs Creek and Fourmile Branch in 1998	10-23
46 47	10.1.3-2	Summary of Groundwater Exceedances for Z-Area Prior to 2002	10-33

1		TABLES (Cont.)	
2			
4 5	10.1.4-1	Estimated Annual Radiation Doses to Workers and the General Public at SRS	10-35
6 7 8 9	10.1.5-1	Federally and State-Listed Threatened, Endangered, and Other Special-Status Species in Aiken County, South Carolina	10-39
10 11	10.1.6-1	SRS County and ROI Employment by Industry in 2005	10-40
12 13 14	10.1.6-2	SRS Average County, ROI, and State Unemployment Rates in Selected Years	10-40
15 16	10.1.6-3	SRS County, ROI, and State Personal Income in Selected Years	10-41
17	10.1.6-4	SRS County, ROI, and State Population in Selected Years	10-42
18 19	10.1.6-5	SRS County, ROI, and State Housing Characteristics in Selected Years	10-43
20 21	10.1.6-6	SRS County, ROI, and State Public Service Expenditures in 2006	10-44
22 23	10.1.6-7	SRS County, ROI, and State Public Service Employment in 2006	10-45
24 25	10.1.6-8	SRS County, ROI, and State Education Employment in 2006	10-46
26 27	10.1.6-9	SRS County, ROI, and State Medical Employment in 2006	10-46
28 29	10.1.7-1	Minority and Low-Income Populations within an 80-km Radius of SRS	10-49
30 31 32	10.1.9-1	Traffic Counts in the Vicinity of SRS	10-50
33 34 35	10.2.1-1	Peak-Year Emissions of Criteria Pollutants, Volatile Organic Compounds, and Carbon Dioxide from Construction of the Trench and Vault Disposal Facilities at SRS	10-53
36 37 38 39 40	10.2.1-2	Annual Emissions of Criteria Pollutants, Volatile Organic Compounds, and Carbon Dioxide from Operations of the Trench and Vault Disposal Facilities at SRS	10-55
41 42 43	10.2.4-1	Estimated Radiological Human Health Impacts from Hypothetical Facility Accidents at SRS	10-59
+3 14 15 16 17	10.2.4-2	Estimated Peak Annual Doses from the Use of Contaminated Groundwater within 10,000 Years of Disposal at the GTCC Reference Location at SRS	10-62

1		TABLES (Cont.)	
2			
3	10242	Estimated Peak Annual LCF Risks from the Use of Contaminated	
4 5	10.2.4-3	Groundwater within 10,000 Years of Disposal at the GTCC	
6		Reference Location at SRS	10-63
7		Reference Location at SRS	10-03
8	10.2.6-1	Effects of GTCC Waste Disposal Facility Construction and	
9	10.2.0 1	Operations on Socioeconomics at the ROI for SRS	10-68
10		operations on boerocconomics at the Rot for bits	10 00
11	10.2.9-1	Estimated Collective Population Transportation Risks for	
12		Shipment of GTCC LLRW and GTCC-Like Waste by Truck	
13		for Disposal at SRS	10-73
14			
15	10.2.9-2	Estimated Collective Population Transportation Risks for Shipment	
16		of GTCC LLRW and GTCC-Like Waste by Rail for Disposal at SRS	10-75
17		·	
18	11.2.1-1	Peak-Year Emissions of Criteria Pollutants, Volatile Organic	
19		Compounds, and Carbon Dioxide from Construction of the	
20		Three Land Disposal Facilities at the WIPP Vicinity	11-10
21			
22	11.2.1-2	Annual Emissions of Criteria Pollutants, Volatile Organic	
23		Compounds, and Carbon Dioxide from Operations of the	
24		Three Land Disposal Facilities at the WIPP Vicinity	11-12
25			
26	11.2.4-1	Estimated Radiological Human Health Impacts from Hypothetical	11 17
27		Facility Accidents at the WIPP Vicinity Reference Locations	11-17
28	11061	Effects of CTCC Wests Disposed Facility Construction and Organisms	
29	11.2.6-1	Effects of GTCC Waste Disposal Facility Construction and Operations	11 22
30 31		on Socioeconomics at the ROI for the WIPP Vicinity	11-22
32	11.2.9-1	Estimated Collective Population Transportation Risks for Shipment	
33	11.2.7-1	of GTCC LLRW and GTCC-Like Waste by Truck for Disposal at	
34		the WIPP Vicinity Reference Locations	11-27
35		the Will Wienity Reference Doddfolds	
36	11.2.9-2	Estimated Collective Population Transportation Risks for Shipment	
37		of GTCC LLRW and GTCC-Like Waste by Rail for Disposal at	
38		the WIPP Vicinity Reference Locations	11-29
39		•	
40	12.3-1	Estimated Peak Annual Dose from the Use of Contaminated	
41		Groundwater within 10,000 Years of Disposal in a Commercial	
42		Vault Disposal Facility in Region I	12-7
43			
44	12.3-2	Estimated Peak Annual LCF Risk from the Use of Contaminated	
45		Groundwater within 10,000 Years of Disposal in a Commercial	
46		Vault Disposal Facility in Region I	12-8
47			

1		TABLES (Cont.)	
2 3			
4 5 6 7	12.3-3	Estimated Peak Annual Dose from the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault or Trench Disposal Facility in Region II	12-9
8 9 10 11	12.3-4	Estimated Peak Annual LCF Risk from the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault or Trench Disposal Facility in Region II	12-10
12 13 14 15	12.3-5	Estimated Peak Annual Dose from the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault Disposal Facility in Region III	12-11
16 17 18 19	12.3-6	Estimated Peak Annual LCF Risk from the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault Disposal Facility in Region III	12-12
20 21 22	13.6-1	State Requirements That Might Apply to GTCC LLRW and GTCC-Like Waste Disposal	13-19
23 24	A-1	Public Scoping Meeting Locations, Dates, and Attendance	A-2
25 26	A-2	Public Scoping Issues within the Scope of the EIS	A-3
27 28	A-3	Public Scoping Issues outside the Scope of the EIS	A-9
29 30 31	B-1	Summary of Group 1 and Group 2 GTCC LLRW and GTCC-Like Waste Packaged Volumes and Radionuclide Activities	В-2
32 33 34	B-2	Storage and Generator Locations of the GTCC LLRW and GTCC-Like Wastes Addressed in This EIS	В-6
35 36	B-3	Sources of the GTCC-Like Wastes Addressed in This EIS	В-7
37 38	B-4	Radionuclide Activity of Group 1 GTCC LLRW and GTCC-Like Waste	B-10
39 40 41	B-5	Radionuclide Activity of Stored Group 1 GTCC LLRW and GTCC-Like Waste	B-12
42 43 44	B-6	Radionuclide Activity of Projected Group 1 GTCC LLRW and GTCC-Like Waste	B-14
45 46 47	B-7	Radionuclide Activity of Group 2 GTCC LLRW and GTCC-Like Waste	B-16

1		TABLES (Cont.)	
2 3			
4 5	B-8	Key Properties of the Major Radionuclides Addressed in This EIS	B-18
6 7 8	B-9	Representative Sample of Type B Shipping Packages with the Potential for Transporting GTCC LLRW and GTCC-Like Waste	B-25
9 10	B-10	Number of Waste Containers per Shipment	B-28
10 11 12 13	B-11	Estimated Number of Radioactive Material Shipments for Disposal of GTCC LLRW and GTCC-Like Waste at Potential Land Disposal Sites	B-29
14 15 16	B-12	Estimated Number of Radioactive Material Shipments for Disposal of GTCC LLRW and GTCC-Like Waste at WIPP	B-31
17 18	C-1	Accidents Evaluated for the Land Disposal Facilities	C-8
19	C-2	Hypothetical Facility Accident Descriptions	C-10
20 21 22 23	C-3	Determination of Frequencies of Occurrence of Hypothetical Facility Accidents	C-13
24	C-4	Estimated Release Fractions for Hypothetical Facility Accidents	C-15
25 26 27	C-5	Waste Container Inventories for Use in the Facility Accident Analysis	C-16
21 28 29	C-6	Individual Exposure Scenarios	C-29
30 31 32	C-7	Fractional Occurrences for Truck and Rail Accidents by Severity Category and Population Density Zone	C-40
33 34 35	C-8	Estimated Release Fractions for Type B Packages under Various Accident Severity Categories	C-41
36 37	C-9	External Dose Rates, Package Sizes, and Distances Used in RADTRAN	C-42
38 39	C-10	General RADTRAN Input Parameters	C-43
40 41 42	D-1	Estimated Person-Hours and Direct Costs Associated with the Construction of the Conceptual Disposal Facilities	D-19
43 44	D-2	Estimated Total Construction Full-Time Equivalents	D-19
45 46 47	D-3	Project Management Labor Staffing	D-20

1		TABLES (Cont.)	
2 3			
4 5	D-4	Total Estimated Construction Costs	D-20
6 7	D-5	Detailed Worker Breakdown for Disposal Facility Operations	D-21
8 9 10	D-6	Annual Operating and Maintenance Costs for a Conceptual Trench Disposal Facility	D-22
11 12 13	D-7	Annual Operating and Maintenance Costs for a Conceptual Borehole Disposal Facility	D-23
14 14 15	D-8	Annual Operating and Maintenance Costs for a Conceptual Above-Grade Vault Facility	D-24
17 18 19	D-9	Estimates of the Materials and Resources Consumed during Construction of the Conceptual Disposal Facilities	D-26
20 21	D-10	Materials Consumed Annually during Operations	D-27
22 23	D-11	Average-Day Utility Consumption during Disposal Operations	D-27
24 25	D-12	Annual Utility Consumption during Disposal Operations	D-28
26 27	D-13	Total Wastes Generated during Construction	D-29
28 29	D-14	National Ambient Air Quality Standards for Criteria Air Pollutants	D-29
30 31	D-15	Estimated Air Emissions during Construction	D-30
32 33	D-16	Annual Wastes during Operations	D-31
34 35 36	D-17	Estimated Annual Emissions of Criteria Pollutants from Fixed Facility Emission Sources	D-31
37 38	D-18	Estimated Annual Emissions of Criteria Pollutants from Mobile Sources	D-32
39 40 41	D-19	Rough Order-of-Magnitude Estimate of the Number of Truck Shipments of Construction Materials	D-33
42 43	D-20	Estimated Annual Emissions from Construction Vehicles	D-34
44 45	D-21	Criteria Pollutant Vehicle Emission Factors	D-35
46 47	D-22	Estimated Annual Emissions from Commuter Vehicles	D-35

1		TABLES (Cont.)	
2 3			
4 5	D-23	Air Emissions during Construction at WIPP	D-36
5 6 7 8	D-24	Annual Diesel Fuel Use for Construction of the Additional Disposal Rooms at WIPP	D-36
9	D-25	Construction Equipment Fuel Consumption and Emission Factors	D-37
10 11	D-26	Annual Equipment Usage for Disposal of Waste at WIPP	D-37
12 13 14	D-27	Equipment Emission Factors	D-38
15 16 17	D-28	Estimated Average Annual Emissions of Criteria Pollutants from GTCC LLRW and GTCC-Like Waste Emplacement at WIPP	D-38
18 19	E-1	Distribution Coefficients for Cementitious Systems	E-28
20 21 22	E-2	Inventories of the GTCC LLRW and GTCC-Like Waste in the Four NRC Regions for the No Action Alternative	E-29
23 24 25	E-3	RESRAD-OFFSITE Input Parameter Values for Groundwater Analysis for INL	E-30
25 26 27	E-4	Soil/Water Distribution Coefficients for Different Radionuclides for INL	E-34
28 29 30	E-5	RESRAD-OFFSITE Input Parameter Values for Groundwater Analysis for Hanford	E-36
31 32 33	E-6	Soil/Water Distribution Coefficients for Different Radionuclides for Hanford	E-40
34 35 36	E-7	RESRAD-OFFSITE Input Parameter Values for Groundwater Analysis for LANL	E-43
37 38	E-8	Soil/Water Distribution Coefficients for Different Radionuclides for LANL	E-47
39 40 41	E-9	RESRAD-OFFSITE Input Parameter Values for Groundwater Analysis for NNSS	E-48
42 43	E-10	Soil/Water Distribution Coefficients for Different Radionuclides for NNSS	E-50
44 45 46	E-11	RESRAD-OFFSITE Input Parameter Values for Groundwater Analysis for SRS	E-51

1 2		TABLES (Cont.)	
3	E 10	Cailanda Diatailatia a Caaffiai ata fan Diffanant Dadi anaalida fan CDC	<i>-</i> 1
4 5	E-12	Soil/Water Distribution Coefficients for Different Radionuclides for SRS E-3	54
6 7	E-13	RESRAD-OFFSITE Input Parameter Values for Groundwater Analysis for WIPP Vicinity E-5	5 <i>5</i>
8 9 10 11	E-14	Soil/Water Distribution Coefficients for Different Radionuclides for WIPP Vicinity E-5	58
12 13 14	E-15	Water Infiltration Rates Used in the RESRAD-OFFSITE Analyses for the Six DOE Sites E-5	59
15 16 17	E-16	Unsaturated Zone Characteristics Used as Input Parameters in the RESRAD-OFFSITE Analyses for the Six DOE Sites E-6	60
18 19 20	E-17	Saturated Zone Characteristics Used as Input Parameters in the RESRAD-OFFSITE Analyses for the Six DOE Sites E-6	61
21 22 23	E-18	Soil/Water Distribution Coefficient Values Used in RESRAD-OFFSITE Analyses for the Six DOE Sites E-6	62
24 25 26	E-19	RESRAD-OFFSITE Input Parameter Values for Groundwater Analysis for Generic Commercial Sites in the Four Regions E-6	65
27 28 29	E-20	Soil/Water Distribution Coefficients for Different Radionuclides for Commercial Facilities in the Four Regions E-6	67
30 31 32	E-21	Estimated Peak Annual Doses from the Use of Contaminated Groundwater for the No Action Alternative E-6	68
33 34 35	E-22	Estimated Peak Annual Doses from the Use of Contaminated Groundwater at the Various Sites for the Stored Group 1 Inventory E-6	69
36 37 38	E-23	Estimated Peak Annual Doses from the Use of Contaminated Groundwater at the Various Sites for the Projected Group 1 Inventory E-7	72
39 40 41	E-24	Estimated Peak Annual Doses from the Use of Contaminated Groundwater at the Various Sites for the Total Group 1 Inventory E-7	75
42 43 44	E-25	Estimated Peak Annual Doses from the Use of Contaminated Groundwater at the Various Sites for the Total Group 2 Inventory E-7	78
45 46 47	E-26	Sensitivity Analysis Cases Addressed in the EIS E-8	81

1		TABLES (Cont.)	
2			
3			
4	E-27	Peak Annual Doses within 10,000 Years and the Occurrence Times	
5		at the WIPP Vicinity for the Different Sensitivity Analysis Cases	E-81
6			
7	E-28	Peak Annual Doses within 10,000 Years and the Occurrence Times	
8		at SRS for the Different Sensitivity Analysis Cases	E-82
9			
10	F-1	Consultation Correspondence	F-1
11			

1 2 3 4 5 6 7 8 9 10 11 12 13 This page is intentionally left blank.

14 15

1		NOTATION
1 2		NOTATION
3		
4	ACRONYM	S AND ABBREVIATIONS
5		
6	ACHP	Advisory Council on Historic Preservation
7	AEA	Atomic Energy Act of 1954
8	AEC	U.S. Atomic Energy Commission
9	ags	above ground surface
10	AIP	Agreement in Principle
11	AIRFA	American Indian Religious Freedom Act of 1978
12	ALARA	as low as reasonably achievable
13	AMC	activated metal canister
14	ATR	Advanced Test Reactor (INL)
15	ATSDR	Agency for Toxic Substances and Disease Registry
16		
17	BEIR	Biological Effects of Ionizing Radiation
18	bgs	below ground surface
19	BLM	Bureau of Land Management
20	BLS	Bureau of Labor Statistics
21	BWR	boiling water reactor
22	$C \Lambda \Lambda$	Class Air Ast
23 24	CAA CAAA	Clean Air Act Clean Air Act Amendments
24 25	CAAA CAP88-PC	
25 26	CCDF	Clean Air Act Assessment Package 1988-Personal Computer (code) complementary cumulative distribution function
27	CEDE	committed effective dose equivalent
28	CEDE	Council on Environmental Quality
29	CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
30	CFA	Central Facilities Area (INL)
31	CFR	Code of Federal Regulations
32	CGTO	Consolidated Group of Tribes and Organizations
33	СН	contact-handled
34	CTUIR	Confederated Tribes of the Umatilla Indian Reservation
35	CWA	Clean Water Act
36		
37	DCF	dose conversion factor
38	DCG	derived concentration guide
39	DOD	U.S. Department of Defense
40	DOE	U.S. Department of Energy
41	DOE-EM	DOE-Office of Environmental Management
42	DOE-ID	DOE-Idaho Operations Office
43	DOE-NV	DOE-Nevada Operations Office
44	DOI	U.S. Department of the Interior
45	DOT	U.S. Department of Transportation
46	DTRA	Defense Threat Reduction Agency
47		

1	EDE	effective dose equivalent
2	EIS	environmental impact statement
3	EPA	U.S. Environmental Protection Agency
4	ESA	Endangered Species Act of 1973
5	ESRP	Eastern Snake River Plain (INL)
6		
7	FFTF	Fast Flux Test Facility (Hanford)
8	FONSI	Finding of No Significant Impact
9	FR	Federal Register
10	FTE	full-time equivalent
11	FY	fiscal year
12		
13	GAO	U.S. Government Accountability (formerly General Accounting) Office
14	GIS	geographic information system
15	GTCC	greater-than-Class C
16	GSA	General Separations Area (SRS)
17	GTRI/OSRP	
18		
19	HEPA	high-efficiency particulate air
20	HEU	highly enriched uranium
21	HF	hydrofluoride
22	HMS	Hanford Meteorology Station
23	h-SAMC	half-shielded activated metal canister
24		
25	ICRP	International Commission on Radiological Protection
26	IDA	intentional destructive act
27	IDAPA	Idaho Administrative Procedures Act
28	IDEQ	Idaho Department of Environmental Quality
29	INEEL	Idaho National Engineering and Environmental Laboratory
30	INL	Idaho National Laboratory
31	INTEC	Idaho Nuclear Technology and Engineering Center (INL)
32	IPCC	Intergovernmental Panel on Climate Change
33	ISFSI	independent spent fuel storage installation
34		
35	LANL	Los Alamos National Laboratory
36	LCF	latent cancer fatality
37	L_{dn}	day-night sound level
38	L _{eq}	equivalent-continuous sound level
39	LLNL	Lawrence Livermore National Laboratory
40	LLRW	low-level radioactive waste
41	LLRWPAA	Low-Level Radioactive Waste Policy Amendments Act of 1985
42	LMP	Land Management Plan (WIPP)
43	LWA	Land Withdrawal Act (WIPP)
44	LWB	Land Withdrawal Boundary (WIPP)
45		
4.0		

XXX

46

1	MCL	maximum contaminant level
2	MDA	material disposal area (LANL)
3	MMI	Modified Mercalli Intensity
4	MOA	Memorandum of Agreement
5	MOU	Memorandum of Understanding
	MSL	mean sea level
6 7	WISL	ilieali sea ievei
8	NAAQS	National Ambient Air Quality Standard(s)
9	NAGPRA	
10	NASA	Native American Graves Protection and Repatriation Act of 1990
		National Aeronautics and Space Administration National Climatic Data Center
11	NCDC	
12	NCRP	National Council on Radiation Protection and Measurements
13	NDA	NRC-licensed disposal area (West Valley Site)
14	NEPA	National Environmental Policy Act of 1969
15	NERP	National Environmental Research Park
16	NESHAP	National Emission Standard for Hazardous Air Pollutants
17	NHPA	National Historic Preservation Act
18	NMAC	New Mexico Administrative Code
19	NMED	New Mexico Environment Department
20	NNSA	National Nuclear Security Administration (DOE)
21	NNSA/NSO	NNSA/Nevada Site Office
22	NNSS	Nevada National Security Site (formerly Nevada Test Site or NTS)
23	NOAA	National Oceanic and Atmospheric Administration
24	NOI	Notice of Intent
25	NPDES	National Pollutant Discharge Elimination System
26	NPS	National Park Service
27	NRC	U.S. Nuclear Regulatory Commission
28	NRHP	National Register of Historic Places
29	NTS SA	Nevada Test Site Supplemental Analysis
30		
31	PCB	polychlorinated biphenyl
32	PCS	primary constituent standard
33	P.L.	Public Law
34	PM	particulate matter
35	$PM_{2.5}$	particulate matter with an aerodynamic diameter of 2.5 μm or less
36	PM_{10}	particulate matter with an aerodynamic diameter of 10 µm or less
37	PSD	Prevention of Significant Deterioration
38	PWR	pressurized water reactor
39		
40	R&D	research and development
41	RCRA	Resource Conservation and Recovery Act
42	RDD	radiological dispersal device
43	RH	remote-handled
44	ROD	Record of Decision
45	ROI	region of influence
46	ROW	right-of-way

1	RWMC	Radioactive Waste Management Complex (INL)
2	RWMS	Radioactive Waste Management Site (NNSS)
3		
4	SAAQS	State Ambient Air Quality Standards
5	SDA	state-licensed disposal area (West Valley Site)
6	SDWA	Safe Drinking Water Act
7	SHPO	State Historic Preservation Office(r)
8	SNF	spent nuclear fuel
9	SRS	Savannah River Site
10	SWB	standard waste box
11	SWEIS	Site-Wide Environmental Impact Statement
12		
13	TA	Technical Area (LANL)
14	TC&WM EIS	Tank Closure and Waste Management EIS (Hanford)
15	TDEC	Tennessee Department of Environment and Conservation
16	TEDE	total effective dose equivalent
17	TLD	thermoluminescent dosimeter
18	TRAGIS	Transportation Routing Analysis Information System
19	TRU	transuranic
20	TRUPACT-II	Transuranic Package Transporter-II
21	TSCA	Toxic Substances Control Act
22	TSP	total suspended particulates
23	TVA	Tennessee Valley Authority
24		·
25	USACE	U.S. Army Corps of Engineers
26	USC	United States Code
27	USFS	U.S. Forest Service
28	USFWS	U.S. Fish and Wildlife Service
29	USGS	U.S. Geological Survey
30		
31	VOC	volatile organic compound
32		
33	WAC	waste acceptance criteria or Washington Administrative Code
34	WHB	Waste Handling Building (WIPP)
35	WIPP	Waste Isolation Pilot Plant
36	WSRC	Westinghouse Savannah River Company
37	WTP	Waste Treatment Plant (Hanford)
38		` '

UNITS OF MEASURE

1	
2	

ac	acre(s)	m^3	cubic meter(s)
ac-ft	acre-foot (feet)	MCi	megacurie(s)
	` ,	mg	milligram(s)
°C	degree(s) Celsius	mi	mile(s)
cfs	cubic foot (feet) per second	mi^2	square mile(s)
Ci	curie(s)	min	minute(s)
cm	centimeter(s)	mL	milliliter(s)
cms	cubic meter(s) per second	mm	millimeter(s)
	\	mph	mile(s) per hour
d	day(s)	mR	milliroentgen(s)
dB	decibel(s)	mrem	millirem
dBA	A-weighted decibel(s)	mSv	millisievert(s)
		MW	megawatt(s)
$^{\circ}\mathrm{F}$	degree(s) Fahrenheit	MWh	megawatt-hour(s)
ft	foot (feet)		
ft^2	square foot (feet)	nCi	nanocurie(s)
ft ³	cubic foot (feet)		. ,
		OZ	ounce(s)
g	gram(s) or acceleration		
	of gravity (9.8 m/s/s)	pCi	picocurie(s)
gal	gallon(s)	ppb	part(s) per billion
gpd	gallon(s) per day	ppm	part(s) per million
gpm	gallon(s) per minute	11	
O1		R	roentgen(s)
h	hour(s)	rad	radiation absorbed dose
ha	hectare(s)	rem	roentgen equivalent man
hp	horsepower		-
_	-	S	second(s)
in.	inch(es)		
		t	metric ton(s)
kg	kilogram(s)		
km	kilometer(s)	VdB	vibration velocity decibel(s)
km^2	square kilometer(s)		
kph	kilometer(s) per hour	yd	yard(s)
kV	kilovolt(s)	yd^2	square yard(s)
		yd^3	cubic yard(s)
L	liter(s)	yr	year(s)
lb	pound(s)		
		μg	microgram(s)
m	meter(s)	μm	micrometer(s)
m^2	square meter(s)		

CONVERSION TABLE^a

Multiply	Ву	To Obtain
English/Metric Equivalents		
acres (ac)	0.4047	hectares (ha)
cubic feet (ft ³)	0.02832	cubic meters (m ³)
cubic yards (yd ³)	0.7646	cubic meters (m ³)
degrees Fahrenheit (°F) –32	0.5555	degrees Celsius (°C)
feet (ft)	0.3048	meters (m)
gallons (gal)	3.785	liters (L)
gallons (gal)	0.003785	cubic meters (m ³)
inches (in.)	2.540	centimeters (cm)
miles (mi)	1.609	kilometers (km)
pounds (lb)	0.4536	kilograms (kg)
short tons (tons)	907.2	kilograms (kg)
short tons (tons)	0.9072	metric tons (t)
square feet (ft ²)	0.09290	square meters (m ²)
square yards (yd ²)	0.8361	square meters (m ²)
square miles (mi ²)	2.590	square kilometers (km ²)
yards (yd)	0.9144	meters (m)
Metric/English Equivalents		
centimeters (cm)	0.3937	inches (in.)
cubic meters (m ³)	35.31	cubic feet (ft ³)
cubic meters (m ³)	1.308	cubic yards (yd ³)
cubic meters (m ³)	264.2	gallons (gal)
degrees Celsius (°C) +17.78	1.8	degrees Fahrenheit (°F)
hectares (ha)	2.471	acres (ac)
kilograms (kg)	2.205	pounds (lb)
kilograms (kg)	0.001102	short tons (tons)
kilometers (km)	0.6214	miles (mi)
kilometers per hour (kph)	0.6214	miles per hour (mph)
liters (L)	0.2642	gallons (gal)
meters (m)	3.281	feet (ft)
meters (m)	1.094	yards (yd)
metric tons (t)	1.102	short tons (tons)
square kilometers (km ²)	0.3861	square miles (mi ²)
square meters (m ²)	10.76	square feet (ft ²)
square meters (m ²)	1.196	square yards (yd ²)

^a Values presented in this Draft GTCC EIS have been converted (as necessary) by using the above conversion table and rounded to two significant figures.

9 NEVADA NATIONAL SECURITY SITE: AFFECTED ENVIRONMENT AND CONSEQUENCES OF ALTERNATIVES 3, 4, AND 5

This chapter provides an evaluation of the affected environment, environmental and human health consequences, and cumulative impacts from the disposal of GTCC LLRW and GTCC-like waste under Alternative 3 (in a new borehole disposal facility), Alternative 4 (in a new trench disposal facility), and Alternative 5 (in a new vault disposal facility) at NNSS. (NNSS was formerly the Nevada Test Site or NTS; this site is referred to as NNSS throughout this EIS except when citing site reports that were published as NTS reports.) Alternatives 3, 4, and 5 are described in Section 5.1. Environmental consequences that are common to the sites for which Alternatives 3, 4, and 5 are evaluated (including NNSS) are discussed in Chapter 5 and not repeated in this chapter. Impact assessment methodologies used for this EIS are described in Appendix C. Federal and state statutes and regulations and DOE Orders relevant to NNSS are discussed in Chapter 13 of this EIS.

This chapter also includes tribal narrative text that reflects the views and perspectives of the Consolidated Group of Tribes and Organizations representing 16 Paiute and Shoshone tribes affiliated with NNSS. The tribal text is included in text boxes in Section 9.1. Full narrative texts provided by the tribes are in Appendix G. The perspectives and views presented are solely those of the tribes. When tribal neutral language is used (e.g., Indian People, Native People, Tribes) within the tribal text, it reflects the input from these tribes unless otherwise noted. DOE recognizes that American Indians have concerns about protecting traditions and spiritual integrity of the land in the NNSS region, and that these concerns extend to the propriety of the Proposed Action. Presenting tribal views and perspectives in this EIS does not represent DOE's agreement with or endorsement of such views. Rather, DOE respects the unique and special relationship between American Indian tribal governments and the Government of the United States, as established by treaty, statute, legal precedent, and the U.S. Constitution. For this reason, DOE has presented tribal views and perspectives in this Draft EIS to ensure full and fair consideration of tribal rights and concerns before making decisions or implementing programs that could affect tribes.

9.1 AFFECTED ENVIRONMENT

 This section discusses the affected environment for the various environmental resource areas evaluated for the GTCC reference location at NNSS. The GTCC reference location is located within Area 5 (Figure 9.1-1). The reference location was selected primarily for evaluation purposes for this EIS. The actual location would be identified on the basis of follow-on evaluations if and when it is decided to locate a land disposal facility at NNSS.

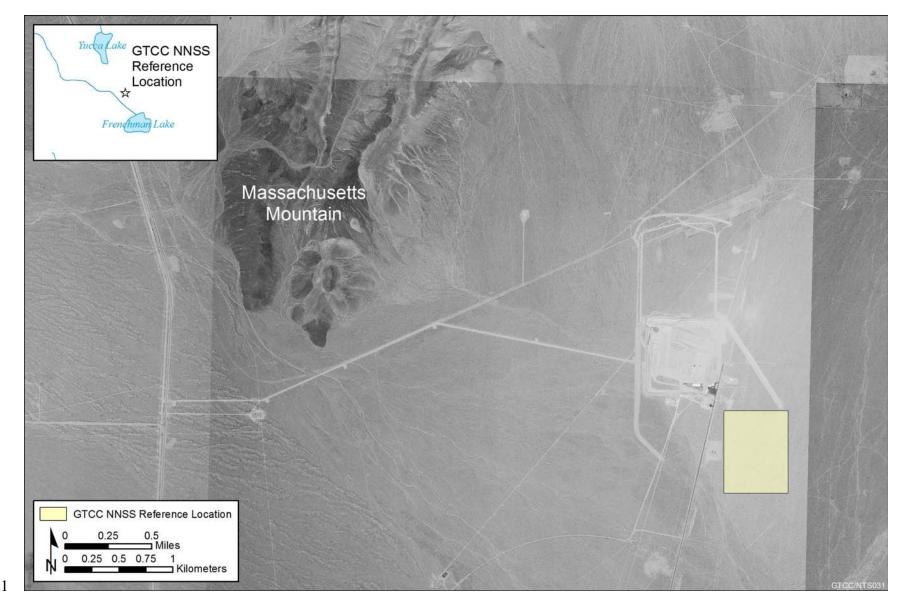


FIGURE 9.1-1 Map Showing Location of Frenchman Flat and GTCC Reference Location at NNSS

9.1.1 Climate, Air Quality, and Noise

2 3 4

9.1.1.1 Climate

5

NNSS is located in the extreme southwestern corner of the Great Basin. Consequently, the climate is arid and with limited precipitation, low humidity, large daily temperature ranges, and intense solar radiation during the summer months (NOAA 2008). The four seasons are well defined, with a hot and mostly dry summer, cool temperatures in the spring and late fall, and cool to cold temperatures in the winter (Soule 2006).

10 11 12

13

Complex topography, such as that at NNSS, can influence wind speeds and directions. Furthermore, there is a seasonal as well as strong daily periodicity to local wind conditions. The winds at NNSS exhibit strong diurnal effects near the surface during all seasons of the year. The

15

American Indian Text

The CGTO knows that the southern bajada (alluvial fan) of French Peak and associated hills to the east combine to periodically cause massive runoffs which flow rapidly towards Frenchman Playa making it a seasonal shallow lake. Frenchman Playa has a 140 square-mile watershed that could impact the GTCC site as it potentially does the current RWMS. Especially considered in these Indian comments are runoffs from the north of the proposed GTCC storage area. This watershed involves 13.6 square miles and directly impacts the current RWMS. This runoff from this area is normally sheetflow, but every 23 years or so a major flood occurs. This threat has resulted in the RWMS building a large diversion dike and trench to protect the current Radioactive Waste Management Complex. The Raytheon study indicates that the southwest corner of the RWMS is located in the 100-year flood hazard zone, but the entire northern alluvial fan brings runoff directly into the immediate area.

The CGTO requests an analysis of the hydrological and ecological impacts of the existing water diversion dike of the current Radioactive Waste Management Complex in Area 5. The DOE recognizes that this is a very flood prone area, with major flooding episodes occurring about every 23 years. Indian people visiting this site observed that even though the current dike has been built recently and thus not experienced a 23-year flood, it has diverted and consolidated sufficient runoff that a small arroyo has been established. The Indian people visiting this site believe that the existing dike has unnaturally stressed down-slope plants and animals who now do not receive normal sheet runoff. The Indian people visiting the site believe that by concentrating the runoff, the dike has reduced the amount of water absorbed during normal sheet runoff because the consolidated runoff moves more quickly and only flows in the new and developing eroded arroyo. It is believed by the Indian people visiting the site that were a GTCC facility to be established east of the current RWMS then the dike would necessarily have to be extended causing an even greater runoff shadow and an even greater developing arroyo. The desert tortoise in the area will have to move out of this larger runoff shadow and may be concentrated in the area of Frenchmen Playa. Moving their living areas towards the playa will expose them to higher levels of radioactivity. The Indian people visiting the site believe that these current and potential impacts should be analyzed, monitored by Indian people, and reported back to the CGTO at the next annual meeting.

American Indian Text

The CGTO knows that the climate of the region has changed over the thousands of years that the Indian people have lived in this region. The NNSS has only occupied this area since the early 1940s. It is important to recognize that major climatic changes have taken place since the end of the Pleistocene and shorter term climate changes such as the wet period in the 1980s and 1990s contrast with the current 10-year drought. It is important for the GTCC EIS to assess the impacts of short term and long term climatic changes because the DOE expects to safely manage these GTCC wastes for up to 10K years during which similar climate changes can be expected.

The current climate description in the GTCC EIS is specific to the present decade-long period of extended drought (a similar one occurred between 1896 and 1906) so this type of drought and the wet period between 1980s and 1990s may be a factor in siting the GTCC facility. An analysis of long term impacts based on current conditions will neither be representative of climate conditions viewed over much longer periods nor applicable to a short climate shift to much wetter conditions.

The climatic effects of both wet and dry periods should be analyzed and incorporated in the GTCC site assessment.

American Indian Text

One performance objective in selecting a preferred site is to protect individuals and communities who might occupy the disposal site after active and passive controls are no longer present. These individuals are to be protected from exposure to GTCC radiation while they engage in normal activities such as agriculture, dwelling construction, food acquisition, and ceremony. The CGTO believes that a wetter climate will raise the water table up to or over the GTCC waste site. Nearby wetland plants and animals would absorb radiation and then expose local people. Drinking water from these wetlands will also result in exposure. Indian people visiting the site believe their descendants will live near and use these wetlands as their ancestors did thousands of years ago.

nighttime winds are generally from the north at the lower elevations during all seasons. These nocturnal winds ("drainage winds") are disturbed only by the presence of extensive lower clouds or very strong winds aloft. The daytime winds are generally from the south during the warm seasons and from the north during the cool seasons. At the Area 5 station, the wind direction is primarily from the south-southwest and secondarily from the southwest; the wind is more pronounced in spring and fall, as shown in Figure 9.1.1-1 (NOAA 2008). For the period 1981–2001, the annual average wind speed was 2.8 m/s (6.3 mph) at the Area 5 station. Wind speed is the fastest in spring, slower in summer and autumn, and becomes the slowest in winter. During the same period, the peak wind speed was recorded at 30 m/s (67 mph).

As is typical of an arid climate, NNSS experiences large daily, as well as annual, ranges in temperature. For the 1981–2001 period, the annual average temperature at the Area 5 station was 15.2°C (59.4°F) (NOAA 2008). December was the coldest month, averaging 3.9°C (39.1°F)

1 2

3 4

10

11

12 13

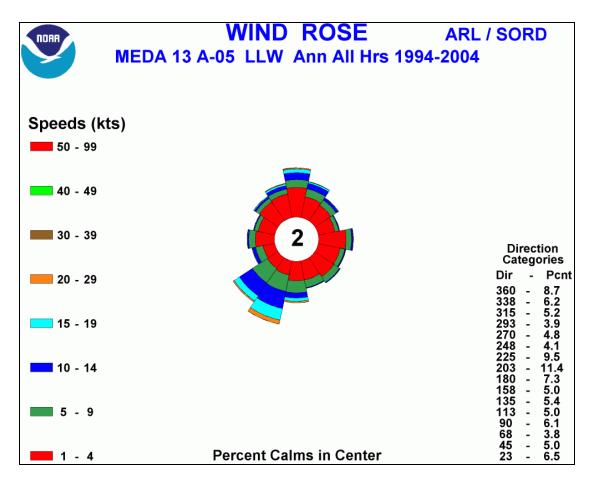


FIGURE 9.1.1-1 Wind Rose at the Area 5 North (A5N) Station at NNSS, 1994–2004 (Source: NOAA 2008)

and ranging from -5.4 to 13.3° C (22.3 to 55.9° F), and July was the warmest month, averaging 27.5° C (81.5°F) and ranging from 16.6 to 38.4° C (61.8 to 101.1° F). For the same period, the highest temperature reached was 46.1° C (115°F), and the lowest was -21.1° C (-6° F). The number of days with a maximum temperature higher than or equal to 32.2° C (90°F) was about 115, while the number of days with a minimum temperature lower than or equal to 0° C (32°F) was about 114.

Precipitation occurs mostly in the winter, early spring, and mid-summer. Elevation is not the only factor in determining the potential for precipitation at NNSS. Some locations at NNSS get more precipitation because they are in the vicinity of higher terrain (upwind barrier, upslope enhancement, etc.) (Soule 2006). Average annual precipitation is the lowest (at 12 cm or 5 in.) at Area 5 and the highest (at 32.6 cm or 12.82 in.) at the Rainier Mesa. The precipitation at NNSS is mostly in the form of rain, except at high elevations above 1,800 m (6,000 ft) MSL in the winter months. Snow falls occasionally at all locations at NNSS, but it is relatively rare at locations below 1,200 m (4,000 ft) MSL.

NNSS experiences high winds at times, mostly in the spring, associated with the passing of strong cold fronts or with thunderstorms. High winds can also occur in the winter with high pressure over the Great Basin (Soule 2006). Other than these instances, severe weather is uncommon at the NNSS.

Tornadoes in the area surrounding NNSS are much less frequent and destructive than those in the tornado alley in the central United States. For the period 1950–2008, 75 tornadoes were reported in Nevada, with an average of 1.3 tornadoes per year (NCDC 2008). For the period 1950–2008, a total of 3 tornadoes with an average of less than 0.1 tornado per year were reported in Nye County, including NNSS. However, most tornadoes occurring in the county were relatively weak; all were F0 on the Fujita tornado scale and caused no deaths or injuries.

9.1.1.2 Existing Air Emissions

 Title V of the 1990 CAAA authorized the states to implement permit programs in order to regulate emissions of the criteria pollutants. At NNSS, there is one main permit that regulates operations and emissions from various major activities (Wills 2007). Nevada air quality permits specify emission limits for criteria pollutants (except O₃ and lead) that are based on published emission values for other similar industries and on operational data specific to NNSS.

 Annual emissions of criteria pollutants and VOCs from major facility total point and area sources for the year 2002 in Nye County, including NNSS, are presented in Table 9.1.1-1 (EPA 2009). (Data for 2002 were the most recent emission inventory data available on the EPA website.) Area sources consist of nonpoint and mobile sources. There are no major point sources nearby, so area sources account for most of the emissions of criteria pollutants and VOCs, except for SO_2 . On-road sources are major contributors to the total emissions of NO_x , NO_x , NO_x , NO_x , and NO_x . Miscellaneous sources are major contributors to total emissions of NO_x , NO_x ,

An estimated 4.15 metric tons or t (4.57 tons) of criteria pollutants were released from the NNSS facilities and equipment that were operational in 2006. The majority of the emissions were NO_x from diesel generators and VOCs from the bulk storage of gasoline (Wills 2007). Table 9.1.1-2 presents data on emissions of criteria pollutants, VOCs, and hazardous air pollutants (HAPs) for the years 2002–2006.

9.1.1.3 Air Quality

 The Nevada SAAQS for six criteria pollutants — SO₂, NO₂, CO, O₃, PM₁₀ and PM_{2.5}, and lead — are identical to the NAAQS (EPA 2008a; *Nevada Administrative Code* 445B.391), as shown in Table 9.1.1-3. However, no state standards have been established for 8-hour O₃ and PM_{2.5} in Nevada, and the state has a more stringent standard for CO at higher elevations (about 1,500 m or 5,000 ft) and for O₃ at Lake Tahoe. In addition, Nevada has adopted standards for H₂S and for visibility.

TABLE 9.1.1-1 Annual Emissions of Criteria Pollutants and Volatile Organic Compounds from Selected Major Facilities and Total Point and Area Source Emissions in Nye County, Including NNSS^a

		E	mission Ra	ate (tons/yı	r)	
Emission Category	SO_2	NO_x	СО	VOCs	PM ₁₀	PM _{2.5}
Nye County						
$NNSS^b$	1.7	23	5.0	2.3	5.0	3.9
	$0.72\%^{c}$	2.6%	0.06%	0.16%	0.14%	0.55%
Point sources	120	150	35	93	150	63
Area sources	110	720	7,900	1,400	3,500	630
Total	230	870	7,900	1,500	3,700	700

- a Values are rounded up to two significant figures. Emission data for selected major facilities and total point and area sources are for year 2002. CO = carbon monoxide; NO_x = nitrogen oxides; PM_{2.5} = particulate matter ≤2.5 μm; PM₁₀ = particulate matter ≤10 μm; SO₂ = sulfur dioxide; VOCs = volatile organic compounds.
- b Values in italics are not added to yield total.
- ^c Values in this row are emissions as percentages of Nye County total emissions.

Source: EPA (2009)

The GTCC reference location within NNSS is within Nye County. Currently, the entire county is designated as being in attainment for all criteria pollutants (40 CFR 81.329). However, parts of Clark County, including Las Vegas, which is about 80 km (50 mi) southeast of the GTCC reference location, are designated nonattainment areas for CO, 8-hour O_3 , and PM_{10} . NNSS is generally not located downwind of prevailing winds in Las Vegas.

 Monitoring data for criteria pollutants (except 8-hour O₃, PM_{2.5}, and lead) are available at Yucca Mountain close to the GTCC reference location (DOE 2002b). The highest concentration levels for SO₂, NO₂, CO, and PM₁₀ around NNSS are less than 45% of their respective standards in Table 9.1.1-3 (DOE 2002b). However, the highest 1-hour O₃ and 24-hour PM_{2.5} concentrations are somewhat higher (around 83% and 91% of their standards, respectively). The highest 8-hour O₃ concentrations exceed the standard in Las Vegas; however, concentrations at NNSS would be lower because NNSS is not located downwind of prevailing winds in Las Vegas.

NNSS and its vicinity are classified as PSD Class II areas. No Class I area exists within 100 km (62 mi) of the GTCC reference location (40 CFR 81.418). Grand Canyon National Park in Arizona and John Muir Wilderness Area in California are the closest, and they are about 200 km (124 mi) from the GTCC reference location. There are no facilities currently operating at NNSS that are subject to PSD regulations.

TABLE 9.1.1-2 Annual Emissions of Criteria Air Pollutants, Volatile Organic Compounds, and Hazardous Air Pollutants at NNSS, 2002–2006^a

	Emission Rate (tons/yr)						
Year	SO_2	NO_x	CO	VOCs	PM_{10}	HAPs	
2002	1.6	21	4.6	2.1	3.6	0.01	
2003	0.76	8.1	1.8	1.2	2.4	0	
2004	0.12	1.0	0.24	4.6	0.94	0.41	
2005	0.04	0.69	0.15	1.9	0.84	0.05	
2006	0.03	2.0	0.43	1.4	0.69	1.9 ^b	

- a Values are rounded up to two significant figures. CO = carbon monoxide; HAPs = hazardous air pollutants; NO_x = nitrogen oxides; PM₁₀ = particulate matter ≤10 μ m; SO₂ = sulfur dioxide; VOCs = volatile organic compounds.
- b Of all the HAPs, 92% were emitted during chemical spill tests at the Nonproliferation Test and Evaluation Complex, and <0.006% were from lead emitted from all permitted operations.

Source: Wills (2007)

1 2 3

9.1.1.4 Existing Noise Environment

4 5

Except for the prohibition of nuisance noise, neither the state of Nevada nor local governments around NNSS have established quantitative noise-limit regulations.

7 8

9

10

11

12

13

14

The major noise sources at NNSS include various industrial activities, equipment, and machines (e.g., cooling towers, transformers, engines, pumps, boilers, steam vents, paging systems, construction and material-handling equipment, vehicles); blasting and testing of explosives; and aircraft operations (DOE 1996). Most NNSS industrial facilities are far enough from the site boundary that noise levels from these sources are not measurable or are barely distinguishable from background levels at the boundary. In the uninhabited desert area, the major sources of noise are natural physical phenomena (e.g., wind, rain, and wildlife activities) and an occasional airplane; the predominant noise source is wind.

15 16 17

18

19

20

No data from environmental noise surveys around the site boundaries near the GTCC reference location were available. A background sound level of 30 dBA is a reasonable estimate for NNSS (DOE 1996). For the general area surrounding NNSS, the countywide L_{dn} based on population density is estimated to be less than 30 dBA in Nye County, similar to the wilderness natural background level (Miller 2002; Eldred 1982).

TABLE 9.1.1-3 National Ambient Air Quality Standards (NAAQS) or Nevada State Ambient Air Quality Standards (SAAQS) and Highest Background Levels Representative of the GTCC Reference Location at NNSS

			Highest Background Level		
Pollutanta	Averaging Time	NAAQS/SAAQS ^b	Concentration ^{c,d}	Location (Year) ^e	
SO_2	1-hour	75 ppb	_f	_	
~ ~ Z	3-hour	0.50 ppm	0.002 ppm (0.4%)	Yucca Mtn, Nye Co.	
	24-hour	0.14 ppm	0.002 ppm (1.4%)	Yucca Mtn, Nye Co.	
	Annual	0.03 ppm	0.002 ppm (6.7%)	Yucca Mtn, Nye Co.	
NO_2	1-hour	0.100 ppm	_	_	
2	Annual	0.053 ppm	0.002 ppm (4.0%)	Yucca Mtn, Nye Co.	
CO	1-hour	35 ppm	0.2 ppm (0.6%)	Yucca Mtn, Nye Co.	
	8-hour	9 ppm	0.2 ppm (2.2%)	Yucca Mtn, Nye Co.	
O_3	1-hour	0.12 ppm ^g	0.1 ppm (83%)	Yucca Mtn, Nye Co.	
-	8-hour	0.075 ppm	0.089 ppm (119%)	Las Vegas, Clark Co. (2005) ^h	
PM ₁₀	24-hour	$150~\mu\mathrm{g/m^3}$	67 μg/m ³ (45%)	Yucca Mtn, Nye Co.	
10	Annual	$50 \mu\mathrm{g/m^3}$	$12 \mu g/m^3 (24\%)$	Yucca Mtn, Nye Co.	
PM _{2.5}	24-hour	$35 \mu g/m^3$	$32 \mu g/m^3 (91\%)$	Las Vegas, Clark Co. (2003) ^h	
2.0	Annual	$15 \mu g/m^3$	$10.7 \ \mu g/m^3 \ (71\%)$	Las Vegas, Clark Co. (2003) ^h	
Leadi	Calendar quarter	$1.5~\mu\mathrm{g/m^3}$	$0.08 \mu g/m^3 (5.3\%)$	San Bernardino Co. (2003) ^j	
	Rolling 3-month	$0.15 \mu \text{g/m}^3$	_	_	
H_2S	1-hour	112 μ g/m ³	_	_	
Visibility	Observation	Insufficient amount to reduce the prevailing visibility to less than 30 mi (48 km) when humidity is less than 70%	_	-	

^a CO = carbon monoxide; H_2S = hydrogen sulfide; NO_2 = nitrogen dioxide; O_3 = ozone; $PM_{2.5}$ = particulate matter ≤2.5 μm; PM_{10} = particulate matter ≤10 μm; SO_2 = sulfur dioxide.

Footnotes continue on next page.

b The more stringent standard between the NAAQS and the SAAQS is listed when both are available.

^c Monitored concentrations are the highest arithmetic mean for calendar-quarter lead; the highest for 3-hour and 24-hour SO₂, 1-hour and 8-hour CO, 1-hour O₃, and 24-hour PM₁₀; 4th highest for 8-hour O₃; 98th percentile for 24-hour PM_{2.5}; and arithmetic mean for annual SO₂, NO₂, PM₁₀, and PM_{2.5}.

d Values in parentheses are monitored concentrations as a percentage of SAAQS or NAAQS.

e No measurement year was specified for the data collected at Yucca Mountain (DOE 2002b).

f A dash indicates that no measurement is available.

On June 15, 2005, the EPA revoked the 1-hour O_3 standard for all areas except the 8-hour O_3 nonattainment Early Action Compact (EAC) areas (those do not yet have an effective date for their 8-hour designations). The 1-hour standard will be revoked for these areas 1 year after the effective date of their designation as attainment or nonattainment for the 8-hour O_3 standard.

TABLE 9.1.1-3 (Cont.)

- h Concentration at NNSS would be lower because it is not located downwind of prevailing winds in Las Vegas.
- ⁱ Used old standard because no data in the new standard format are available.
- j This location with the highest observed concentration is not representative of NNSS but is presented to show that this pollutant is not a concern around NNSS.

Sources: DOE (2002b); EPA (2008a, 2009); Nevada Administrative Code 445B.391 (refer to http://ndep.nv.gov/baqp/monitoring/445b391.pdf)

9.1.2 Geology and Soils

9.1.2.1 Geology

9.1.2.1.1 Physiography. NNSS is located in the southern part of the Great Basin, a subprovince of the Basin and Range physiographic province (Figure 9.1.2-1). Centered in Nevada, the Basin and Range province stretches from southern Oregon to western Texas (and into Mexico) and is made up of parallel north-south-trending faulted mountain ranges separated by flat alluvium-filled basins. This landscape reflects a complex geological history: uplifting of crustal rocks, followed by extensional deformation, characterized by block faulting and rotation, and the development of active volcanic fields. Most of the intermontane basins have no drainage outlets; as a result, rainwater accumulates in the form of salt lakes or playas (dry lake beds). In the southern part of the province, drainage from the Las Vegas and Pahranagat Valleys flows to the southeast toward the lower Colorado River; Jackass Flats and the Amargosa Desert drain to Death Valley to the west via the Amargosa River (Hunt 1973; DOE 1996; Winograd and Thordarson 1975).

9.1.2.1.2 Topography. Frenchman Flat is an intermontane basin covering parts of Areas 5, 6, and 11 in the southeastern portion of NNSS and extending beyond the NNSS boundary to the east. It is bounded on the north by Massachusetts Mountain and French Peak, on the east by the Ranger Mountains and Buried Hills, on the south by the Spotted Range, and on the west by Skull Mountain and Wahmonie Hills (Figure 9.1.2-2). The basin floor at Frenchman Flat slopes gently toward a central playa. Relief at NNSS is high, with elevations ranging from about 820 m (2,700 ft) above MSL at Frenchman Flat in the southeastern portion of the site to about 2,340 m (7,680 ft) MSL on Rainier Mesa. Slopes of the upland surfaces are steep and dissected; those of the lowland areas are more gentle and less eroded (Bechtel Nevada 2005a).

The natural topography of NNSS has been altered by underground nuclear testing, which created craters in Yucca Flat and Frenchman Flat Basins and on Pahute and Rainier Mesas. Other activities that have changed the local landscape include shallow detonations (associated with Project Plowshare), waste disposal area construction, drainage improvements, road building, sand and gravel mining, and underground mining (DOE 1996).

FIGURE 9.1.2-1 Location of NNSS within the Great Basin Desert in the Basin and Range Physiographic Province (Bechtel Nevada 2005a)

2 3

FIGURE 9.1.2-2 Topographic Features of the Frenchman Flat Region (Source: Modified from Bechtel Nevada 2005a)

1 2 a 3 s 4 a 5 tl

Tertia

45 c

9.1.2.1.3 Site Geology and Stratigraphy. The highlands surrounding Frenchman Flat are made up of Paleozoic sedimentary rocks and Cenozoic volcanic rocks (tuffs) and tuffaceous sedimentary rocks. Paleozoic rocks are exposed along the south and east edges of the basin and are predominantly carbonates ranging in age from Cambrian to Mississippian. These rocks dip to the south and east away from Frenchman Flat (Bechtel Nevada 2005a).

Volcanic rocks of Miocene age are typical of the highlands to the north and northwest of the basin. These are rhyolitic tuffs formed by ash deposits from large calderas located 40 km (25 mi) to the northwest of the Frenchman Flat Basin. Miocene age tuffs, lavas, and debris flows of intermediate composition make up the Wahmonie volcanic center to the west of the basin. These rocks dip to the southeast toward Frenchman Flat and are offset in places by numerous normal faults (Bechtel Nevada 2005a).

Tuffaceous sedimentary rocks are also present along a narrow, linear area corresponding to the topographic axis of the basin. These rocks are exposed along the southern edge and dip north into the basin.

The GTCC reference location is southeast of the RWMS. It is situated on a thick sequence of Quaternary sediments consisting mainly of alluvial fill typical of the low-lying valleys in the region (Figure 9.1.2-2). The following summary of the stratigraphy at NNSS is based on the work of Winograd and Thordarson (1975), Hoover et al. (1981), Laczniak et al. (1996), and Bechtel Nevada (2005a). Figure 9.1.2-3 presents a stratigraphic column for NNSS and vicinity.

sediments were deposited in the Cordilleran geosyncline, an elongated, subsiding trough in the westernmost portion of the North American continent. The part of the trough underlying NNSS and its vicinity, called the miogeosyncline, is made up predominantly of carbonates (limestone and dolomite) and mature clastic sediments (quartzite, conglomerate, argillite, and siltstone). These rocks have a complex history of folding and faulting.

Precambrian and Paleozoic Units. In the Paleozoic era, 11,278 m (37,000 ft) of marine

Mesozoic Units. Rocks of Mesozoic age consist of several small granitic stocks, dikes, and sills. There are no Mesozoic sedimentary rocks under NNSS or its immediate vicinity.

Cenozoic Units. Tertiary volcanic and associated sedimentary rocks are as much as 2,591-m (8,500-ft) thick in Frenchman Flat. Volcanic rocks are predominantly ash-flow tuff, ash-fall tuff, and lava flows of rhyolitic, rhyodacitic, and basaltic composition. The tuffs are typically rhyolitic and quartz-latitic. Sedimentary rocks derived from these volcanics include conglomerates, tuffaceous sandstones, and freshwater limestones.

Tertiary and Quaternary deposits in the Frenchman Flat basin include fluvial deposits of coarse- to fine-grained sand, eolian sheets, and dunes, with minor basalt flows.

Mapped Seismic

Stratigraphic Column

Stratigraphic Nomenclature

FIGURE 9.1.2-3 Stratigraphic Column for NNSS and Vicinity (Source: Bechtel Nevada 2005b)

Alluvium is up to 1,500-m (5,000-ft) thick in the deepest part of the basin. Stratigraphic logs are available for three pilot wells (Ue5PW-1, Ue5PW-2, and Ue5PW-3) shown in Figure 9.1.2-4. These logs indicate that the shallow stratigraphy, both laterally and vertically, is quite variable and discontinuous across the site (typical of alluvial fan depositional environments). For example, in Ue5PW-1, sediments are predominantly well-graded sand with silt with a maximum thickness of 8.2 m (27 ft), underlain by numerous layers of up to 5.2 m (17 ft) of well-graded sand with gravel. Sediments in Ue5PW-2 consist mainly of silty sand with a maximum thickness of 12 m (40 ft), with interbedded layers of gravel and well-graded sand with silt. Silty sand units are fairly massive at depth intervals of 42.7 to 122 m (140 to 400 ft) and 171 to 256 m (560 to 800 ft). In Ue5PW-3, sediments are composed of well-graded sand with silt, with a maximum thickness of 27.4 m (90 ft). At depths of 115.8 to 170.7 m (380 to 560 ft), the number of silty sand layers increases; at depths below 171 m (560 ft), the silty sand layer is massive and contains scatter zones of cobbles and boulders (REEC 1994).

9.1.2.1.4 Seismicity. NNSS lies within the Walker Lane belt, a northwest-trending seismic zone that extends from eastern California to western Nevada. The active faults in the Walker Lane belt accommodate the strain from the movement of the Pacific plate relative to the North American plate. The seismic zone is characterized by right-lateral strike-slip faults (although some left-lateral faults are present) as well as basin-and-range-style extensional block faults (Bechtel Nevada 2005b; University of Arizona 2008).

Nevada is among the most seismically active states in the United States. Between 1898 and 2005, there were 1,586 documented earthquakes having a magnitude of more than 3.5 (Nevada Seismological Laboratory 2008). The largest three earthquakes in Nevada occurred in northern Nevada within a 7-hour period on October 2, 1915. The last tremor had an estimated magnitude of 7.75. The movement created a scarp, about 1.5- to 4.5-m (5- to 15-ft) high and 35-km (22-mi) long, parallel to the base of the Sonoma Mountains (USGS 2008).

From 1950 to 1998, a total of 526 earthquakes of magnitude 4 or greater were documented at or near the NNSS. Researchers have noticed a significant drop in the number of earthquakes since 1992, the year that the moratorium on nuclear testing was established, which suggested a likely connection between earthquakes and the testing that took place in the Pahute Mesa and Yucca Flat areas (Bright et al. 2001).

From 1950 to 2008, five earthquakes of magnitude 3.5 to 4.2 or greater were documented within 32 km (20 mi) of Frenchman Flat; all were clustered in the Wahmonie volcanic center to the west (Figure 9.1.2-2) (ANSS 2008).

The three most recent earthquakes in the Frenchman Flat area (also within 32 km [20 mi] and to the west/northwest) occurred in January 2008 and had magnitudes of less than 2 (USGS 2008).

Figure 9.1.2-5 shows the geology and major fault lines (and relative movement along them) in Frenchman Flat and vicinity.

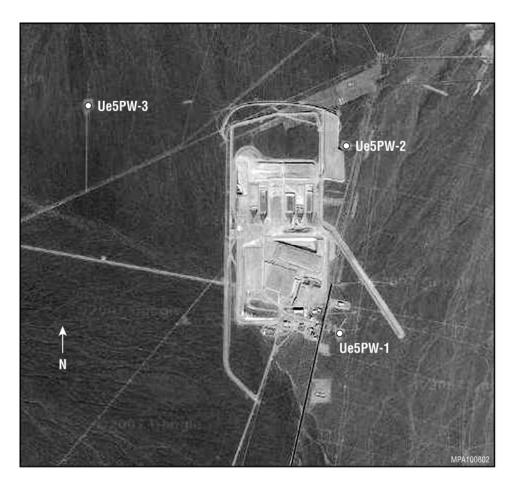


FIGURE 9.1.2-4 Location of Pilot Wells within Area 5 Radioactive Waste Management Site

In 1995, a probabilistic seismic hazard assessment (PSHA) was conducted for the Device Assembly Facility, located in Area 6 about 16 km (10 mi) northwest of Frenchman Lake. The PSHA determined that the seismic design basis for structures, systems, and components important to safety should be able to withstand the horizontal motion from an earthquake with a return frequency of once in 2,000 years (annual probability of occurrence of 0.0005). The PSHA concluded that a 0.0005-per-year earthquake would produce peak horizontal accelerations of about 30% of gravity (0.30g) for a surface facility. Analysts projected a 50% reduction in ground motion for a subsurface facility within the same area (Ng et al. 1998). A PSHA has not been conducted for the Frenchman Flat area; however, given the similarity in seismic setting and soil conditions, a similar design-basis earthquake would likely be specified.

9.1.2.1.5 Volcanic Activity. The NNSS region is situated within the southwestern Nevada volcanic field, which consists of volcanic rocks (tuffs and lavas) of the Timber Mountain-Oasis Valley caldera complex and Silent Canyon and Black Mountain calderas (Figure 9.1.2-6). Two types of fields are present in the NNSS region: (1) large-volume, long-lived fields with a range of basalt types associated with more silicic volcanic rocks

FIGURE 9.1.2-5 Surface Geologic Map and Seismic Fault Lines at Frenchman Flat (Source: Bechtel Nevada 2005b)

6

7

1

2

produced by melting of the lower crust, and (2) small-volume fields formed by scattered basaltic scoria cones during brief cycles of activity, called rift basalts because of their association with extensional structural features. The basalts of the region typically belong to the second group; examples include the basalts of Silent Canyon and Sleeping Butte (Byers et al. 1989; Crowe et al. 1983).

10 11 12

13 14

15

The oldest basalts in the NNSS region were erupted during the waning stages of silicic volcanism in the southern Great Basin in the Late Miocene and are associated with silicic volcanic centers like Dome Mountain (the first group). Rates of basaltic volcanic activity in the region have been relatively constant but generally low. There has been no silicic volcanism in the

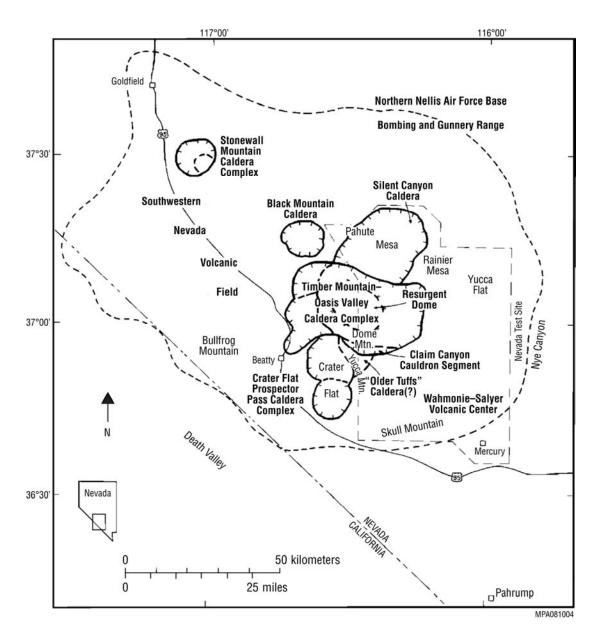


FIGURE 9.1.2-6 Volcanic Features in the NNSS Region (Byers et al. 1989)

region for the past 5 million years. Current silicic volcanic activity occurs entirely along the margins of the Great Basin.

Crowe et al. (1983) determined that the annual probability of a volcanic event for the NNSS region is very low (3.3E-10 to 4.7E-08). The volcanic risk at NNSS is associated only with basaltic eruptions; the risk of silicic volcanism is negligible. Perry (2002) cites geologic data that could increase the recurrence rate (and thus the probability of disruption). These include hypothesized episodes of an anomalously high strain rate, the hypothesized presence of a regional mantle hot spot, and new aeromagnetic data that suggest that previously unrecognized volcanoes may be buried in the alluvial-filled basins in the region.

9.1.2.1.6 Slope Stability, Subsidence, and Liquefaction. No natural factors within Frenchman Flat that would affect the engineering aspects of slope stability have been reported. External factors affecting slope stability relate to the fracturing and ground motion caused by nuclear explosions (DOE 1996).

Ground stability and the potential for subsidence have not been assessed for Frenchman Flat. While natural factors, like the development of pavement and accumulation of calcium carbonate, enhance ground stability, other factors increase the likelihood of subsidence. These include the presence of readily weathered and/or fractured rocks, a high degree of void space in sediments, and the absence of vegetation.

 Liquefaction of saturated sediments is a potential hazard during or immediately following large earthquakes and underground or surface explosions. There is evidence that paleoliquefaction has occurred in the NNSS region. Whether soils will liquefy depends on several factors, including the magnitude of the earthquake or explosion, the peak ground velocity, the liquefaction susceptibility of soils, and depth to groundwater.

9.1.2.2 Soils

 Soils at NNSS and its vicinity include entisols and aridisols. Entisols form on steep mountain slopes in regions where erosion is active. Aridisols are older, more developed soils; they typically exist on more stable fans and terraces. In the southern portion of the site, including Frenchman Flat, soils are young with little evidence of leaching. These soils tend to be low in organic content and water storage capacity. Grain size varies from coarse near the mountain fronts to fine in the playa areas (typical of alluvial fans); salinity increases significantly in the direction of the playa areas, with the highest level of soluble salts having accumulated in the deeper soil horizons. Most soils are underlain by a hardpan of caliche. Desert pavement occurs in places. Soil loss through wind and water erosion is common, although the erosion rates and susceptibility of soils to erosion have not been defined (DOE 1996; Hoover et al. 1981).

Soils in portions of Frenchman Flat have been contaminated as a result of nuclear testing and ancillary operations (DOE 1996).

9.1.2.3 Mineral and Energy Resources

 Geologic resources at NNSS include industrial minerals, such as silica, bentonite clay, and zeolites, building stone, and aggregate. Although NNSS has been closed to commercial mineral development since the 1940s, several mining districts in the region have been identified and sampled. Economic minerals include gold, silver, mercury, lead, copper, antimony, zinc, arsenic, tungsten, and molybdenum. These are generally found near volcanic centers (e.g., the Timber Mountain caldera complex). Mining districts identified in nuclear testing areas are not considered part of the site's geologic and mineral resources if they are radioactively contaminated. DOE policy does not allow extraction of NNSS mineral resources; however, the policy does require monitoring of geologic features to protect them from impacts due to

American Indian Text

Minerals

The CGTO knows based on previous DOE-sponsored cultural studies that there are many minerals on the NNSS (no complete list available). Indian people visiting the proposed GTCC site identified the following traditional use minerals: (1) Obsidian, (2) chalcedony, (3) Yellow Chert or Jasper, (4) Black Chert, (5) Pumice, (6) Quartz Crystal, and (7) Rhyolite Tuff. Other minerals were perceived to be present but not observed because of the limited time and search area.

All minerals are culturally important and have significant roles in many aspects of Indian life. For example, the Chalcedony on the proposed GTCC site would have made an attractive offering which would be acquired here by a ceremonial traveler and then left at the vision quest or medicine site located to the north on top of a volcano like Scrugham Peak. Returning ceremonial travelers would also bring offerings back to where they had acquired offerings, thus the Yellow Chert or Jasper (observed on the GTCC site) which outcrops about 70 miles to the north would be gathered there and returned to the Chalcedony site as an offering.

American Indian Text

Playas

The CGTO knows, based on cultural studies funded by the DOE on the NNSS and playaspecific studies funded by Nellis Air Force Test and Training Range, that playas occupy a special place in Indian culture. Playas are often viewed as empty and meaningless places by western scientists, but to Indian people playas have a role and often contain special resources that occur no where else. The following text was prepared by the Indian people who visited the proposed GTCC site.

Is a playa a wasteland? According to Indian elders playas were used in traveling or moving to places where work, hunting, pine cutting or gathering of other important foods and medicine could be done. One elder remembers crossing over dry lake beds and traveling around but near the edges and they discussed how provisions were left there and at nearby springs by previous travelers at camping spots. Indian people left caches in playa areas for people who crossed valleys when water and food was scarce. Frenchmen Playa is such a place. Indian people took advantage of traveling through this playa as mountains completely surround this area. The CGTO knows that most dry lakes are not known to be completely dry. An example is Soda Lake near Barstow, California. The Mohave River flows into this dry lake and most of the year it looks dry but it actually flows underground. Building berms on dry lake beds to offset water and runoff doesn't sound like a good idea to the Indian way of thinking. As one CGTO member added, to Indian people "water is life. Our water has healing powers." So why build a GTCC site on and use this playa when the odds of radiation seem feasible? The Indian people who visited this site recommend not to bother Frenchmen Playa. It is only one of two in the immediate region and has special meanings. There should be a more descriptive study to fully understand the impacts. More time is needed, also for Indians to revisit this site. Although some people continue to view Frenchman playa as a wasteland, the CGTO knows it is not. Further ethnographic studies are needed.

construction activities (DOE 1996, 2000). The mining of cinder occurs within the land withdrawal area, about 10 km (6 mi) northwest of Amargosa Valley (DOE 2008a).

 Hydrocarbon resources in the deeper subsurface have not been evaluated at NNSS. However, a recent DOE evaluation of energy resources in the Yucca Mountain withdrawal area to the west found that the potential for economically useful energy resources was low (CRWMS M&O 2000). No occurrences of oil and gas, coal, tar sands, or oil shale have been reported in the region (DOE 1996).

 Geothermal hot springs are common in the region; however, water temperatures may not be adequate for commercial development (DOE 1996). A preliminary assessment conducted by DOE (1994) found that the potential for moderate-temperature geothermal resource development was high.

9.1.3 Water Resources

9.1.3.1 Surface Water

9.1.3.1.1 Rivers and Streams. The 352,512-ha (870,400-ac) NNSS lies within the Great Basin hydrogeologic province. The province consists of numerous hydrographically closed intermontane basins, such as Frenchman Flat and Yucca Flat, and is characterized by the presence of salt lakes and dry lake beds (playas). Streams in Frenchman Flat are ephemeral, flowing only during precipitation events. Surface water runoff flows through normally dry washes toward the topographically lowest part of the basin, Frenchman Lake (also referred to as Frenchman Playa). Most runoff travels only a short distance before evaporating or infiltrating into the ground.

 There are 24 known seeps or springs on the NNSS, as shown in Figure 9.1.3-1; there are no known springs or seeps within the boundaries of Frenchman Flat (DOE 1996; Bechtel Nevada 2005a). In addition to the springs and seeps, eight streams flow ephemerally on NNSS. These streams are recharged by snowmelt from nearby mountains and by small amounts of precipitation.

9.1.3.1.2 Surface Water Quality. Because of the ephemeral nature of surface water on the NNSS, no surface water quality data have been reported (DOE 1996).

9.1.3.2 Groundwater

9.1.3.2.1 Unsaturated Zone. Groundwater occurs in both the unsaturated (vadose) and saturated (phreatic) zones at NNSS. The depth to groundwater and the thickness of the

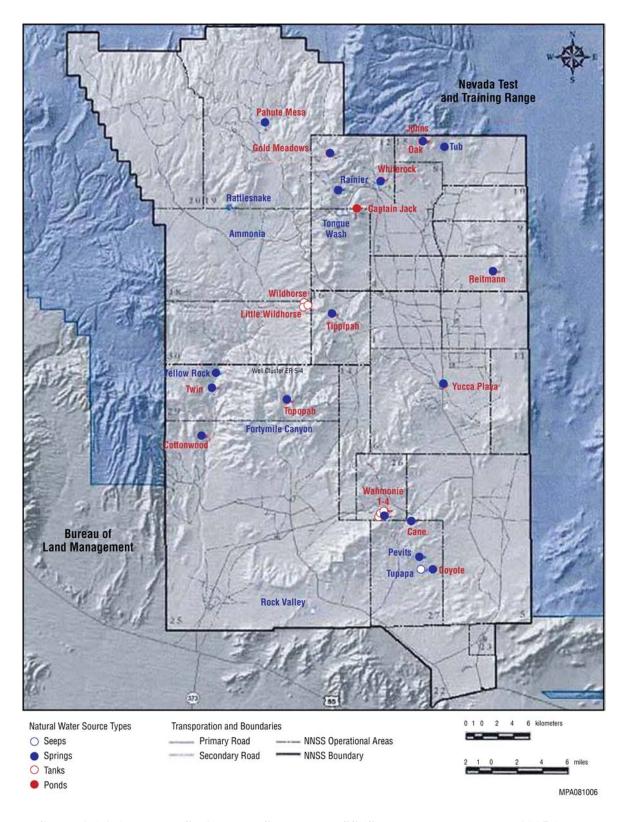


FIGURE 9.1.3-1 Natural Springs and Seeps on NNSS (Source: Bechtel Nevada 2005a)

9-22

2 3 4

unsaturated zone vary across the site. In the Area 3 Radioactive Waste Management Site (RWMS), located on Yucca Flat within NNSS, the thickness of the vadose zone is about 488 m (1,600 ft), and the water table is assumed to occur in Tertiary tuff, on the basis of data from surrounding boreholes. The tuff-alluvium contact is estimated to occur at a depth of between 300 and 460 m (1,000 and 1,500 ft) below the land surface. In the Area 5 RWMS, located on northern Frenchman Flat at the juncture of three coalescing alluvial fans piedmonts, the thickness of the unsaturated zone is 240 m (770 ft) at the southeast corner of the RWMS (at Ue5PW-1), 260 m (840 ft) at the northeast corner of the RWMS (at Ue5PW-2), and 270 m (890 ft) to the northwest of the RWMS (at Ue5PW-3) (Bechtel Nevada 2002a).

10 11

In the vicinity of the GTCC reference location, the unsaturated zone has a thickness of about 240 m (810 ft) (Bechtel Nevada 2001, 2002a).

13 14 15

16

17

18

19 20

21

12

9.1.3.2.2 Aquifer Units. The sedimentary rocks of the Great Basin compose the principal source of groundwater for the NNSS region. Within this groundwater system, a relatively shallow component, consisting of unconsolidated basin (alluvial) fill, overlies a deeper component, consisting of carbonate rocks (Prudic et al. 1995). Beneath Frenchman Flat, the units from oldest (deepest) to youngest (shallowest) are the lower clastic confining unit, the lower carbonate aquifer, the volcanic aquifer and confining units, and the alluvial aquifer. Figure 9.1.3-2 shows the correlation between the hydrostratigraphic and lithologic units at NNSS.

222324

The following unit descriptions are taken from Hoover et al. (1981), REEC (1994), Prudic et al. (1995), Laczniak et al. (1996), DOE (1996), Bright et al. (2001), Bechtel Nevada (2002b, 2005a), and Hershey et al. (2005). They include information specific to three monitoring

2627

25

American Indian Text

The CGTO requests an analysis of the hydrological and ecological impacts of the existing water diversion dike of the current Radioactive Waste Management Complex in Area 5. The DOE recognizes that this is a very flood prone area, with major flooding episodes occurring about every 23 years. Indian people visiting this site observed that even though the current dike has been built recently and thus not experienced a 23-year flood, it has diverted and consolidated sufficient runoff that a small arroyo has been established. The Indian people visiting this site believe that the existing dike has unnaturally stressed down-slope plants and animals who now do not receive normal sheet runoff. The Indian people visiting the site believe that by concentrating the runoff, the dike has reduced the amount of water absorbed during normal sheet runoff because the consolidated runoff moves more quickly and only flows in the new and developing eroded arroyo. It is believed by the Indian people visiting the site that were a GTCC facility to be established east of the current RWMC then the dike would necessarily have to be extended causing an even greater runoff shadow and an even greater developing arroyo. The desert tortoise in the area will have to move out of this larger runoff shadow and may be concentrated in the area of Frenchmen Playa. Moving their living areas towards the playa will expose them to higher levels of radioactivity. The Indian people visiting the site believe that these current and potential impacts should be analyzed, monitored by Indian people, and reported back to the CGTO at the next annual meeting.

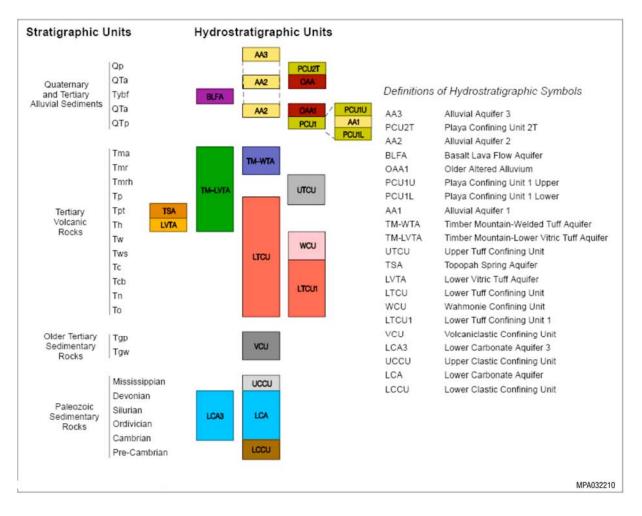


FIGURE 9.1.3-2 Correlation of Stratigraphic and Hydrostratigraphic Units at NNSS (Source: Bechtel Nevada 2005a)

wells (Ue5PW-1, Ue5PW-2, and Ue5PW-3) and two drill holes (ER-5-3#2 and ER-5-4#2) in Frenchman Flat (Figure 9.1.2-4). Wells Ue5PW-1 and Ue5PW-2 are completed in the alluvial aquifer; Well Ue5PW-3 is completed in the Timber Mountain Tuff, a volcanic aquifer. Drill Hole ER-5-3#2 is located in the northern part of Frenchman Flat; Drill Hole ER-5-4#2 is in the central part of Frenchman Flat, just to the northwest of Frenchman Lake. Table 9.1.3-1 lists the hydrostratigraphic data for the monitoring wells; Tables 9.1.3-2 and 9.1.3-3 provide hydrostratigraphic data for Drill Holes ER-5-3#2 and ER-5-4#2.

Lower Carbonate Aquifer and Lower Clastic Confining Unit. The most extensive hydrostratigraphic units within NNSS and vicinity are the Lower Carbonate Aquifer and the Lower Clastic Confining Unit. The carbonate rocks of the Lower Carbonate Aquifer are predominantly dolomite and interbedded limestone, with thin layers of shale and quartzite. They are the most transmissive hydrostratigraphic unit because of their relatively high solubility in groundwater and the abundant secondary permeability in fractures caused by tectonic activity in

TABLE 9.1.3-1 Hydrostratigraphic Data from Pilot Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3a,b

Hydrostratigraphic Unit	Top Depth	Base Depth	Top Elevation	Unit Thickness
Ue5PW-1				
Alluvial aquifer ^c	0	839 ^d	3,180	839 ^d
Ue5PW-2				
Alluvial aquifer ^c	0	919.5 ^d	3,248	919.5 ^d
Ue5PW-3				
Alluvial aquifer ^c	0	617	3,298	617
Timber Mountain aquifer	617	955 ^d	2,681	>338

- The locations of pilot wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 are shown on Figure 9.1.2-4. Well UePW-1 was installed just outside the southeast corner of the RWMS. Wells Ue5PW-2 and UePW-3 were installed on the upgradient side of the RWMS (to the north and northwest).
- b All thicknesses and depths are in feet; all elevations are in feet relative to MSL.
- Depth to groundwater is 772 ft (Ue5PW-1), 842 ft (Ue5PW-2), and 891 ft (Ue5PW-3). Source: Bechtel Nevada (2002b).
- d Value represents the total depth of the borehole and not the depth or thickness of the unit.

Source: Drellack (1997)

1 2 3

the region. The unit is as thick as 5,000 m (16,400 ft) in places and crops out in the southeastern portion of Frenchman Flat (Stoller-Navarro 2006).

4 5 6

The Lower Clastic Confining Unit, consisting of quartzite, micaceous quartzite, and siltstone, is impermeable and considered to be the hydrologic basement throughout much of the Death Valley flow system. These rocks are brittle and commonly fractured; however, secondary mineralization has reduced their permeability. The unit has a thickness of about 2,900 m (9,400 ft).

10 11 12

13

1415

9

The predominant direction of groundwater flow within the Lower Carbonate Aquifer is south-southeast. Recharge occurs in high-elevation areas in central Nevada and in the Spring Mountains and Sheep Range in southern Nevada. The major discharge areas are springs in Ash Meadows and Death Valley.

16 17 18

19

Volcanic Aquifer and Confining Units. The volcanic rocks present in the Frenchman Flat Basin are part of the southwest Nevada volcanic field that extends to the west; they consist

TABLE 9.1.3-2 Hydrostratigraphic Data from Drill Hole ER-5-3#2a,b

Hydrostratigraphic Unit ^c	Top Depth	Base Depth	Top Elevation	Unit Thickness
Alluvial aquifer	0	910	3,334.3	910
Basalt lava flow aquifer	910	940	2,424.3	30
Alluvial aquifer	940	1,680	2,394.3	740
Tonopah Spring aquifer	1,680	1,695	1,654.3	15
Alluvial aquifer	1,695	2,060	1,639.3	365
Timber Mountain aquifer	2,060	2,862	1,274.3	802
Tonopah Spring aquifer	2,862	3,024	472.3	162
Timber Mountain aquifer	3,024	3,055	310.3	31
Wahmonie confining unit	3,055	3,796	279.3	741
Lower tuff confining unit	3,796	4,678	-461.7	882
Paleozoic rocks — undifferentiated Pz	4,678	5,683 ^d	-1,343.7	>1,005

^a Drill hole ER-5-3#2 is in the northern portion of Frenchman Flat.

Source: Bechtel Nevada (2005a)

TABLE 9.1.3-3 Hydrostratigraphic Data from Drill Hole ER-5-4#2^{a,b}

Hydrostratigraphic Unit ^c	Top Depth	Base Depth	Top Elevation	Unit Thickness
Alluvial aquifer	0	2,312	3,131.7	2,312
Older playa confining unit	2,312	2,702	819.7	390
Alluvial aquifer	2,702	2,707	429.7	5
Older playa confining unit	2,707	2,940	424.7	233
Alluvial aquifer	2,940	3,676	191.7	736
Timber Mountain aquifer	3,676	4,356	-544.3	680
Lower tuff confining unit	4,356	7,000 ^d	-1,224.3	2,644

^a The location of drill hole ER-5-4#2, in the northern portion of Frenchman Flat, is shown in Figure 9.1.2-4.

Source: Bechtel Nevada (2005a)

b All thicknesses and depths are in feet; all elevations are in feet relative to MSL.

^c Depth to groundwater (or vadose zone thickness) is 927 ft.

d Value represents the total depth of the borehole and not the depth or thickness of the unit.

b All thicknesses and depths are in feet; all elevations are in feet relative to MSL.

^c Depth to groundwater (or vadose zone thickness) is 708 ft.

Value represents the total depth of the borehole and not the depth or thickness of the unit.

American Indian Text

The CGTO knows that most dry lakes are not known to be completely dry. An example is Soda Lake near Barstow, California. The Mohave River flows into this dry lake and most of the year it looks dry but it actually flows underground. Building berms on dry lake beds to offset water and runoff doesn't sound like a good idea to the Indian way of thinking. As one CGTO member added, to Indian people "water is life. Our water has healing powers." So why build a GTCC site on and use this playa when the odds of radiation seem feasible? The Indian people who visited this site recommend not to bother Frenchmen Playa. It is only one of two in the immediate region and has special meanings. There should be a more descriptive study to fully understand the impacts. More time is needed, also for Indians to revisit this site. Although some people continue to view Frenchman playa as a wasteland, the CGTO knows it is not. Further ethnographic studies are needed.

 mainly of rhyolitic tuffs and have been subdivided into four units: (1) Timber Mountain Aquifer, Upper Tuff Confining Unit; (2) Topopah Spring Aquifer, Lower Vitric-Tuff Aquifer, Wahmonie Confining Unit; (3) Lower Tuff Confining Unit; and (4) Volcaniclastic Confining Unit. The Lower Tuff Confining Unit separates the underlying carbonate aquifer from the overlying tuff aquifer (Timber Mountain Tuff) and alluvial deposits throughout parts of Frenchman Flat.

 Dense rocks with abundant fractures compose the volcanic aquifers; these rocks are typically welded tuff sheets (outside of the calderas) and lava flows and thick welded tuffs (within the calderas). The confining units consist of zeolitically altered nonwelded tuffs, common in the older, deeper parts of the volcanic section. At Frenchman Flat, these units range in thickness from about 610 m (2,000 ft) in the north to more than 910 m (3,000 ft) in the center of the basin.

The hydraulic conductivity of tuff depends on the degree of welding and the presence of fractures.

Alluvial Aquifer and Playa Confining Units. At Frenchman Flat, there are two alluvial hydrostratigraphic units: the alluvial aquifer and the playa confining unit. The alluvial aquifer occurs at the surface and consists mainly of gravelly sand and sandy gravel deposited on alluvial fans by debris flow and sheet-flood processes. Finer-grained eolian sand is intercalated with the coarser alluvial deposits. Tuffaceous gravels are also present. The alluvial deposits are more than 1,220-m (4,000-ft) thick in the central portion of the basin and tend to be discontinuous, gradational, and poorly sorted. Saturated thickness is high in the central portion of Frenchman Flat, and here the unit is considered an aquifer with high porosity and hydraulic conductivity (although tuffaceous intervals with zeolitic alteration may locally reduce the unit's ability to transmit water).

The hydraulic conductivity of the alluvial aquifer is lower than that of the carbonate aquifer, but higher than that of the volcanic aquifer. The hydraulic head gradient in most areas of the alluvial aquifer in Frenchman Flat is relatively flat, less than one foot per mile, except near

the water supply and test wells. Groundwater generally flows northeast. The water table occurs at a depth of about 283 m (927 ft) in the northern portion of Frenchman Flat (at Drill Hole ER-5-3#2) and about 216 m (708 ft) in the central portion of the site (at Drill Hole ER-5-4#2).

The playa confining unit consists of three separate confining units, including the youngest one at the surface (at Frenchman Lake) and two older, buried units. Playa deposits are clayey silt, with intercalated sand and pumice in places. The deposits at Frenchman Lake are about 150-m (500-ft) thick.

In the vicinity of the GTCC reference location, the thickness of the saturated zone is about 220 m (720 ft) (REEC 1994).

Figure 9.1.3-3 is a schematic showing the relationship of the playa confining units and the alluvial aquifer.

9.1.3.2.3 Groundwater Flow. Groundwater in the NNSS region flows within several sub-basins of the Death Valley regional flow system, a major subprovince of the southern Great

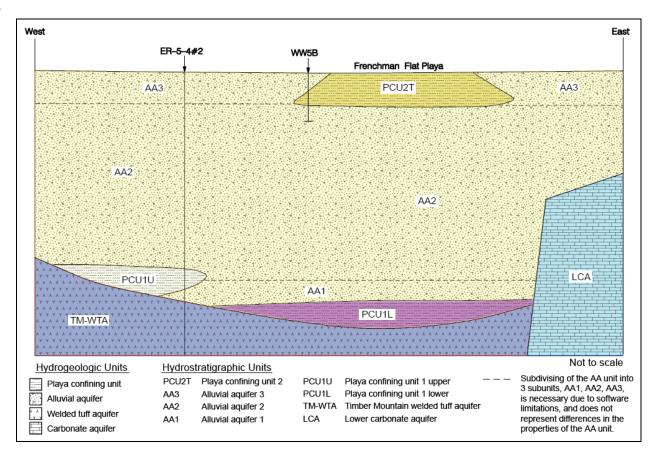


FIGURE 9.1.3-3 Hydrostratigraphic Cross Section through Central Frenchman Flat Showing the Alluvial Aquifer and Playa Confining Units (Source: Bechtel Nevada 2005a)

- Basin (Figure 9.1.3-4). The Death Valley regional flow system covers an area of about
- 2 40,920 km² (15,800 mi²) of the southern Great Basin, extending from recharge areas in the high
- 3 mountains of central Nevada to its southernmost areas of discharge in Death Valley, California.
 - The flow system transmits more than 86 million m³ (70,000 ac-ft) of groundwater annually. The
- 5 largest volume of groundwater flows through a thick sequence of Paleozoic carbonate rocks,

6 occurring at depths greater than 1,370 m (4,500 ft) below Frenchman Flat and referred to as the

"central carbonate corridor." Flow rates in this aquifer may be as high as 30.5 m/d (100 ft/d). The general direction of groundwater flow in these rocks is to the south-southwest (Bechtel Nevada 2005a; Laczniak et al. 1996).

Depth to groundwater in Frenchman Flat ranges from 283 m (927 ft) in the northern portion of the basin to 216 m (708 ft) in the central portion of Frenchman Flat. Groundwater recharge of the carbonate aquifer occurs mainly via lateral inflow. Most of the groundwater recharge in the alluvial aquifer at Frenchman Flat is due to upflow from the underlying carbonate rock aquifer. There is very little, if any, recharge at the surface in Frenchman Flat. Annual precipitation at Frenchman Flat is less than 25 cm (10 in.), and potential evapotranspiration is five times higher (Clark University 2006). In the vicinity of the GTCC reference location, annual precipitation is estimated to be about 12 cm (5 in.) (National Security Technologies, LLC 2008). Recharge may occur in isolated areas along large drainage washes surrounding the site during precipitation events. Discharge occurs along springs to the southwest; water also leaves the system through evapotranspiration (which has an estimated annual rate of 13 million m³ or 10,500 ac-ft) (Laczniak et al. 1996; Bechtel Nevada 2005a; DeNovio et al. 2006).

9.1.3.2.4 Groundwater Quality. Groundwater sampled from monitoring wells in Frenchman Flat has been characterized as a sodium bicarbonate type (Bechtel Nevada 2002a). Overall, groundwater quality within NNSS aquifers is acceptable for human consumption and for industrial and agricultural uses (DOE 1996). Bechtel Nevada (2002a) provides summary tables for water chemistry and water-level measurements taken in 2001 and compares these values with historical measurements. No significant changes due to contamination were detected; hydrologic conditions in the alluvial aquifer below Frenchman Flat were found to be stable.

A total of 10 underground nuclear tests were conducted at Frenchman Flat in the saturated zone or within 100 m (330 ft) of the water table (Bechtel Nevada 2005a). Figure 9.1.3-4 shows the test area locations in the northern and central parts of Frenchman Flat. With the exception of one of the northern tests, the nuclear tests were conducted within the alluvium (Table 9.1.3-4). Groundwater from Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 was sampled for gross alpha and gross beta radioactivity in 2001; all values were found to be below the National Primary Drinking Water Standards.

 9.1.3.2.5 Water Use. DOE operates four groundwater water supply systems at NNSS for its water use and operational support. The number of personnel and amount of water used have fluctuated widely in response to changes in NNSS programs since 1958, when withdrawals were about 200 ac-ft/yr (250,000 m³/yr). Groundwater is withdrawn from six basins (Mercury Valley, Yucca Flat, Frenchman Flat, Buckboard Mesa, Jackass Flat, and Gold Flat). Ten water supply

FIGURE 9.1.3-4 Locations of Underground Nuclear Testing at Frenchman Flat (Source: Bechtel Nevada 2005a)

6

7

1

2

3

wells, including three (WW-5A, WW-5B, and WW-5C) that are active in Frenchman Flat, are pumped into a system of storage tanks, sumps, and distribution systems. Current annual water use at NNSS is estimated to be about 1.1 billion L (290 million gal), well below the historic demand. Of the six basins tapped for water to support NNSS operations, the maximum historic withdrawal (1,664 ac-ft/yr or 2.1 million m³/yr) was from wells located at Frenchman Flat. Withdrawals are estimated to be about 1% of the total groundwater withdrawals in the Death Valley Regional Flow System (USGS 2007; Moreo et al. 2003; Buqo 2004).

12 13 14

10 11

Current groundwater use in Nye County falls into five categories: public water supply systems, domestic wells, mining, agriculture, and federal use. In 1995, total water withdrawals were estimated to be 99,668 ac-ft (123 million m³), with the greatest demands being for

American Indian Text

Indian people have raised in past radioactive waste disposal and transportation studies a range of questions regarding how to protect themselves and their natural resources from exposure to what they call the Angry Rock. The analysis of GTCC waste should address directly these potential impacts and suggest ways to either avoid or mitigate them. The potential impacts to Indian people and their life are significant including potentially blocking the path to the afterlife.

1 2

TABLE 9.1.3-4 List of Underground Nuclear Tests Conducted at Frenchman Flat

Emplacement Hole	Test Name	Date of Test	Yield (kilotons)	Depth of Burial (m [ft])	Static Water Level Depth (m [ft])	Working Point Geology	Estimated Alluvium Thickness (m [ft])
Northern Test	Area						
U-5i	Derringer	9/12/1966	7.8	255 (837)	335 (1,100)	Alluvium	305 (1,000)
U-5k	Milk Shake	3/25/1968	< 20	265 (868)	286 (939)	Alluvium	500 (1,640)
U-11b	Pin Stripe	4/25/1966	< 20	269 (970)	349 (1,146)	Volcanic rocks	58 (190)
U-11c	New Point	12/13/1966	< 20	239 (785)	299 (980)	Alluvium	478 (1,570)
U-11e	Diana Moon	8/27/1968	< 20	242 (794)	305 (1,000)	Alluvium	366 (1,200)
U-11f	Minute Steak	9/12/1969	< 20	265 (868)	302 (990)	Alluvium	427 (1,400)
U-11g	Diagonal Line	11/24/1971	<20	264 (867)	301 (988)	Alluvium	341 (1,120)
Central Test A	rea						
U-5a	Wishbone	2/18/1965	< 20	175 (574)	Not available	Alluvium	590 (1,935)
U-5b	Diluted Water	6/16/1965	< 20	193 (632)	213 (700)	Alluvium	400 (1,312)
U-5e	Cambric	5/14/1965	0.75	295 (967)	213 (700)	Alluvium	576 (1,890)

Source: Bechtel Nevada (2005a)

3 4 5

irrigation (80.0% or 60,233 ac-ft [74 million m^3] per year), mining (9.4% or 7,057 ac-ft [8.7 million m^3] per year), and domestic use (6.8% or 5,130 ac-ft [6.3 million m^3] per year). Water demand is expected to be about 166,000 ac-ft (204 million m^3) in 2020 (Buqo 2004).

7 8 9

10

11

Surface water is not a source of drinking water on NNSS. The closest surface water supply used for public consumption is Lake Mead, 160 km (98 mi) to the southeast of Frenchman Flat, which supplies a large portion of the water demand of Las Vegas (DOE 1996).

12 13 14

9.1.4 Human Health

15 16

17

18 19 Potential radiation exposures of the off-site general public can occur as a result of two main pathways: air transport and ingestion of game animals. The air transport pathway is a result of the resuspension of radioactive materials previously deposited in some areas of NNSS from past nuclear weapons testing activities. The airborne radionuclides can be blown off-site and

expose the off-site general public through the inhalation and ingestion pathways. There are no likely exposures related to stack emissions of radionuclides at the site.

Wild animals may be exposed to radioactive materials through ingesting on-site contaminated soils or water (from containment ponds or sewage lagoons). These animals can then be consumed by members of the general public (through hunting and similar activities), resulting in a radiation dose. Drinking contaminated groundwater is not considered a potential exposure pathway because access to the site is restricted, and radioactive contamination has not been detected in off-site sources of groundwater that could be used as potable water supplies. Exposure through direct radiation from radioactive materials processed on-site is also not considered a reasonable exposure pathway for the general public because there are no houses in the vicinity of the site boundary that have elevated levels of radiation.

Table 9.1.4-1 provides the radiation doses for the off-site general public estimated by using the results from recent environmental monitoring. The highest estimated potential radiation dose to an individual is 2.37 mrem/yr: 1.9 mrem/yr from airborne contamination and 0.47 mrem/yr from eating game animals (Wills 2009). This dose is less than 3% of the dose limit of 100 mrem/yr from all exposure pathways set by DOE to protect the general public from the operation of its facilities. The annual collective dose to the 43,000 people living within 80 km (50 mi) of the site (Wills et al. 2005) from natural background and man-made sources of radiation is estimated to be 26,000 person-rem/yr.

According to the worker radiation exposure data published by DOE (2007c), in 2006, 39 workers received measurable doses from on-site activities. A collective dose of 1.8 person-rem was recorded, which would result in an average individual dose of 46 mrem/yr. This dose would largely be from external gamma radiation, and to a much lesser extent, inhalation. The potential dose from the water ingestion pathway is expected to be zero, because no contamination was found in the on-site drinking water supply wells (Wills 2009). For comparison, the DOE administrative dose level for a radiation worker is 2 rem/yr (DOE 1994). Use of DOE's ALARA program ensures that worker doses are kept well below applicable standards.

9.1.5 Ecology

 NNSS is located within the transition between the Mojave and Great Basin deserts. It is therefore ecologically diverse, since elements of both deserts are present (Wills 2007). More than 750 species of vascular plants have been collected at NNSS (Wills 2007). Ten major vegetation alliances have been identified on NNSS; their distributions have been linked to temperature extremes, precipitation, and soil conditions (Wills and Ostler 2001). The vegetation alliances present in the Mojave Desert ecoregion include desert thorn, creosote bush/white bursage, and shadscale/saltbrush/white bursage; those in the Great Basin Desert ecoregion include saltbrush, rabbitbrush, sagebrush, and pinyon pine/sagebrush; and those from the transition ecoregion include burrobrush/wolfberry, Nevada jointfir, and blackbrush (Wills 2007). Four invasive plant species have become important components at NNSS: red brome (*Bromus rubens*), cheatgrass (*Bromus tectorum*), Russian thistle (*Salsola kali*), and barbwire Russian-thistle (*S. paulsenii*).

TABLE 9.1.4-1 Estimated Annual Radiation Doses to Workers and the General Public at NNSS

Receptor	Radiation Source	Exposure Pathway	Annual Dose to individual (mrem/yr)	Annual Dose to population (person-rem/yr)
On-site workers	Groundwater contamination	Water ingestion	0^a	
	Airborne radionuclides	Inhalation	1.9 ^b	
	Historical ground deposition and radioactive materials processed	Direct radiation	46 ^c	1.8 ^c
General public	Groundwater/surface water contamination	Water ingestion	0_{q}	
	Game animals	Food ingestion	0.47 ^e	
	On-site waste storage and shipment	Direct radiation	0^{f}	
Worker/public	Natural background radiation and man-made sources		620 ^g	26,600 ^h

- a Sampling results for the underground drinking water supply indicated no contamination caused by manmade radionuclides (Wills 2009), although migration of radionuclides from underground testing areas to on-site monitoring wells probably occurred. In 2008, 4 of the 14 monitoring wells had tritium concentrations (31 to 356 pCi/L) above the detection limit; however, they were well below the drinking water limit of 20,000 pCi/L. No gamma-emitting radionuclides were detected at concentrations above detection limits in 2008. Gross alpha and gross beta levels in all monitoring wells were above detection limits. The radioactivity is most likely from natural sources (Wills 2009).
- b By using the highest average air concentrations of man-made radionuclides at the Schooner monitoring station (Wills 2009), an inhalation dose of 1.9 mrem/yr was estimated for a hypothetical individual residing at this location. No one resides at this location (Wills 2009).
- ^c In 2006, 39 workers monitored for radiation exposures received measurable doses and the total collective dose for these workers was 1.8 person-rem (DOE 2008b). By distributing the collective dose evenly among the workers, an average individual dose of 46 mrem/yr was obtained.
- d No off-site springs, surface water supplies, or wells had levels of tritium significantly above the detection limit. No gamma-emitting radionuclides were detected. Gross alpha and gross beta radioactivity was below drinking water standards in all potable water sources and was most likely from natural sources (Wills 2009).
- e Dose estimated for ingestion of NNSS game animals assumes that a person consumed 20 cottontail rabbits from near Schooner Crater (Wills 2009). However, because hunting is not allowed on NNSS, it would be highly unlikely for an individual to receive this dose.
- f The TLD monitoring results along the boundary of NNSS showed no excessive dose above the background level, except for the Frenchman Lake region of Area 5 along the southeast boundary (Wills 2009), where a direct radiation dose of 349 mrem/yr (including background) could result from year-round exposure. However, there are no living quarters in this vicinity (Wills 2009).
- g Average dose to a member of the U.S. population as estimated in Report No. 160 of the NCRP (2009).
- h Collective dose to the population of 43,000 within 50 mi (80 km) of NNSS (Wills et al. 2005) from natural background radiation and man-made sources.

American Indian Text

The CGTO knows that radiation can be and is viewed from both a western science and a Native American perspective (See Indian Appendix for more). These alternative and competing perspectives are key for understanding the cultural foundations of American Indian responses to the mining, processing, use, transportation, and disposal of radioactive materials. At some level of analysis from and Indian perspective, all radioactive waste is basically the same problem to Indian people. Subtle differences in classification from a western science perspective of radioactive waste only mask and do not significantly modify the basic cultural problems of radioactive waste for Indian people and their traditional lands.

The Angry Rock is a concept used by Indian people, involved in DOE funded radioactive waste transportation and disposal studies, to quickly summarize the complex cultural problems associated with what happened to this known mineral when it was improperly taken and used by non-Indians. The notion of an Angry Rock is premised on the belief that all of the earth is alive, sentient, speaks Indian, and has agency. When the elements of the earth are approached with respect and asked for the permission before being used they share their power with humans. The reverse occurs when they are taken without permission – they become angry withhold their power and often using it against humans. Thus uranium is an Angry Rock. Uranium has been known and carefully used by spiritual specialists and medicine persons for thousands of years (Lindsay et al. 1968). The following American Indian elder quote from a DOE funded report (Austin 1998) begins to explain this perspective:

We are the only ones who can talk to these things. If we do not make sure that we talk to those things, then they are going to give us more bad harm, because it is already happening throughout the country. Those are the reasons why the Indian people say ... like uranium, for one, uranium was here since the beginning of this Earth, when it was here we knew uranium at one time. And still it is used, but then they got a hold of it and made something else out of it. Now it is a man made thing, and today it accumulates waste from nuclear power plants, it accumulates more, it has its own life. Radiation has said to us at one time "If you use me make sure you tell me before you use me why you are going to use me and what for. " And we never said anything to that uranium at all, and we put something else in there with it, which shouldn't belong with it. It gives it more power to eliminate the life, of all living things on this planet of ours. Those are the reasons, why the Indian people always say, and I know because I have been there. The rocks have a voice...

Although from a Western science perspective radiation can be isolated and contained by conventional techniques, the Angry Rock has the power to move and cannot be contained by barriers. Indian people who have dealt with the Angry Rock for thousands of years note that there are traditional ways to deal with uranium, the natural rock, if used by trained Indian specialists, but these may or may not work with the Angry Rock of modern radiation waste.

Songs ... we are the ones who should be talking to those things. Radiation is going to take all of our lives; it is continuously moving over the land. The land don't want it, nobody wants it. And today, we are doing a bad thing by using radiation on each other. Radiation is something that should not be used to kill animal life...

Another elder noted:

And can it be contained? As it's transformed it can be, I think it can be contained physically but not spiritually, and again I think spiritually as it's been altered because it's in that energy field because it's been altered. The spirit, that's where it can do its harm in an altered

Continued on next page

Continued

form. It doesn't do any good to anybody. And there you're just in the wrong place in the wrong time, it does influence plants and animals, minerals and air, the spirit of any area it passes through. The reason somebody is sick. I don't think it's necessary to talk about how each one of these is influenced, it just is.

Another elder noted:

As far as the transportation of waste there's a lot of unknowns and we don't know what the consequences are. We know there are many sicknesses that come out from people that have been contaminated by nuclear waste and as far as Indian people go, we show respect to the land, show respect to other people, for the animals, the plants, the rocks. The power of the rock – Just looking at Chemehuevi Mountain, it's a very spiritual mountain from this perspective right here. When I look out towards the mountains and I don't just see a mountain, I see a place of power, I see a place where I can go and meditate and speak with the Creator directly and ask for prayers and blessings for people directly. Just like anything else, you have to give prayers all the time because the creator is here to watch and protect over us. I feel that we wouldn't have come this far if he wasn't here to watch over us and we are here to pray and we are here to protect the other resources.

Another elder said:

I can envision the animals standing back once it goes through for the first time and they recognize that there's a danger that they would move away because of fear. That they would no longer be there and that there's something bad coming down the road and they disperse and move away into different corridors. Kind of like a dust storm, they disperse and move further and further away. I see it from the animals' standpoint, they're a lot smarter than us and they've been doing this for longer than us and their senses are more keen and I think the animals would get back and it would create dead zones throughout the country. Through these corridors or transportation routes of course at the site there will be those that are curious who want to go see.

Another elder said:

I don't know what you would do with this rock if it's angry and this is its way of rebelling, getting back. I think as a Native American I would backstep and ask for forgiveness. Sometimes forgiving is not very easy because there's sacrifices we have to make and there's consequences ... I don't think it can be done as a group, it's an individual thing and each one of us has to go back and ... ask for forgiveness for what has taken place. It's not just only that I think it's going to be more complicated than going out into the mountains and saying, "hey, I'm sorry, I won't do this, I won't do that and I won't bother you anymore. There's a lot of other things that need to be forgiven. The rock is the most precious and it's the largest and it's the one that needs to be forgiven the most. There's a lot of small forgiveness that have to be given before the large rock. I think it's a stepping stone... the rocks are angry, yes, they're striking out saying "don't do this to me, don't touch me, don't let this happen. " In a sense you look at it from a spirituality standpoint, it's the spirits of Mother Earth telling us don't mess with Mother Earth. It remains a matter of debate as to whether traditional means of placating powerful rock-based forces can be used to control or placate radioactive waste. Western scientists have created a problem for Indian people that, despite being very critical to their future, is not easily resolved.

American Indian Text

The CGTO knows that this site (in Area 5) is an ancient playa, surrounded by mountain ranges. The runoff from these ranges serves to maintain the healthy desert floor. Animals frequent this area, there are numerous animals' trails, and these play a significant part in the history of the locality and of the Indian lifestyles. Our ancestors knew that the Creator always provided for them and this site is one of their favorite places to hunt and trap rabbits. We have special leaders that organized large rabbit hunts. Many people participated so this place would be occupied at times by all kinds of our people. Rabbits provided good eating, bones for tool-making, warm blankets, and even games. Indian people refrained from eating coyote, wolves, and birds but these contribute to our stories which tell us how to behave and why we are here. We have many stories and songs that include animals and birds who have human-like antics. From these antics Indian people learn the life lessons to build character to become better persons. So animals and the places where they live contribute to our history and culture.

This culturally central place was used by and important to Indian people from our agricultural and horticultural communities located to the north – near Reese River Valley and Duckwater, to the south – near Ash Meadows, to the southeast – near Indian Springs and Corn Creek, to the east – near the Pahranagat-Muddy River, and west – near the Oasis Valley. It was also used by people from our agricultural and horticultural communities to the far west in Owens Valley, to the far south near Cottonwood Island and Palo Verde Valley on the Colorado River, to the far southwest at Twenty Nine Palms, to the far east along the Virgin River, Santa Clara River, and Kanab Creeks, to the far north along the Humbolt River and Ruby Valley.

They rapidly invade disturbed sites at NNSS and delay revegetation by native species (Wills and Ostler 2001). The GTCC disposal facility would occur within the Mojave Desert ecoregion and within the creosote bush/white bursage vegetation alliance. The climate in this area is arid, with average annual precipitation of about 12.3 cm (5 in.). Predominant plant species include white bursage (*Ambrosia dumosa*), creosote bush (*Larrea tridentata*), Nevada jointfir

pallidum) (DOE 2002b; Wills and Ostler 2001).

None of the natural water bodies at NNSS are considered jurisdictional wetlands (Wills 2009). Wetlands on NNSS include cave pools at spring sites, four natural rock depression pools, and two ephemeral ponds. The natural wetlands (e.g., seeps and springs) and human-made water sources (e.g., sumps and sewage lagoons) provide unique habitat areas for vegetation and wildlife at NNSS (Wills 2007). None of the water bodies are in the area of the GTCC reference location.

(Ephedra nevadensis), small flower ratany (Krameria erecta), and pale wolf-berry (Lycium

Fifty-nine mammal species, including 15 bat species, have been reported from NNSS. Rodents are the most abundant and widespread group of mammals on NNSS (Wills and Ostler 2001), with the long-tailed pocket mouse (*Chaetodipus formosus*) and Merriam's kangaroo rat (*Dipodomys merriami*) being most abundant (DOE 2002b). Larger mammal species include the black-tailed jackrabbit (*Lepus californicus*), desert cottontail (*Sylvilagus audubonii*), mountain cottontail (*S. nuttallii*), mule deer (*Odocoileus hemionus*), pronghorn (*Antilocapra*

americana), coyote (*Canis latrans*), kit fox (*Vulpes macrotis*), badger (*Taxidea taxus*), bobcat, and mountain lion (Wills 2007). The mountain lion preys on wild horses (*Equus caballus*), mule deer, pronghorn, and even the desert tortoise (*Gopherus agassizii*). It also poses a potential threat to humans on NNSS (National Security Technologies, LLC 2007). Wild horses occur on the northern portion of NNSS. Between 1999 and 2006, the number of wild horses ranged from 33 to 53 (Wills 2007). No hunting is allowed on NNSS (Wills and Ostler 2001). Most mammals on NNSS other than rodents are protected by the State of Nevada and managed as either game or furbearing mammals, and the bat species are considered sensitive species (Wills 2007).

Nearly 240 species of birds have been observed at NNSS. Nearly 80% are migrants or seasonal residents. A total of 36 bird species, including 9 raptors, are considered year-long residents at NNSS (Wills and Ostler 2001). Twenty-two species of transient waterfowl and shorebirds have been observed on NNSS. They are observed near springs, well ponds, playas, and man-made impoundments. Nearly all bird species on NNSS are protected by the Migratory Bird Treaty Act (Wills 2007).

Thirty-four reptile species are known to exist at NNSS: 16 lizard species, 17 snake species, and the desert tortoise. Four poisonous snakes occur on NNSS. The bullfrog (*Rana catesbeiana*), which is not native to the southwestern United States, is the only amphibian species that has been identified at NNSS (Wills 2007).

There are 30 natural water bodies on NNSS, including 15 springs, 9 seeps, 4 tank sites (natural rock depressions that catch and hold surface runoff), and 2 ephemeral ponds (Wills and Ostler 2001). The water bodies total 2.5 ha (6.1 ac) and range from springs and seeps with

American Indian Text

Plants

The CGTO knows based on previous DOE-sponsored ethnobotany studies that there are at least 364 Indian use plants on the NNSS (see Appendix G). Indian people visiting the proposed location of the GTCC facility identified the following traditional use plants: (1) Indian Tea, (2) White Sage or Winter Fat, (3) Indian Rice Grass, (4) Creosote, (5) Wolfberries, (6) Four O'clock, (7) Spiny Hop Sage, (8) Joshua Tree, (9) Daises, (10) Desert Trumpet, (11) Cholla, (12) Globe Mallow, (13) Fuzzy Sage, (14) Tortoise Food plant, (15) Sacred Datura, (16) Wheat Grass, and (17) Lichen. Other plants were present but not identified due to the late season and the dry condition of the plants.

Plants are still used for medicine, food, basketry, tools, homes, clothing, fire, and ceremony – both social and healing. The characteristics of the plants at the proposed GTCC area are smaller and thinner than in other desert areas where it is wetter. Indian people from elsewhere traveled to this area to gather specific plants because they have stronger characteristics when they grow in dry places. The sage is used for spiritual ceremonies, smudging, and medicine. The Indian rice grass and wheat grass are used for breads and puddings. Joshua trees and Yucca plants are important for hair dye, basketry, foot ware, and rope. Datura is used for hallucinogenic effects during which alternative places can be visited by medicine men. Datura also goes itself to disturbed areas and heals them. The globe mallow had traditional medicine uses, but in recent times is also used for curing European contagious diseases.

American Indian Text

Animals/Insects

The CGTO knows based on previous DOE-sponsored ethnofauna studies that there are at least 170 Indian use animals on the NNSS [see Appendix G]. Indian people visiting the proposed location of the GTCC facility identified the following traditional use animals: (1) Jack Rabbits, (2) Whiptail Lizards, (3) Antelope, (4) Tortoise, (5) Kangaroo Rats, (6) Horned Toad, (7) Rock Wrens, (8) Ravens, (9) Grasshoppers, and (10) Stink Bugs. Other animals (such as snakes, bats, and owls) were perceived to be present but not observed because they primarily emerge at night.

All animals and insects were and are culturally important and the relationships between them, the Earth, and Indian people are represented by the respectful roles they play in the stories of our life then and now. The GRCC valley is where a spiritual journey occurred. It involved Wolf (Tavats in Southern Paiute, Bia esha in Western Shoshone, Wi gi no ki in Owens Valley Paiute) and Coyote (Sinav in Southern Paiute, Duhvo esha in Western Shoshone, Esha in Owens Valley Paiute) and is considered a Creation Story. Only parts of this can be presented here. When Wolf and Coyote had a battle over who was more powerful, Coyote killed Wolf and felt glorious. Everyone asked Coyote what happened to his brother Wolf. Coyote felt extremely guilty and tried to run and hide but to no avail. Meanwhile, the Creator took Wolf and made him into a beautiful Rainbow (Paro wa tsu wu nutuvi in Southern Paiute, Oh ah podo in Western Shoshone, Paduguna in Owens Valley Paiute). When Coyote saw this special privilege he cried to the Creator in remorse and he too wanted to be a Rainbow. Because Coyote was bad, the Creator put Coyote as a fine white mist at the bottom of the Rainbow's arch. This story and the spiritual trails discussed in the full version are connected to the Spring Mountains and the large sacred cave in the Pintwater Mountains as well as to lands now called the Nevada National Security Site. This area is the home place of Wolf who is still present and watches over the area and us.

1 2

4 5 essentially no surface water area to an area of 2.3 ha (5.7 ac) for Yucca Playa Pond, one of the ephemeral ponds (Wills and Ostler 2001). No natural water bodies are located near the GTCC reference location. Numerous man-made impoundments at several locations throughout NNSS support various operations. Many animals at NNSS, including migratory waterfowl, make use of these water sources (Wills and Ostler 2001). No native fish species occur at NNSS, but several nonnative species have been introduced into some of the man-made ponds (Wills 2007).

8 9 10

11

12

13

15

16

17 18

19

20

The federally and state-listed species identified on or adjacent to NNSS are listed in Table 9.1.5-1. No federally protected plant species occur on NNSS. Also, no federal plant species of special concern (e.g., formerly known as Category 2 candidate species) were observed in the GTCC reference location at NNSS (Blomquist et al. 1995). The Death Valley beardstongue (*Penstemon fruticiformis* var. *armagosae*) is the only state-listed threatened species known to occur on or adjacent to NNSS. However, a number of sensitive plant species that occur on or adjacent to NNSS are on the Nevada Natural Heritage Program (NNHP) Sensitive Plant Taxa List (NNHP 2007). Some of these species are reported from Area 5 (area that contains the GTCC reference location) or from the southern portions of Areas 6 and 11, including the white bear poppy (*Arctomecon merriamii*), black milk-vetch (*Astragalus funereus*), sanicle biscuitroot (*Cymopterus ripleyi* var. *saniculoides*), Beatley's milk-vetch (*Astragalus beatleyae*), and Parish's

TABLE 9.1.5-1 Federally and State-Listed Threatened, Endangered, and Other Special-Status Species on or Adjacent to NNSS

Common Name	Status ^a
(Scientific Name)	Federal/State
(Scientific Paint)	1 ederal/ State
Mosses	
Planoconvex entosthodon (Entosthodon planoconvexus)	-/W, 5 years
Tamboon (en carocanous)	,, e j cars
Plants	
Beatley's milk-vetch (Astragalus beatleyae)	SC/W, 5 years
Beatley's scorpionflower (Phacelia beatleyae)	SC/W, 5 years
Black milk-vetch (Astragalus funereus)	SC/W, 5 years
Bullfrog Hills peavine (Lathyrus hitchcockianus)	-/W, 5 years
Charleston milk-vetch (Astragalus oophorus var. clokeyanus)	SC/W, 5 years
Clarke phacelia (<i>Phacelia filiae</i>)	-/W, 10 years
Clokey buckwheat (Eriogonum heermannii var. clokeyi)	-/W, 5 years
Death Valley beardstongue (Penstemon fruticiformis var. armagosae)	-/ST, 5 years
Drain buckwheat (Eriogonum concinnum)	-/W, 5 years
Intermountain evening-primrose (Camissonia megalantha)	SC/W, 10 years
Kingston bedstraw (Galium hilendiae ssp. kingstonense)	SC/W, 10 years
Pahute green gentian (Frasera pahutensis)	SC/W, 10 years
Pahute Mesa beardtongue (Penstemon pahutensis)	SC/W, 10 years
Parish's phacelia (<i>Phacelia parishii</i>)	SC/W, 10 years
Pumice alpinegold (Hulsea vestita ssp. inyoensis)	-/W, 10 years
Rock purpusia (Iversia arizonica var. saxosa)	-/W, 5 years
Sanicle biscuitroot (Cymopterus ripleyi var. saniculoides)	SC/-
Weasel phacelia (Phacelia mustelina)	-/W, 10 years
White bear poppy (Arctomecon merriamii)	SC/W, 10 years
Reptiles	
Banded gila monster (Heloderma suspectum cinctum)	SC/S2
Chuckwalla (Sauromalus obesus)	SC/-
Desert tortoise (Gopherus agassizii)	T/Yes
,	
Birds	
Black tern (Chlidonias niger)	SC/-
Ferruginous hawk (Buteo regalis)	SC/Yes
Gray flycatcher (Empidonax wrightii)	SC/-
Lucy's warbler (Vermivora luciae)	SC/-
Peregrine falcon (Falco peregrinus)	SC/Yes
Phainopepla (Phainopepla nitens)	SC/Yes
Western burrowing owl (Athene cunicularia hypugaea)	SC/-
Western least bittern (Ixobrychus exilis hesperis)	SC/Yes
White-faced ibis (Plegadis chihi)	SC/-
Mammals	
Big free-tailed bat (Nyctinomops macrotis)	SC/-
Fringed myotis (Myotis thysanodes)	SC/Yes
Long-eared myotis (Myotis evotis)	SC/-
Long-legged myotis (<i>Myotis volans</i>)	SC/-
Small-footed myotis (Myotis ciliolabrum)	SC/-

TABLE 9.1.5-1 (Cont.)

Common Name	Status ^a
(Scientific Name)	Federal/State
Mammals (Cont.)	
Spotted bat (Euderma maculatum)	SC/Yes
Townsend's big-eared bat (Corynorhinus townsendii)	SC/Yes
Yuma myotis (Myotis yumanensis)	SC/-

- a S: State rank indicator, based on distribution within Nevada at the lowest taxonomic level.
 - S2: Imperiled due to rarity or other demonstrable factors.

SC (species of concern): An informal term referring to a species that might be in need of conservation action. This may range from a need for periodic monitoring of populations and threats to the species and its habitat, to the necessity for listing as threatened or endangered. Such species receive no legal protection under the ESA, and use of the term does not necessarily imply that a species will eventually be proposed for listing.

ST (Nevada Natural Heritage Program or NNHP at-risk plant and lichen taxa, threatened): Believed to meet the ESA definition of threatened.

T (threatened): A species likely to become endangered within the foreseeable future throughout all or a significant portion of its range.

W (NNHP at-risk plant and lichen taxa, watch-list species): Potentially vulnerable to becoming threatened or endangered.

Yes: A species protected under *Nevada Revised Statute* 501 (Administration and Enforcement of Nevada Statute Title 45 – Wildlife).

5 years: Monitor a minimum of once every 5 years under the Ecological Monitoring and Compliance Program.

10 years: Monitor a minimum of once every 10 years under the Ecological Monitoring and Compliance Program.

-: Not listed.

Sources: Blomquist et al. (1995); NNHP (2007); Steen et al. (1997); Wills (2007); Wills and Ostler (2001)

1 2

3

4

phacelia (*Phacelia parishii*) (Blomquist et al. 1995). At least once every five years, known populations of sensitive plant species are surveyed, and their status is evaluated (NNHP 2007).

5 6 7

9

10

11 12

13

The desert tortoise is the only federally listed animal species that resides on NNSS. It inhabits the southern third of NNSS at low estimated densities (i.e., between 0 and 34.7 tortoises/km² [0 and 90/mi²]). In the area of the GTCC reference location, desert tortoise densities range from 3.7 to 17/km² (9.6 to 45/mi²) (Wills 2007). However, densities might be lower because of the close proximity of the GTCC reference location to the RWMS. The bald eagle, recently delisted, is a rare migrant on NNSS (Wills 2007). Two reptile, nine bird, and seven bat species are species of concern on NNSS. The banded gila monster (*Heloderma suspectum cinctum*) was observed only once on NNSS, and no studies of this species on NNSS have been conducted or

are planned (Wills and Ostler 2001). Among the bird species of special concern listed in Table 9.1.5-1, only the burrowing owl resides and breeds on NNSS (Wills and Ostler 2001).

9.1.6 Socioeconomics

Socioeconomic data for NNSS describe an ROI surrounding the site that is composed of two counties: Clark County and Nye County, Nevada. More than 95% of NNSS workers reside in these counties (DOE 2002b).

9.1.6.1 Employment

 In 2005, total employment in the ROI stood at 796,006 and was expected to reach 942,091 by 2008. Employment grew at an annual average rate of 5.8% between 1995 and 2005 (U.S. Bureau of the Census 2008a). The economy of the ROI is dominated by the trade and service industries, with employment in these activities currently contributing almost 75% of all employment (see Table 9.1.6-1). Construction is also a large employer in the ROI, contributing almost 12% of total ROI employment. ROI employment at NNSS stood at 1,581 in 2001 (DOE 2002b).

TABLE 9.1.6-1 NNSS County and ROI Employment by Industry in 2005

	Nev	ada	-	
Sector	Clark County	Nye County	ROI Total	% of ROI Total
Agriculture ^a	335	384	719	0.1
Mining	546	750	1,296	0.2
Construction	92,858	1,126	93,984	11.8
Manufacturing	22,046	211	22,357	2.8
Transportation and public utilities	30,894	191	31,085	3.9
Trade	121,033	1,628	122,661	15.4
Finance, insurance, and real estate	50,963	283	51,246	6.4
Services	468,324	3,949	472,273	59.3
Other	375	10	385	0.0
Total	787,374	8,532	796,006	

a Source: USDA (2008)

Source: U.S. Bureau of the Census (2008a)

9.1.6.2 Unemployment

Unemployment rates have varied across the counties in the ROI (Table 9.1.6-2). Over the 10-year period 1999–2008, the average rate in Nye County was 6.9%, with a lower rate of 5.1% in Clark County. The average rate in the ROI over this period was 5.1%, slightly higher than the average rate for the state of 5.0%. Unemployment rates for the first two months of 2009 contrasted markedly with rates for 2008 as a whole; in Nye County, the unemployment rate increased to 13.0%, while in Clark County, the rate reached 10.0%. The average rates for both the ROI and state (10.1%) during this period were higher than the corresponding average rates for 2008.

9.1.6.3 Personal Income

 Personal income in the ROI stood at almost \$63 billion in 2005 and was expected to reach \$75 billion in 2008, growing at an annual average rate of growth of 6.4% over the period 1995–2005 (Table 9.1.6-3). ROI personal income per capita also rose over the same period and was expected to reach \$36,923 in 2008, compared with \$31,856 in 1995. Per capita incomes were higher in Clark County (\$36,108 in 2005) than elsewhere in the ROI.

9.1.6.4 Population

The population of the ROI was 1,820,232 in 2006 (U.S. Bureau of the Census 2008b) and was expected to reach 2,030,464 by 2008 (Table 9.1.6-4). In 2006, 1,777,539 people were living in Clark County (98% of the ROI total). Over the period 1990–2006, population in the ROI as a whole grew rapidly, with an average growth rate of 5.6%, while the population in Nevada as a whole grew at a rate of 4.6% over the same period.

TABLE 9.1.6-2 NNSS Average County, ROI, and State Unemployment Rates (%) in Selected Years

Location	1999–2008	2008	2009 ^a
Clark County	5.1	6.7	10.0
Nye County	6.9	9.2	13.0
ROI	5.1	6.8	10.1
Nevada	5.0	6.7	10.1

a Rates for 2009 are the average for January and February.

Source: U.S. Department of Labor (2009a-d)

TABLE 9.1.6-3 NNSS County, ROI, and State Personal Income in Selected Years

Income	1995	2005	Average Annual Growth Rate (%), 1995–2005	2008 ^a
meone	1773	2003	1773 2003	2000
Clark County				
Total personal income (2006 \$ in millions)	33,142	61,722	6.4	73,529
Personal income per capita (2006 \$)	31,995	36,108	1.2	37,083
Nye County				
Total personal income (2006 \$ in millions)	625	1,199	6.7	1,442
Personal income per capita (2006 \$)	25,893	29,689	1.4	30,263
ROI total				
Total personal income (2006 \$ in millions)	33,767	62,921	6.4	74,971
Personal income per capita (2006 \$)	31,856	35,960	1.2	36,923
Nevada				
Total personal income (2006 \$ in millions)	51,921	89,005	5.5	103,428
Personal income per capita (2006 \$)	32,829	36,896	1.2	37,901

^a Argonne National Laboratory estimates.

Source: DOC (2008)

TABLE 9.1.6-4 NNSS County, ROI, and State Population in Selected Years

				Average Annual Growth Rate (%),	
Location	1990	2000	2006	1990-2006	2008a
Clark County	741,459	1,375,738	1,777,539	5.6	1,982,831
Nye County	17,781	35,512	42,693	5.6	47,633
ROI	759,240	1,408,250	1,820,232	5.6	2,030,464
Nevada	1,220,695	1,998,257	2,495,529	4.6	2,728,865

^a Argonne National Laboratory projections.

Sources: U.S. Bureau of the Census (2008b); estimated data for 2006

3 4 5

9.1.6.5 Housing

Housing stock in the ROI as a whole grew at an annual rate of 5.3% over the period 1990–2000 (Table 9.1.6-5), with total housing units expected to reach 830,175 in 2008. A total of 250,068 new units were added to the existing housing stock in the ROI between 1990 and 2000. On the basis of annual population growth rates, 72,373 housing units in the county were expected to be vacant in 2008; of these, 26,715 were expected to be rental units available to construction workers at the GTCC waste disposal facility.

9.1.6.6 Fiscal Conditions

Construction and operations of a GTCC waste disposal facility could result in increased expenditures for local government jurisdictions, including counties, cities, and school districts. Revenues to support these expenditures would come primarily from state and local sales tax revenues associated with employee spending during construction and operations and be used to support additional local community services currently provided by each jurisdiction. Table 9.1.6-6 presents information on expenditures by the various local government jurisdictions and school districts in the ROI.

9.1.6.7 Public Services

Construction and operations of a GTCC waste disposal facility could require increases in employment in order to provide public safety, fire protection, community, and educational services in the counties, cities, and school districts likely to host relocating construction workers and operations employees. Additional demands could also be placed on local physician services. Table 9.1.6-7 presents data on employment and levels of service (number of employees per 1,000 population) for public safety and general local government services. Table 9.1.6-8 provides data on teachers and level of service, and Table 9.1.6-9 covers physicians.

9.1.7 Environmental Justice

Figures 9.1.7-1 and 9.1.7-2 and Table 9.1.7-1 show the minority and low-income compositions of the total population located in the 80-km (50-mi) buffer around NNSS from Census data for the year 2000 and CEQ guidelines (CEQ 1997). Persons whose incomes fall below the federal poverty threshold are designated as low income. Minority persons are those who identify themselves as Hispanic or Latino, Asian, Black or African American, American Indian or Alaska Native, Native Hawaiian or other Pacific Islander, or multi-racial (with at least one race designated as a minority race under CEQ). Individuals identifying themselves as Hispanic or Latino are included in the table as a separate entry. However, because Hispanics can

1 2

TABLE 9.1.6-5 NNSS County, ROI, and State Housing Characteristics in Selected Years

The CII :	1000	2000	20003
Type of Housing	1990	2000	2008 ^a
Clark County			
Owner occupied	149,007	302,834	436,470
Rental	138,018	209,419	301,832
Vacant units	30,163	47,546	68,527
Total units	317,188	559,799	806,829
Nye County			
Owner occupied	4,677	10,167	14,896
Rental	1,987	3,142	4,603
Vacant units	1,813	2,625	3,846
Total units	8,477	15,934	23,345
	-,	,	
ROI			
Owner occupied	153,684	313,001	451,366
Rental	140,005	212,561	306,436
Vacant units	31,976	50,171	72,373
Total units	325,665	575,733	830,175
Total allies	323,003	575,755	030,173
Nevada			
Owner occupied	255,388	457,247	728,637
Rental	210,909	293,918	468,367
Vacant units	52,561	76,992	122,689
Total units	518,858	828,157	1,319,693
Total ullits	510,050	020,137	1,317,073

^a Argonne National Laboratory projections.

Source: U.S. Bureau of the Census (2008b)

TABLE 9.1.6-6 NNSS County, ROI, and State Public Service Expenditures in 2006 (\$ in millions)

Location	Local Government	School District
Clark County	1,454	1,111
Nye County	30	29
ROI total	1,484	1,140
Nevada	12,164	2,707

Source: U.S. Bureau of the Census (2008c)

	Clark	Clark County		County
Service	No.	Level of Service ^a	No.	Level of Service ^a
Police protection	2,830	1.6	102	2.4
Fire protection ^b	1,270	0.7	0	0.0
General	16,651	9.4	240	5.6

	ROI		Ne	vada
Service	No.	Level of Service ^a	No.	Level of Service ^a
Police protection	2,932	1.6	3,974	1.6
Fire protection	1,270	0.7	2,230	0.9
General	16,891	9.3	71,241	28.5

a Level of service represents the number of employees per 1,000 persons in each county.

Source: U.S. Bureau of the Census (2008b,c)

TABLE 9.1.6-8 NNSS County, ROI, and State Education Employment in 2006

Location	No. of Teachers	Level of Service ^a
Clark County	14,862	8.4
Nye County	366	8.6
ROI	15,228	8.4
Nevada	21,744	8.7

a Level of service represents the number of teachers per 1,000 persons in each county.

Sources: National Center for Educational Statistics (2008); U.S. Bureau of the Census (2008b,c)

TABLE 9.1.6-9 NNSS County, ROI, and State Medical Employment in 2006

Location	No. of Physicians	Level of Service ^a
Clark County	3,873	2.2
Nye County	40	0.9
ROI	3,913	2.2
Nevada	4,791	1.9

a Level of service represents the number of physicians per 1,000 persons in each county.

Sources: AMA (2006); U.S. Bureau of the Census (2008b)

3

1 2

b Does not include volunteers.

American Indian Text

DOE has recognized the need to address environmental justice concerns of the CGTO based on disproportionately high and adverse impacts to their member tribes from DOE NNSS activities. In 1996, the CGTO expressed concerns relating to environmental justice that included (1) damage to Holy Lands, (2) negative health impacts, and (3) lack of access to traditional places that contributes to breakdowns in cultural transmission. In the 2002 NNSS SA, NNSA/NSO concluded that with the selection of the Preferred Alternative, the CGTO would be impacted at a disproportionately high and adverse level consequently creating an environmental justice issue. Since 2002, NNSA/NSO has supported a few ethnographic studies involving the CGTO and culturally important places including in 2004, when NNSA/NSO arranged for tribal representatives to conduct evening ceremonies at Water Bottle Canyon. While the opportunity for the evening ceremony was a significant accommodation, disproportionately high and adverse impacts from DOE NNSS activities continue to affect American Indians. The three environmental justice issues noted by the CGTO need to be addressed.

be of any race, this number also includes individuals who also identified themselves as being part of one or more of the population groups listed in the table.

9.1.8 Land Use

NNSS encompasses about 352,512 ha (870,400 ac) (Wills 2007). The site was established in 1950 to permit testing of underground and atmospheric nuclear devices. It is bordered on all sides by federal lands: the Yucca Mountain Project Area on the southwest corner, the Nevada Test and Training Range (NTTR) on the west and north, an area used by both the NTTR and the Desert National Wildlife Range on the east, and BLM-administered lands on the south (Wills 2007).

DOE's NNSA Nevada Site Office (NNSA/NSO) directs the management and operation of NNSS. The three major missions at NNSS are (1) national security (involving stockpile stewardship, homeland security, and test readiness programs), (2) environmental management (involving the environmental restoration and waste management programs), and (3) stewardship of NNSS (involving the maintenance of facilities and infrastructure to support all NNSS programs and to provide a safe environment for NNSS workers). The primary role of NNSS is to ensure that the existing U.S. stockpile of nuclear weapons remains safe and reliable (Wills 2007). Land use by each of the NNSS missions occurs within zones designated by the land use map depicted in the *NTS Resource Management Plan* as shown in Wills (2007).

 Two areas (Area 3 and Area 5) support the waste management program at NNSS. The program is designed to safely manage and dispose of LLRW and safely manage and characterize hazardous and TRU wastes for off-site disposal (Wills 2007). The GTCC reference location at NNSS is located within Area 5 and serves as a basis for evaluation. If NNSS is selected, the final location for a disposal facility within Area 5 will be based on further analysis.

FIGURE 9.1.7-1 Minority Population Concentrations in Census Block Groups within an 80-km (50-mi) Radius of the GTCC Reference Location at NNSS (Source: U.S. Bureau of the Census 2008b)

1

FIGURE 9.1.7-2 Low-Income Population Concentrations in Census Block Groups within an 80-km (50-mi) Radius of the GTCC Reference Location at NNSS (Source: U.S. Bureau of the Census 2008b)

1

TABLE 9.1.7-1 Minority and Low-Income Populations within an 80-km (50-mi) Radius of NNSS

Population	California Block Groups	Nevada Block Groups
Total population	638	37,558
White, Non-Hispanic	503	31,064
Hispanic or Latino	43	3,569
Non-Hispanic or Latino minorities	92	2,925
One race	77	2,059
Black or African American	2	1,074
American Indian or Alaskan Native	63	440
Asian	8	347
Native Hawaiian or other Pacific Islander	4	118
Some other race	0	80
Two or more races	15	866
Total minority	135	6,494
Percent minority	21.2	17.3
Low-income	79	3,770
Percent low-income	12.4	10.0
State percent minority	40.5	24.8
State percent low-income	14.2	10.5

Source: U.S. Bureau of the Census (2008b)

9.1.9 Transportation

NNSS is situated about 96 km (60 mi) northwest of Las Vegas, Nevada. The major regional road access to the area is from I-15 as it passes through Las Vegas on its journey from Los Angeles (to the southwest) to Salt Lake City, Utah (to the northeast). The site is circled by U.S. and state highways, with US 95 to the south and west, US 6 and SR 375 to the north, and US 93 to the east. Farther from the area, I-80 and I-40 are both major east-west freeways. To the north, I-80 passes through Salt Lake City, Utah, and Reno, Nevada. To the south, I-40 passes through Flagstaff, Arizona, and Barstow, California.

US 95 is a major north-south roadway extending south to the Mexican border and north to the Canadian border. It is, by far, the most frequently used road for direct access to NNSS and is used by more than 95% of the employees working on-site. It is the closest and most direct route to the site for hauling materials and waste, whether hauled directly by trucks or by rail (DOE 1996). It is a four-lane roadway between Las Vegas and the Mercury interchange and within Las Vegas, and it is a two-lane rural highway beyond the Mercury interchange to the north. US 93 is a major north-south roadway across Nevada. It extends from Las Vegas to the Canadian border, intersecting I-80 near the town of Wells, Nevada. It is an all-weather, two-lane, paved roadway. US 6 is an east-west roadway, located to the north of NNSS and the Tonopah Test Range, and it links US 93 and US 95. Nevada SR 375 provides vehicular access to NNSS via a connecting road. It runs northwest along the northeastern boundaries of the site. This

stretch of two-lane highway links US 6 and US 93. Traffic counts for these roads are provided in Table 9.1.9-1.

2 3 4

5

The main access to NNSS is the Mercury Highway, which originates at US 95 and accesses the main gate in Mercury. There is another entrance 8 km (5 mi) to the west of Mercury, which is a turnoff to Jackass Flats Road; however, this entrance is presently barricaded. NNSS has restricted access into Area 25 from US 95 at Lathrop Wells Road, approximately 32 km (20 mi) west of Mercury. A fourth entrance, seldom used, is located in the northeast corner of NNSS and can be reached from SR 375 (DOE 1996). Access to NNSS is restricted, and guard stations are located at all entrances, as well as throughout the site (DOE 1996).

10 11 12

TABLE 9.1.9-1 Traffic Counts in the Vicinity of NNSS

	Annual Average
Location	Daily Traffic
DOE access road to Mercury from US 95	1,250
US 95	
At SR 157 interchange	11,100
North of Indian Springs, south of DOE access road	3,650
4 mi north of Mercury interchange	3,050
1.5 mi south of SR 373	2,900
0.2 mi north of SR 373	2,550
Milepost 77, between SR 267 and SR 374	2,200
Just south of Goldfield	1,900
South of Tonopah	2,150
US 6	,
West of Tonopah	2,000
East of Tonopah and SR 376	590
West of Warm Springs	300
SR 375	
East of Warm Springs	150
West of SR 318	220
US 93	
South of Alamo	1,550
North of I-15 interchange	2,550
I-15	•
North of SR 604 interchange	26,100

Source: NDOT (2007)

On-site, the 1,127-km (700-mi) road network consists of 644 km (400 mi) of paved primary roads and 482 km (300 mi) of unpaved secondary roads (DOE 1996). Most paved roadways are two-way and two-lane with a speed limit of 89 km/h (55 mph) unless posted otherwise. The speed limit in developed areas is 32 km/h (20 mph). The maximum speed limit on dirt roads is 56 km/h (35 mph). In addition, NNSS contains numerous event-related unpaved roads that are not maintained after a test has been conducted. Traffic flow and control throughout NNSS are maintained by conventional stop and yield signs at major intersections. Traffic regulations are enforced by the Nye County Sheriff's Department.

NNSS does not have direct rail access. The closest access to commercial rail service is in Las Vegas. However, the transportation of inbound LLRW shipments through Las Vegas has been discouraged, especially through the I-15 and US 95 interchange (the "spaghetti bowl") (DOE 2007a), which is subject to heavy traffic congestion. Use of intermodal facilities at either Barstow, California (in San Bernadino County), or Caliente, New Mexico, was recommended in the past because the rail terminals can readily handle additional freight, they keep shipments from more populated areas, and they are near major highways (DOE 1999). Shipment distances by truck from Barstow and Caliente would be approximately 290 km (180 mi) and 550 km (340 mi), respectively. The route from Caliente to NNSS, which is necessarily longer to avoid Las Vegas, circles the site to the north and west (via SR 375, US 6, and US 95) before access at Mercury.

American Indian Text

The area comprising the NNSS is recognized as being traditionally used and occupied for ceremony and subsistence by the Owens Valley Paiutes, Western Shoshone and Southern Paiute for thousands of years. Accordingly, the central feature of subsistence involved agricultural villages located to the east in Pahranagat Valley, the Muddy River, and the Colorado river, to the south at a series of artesian springs and to the west along Oasis Valley. Farming sites were also located on the NNSS. Permanent non-farm based villages existed on water sources to the north. Seasonal hunting and gathering occurring at various locations in the hinterlands of these agricultural villages including throughout the NNSS. Ceremonial destination locations occur with some frequency atop volcanoes and basalt flows on the NNSS and throughout the region. The pilgrimage trails to these destinations criss-cross the NNSS and are marked with prayer and offering locations both on the NNSS and in the surrounding region.

9.1.10 Cultural Resources

NNSS was established in 1950 as part of Nellis Air Force Base to support nuclear and weapons testing. NNSS is located 100 km (65 mi) northwest of Las Vegas, Nevada. NNSS was the site of more than 928 nuclear tests between 1951 and 1992. The eastern portion of the site is an area known as Frenchman Flat, a dry lakebed. It is where the GTCC waste disposal facility reference location is situated. Fourteen atmospheric tests were conducted in Frenchman Flat between 1951 and 1962, and five underground tests were conducted between 1965 and 1968. The first test ever conducted at NNSS occurred in Frenchman Flat. Many of the tests were done

to examine the effects of a bomb blast on various objects, including bridges, buildings, and appliances.

2 3 4

Cultural resource management at NNSS is overseen by the DOE-Nevada Site Office (NV) (DOE 1996). The primary cultural resources support contractor for the site is the Desert Research Institute. Management of cultural resources is guided by two PAs among the DOE-NV, Nevada SHPO, and ACHP. In 1990, one of the agreements established the Long-Range Study Plan for Negating Potential Adverse Effects to Historic Properties on Pahute and Rainier Mesas. These agreements and compliance activities under the NHPA have resulted in the surveying of almost 18,000 ha (45,000 ac). More than 1,700 archaeological sites and roughly 600 historic buildings have been identified on NNSS (DOE 1996). Within Frenchman Flat, 42 archaeological surveys, covering roughly 1,320 ha (3,260 ac), have been conducted. The surveys identified 99 archaeological sites, of which 49 are considered eligible for listing on the NRHP. Resources identified included 2 temporary camps, 2 extractive localities, 38 processing localities, 52 localities, 1 residential base, 2 historic sites, and 2 sites that are related to nuclear testing (DOE 1996). NNSS is within the Great Basin Cultural Area.

16 17

15

10 11

12 13

American Indian Text

In 1985, the DOE began long-term research to inventory and evaluate American Indian cultural resources on the NNSS. This research was designed to comply with the American Indian Religious Freedom Act (AIRFA), which specified first Amendment of the United States Constitution rights of American Indian people to have access to lands and resources essential in the conduct of their traditional religion. These rights are exercised not only on tribal lands but beyond the boundaries of the reservations.

The research confirmed cultural affiliation of seventeen tribes and organizations representing the Owens Valley Paiute, Western Shoshone and Southern Paiutes. At the completion of the initial research, the DOE initiated government-to-government consultation as a means of actively involving the tribes in new, existing and proposed activities at the NNSS. Due to the complexities associated with the DOE activities, the culturally affiliated tribes aligned themselves together to form the Consolidated Group of Tribes and Organizations (CGTO). Each tribal government represented by the CGTO participates through their designated representatives to convey tribal concerns and perspectives to the DOE while concurrently providing periodic updates back to their respective tribal governments. This regional consultation model has been adapted by most federal agencies in the area and serves as the impetus for continuous tribal consultations through the NNSS American Indian Program.

Accordingly, the CGTO knows, based upon its collective knowledge of Indian culture and past American Indian studies, that American Indian people view cultural resources as being integrated. Thus, systematic studies of a variety of American Indian cultural resources must be conducted before the cultural significance of a place, area or region can be fully assessed. Although some of these studies have been conducted on the NNSS and nearby lands, many studies still need to be completed. In order for Indian people to fully assess the cultural significance of a place and its associated natural and cultural resources, systematic studies must include the following areas to be property evaluated: ethnoarchaeology, ethnobotany, ethnozology, rock art, traditional cultural properties, ethnogeography and cultural landscapes.

The materials found on NNSS come from all of the major prehistoric time periods. The earliest evidence for people on NNSS dates to 10,000 to 8,000 BC in Fortymile Canyon (National Security Technologies 2007). Over the last 12,000 years, there have been periods having both wetter and cooler conditions and dry and hot periods. The archaeological record provides evidence on how people living within the Great Basin, which is the greater cultural area that contains Nevada, reacted to these changes. During wetter periods, evidence indicates that seed and plant use increased and people tended to be more sedentary. In hot dry periods, sites tended to be smaller and more ephemeral.

During the contact period with Europeans, the two main American Indian groups living in the NNSS region were the Southern Paiute and the Western Shoshone. These groups used resources at various elevations and locations across the landscape. Groups moved in seasonal rounds and collected resources as they became available. A group consisting of members of the Southern Paiute and Western Shoshone known as the Eso were reported to have been living on what was to become NNSS during the late 1870s (Jones and Drollinger 2001). The Eso used winter residential camps near Pahute and Ranier Mesas and at major springs in the area. The Eso were reported to consist of 42 individuals (Jones and Drollinger 2001).

The earliest record of Europeans on NNSS concerns groups moving across the site en route to various mining areas in the mid-19th century. The first mining claims on NNSS were associated with the Oak Spring Mine in the northern part of NNSS (Fehner and Gosling 2000). Mining reached its peak in the region during the early part of the 20th century (Jones and Drollinger 2001). Cattle and sheep ranching also began to occur on NNSS in the late 19th century. Water supply issues restricted these activities so they achieved only moderate success. Some remnants of these activities are still visible on the landscape. For instance, the remains of the boomtown of Wohmonie, which was located southwest of Frenchman Flat near the Hornsilver Mine, are still visible (Fehner and Gosling 2000). The town sprang up in the late 1920s after gold and silver deposits were found. However, the town deteriorated quickly when the initial reports were found to be inflated.

 The military began using the area around NNSS in 1941 when Nellis Air Force Base was established. Nine years later, NNSS was chosen as the location for continental bomb tests. Previous tests were conducted in the Pacific; however, the logistics of these tests and vulnerability to spying made a continental test site desirable. After a three-year study, NNSS was chosen. Testing began in 1951 in Frenchman Flat. Testing ceased in 1992 when the Test Ban Treaty was proposed. No testing has taken place on the site since 1992. One of the missions carried out at NNSS is stockpile management of nuclear waste. Several locations in Frenchman Flat are used for storage of radioactive waste.

Adjacent to the project area in Frenchman Flat is RWMS 5. This facility is a 3,300-ha (8,200-ac) facility for the storage of LLRW. The facility consists of 22 disposal cells. Waste is placed in drums or shipping containers and then stacked in the cells. Once the cell is full, the material is sealed with soil. Area 5 has roughly 290 ha (720 ac) of land available for future waste (Becker et al. 2000).

American Indian Text

Views are important cultural resources that contribute to the location and performance of American Indian ceremonialism. Views combine with other cultural resources to produce special places where power is sought for medicine and other types of ceremonies. Views can be of any landscape, but more central viewscapes are experienced from high places, which are often the tops of mountains and the edges of mesas. Indian viewscapes tend to be panoramic and are special when they contain highly diverse topography. The viewscape panorama is further enhanced by the presence of volcanic cones and lava flows. Viewscapes are tied with songscapes and storyscapes, especially when the vantage point has a panorama composed of multiple locations from either song or story. Key to the Indian experience of viewscapes is isolation. Successful performance of ceremonies (whether by individuals or groups) is often commemorated by the building of rock cairns and by storied rocks and paintings. The CGTO tribes recognize the cultural significance of viewscapes and have identified a number of these on the NNSS. The Timber Mountain Caldera contains a number of significant points with different panoramas, including Scrugham Peak-Buckboard Mesa and the Shoshone Mountain massif.

The CGTO knows that American Indian cultural resources include all physical, artifactual, and spiritual aspects of the NNSS. The CGTO has established that formal studies of these aspects of the land should be conducted to identify, assess, mitigate, and manage these resources. These resources should be studied with members of the CGTO recommended for the study. Such studies are termed: (1) Ethnoarchaeology, (2) Ethnobotany, (3) Ethnozoology, (4) Storied Rocks, (5) Traditional Cultural Properties, (6) Ethnogeography, and (7) Cultural Landscapes in the Final Environmental Impact Statement for the Nevada Test Site and Off-site locations in the State of Nevada Volume 1, Appendix G.

The CGTO knows that many of these cultural resources are directly present on the GTCC proposed site, in the Indian Defined Area of Potential Effect, and immediate region surrounding the GTCC site. The Indian people who visited the GTCC site note that their time on-site was insufficient to fully identify, analyze, and evaluate resource that may be present. They recommend one or more of the kinds of resource studies identified above be conducted. Based on their site visit they do know that the area contains important cultural resources including plants, animals, minerals, trails, and portions of cultural landscapes.

Cultural Artifacts and Features

The CGTO knows based on previous DOE-sponsored cultural studies that there are many cultural artifacts and features on the NNSS. Indian people visiting the proposed GTCC site identified the following traditional cultural artifacts and features: (1) Chert Flakes, (2) Rock Alignments, (3) Boulder Grinding Indentation or metate (Mata in Owens Valley, Doso in Western Shoshone, Mada in Southern Paiute), (4) Hand Grinding Stone or mano (Paha or Tusu in Owens Valley, Botoh in Western Shoshone, Mohum in Southern Paiute), (5) Volcanoes, (6) Trails, and (7) Chalcedony, and (8) Yellow Jasper.

Continued on next page

Continued

Artifacts are the evident signs of our ancestors on this land. They are proof that we were here for thousands of years. We were told by our elders never to move artifacts or take them from their place. This is their home because they were left there for us to see and understand the past. We never remove them because they still belong to the ancestors who put them there for us and still watch over them today. Artifacts come from parts of the living earth and are still alive with a right to remain where they were placed. Whether or not there is evidence of being modified, the volcanoes, stones, rocks and trails that we incorporated into our lives are artifacts. These were visited for ceremony, chosen and moved as offerings, and traveled on our journeys and thus were a part of our life, are artifacts of our ancestors that we respect, and are there for future generations.

 The GTCC reference location, which is located southeast of the RWMS, contains no significant cultural resources. The area west of the RWMS has been examined for cultural resources. A small portion of this area was surveyed in 1991 as part of the research conducted for a monitoring well project (Holz 1991). The survey identified two isolated artifacts: a single broken piece of pottery and a single thinning flake. Neither site is considered eligible for the NRHP. A larger survey was conducted in 1996 prior to construction of the RWMS. The surveys identified numerous isolated finds and two small prehistoric sites. The sites consisted of several chert flakes and core fragments that represent evidence of expedient reduction activities. None of the sites were recommended as being eligible for listing on the NRHP. The remainder of the area was examined in 2001 as part of the research conducted for an underground test area seismic lines project. While the survey identified numerous cultural resources (prehistoric and historic), none was determined eligible for the NRHP (Jones and Drollinger 2001).

9.1.11 Waste Management

Site management of the waste types generated by the land disposal methods for Alternatives 3 to 5 is discussed in Section 5.3.11.

9.2 ENVIRONMENTAL AND HUMAN HEALTH CONSEQUENCES

The following sections address the potential environmental and human health consequences for each resource area discussed in Section 9.1.

9.2.1 Climate and Air Quality

This section presents potential climate and air quality impacts from the construction and operations of the disposal facilities (borehole, trench, and vault) at NNSS. Noise impacts are presented in Section 5.3.1.

9.2.1.1 Construction

1 2 3

During the construction period, emissions of criteria pollutants (e.g., SO_2 , NO_x , CO, PM_{10} , and $PM_{2.5}$), VOCs, and the primary greenhouse gas CO_2 would be caused by fugitive dust emissions from earth-moving activities and engine exhaust emissions from heavy equipment and commuter, delivery, and support vehicles. Typically, potential impacts on ambient air quality from exhaust emissions would be smaller than impacts from fugitive dust emissions.

7 8 9

10

11

12 13

5

Air emissions of criteria pollutants, VOCs, and CO_2 from construction activities are estimated for the peak year when site preparation and construction of the support facility and some disposal cells would take place. The estimates for PM_{10} and $PM_{2.5}$ include diesel particulate emissions from the engine exhaust. The estimates are provided in Table 9.2.1-1 for each disposal method. Detailed information on emission factors, assumptions, and emission inventories is available in Appendix D. As shown in the table, total peak-year emission rates are estimated to be rather small when compared with Nye County emission totals. Peak-year emissions for all criteria pollutants (except PM_{10} and $PM_{2.5}$) and VOCs would be the highest for

16 17 18

15

TABLE 9.2.1-1 Peak-Year Emissions of Criteria Pollutants, Volatile Organic Compounds, and Carbon Dioxide from Construction of the Three Land Disposal Facilities at NNSS

		Construction Emissions (tons/yr)					
Pollutant	Total Emissions (tons/yr) ^a	Trench		Borehole		Vault	
SO_2	236	0.90	$(0.38)^{b}$	3.0	(1.3)	3.2	(1.4)
NO_{x}	866	8.1	(0.94)	26	(3.0)	31	(3.6)
CO	7,949	3.3	(0.04)	11	(0.14)	11	(0.14)
VOCs	1,444	0.90	(0.06)	2.7	(0.19)	3.6	(0.25)
PM_{10}^{c}	3,640	5.0	(0.14)	13	(0.36)	8.6	(0.24)
$PM_{2.5}^{c}$	696	1.5	(0.22)	4.1	(0.59)	3.6	(0.52)
CO_2		670		2,200		2,300	
County ^d	8.88×10^{5}		(0.08)		(0.25)		(0.26)
Nevadae	5.46×10^{7}		(0.001)		(0.004)		(0.004)
U.S.e	6.54×10^9		(0.00001)		(0.00003)		(0.00004)
Worldwidee	3.10×10^{10}		(0.000002)		(0.000007)		(0.000007)

^a Total emissions in 2002 for Nye County, within which NNSS is located. See Table 9.1.1-1 for criteria pollutants and VOCs.

Sources: EIA (2008); EPA (2008b, 2009)

b As percent of total emissions.

^c Estimates for GTCC construction include diesel particulate emissions.

Emission data for the year 2005. Currently, data on CO₂ emissions at the county level are not available; thus county-level emissions were estimated from available state-total CO₂ emissions on the basis of the population distribution.

e Annual CO₂ emissions in Nevada, the United States, and worldwide in 2005.

the vault method because it would consume more materials and resources for construction than would the other two methods. The borehole method would disturb a bigger area, so it is estimated that fugitive dust emissions would be the highest for that method. Peak-year emissions of all pollutants would be the lowest for the trench method, which involves the smallest disturbed area among the disposal methods. In terms of contribution to the emissions total, peak-year emissions of NO_x for the vault method would be the highest, about 3.6% of the county emissions total, while it is estimated that emissions of other criteria pollutants and VOCs would be less than 1.4% of the county emissions total.

Background concentration levels for PM₁₀ and PM_{2.5} at NNSS are below the standards (less than 91%) (see Table 9.1.1-3). All construction activities at NNSS would occur at least 6 km (4 mi) from the site boundary and thus would not contribute much to concentrations at the boundary or at the nearest residence. Construction activities should still be conducted so as to minimize potential impacts of construction-related emissions on ambient air quality. Construction permits typically require fugitive dust control by established standard dust control practices, primarily by watering unpaved roads, disturbed surfaces, and temporary stockpiles.

One-hour O₃ levels at NNSS are below the standard (about 83%), but 8-hour O₃ levels in neighboring Clark County, including Las Vegas, exceed the standard (see Table 9.1.1-3). Nye County, including NNSS, is currently in attainment for O₃ (40 CFR 81.329). O₃ precursor emissions from the potential GTCC waste disposal facility from all methods would be relatively small, less than 3.6% and 0.27% of the county total NO_x and VOC emissions, respectively, and would be much lower than those for the regional air shed in which emitted precursors are transported and formed into O₃. In particular, southwesterly winds prevail in the area that includes NNSS (see Figure 9.1.1-1) and neighboring Clark County. Accordingly, potential impacts of O₃ precursor releases from construction on regional O₃ would not be of concern.

The major air quality concern with respect to emissions of CO₂ is that it is a greenhouse gas, which traps solar radiation reflected from the earth, keeping it in the atmosphere. The combustion of fossil fuels makes CO₂ the most widely emitted greenhouse gas worldwide. CO₂ concentrations in the atmosphere have been continuously increasing; they went from approximately 280 ppm in preindustrial times to 379 ppm in 2005 (a 35% increase). Most of this increase occurred in the last 100 years (IPCC 2007).

 The climatic impact of CO_2 does not depend on the geographic locations of its sources, because CO_2 is stable in the atmosphere and is essentially uniformly mixed; that is, the global total is the important factor with respect to global warming. Therefore, a comparison between U.S. and global emissions and the total emissions from the construction of a disposal facility is useful in understanding whether the CO_2 emissions from the site are significant with respect to global warming. As shown in Table 9.2.1-1, the highest peak-year amount of CO_2 emissions from construction would be 0.26%, 0.004%, and 0.00004% of 2005 county, state, and U.S. CO_2 emissions. In 2005, CO_2 emissions in the United States were about 21% of worldwide emissions (EIA 2008). Potential impacts on climate change from construction emissions would be small.

Appendix D assumes an initial construction period of 3.4 years. The disposal units would be constructed as the waste became available for disposal. The construction phase would extend over more years; thus, emissions for nonpeak years would be lower than peak-year emissions in the table. In addition, construction activities would occur only during daytime hours, when air dispersion is most favorable. Accordingly, potential impacts from construction activities on ambient air quality would be minor and intermittent in nature.

General conformity applies to federal actions taking place in nonattainment or maintenance areas and is not applicable to the proposed action at NNSS because the area is classified as attainment for all criteria pollutants (40 CFR 81.329).

9.2.1.2 Operations

Criteria pollutants, VOCs, and CO_2 would be released into the atmosphere during operations. These emissions would include fugitive dust emissions from emplacement activities and exhaust emissions from heavy equipment and commuter, delivery, and support vehicles. Estimated annual emissions of criteria pollutants, VOCs, and CO_2 at the facility are presented in Table 9.2.1-2. Detailed information on emission factors, assumptions, and emission inventories is available in Appendix D. As shown in the table, annual emissions are estimated to be higher for operational activities than for construction activities under the trench method. Annual emissions from operations for the trench and vault methods would be greater than those for the borehole method. Compared with annual emissions for counties, including NNSS, the annual emissions of NO_x from the trench and vault methods would be higher than those from the borehole method, about 3% of the emission total, while emissions of other criteria pollutants and VOCs would be about 1.4% of the total or less.

It is expected that concentration levels from operational activities would remain below the standards. Estimates for the PM_{10} and $PM_{2.5}$ include diesel particulate emissions. As discussed in the construction section, established fugitive dust control measures, including the watering of unpaved roads, disturbed surfaces, and temporary stockpiles, would be implemented to minimize potential impacts on ambient air quality.

With regard to regional O_3 , precursor emissions of NO_x and VOCs would be comparable to those resulting from construction activities (about 3% and 0.21% of the county emission totals, respectively) and are not anticipated to contribute much to regional O_3 levels. The highest operations-related emissions of CO_2 among the disposal methods would be comparable to the highest construction-related emissions, and thus the potential impacts from operations on climate change would also be negligible.

PSD regulations are not applicable to the proposed action because the proposed action is not a major stationary source.

TABLE 9.2.1-2 Annual Emissions of Criteria Pollutants, Volatile Organic Compounds, and Carbon Dioxide from Operations of the Three Land Disposal Facilities at NNSS

		Operation Emissions (tons/yr)					
Pollutant	Total Emissions (tons/yr) ^a	Trench		Borehole		Vault	
SO_2	236	3.3	(1.4) ^b	1.2	(0.51)	3.3	(1.4)
NO_x	866	27	(3.1)	10	(1.2)	27	(3.1)
CO	7,949	15	(0.19)	6.7	(0.08)	15	(0.19)
VOCs	1,444	3.1	(0.21)	1.2	(0.08)	3.1	(0.21)
PM_{10}^{c}	3,640	2.5	(0.07)	0.91	(0.03)	2.5	(0.07)
$PM_{2.5}^{c}$	696	2.2	(0.32)	0.81	(0.12)	2.2	(0.32)
CO_2		3,200		1,700		3,300	
County ^d	8.88×10^{5}		(0.36)		(0.19)		(0.37)
Nevadae	5.46×10^{7}		(0.006)		(0.003)		(0.006)
U.S.e	6.54×10^{9}		(0.00005)		(0.00003)		(0.00005)
Worldwidee	3.10×10^{10}		(0.00001)		(0.00001)		(0.00001)

- ^a Total emissions in 2002 for Nye County, within which NNSS is located. See Table 9.1.1-1 for criteria pollutants and VOCs.
- b As percent of total emissions.
- ^c Estimates for GTCC operations include diesel particulate emissions.
- d Emission data for the year 2005. Currently, data on CO₂ emissions at the county level are not available, so county-level emissions were estimated from available state-total CO₂ emissions on the basis of the population distribution.
- e Annual CO₂ emissions in Nevada, the United States, and worldwide in 2005.

Source: EIA (2008); EPA (2008b, 2009)

1 2 3

9.2.2 Geology and Soils

4 5

7

8

10

11 12

13

Direct impacts from land disturbance would be proportional to the total area of land disturbed during site preparation activities (e.g., grading and backfilling) and construction of the GTCC waste disposal facility and related infrastructure (e.g., roads). Land disturbance would include the surface area covered by each disposal method and the vertical displacement of geologic materials for the borehole and trench disposal methods. The increased potential for soil erosion would be an indirect impact from land disturbance at the construction site. Indirect impacts would also result from the use of geologic materials (e.g., aggregate) for facility and new road construction. The impact analysis also considers whether the GTCC action would preclude the future extraction and use of mineral materials or energy resources.

9.2.2.1 Construction

Impacts from disturbing the land surface area would be a function of the disposal method implemented at the site (Table 5.1.1). Of the three disposal facility layouts, the borehole facility layout would have the greatest impact in terms of land area disturbed (44 ha or 110 ac). It would also result in the greatest disturbance with depth (40 m or 130 ft), with boreholes completed in unconsolidated clay, silt, sand, and gravel.

Geologic and soil material requirements are provided in Table 5.3.2-1. Of the three disposal methods, the vault method would require the most material since it would involve the installation of interim and final cover systems. This material would be considered permanently lost. However, none of the three disposal methods are expected to result in adverse impacts on geologic and soil resources at NNSS, since these resources are in abundant supply at the site and in the surrounding area.

 No significant changes in surface topography or natural drainages are anticipated in the construction area. However, the disturbance of soil during the construction phase would increase the potential for erosion in the immediate vicinity. This potential would be greatly reduced, however, by the low precipitation rates at NNSS. Also, mitigation measures would be implemented to avoid or minimize the risk of erosion.

The GTCC waste disposal facility would be sited and designed with safeguards to avoid or minimize the risks associated with seismic and volcanic hazards. NNSS is in a seismically active region, and small-magnitude earthquakes (usually less than 3 on the Richter scale) occur frequently in Frenchman Flat.

 The annual probability of a volcanic event (basaltic eruption) is considered to be very low. The risk of silicic volcanism is negligible; however, airborne ash might be deposited on-site in the event of a silicic volcanic eruption, since silicic volcanic activity still occurs along the margins of the Great Basin. The potential for other hazards (e.g., subsidence and liquefaction) is also considered to be low.

9.2.2.2 Operations

The disturbance of soil and the increased potential for soil erosion would continue throughout the operational phase as waste was delivered to the site for disposal over time. The potential for soil erosion would be greatly reduced by the low precipitation rates at NNSS. Mitigation measures also would be implemented to avoid or minimize the risk of erosion.

Impacts related to the extraction and use of valuable geologic materials would be low, since only the area within the facility itself would be unavailable for mining, and the potential for oil production and geothermal energy development are considered to be low for the site. NNSS is currently closed to commercial mineral development; activities on-site would not have adverse impacts on the extraction of economic minerals in the surrounding region.

9.2.3 Water Resources

2 3

 Direct and indirect impacts on water resources could occur as a result of water use at the proposed GTCC waste disposal facility during construction and operations. Table 5.3.3-1 provides an estimate of the water consumption and discharge volumes for the three land disposal methods. Tables 5.3.3-2 and 5.3.3-3 summarize the impacts from water use (in terms of change in annual water use) on water resources during construction and normal operations, respectively. A discussion of potential impacts during each project phase is presented in the following sections. In addition, contamination due to potential leaching of radionuclides into groundwater from the waste inventory could occur, depending on the post-closure performance of the land disposal facilities discussed in Section 9.2.4.2. However, the potential for mobilization of contaminants to groundwater from all these sources is negligible because of the arid climate, the extensive depth to groundwater (thickness of the vadose zone), and the proven behavior of liquid and vapor fluxes in the vadose zone (primarily upward movement toward the ground surface).

9.2.3.1 Construction

Of the three land disposal methods considered for NNSS, construction of a vault facility would have the greatest water requirement (Table 5.3.3-1). Water demands for construction at NNSS would be met by using groundwater from on-site wells completed in the Great Basin aquifer system. No surface water would be used at the site during construction. As a result, no direct impacts on surface water resources are expected. The potential for indirect surface water impacts related to soil erosion, contaminated runoff, and sedimentation is very low but would be reduced by implementing good industry practices and mitigation measures. Streams at NNSS are ephemeral, and the GTCC reference location is not located on any known floodplains of these waters.

NNSS uses about 1.1 billion L (290 million gal) of groundwater per year. Construction of the proposed GTCC waste disposal facility would increase the annual water use at NNSS by a maximum of 0.29% (vault method) over the 20-year period that construction would occur. Because withdrawals of groundwater would be relatively small, they would not significantly lower the water table or change the direction of groundwater flow at NNSS. As a result, impacts due to groundwater withdrawals are expected to be negligible.

Construction activities might change the infiltration rate at the site of the proposed GTCC waste disposal facility, first by increasing the rate as ground would be disturbed in the initial stages of construction and later by decreasing the rate as impermeable materials (e.g., the clay material and geotextile membrane assumed for the cover or cap in the land disposal facility designs) would cover the surface. These changes are expected to be negligible since the area of land associated with the proposed GTCC waste disposal facility (up to 44 ha [110 ac], depending on the disposal method) would be small relative to NNSS. Disposal waste generated during construction of the land disposal facilities would have a negligible impact on the quality of water resources at NNSS. The potential for indirect surface water or groundwater impacts related to spills at the surface would be reduced by implementing good industry practices and mitigation measures.

9.2.3.2 Operations

Of the three land disposal facilities considered for NNSS, the trench and vault facilities would require almost the same amount of water for operations, and that amount would be more than the amount required by a borehole facility (Table 5.3.3-1). Water demands for operations at NNSS would be met by using groundwater from on-site wells completed in the Great Basin aquifer system. No surface water would be used at the site during operations. As a result, no direct impacts on surface water resources are expected. The potential for indirect surface water impacts related to soil erosion, contaminated runoff, and sedimentation would be reduced by implementing good industry practices and mitigation measures. Streams at NNSS are ephemeral, and the GTCC reference location is not located on any known floodplains of these waters.

Operations of the proposed GTCC waste disposal facility would increase annual water use at NNSS by a maximum of about 0.48% (trench or vault method). Because withdrawals of groundwater would be relatively small, they would not significantly lower the water table or change the direction of groundwater flow at NNSS. As a result, impacts due to groundwater withdrawals are expected to be negligible.

Disposal of waste (including sanitary waste) generated during operations of the land disposal facilities would have a negligible impact on the quality of water resources at NNSS. The potential for indirect surface water or groundwater impacts related to spills at the surface would be reduced by implementing good industry practices and mitigation measures.

9.2.4 Human Health

Potential impacts on members of the general public and involved workers from the construction and operations associated with the land disposal facilities are discussed in Section 5.3.4. The following sections discuss the impacts from hypothetical facility accidents associated with waste handling activities and the impacts during the post-closure phase. They address impacts on members of the general public who might be affected by these waste disposal activities at the NNSS GTCC reference location, since these impacts would be site dependent.

9.2.4.1 Facility Accidents

Data on the estimated human health impacts from hypothetical accidents at a land GTCC waste disposal facility located at NNSS are shown in Table 9.2.4-1. The accident scenarios are discussed in Section 5.3.4.2.1 and Appendix C. A reasonable range of accidents that included operational events and natural causes was analyzed. The impacts presented for each accident scenario are for the sector with the highest impacts, and no protective measures are assumed; therefore, the impacts represent the maximum expected for such an accident.

 The collective population dose includes exposure from inhalation of airborne radioactive material, external exposure from radioactive material deposited on the ground, and ingestion of contaminated crops. The exposure period is considered to last for 1 year immediately following

TABLE 9.2.4-1 Estimated Radiological Human Health Impacts from Hypothetical Facility Accidents at NNSS^a

		Off-Site	Public	Individual ^b	
Accident		Collective Dose	Latent Cancer	Dose	Likelihood
Number	Accident Scenario	(person-rem)	Fatalities ^c	(rem)	of LCF
1	Single drum drops, lid failure in Waste Handing Building	< 0.0001	< 0.0001	< 0.0001	< 0.0001
2	Single SWB drops, lid failure in Waste Handing Building	< 0.0001	< 0.0001	0.00012	< 0.0001
3	Three drums drop, puncture, lid failure in Waste Handling Building	< 0.0001	< 0.0001	< 0.0001	< 0.0001
4	Two SWBs drop, puncture, lid failure in Waste Handling Building	< 0.0001	< 0.0001	0.00017	< 0.0001
5	Single drum drops, lid failure outside	0.011	< 0.0001	0.053	< 0.0001
6	Single SWB drops, lid failure outside	0.024	< 0.0001	0.12	< 0.0001
7	Three drums drop, puncture, lid failure outside	0.019	< 0.0001	0.095	< 0.0001
8	Two SWBs drop, puncture, lid failure outside	0.033	< 0.0001	0.17	0.0001
9	Fire inside the Waste Handling Building, one SWB assumed to be affected	0.47	0.0003	2.4	0.001
10	Single RH waste canister breach	< 0.0001	< 0.0001	< 0.0001	< 0.0001
11	Earthquake affects 18 pallets, each with 4 CH drums	0.3	0.0002	1.5	0.0009
12	Tornado, missile hits one SWB, contents released	0.094	< 0.0001	0.48	0.0003

CH = contact-handled, RH = remote-handled, LCF = latent cancer fatality, SWB = standard waste box.

The individual receptor is assumed to be 100 m (330 ft) downwind from the release point. This individual is expected to be a noninvolved worker because there would be no public access within 100 m (330 ft) of the GTCC reference location.

^c LCFs are calculated by multiplying the dose by the health risk conversion factor of 0.0006 fatal cancer per person-rem (see Section 5.2.4.3). Values are rounded to one significant figure.

the accidental release. It is recognized that interdiction of food crops would likely occur if a significant release did occur, but many stakeholders are interested in what could happen without interdiction. For the accidents involving CH waste (Accidents 1–9, 11, 12), the ingestion dose accounts for approximately 20% of the collective population dose shown in Table 9.2.4-1. External exposure was found to be negligible in all cases. All exposures were dominated by the inhalation dose from the passing plume of airborne radioactive material downwind of the hypothetical accident immediately following release.

The highest estimated impact on the general public, 0.47 person-rem, would be from a hypothetical release from an SWB caused by a fire in the Waste Handling Building (Accident 9). This dose is not expected to lead to any additional LCFs in the population. This dose would be to the 22,800 people living to the south of the facility, resulting in an average dose of approximately 0.00002 rem per person. Because this dose would result from internal intake (primarily inhalation, with some ingestion), and because the DCFs used in this analysis are for a 50-year CEDE, this dose would be accumulated over the course of 50 years.

The dose to an individual (expected to be a noninvolved worker because there would be no public access within 100 m [330 ft] of the GTCC reference location) includes exposure from inhalation of airborne radioactive material and 2 hours of exposure to radioactive material deposited on the ground. As shown in Table 9.2.4-1, the highest estimated dose to an individual, 2.4 rem, is for Accident 9 from inhalation exposure immediately after the postulated release. This estimated dose is for a hypothetical individual located 100 m (330 ft) to the southeast of the accident location. A maximum annual dose of about 5% of the total individual dose (to the noninvolved worker) would occur in the first year. The increased lifetime probability of a fatal cancer for the individual is approximately 0.1% on the basis of a total dose of 2.4 rem.

9.2.4.2 Post-Closure

The potential radiation dose from airborne releases of radionuclides to the off-site public after the closure of a disposal facility would be small. On the basis of RESRAD-OFFSITE calculation results, no radiation exposure would result from this pathway for the borehole method, and the radiation doses from the trench or vault method would be small. It is estimated that the potential inhalation dose at a distance of 100 m (330 ft) from the disposal facility would be less than 1.8 mrem/yr for trench disposal and less than 0.52 mrem/yr for vault disposal. The potential radiation exposures would be caused mainly by inhalation of radon gas and its short-lived progeny.

Because of the extremely arid climate, the precipitation rate at NNSS averages only about 12 cm/yr (5 in./yr). Evapotranspiration, however, is estimated to be about 1.68 m/yr (5.5 ft/yr), or about 14 times the average precipitation rate (Bechtel Nevada 2001). As a result, water infiltration to the disposal area would be nearly zero ($3.0 \times 10^{-5} \text{ m/yr}$ was used in the RESRAD-OFFSITE analyses). With an insufficient driving force for leaching, radionuclides are not expected to reach the groundwater table within 100,000 years. Therefore, no radiation exposure to a hypothetical resident farmer living 100 m (330 ft) from the GTCC waste disposal facility is

indicated by the calculations performed. Similarly, releases to rivers and springs would not be expected.

9.2.5 Ecology

Section 5.3.5 presents an overview of the potential impacts on ecological resources that could result from the construction and operations and post-closure maintenance of the proposed GTCC waste disposal facility, regardless of the location selected for it. This section evaluates the potential impacts of the facility on the ecological resources at NNSS.

The amount of land cleared to dispose of GTCC wastes would be up to 44 ha (110 ac) for borehole disposal, 24 ha (60 ac) for vault disposal, or 20 ha (50 ac) for trench disposal. It is not expected that the initial loss of creosote bush/white bursage vegetation habitat, followed by eventual establishment of low-growth vegetation on the disposal site, would create a long-term reduction in the local or regional ecological diversity.

After closure of the GTCC waste disposal facility, the cover would be planted with annual and perennial grasses and forbs. As appropriate, regionally native plants would be used to landscape the disposal site in accordance with "Guidance for Presidential Memorandum on Environmentally and Economically Beneficial Landscape Practices on Federal Landscaped Grounds" (EPA 1995). Because of the extremely arid climate, the establishment of native plant communities would be very difficult. An aggressive revegetation program would be necessary so that nonnative species, such as red brome, cheatgrass, Russian thistle, and barbwire Russianthistle, would not become established. These species could rapidly invade disturbed sites at NNSS and delay revegetation by native species (Wills and Ostler 2001).

 Construction of the proposed GTCC waste disposal facility would affect wildlife species that inhabit the area. Small mammals, ground-nesting birds, and reptiles would recolonize the site once a vegetative cover was reestablished. Larger mammals, such as pronghorn, mule deer, coyote, and mountain lion, would probably avoid the area or would be excluded from the disposal facility because of the fencing.

 Because no aquatic habitats occur within the immediate vicinity of the GTCC reference location, direct impacts on aquatic biota are not expected. DOE would use appropriate erosion-control measures to minimize off-site movement of soils. The GTCC waste disposal facility retention pond is not expected to become a highly productive aquatic habitat. However, depending on the amount of water and length of time that water was retained in the pond, aquatic invertebrates could become established within it. Waterfowl, shorebirds, and other birds might also make use of the retention pond, as would mammal species that might enter the site.

 As discussed in Section 9.1.5, the desert tortoise is the only federal listed animal species that is resident on NNSS. It inhabits the southern third of NNSS at very low or none to moderate estimated densities (i.e., between 0.0 and 34.7 tortoises/km² [0.0 and 90/mi²]). In the area of the GTCC reference location, desert tortoise densities range from 0.0 to 3.7/km² (0.0 to 9.6/mi²) (William 2009). The RWMS in Area 5 of NNSS is within the exclusion area identified in the

1996 programmatic biological opinion since no desert tortoises were observed in that area of 2 Frenchman Flat (DOE 2007b). In the recent programmatic biological opinion (Williams 2009), it was concluded that the implementation of programmatic activities at NNSS is not likely to 3 jeopardize the continued existence of the desert tortoise or adversely modify any designated 5 critical habitat for the species. Mitigation for the loss of desert tortoise habitat is normally required under the terms and conditions of the biological opinion received from the USFWS. In the current programmatic biological opinion, the measures include these: (1) Preactivity surveys will be conducted to determine the presence of the desert tortoise; (2) a tortoise biologist or 9 environmental monitor will be on-site during all phases of project construction; (3) all NNSA, Nevada Site Office, and contractor personnel will complete the Desert Tortoise Conservation 10 11 Education Program; (4) project personnel will halt activities, if possible, when the continuation 12 of such activities may endanger a desert tortoise or if a tortoise is found on the project site; 13 (5) vehicle traffic will be restricted to existing paved, graded, or utility access roads; (6) vehicles 14 will be driven within posted speed limits on existing roads and will not exceed 15 mph within 15 project boundaries (any tortoise observed in harm's way on a paved road will be moved off the 16 road in the direction it was going); (7) a litter-control program will be implemented during 17 outdoor program activities that will include the use of covered, raven-proof trash receptacles; 18 disposal of edible trash in trash receptacles following the end of each work day; and disposal of 19 trash in a designated sanitary landfill at the end of each work week; and (8) a habitat reclamation 20 plan will be submitted to the USFWS that describes the methods for stabilizing and revegetating 21 the site (William 2009). It is expected that DOE would enact the terms and conditions of the 22 programmatic biological condition (Williams 2009) to minimize effects on the desert tortoise 23 when constructing and operating the GTCC waste disposal facility.

2425

26

27

28 29

30

31

32

33

34

35

36 37

38

39

40

The preferred breeding habitat for the burrowing owl on NNSS is in areas most likely to be developed for new projects or to be remediated because of past disturbances. Project construction activities on NNSS could destroy burrowing owl burrows or directly kill owls. Historically, DOE's activities have had only minimal adverse effects on burrowing owls at NNSS (Hall et al. 2003). Since 1990, only one bird was killed from being hit by a vehicle; and since 1979, only two unoccupied burrows were destroyed by project activities. Hall et al. (2003) recommends a buffer zone of 60 m (197 ft) around active burrowing owl burrows at NNSS, within which human activity (e.g., walking and driving) should be limited. Klute et al. (2003) recommends that human activities should be prohibited within 200 m (660 ft) of nest burrows in Idaho and Washington. At construction sites in Nevada's Mojave Desert region, the USFWS (2007) recommends a buffer with a radius of at least 76 m (250 ft) be placed around a burrow within which no construction should occur. Some activities at NNSS (e.g., emplacing culverts and pipes, building roads, digging pits and channels, and building mounds) have benefited burrowing owls by increasing the number of available burrows and by increasing opportunities for predators to dig burrows in altered soil (Wills and Ostler 2001; Hall et al. 2003). In the later case, the burrowing owls indirectly benefit because they use abandoned predator burrows (Hall et al. 2003).

41 42 43

44

45 46 Pre-activity biological surveys are conducted at proposed project sites where disturbance may occur. The goal of these surveys is to minimize adverse impacts on important plant and animal species and their associated habitat, on important biological resources (e.g., bird nest sites and desert tortoise burrows), and on wetlands (Wills 2007). Therefore, if any other special-status

species from the GTCC reference location were identified, appropriate steps would be taken to minimize impacts on those species.

The overall objective of the ecological monitoring and compliance program at NNSS is to protect the biological resources at NNSS while supporting the mission of DOE in operating the site (Hall et al. 2003). This objective is met by developing procedures that ensure that NNSS activities comply with state and federal wildlife and environmental protection regulations. Therefore, impacts on ecological resources from a GTCC waste disposal facility would be minimized and mitigated.

9.2.6 Socioeconomics

9.2.6.1 Construction

The potential socioeconomic impacts from constructing a GTCC waste disposal facility and support buildings at NNSS would be small for all disposal methods. Construction activities would create direct employment of 47 people (borehole method) to 145 people (vault method) in the peak construction year and an additional 51 indirect jobs (borehole and trench methods) to 137 indirect jobs (vault method) in the ROI (Table 9.2.6-1). Construction activities would constitute less than 1% of total ROI employment in the peak year. Construction of a disposal facility would produce between \$4.3 million in income (borehole method) and \$12.8 million in income (vault method) in the peak year of construction.

In the peak year of construction, between 10 people (borehole method) and 32 people (vault method) would in-migrate to the ROI (Table 9.2.6-1) as a result of employment on-site. In-migration would have only a marginal effect on population growth and would require less than 1% of vacant rental housing in the peak year. No significant impact on public finances would occur as a result of in-migration, and no new local public service employees would be required to maintain existing levels of service in the various local public service jurisdictions in the ROI. In addition, on-site employee commuting patterns would have a small to moderate impact on levels of service in the local transportation network surrounding the site.

9.2.6.2 Operations

The potential socioeconomic impacts from operating a GTCC waste disposal facility would be small for all disposal methods. Operational activities would create about 38 direct jobs (borehole method) to 51 direct jobs (vault method) annually and an additional 31 indirect jobs (borehole method) to 36 indirect jobs (vault method) in the ROI (Table 9.2.6-1). The waste facility would also produce between \$4.1 million in income (borehole method) and \$5.1 million in income (vault method) annually during operations.

No more than one person would move to the area at the beginning of operations (Table 9.2.6-1). In-migration would have only a marginal effect on population growth and would

TABLE 9.2.6-1 Effects of GTCC Facility Construction and Operations on Socioeconomics at the ROI for NNSS^a

	Tren	ch	Borel	Borehole		Vault	
Impact Category	Construction	Operation	Construction	Operation	Construction	Operation	
Employment (number of jobs)							
Direct	62	48	47	38	145	51	
Indirect	51	35	51	31	137	36	
Total	113	83	98	69	282	87	
Income (\$ in millions)							
Direct	2.0	3.2	1.7	2.6	5.9	3.4	
Indirect	2.6	1.6	2.6	1.5	6.9	1.7	
Total	4.6	4.8	4.3	4.1	12.8	5.1	
Population (number of new residents)	14	1	10	1	32	1	
Housing (number of units required)	7	1	5	0	16	1	
Public finances (% impact on expenditures)							
Cities and counties ^b	<1	<1	<1	<1	<1	<1	
Schools ^c	<1	<1	<1	<1	<1	<1	
Public service employment (number of new employees)							
Local government employees ^d	0	0	0	0	0	0	
Teachers	0	0	0	0	0	0	
Traffic (impact on current levels of service)	Small	Small	Small	Small	Moderate	Small	

^a Impacts shown are for waste facility and support buildings in the peak year of construction and the first year of operations.

^b Includes impacts that would occur in the cities of Henderson, Las Vegas, and North Las Vegas and in Clark and Nye Counties.

^c Includes impacts that would occur in Clark and Nye County school districts.

d Includes police officers, paid firefighters, and general government employees.

require less than 1% of vacant owner-occupied housing during facility operations. No significant impact on public finances would occur as a result of in-migration, and no new local public service employees would need to be hired in order to maintain existing levels of service in the various local public service jurisdictions in the ROI. In addition, on-site employee commuting patterns would have only a small impact on levels of service in the local transportation network surrounding the site.

9.2.7 Environmental Justice

9.2.7.1 Construction

No radiological risk and only very low chemical exposure and risk are expected during construction of a trench, borehole, or vault disposal facility. Chemical exposure during construction would be limited to airborne toxic air pollutants at less than standard levels and would not result in any adverse health impacts. Since the impacts of each facility on the health of the general population within the 80-km (50-mi) assessment area during construction would be negligible, impacts from the construction of each facility on the minority and low-income population would not be significant.

9.2.7.2 Operations

Because incoming GTCC waste containers would only be consolidated for placement in trench, borehole, and vault facilities, with no repackaging necessary, there would be no radiological impacts on the general public during operations and no adverse health effects on the general population. Because the health impacts from routine operations on the general public would be negligible, it is expected that there would be no disproportionately high and adverse impact on minority and low-income population groups within the 80-km (50-mi) assessment area. Subsequent NEPA analysis to support any GTCC implementation would have to consider any unique exposure pathways (such as subsistence fish, vegetation, or wildlife consumption or well water use) to determine any additional potential health and environmental impacts.

9.2.7.3 Accidents

A GTCC waste release at each of the facilities could cause LCFs in the surrounding area. However, it is highly unlikely that such an accident would occur. Therefore, the risk to any population, including low-income and minority communities, is considered to be low. In the unlikely event of a GTCC waste release at a disposal facility, the communities most likely to be affected would not be minority or low-income, given the demographics within 80 km (50 mi) of the GTCC reference location.

If an accident producing significant contamination did occur, appropriate measures would be taken to ensure that the impacts on low-income and minority populations would be

minimized. The extent to which low-income and minority population groups would be affected would depend on the amount of material released and the direction and speed at which airborne material was dispersed from any of the facilities by the wind. Although the overall risk would be very small, the greatest short-term risk of exposure following an airborne release and the greatest 1-year risk would be to the population groups residing to the southeast of the site. Airborne releases following an accident would likely have a larger impact on the area than would an accident that released contaminants directly into the soil surface. A surface release entering local steams could temporarily interfere with subsistence activities being carried out by low-income and minority populations within a few miles downstream of the site.

Monitoring of contaminant levels in soil and surface water following an accident would provide the public with information on the extent of any contaminated areas. Analysis of contaminated areas to decide how to control the use of areas having a high health risk would reduce the potential impact on local residents.

9.2.8 Land Use

Section 5.3.8 presents an overview of the potential land use impacts that could result from a GTCC waste disposal facility regardless of the location selected for it. This section evaluates the potential impacts from a GTCC waste disposal facility on land use at NNSS. The amount of land altered for the disposal facility would be up to 44 ha (110 ac) for boreholes, 24 ha (60 ac) for vaults, or 20 ha (50 ac) for trenches.

The GTCC reference location at NNSS is located southeast of the RWMS. Therefore, the area designated for a GTCC waste disposal facility would be integrated into the radioactive waste management zone. The GTCC reference location is located within an area designated as a reserved zone, where defense-related activities are generally conducted (DOE 1996). Therefore, land use in the area occupied by the GTCC disposal facility would be changed from a reserved zone to a radioactive waste management zone. Land use on areas surrounding NNSS would not be affected. Future land use activities that would be permitted within or immediately adjacent to the GTCC reference location would be limited to those that would not jeopardize the integrity of the facility, create a security risk, or create a worker or public safety risk.

9.2.9 Transportation

The transportation of GTCC LLRW and GTCC-like waste necessary for the disposal of all such waste at NNSS was evaluated. As discussed in Section 5.3.9, transportation of all cargo by both truck and rail modes as separate options is considered for the purposes of this EIS. Transportation impacts are expected to be the same for disposal in boreholes, trenches, or vaults because the same type of transportation packaging would be used regardless of the disposal method chosen. Moreover, additional environmental impacts could also result from the construction of a rail spur at NNSS since one does not currently exist.

 As discussed in Appendix C, Section C.9, three impacts from transportation were calculated: (1) collective population risks during routine conditions and accidents (Section 9.2.9.1), (2) radiological risks to the highest exposed individual during routine conditions (Section 9.2.9.2), and (3) consequences to individuals and populations after the most severe accidents involving a release of radioactive or hazardous chemical material (Section 9.2.9.3).

Radiological impacts during routine conditions are a result of human exposure to the low levels of radiation near the shipment. The regulatory limit established in 49 CFR 173.441 (Radiation Level Limitations) and 10 CFR 71.47 (External Radiation Standards for All Packages) to protect the public is 0.1 mSv/h (10 mrem/h) at 2 m (6 ft) from the outer lateral sides of the transport vehicle. This dose rate corresponds roughly to 14 mrem/h at 1 m (3 ft). As discussed in Appendix C, Section C.9.4.4, the external dose rate for CH shipments to NNSS is assumed to be 0.5 and 1.0 mrem/h at 1 m (3 ft) for truck and rail shipments, respectively. For shipments of RH waste, the external dose rate is assumed to be 2.5 and 5.0 mrem/h at 1 m (3 ft) for truck and rail shipments, respectively. These assignments are based on shipments of similar types of waste. Dose rates for rail shipments are approximately double those for truck shipments because rail shipments are assumed to have twice the number of waste packages as a truck shipment. Impacts from accidents are dependent on the amount of radioactive material in a shipment and on the fraction that is released if an accident occurs. The parameters used in the transportation accident analysis are described further in Appendix C, Section C.9.4.3.

9.2.9.1 Collective Population Risk

The collective population risk is a measure of the total risk posed to society as a whole by the actions being considered. For a collective population risk assessment, the persons exposed are considered as a group; no individual receptors are specified. Exposure to four different groups are considered: (1) persons living and working along the transportation routes, (2) persons sharing the route, (3) persons at stops along the route, and (4) transportation crew members. The collective population risk is used as the primary means of comparing various options. Collective population risks are calculated for cargo-related causes for routine transportation and accidents. Vehicle-related risks are independent of the cargo in the shipment and are only calculated for traffic accidents (fatalities caused by physical trauma).

Estimated impacts from the truck and rail options are summarized in Tables 9.2.9-1 and 9.2.9-2, respectively. For the truck option, it was estimated that about 12,600 shipments resulting in about 48 million km (30 million mi) of travel would cause no LCFs for truck crew members or members of the public. One fatality directly related to accidents is expected. No LCFs from routine transport are estimated for the rail option, consisting of approximately 5,010 railcar shipments resulting in about 21 million km (13 million mi) of travel. However, one fatality from accidents could occur.

TABLE 9.2.9-1 Estimated Collective Population Transportation Risks for Shipment of GTCC LLRW and GTCC-Like Waste by Truck for Disposal at NNSS^a

					Cargo-F	Related ^b Ra	diological	Impacts			
		- -		Ε	Oose Risk (p	erson-rem)			-		Vehicle-Related Impacts ^c
		Total			Routine 1	Public			LC	:Fs ^d	Physical
	No. of	Distance	Routine					-			Accident
Waste	Shipments	(km)	Crew	Off-Link	On-Link	Stops	Total	Accident ^e	Crew	Public	Fatalities
Group 1											
GTCC LLRW											
Activated metals - RH											
Past BWRs	20	77,500	0.81	0.02	0.11	0.14	0.28	0.00016	0.0005	0.0002	0.0015
Past PWRs	143	458,000	4.8	0.11	0.67	0.84	1.6	0.00073	0.003	0.001	0.009
Operating BWRs	569	2,120,000	22	0.52	3.1	3.9	7.5	0.0027	0.01	0.005	0.044
Operating PWRs	1,720	5,810,000	60	1.5	8.5	11	21	0.008	0.04	0.01	0.12
Sealed sources - CH	209	579,000	0.24	0.045	0.32	0.42	0.78	0.02	0.0001	0.0005	0.013
Cesium irradiators - CH	240	665,000	0.28	0.051	0.37	0.48	0.9	0.0032	0.0002	0.0005	0.015
Other Waste - CH	5	11,400	0.0048	0.00073	0.0062	0.0082	0.015	< 0.0001	< 0.0001	< 0.0001	0.00024
Other Waste - RH	54	218,000	2.2	0.062	0.32	0.4	0.78	< 0.0001	0.001	0.0005	0.0046
GTCC-like waste											
Activated metals - RH	38	72,700	0.76	0.014	0.1	0.13	0.25	< 0.0001	0.0005	0.0002	0.0033
Sealed sources - CH	1	2,770	0.0012	0.00021	0.0015	0.002	0.0037	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Other Waste - CH	69	268,000	0.11	0.025	0.15	0.19	0.37	0.00077	< 0.0001	0.0002	0.0051
Other Waste - RH	1,160	4,470,000	46	1.1	6.5	8.2	16	0.0018	0.03	0.009	0.086

TABLE 9.2.9-1 (Cont.)

		-	Cargo-Related ^b Radiological Impacts								<u>_</u>
		-		Γ	Oose Risk (p	erson-rem)		_		Vehicle-Related Impacts ^c
		Total			Routine	Public		_	LC	Fs ^d	_ Physical
Waste	No. of Shipments	Distance (km)	Routine Crew	Off-Link	On-Link	Stops	Total	Accidente	Crew	Public	Accident Fatalities
Group 2											
GTCC LLRW											
Activated metals - RH											
New BWRs	202	652,000	6.8	0.14	0.93	1.2	2.3	0.00091	0.004	0.001	0.014
New PWRs	833	2,780,000	29	0.72	4.1	5.1	9.9	0.0035	0.02	0.006	0.057
Additional commercial waste	1,990	8,070,000	84	1.9	12	15	28	< 0.0001	0.05	0.02	0.15
Other Waste - CH	139	563,000	0.24	0.052	0.32	0.41	0.78	0.0025	0.0001	0.0005	0.011
Other Waste - RH	3,790	15,300,000	160	3.7	22	28	54	0.00068	0.09	0.03	0.29
GTCC-like waste											
Other Waste - CH	44	165,000	0.069	0.015	0.094	0.12	0.23	0.00034	< 0.0001	0.0001	0.0032
Other Waste - RH	1,400	5,590,000	58	1.3	8.1	10	20	0.0019	0.03	0.01	0.11
Total Groups 1 and 2	12,600	47,800,000	470	11	68	85	160	0.048	0.3	0.1	0.94

BWR = boiling water reactor, PWR = pressurized water reactor, CH = contact-handled, RH = remote-handled.

Cargo-related impacts are impacts attributable to the radioactive nature of the material being transported.

Vehicle-related impacts are impacts independent of the cargo in the shipment.

LCFs were calculated by multiplying the dose by the health risk conversion factor of 6×10^{-4} fatal cancer per person-rem (see Section 5.2.4.3).

Dose risk is a societal risk and is the product of accident probability and accident consequence.

 $TABLE\ 9.2.9-2\ Estimated\ Collective\ Population\ Transportation\ Risks\ for\ Shipment\ of\ GTCC\ LLRW\ and\ GTCC\ Llke\ Waste\ by\ Rail\ for\ Disposal\ at\ NNSS^a$

					Cargo-R	elated ^b Ra	ndiologica	al Impacts			
				D	ose Risk (pe	erson-rem))		_		Vehicle-Related Impacts ^c
		Total			Routine P	ublic			LO	CFs ^d	Physical
	No. of	Distance	Routine					•		-	Accident
Waste	Shipments	(km)	Crew	Off-Link	On-Link	Stops	Total	Accident ^e	Crew	Public	Fatalities
Group 1											
GTCC LLRW											
Activated metals - RH											
Past BWRs	7	27,600	0.21	0.059	0.0038	0.081	0.14	0.00037	0.0001	< 0.0001	0.0017
Past PWRs	37	127,000	0.99	0.27	0.018	0.4	0.69	0.0015	0.0006	0.0004	0.0057
Operating BWRs	154	636,000	4.8	1.3	0.086	1.9	3.3	0.0033	0.003	0.002	0.019
Operating PWRs	460	1,830,000	14	3.7	0.24	5.6	9.6	0.011	0.008	0.006	0.059
Sealed sources - CH	105	359,000	0.82	0.2	0.014	0.45	0.66	0.0014	0.0005	0.0004	0.0085
Cesium irradiators - CH	120	410,000	0.94	0.22	0.016	0.51	0.75	0.0002	0.0006	0.0005	0.0098
Other Waste - CH	3	8,270	0.02	0.0045	0.0004	0.012	0.017	< 0.0001	< 0.0001	< 0.0001	0.00027
Other Waste - RH	27	125,000	0.92	0.25	0.018	0.37	0.64	< 0.0001	0.0006	0.0004	0.0033
GTCC-like waste											
Activated metals - RH	11	24,300	0.22	0.037	0.0027	0.079	0.12	< 0.0001	0.0001	< 0.0001	0.0025
Sealed sources - CH	1	3,420	0.0078	0.0019	0.00013	0.0043	0.0063	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Other Waste - CH	35	146,000	0.32	0.13	0.009	0.19	0.33	0.00015	0.0002	0.0002	0.0044
Other Waste - RH	579	2,460,000	18	5.1	0.34	7.5	13	0.00033	0.01	0.008	0.072

					Cargo-R	telated ^b F	Radiologic	al Impacts			_
				Dose Risk (person-rem)							Vehicle-Related Impacts ^c
		Total			Routine F	Public		_	LC	CFs ^d	Physical
Waste	No. of Shipments	Distance (km)	Routine Crew	Off-Link	On-Link	Stops	Total	Accidente	Crew	Public	Accident Fatalities
Group 2											
GTCC LLRW											
Activated metals - RH											
New BWRs	54	216,000	1.6	0.37	0.027	0.68	1.1	0.0014	0.001	0.0006	0.0073
New PWRs	227	912,000	6.9	1.9	0.11	2.8	4.8	0.0038	0.004	0.003	0.028
Additional commercial waste	498	2,160,000	16	4.6	0.31	6.6	11	< 0.0001	0.01	0.007	0.066
Other Waste - CH	70	303,000	0.66	0.28	0.019	0.4	0.69	0.00049	0.0004	0.0004	0.0092
Other Waste - RH	1,900	8,270,000	61	17	1.2	25	44	< 0.0001	0.04	0.03	0.25
GTCC-like waste											
Other Waste - CH	22	95,200	0.21	0.083	0.0054	0.12	0.21	< 0.0001	0.0001	0.0001	0.0026
Other Waste - RH	702	3,040,000	23	6.4	0.43	9.3	16	0.0003	0.01	0.01	0.09
Total Groups 1 and 2	5,010	21,200,000	150	42	2.8	62	110	0.024	0.09	0.06	0.64

^a BWR = boiling water reactor, PWR = pressurized water reactor, CH = contact-handled, RH = remote-handled.

b Cargo-related impacts are impacts attributable to the radioactive nature of the material being transported.

^c Vehicle-related impacts are impacts independent of the cargo in the shipment.

d LCFs were calculated by multiplying the dose by the health risk conversion factor of 6×10^{-4} fatal cancer per person-rem (see Section 5.2.4.3).

e Dose risk is a societal risk and is the product of accident probability and accident consequence.

9.2.9.2 Highest-Exposed Individuals during Routine Conditions

During the routine transportation of radioactive material, specific individuals could be exposed to radiation in the vicinity of a shipment. Risks to these individuals for a number of hypothetical exposure-causing events were estimated. The receptors include transportation workers, inspectors, and members of the public exposed during traffic delays, while working at a service station, or while living or working near a destination site. The assumptions about exposure are given in Section C.9.2.2 of Appendix C, and transportation impacts are provided in Section 5.3.9. The scenarios for exposure are not meant to be exhaustive; they were selected to provide a range of representative potential exposures. On a site-specific basis, if someone was living or working near the NNSS entrance and was present for all 12,600 truck or 5,010 rail shipments projected, that individual's estimated dose would be approximately 0.5 or 1.0 mrem, respectively, over the course of more than 50 years. The individual's associated lifetime risk of LCF would then be 3×10^{-7} or 6×10^{-7} for truck or rail shipments, respectively.

9.2.9.3 Accident Consequence Assessment

Whereas the collective accident risk assessment considers the entire range of accident severities and their related probabilities, the accident consequence assessment assumes that an accident of the highest severity category has occurred. The consequences, in terms of committed dose (rem) and LCFs for radiological impacts, were calculated for both exposed populations and individuals in the vicinity of an accident. Because the exact location of such a transportation accident is impossible to predict and is thus not specific to any one site, generic impacts were assessed, as presented in Section 5.3.9.

9.2.10 Cultural Resources

No cultural resources are known within the project area. The only resources that could possibly be present are those associated with traditional cultural properties and other resources of concern to American Indian tribes. If the GTCC reference location was chosen for development, the Section 106 process of the NHPA would be followed for consulting with federally recognized tribes. The Section 106 process requires that the location and any ancillary locations that would be affected by the project be investigated for the presence of cultural resources prior to disturbance. Areas geographically remote from the project area that could be used for site activities would require investigation.

No impacts on cultural resources are expected from construction, operations, decommissioning, or post-closure activities at the project site, since no cultural resources have been identified in the project area. Of the three land waste disposal methods, the borehole method would have the greatest potential to affect cultural resources, if any, because of the larger acreage needed. Potential visual impacts would be minimal compared with those from the other disposal methods, because the majority of the disposal facility would be below grade. If any activities occurred in a location remote from the GTCC reference location identified southeast of

the RWMS, additional investigation would be required. If significant cultural resource sites were found, the effect of the project on these significant resources would be assessed.

Because the trench method would require only 20 ha (50 ac) for the facility, the potential for impacts is less for this method than for the other two disposal methods being considered. No known cultural resources are present within the project area; therefore, no impacts on cultural resources are expected. Visual impacts on cultural resources would need to be considered during all phases of the project; however, no known visually sensitive resources are located in the vicinity of the project area. No impacts on cultural resources are expected from any phase of the project.

 Unlike the other two land disposal methods being considered, the vault method requires large amounts of soil to cover the waste. Potential impacts on cultural resources could occur during the removal and hauling of the soil required for this method. Impacts on cultural resources would need to be considered for the soil extraction locations. It is assumed that the soil used for the cover would not be excavated from within the GTCC reference location southeast of the RWMS. The NHPA Section 106 process would be followed for all reference locations utilized for the project. Although there are no known visually sensitive resources near the GTCC reference location, visual impacts would be considered during all phases of the project.

9.2.11 Waste Management

The construction of the land disposal facilities would generate small quantities of waste in the form of hazardous and nonhazardous solids and hazardous and nonhazardous liquids. Waste generated from operations would include small quantities of solid LLRW (e.g., spent HEPA filters) and nonhazardous solid waste (including recyclable wastes). These waste types would either be disposed of on-site or sent off-site for disposal. No impacts on waste management programs at NNSS are expected from the waste that could be generated from the construction and operations of the land disposal methods. Section 5.3.11 provides a summary of the waste handling programs at NNSS for the waste types generated.

9.3 SUMMARY OF POTENTIAL ENVIRONMENTAL CONSEQUENCES AND HUMAN HEALTH IMPACTS

The potential environmental consequences from the disposal of GTCC LLRW and GTCC-like waste under Alternatives 3 and 4 are summarized by resource area as follows:

 Air quality. Potential impacts from construction and operations on ambient air quality would be negligible or minor at most. It is estimated that during construction and operations, total peak-year emissions of criteria pollutants, VOCs, and CO₂ would be small. The highest emissions associated with the vault method would be about 3.6% of Nye County's emissions total for NO_x. O₃ levels in Nye County are currently in attainment; O₃ precursor emissions from construction and operational activities would be relatively small, less than 3.6% and 0.27% of NO_x and VOC emissions, respectively, and much lower than those in the regional air shed.

During construction and operations, maximum CO₂ emissions would be negligible. All construction activities would occur within about 6 km (4 mi) of the site boundary and would not contribute significantly to concentrations at the boundary or at the nearest residence. Fugitive dust emissions during construction and operations would be controlled by best management practices. Activities during decommissioning would be similar to those during construction but on a more limited scale and for a more limited duration. Potential impacts on ambient air quality therefore would be correspondingly less from decommissioning than from construction.

Noise. The highest composite noise during construction would be about 92 dBA at 15 m (50 ft) from the source. Noise levels at 690 m (2,300 ft) from the source would be below the EPA guideline of 55 dBA as the L_{dn} for residential zones. This distance is well within the NNSS boundary, and there are no residences within this distance. Noise generated from operations would be less than that from construction. No groundborne vibration impacts are anticipated, since low-vibration-generating equipment would be used and since there are no residences or vibration-sensitive buildings in the area.

Geology. No adverse impacts from the extraction and use of geologic and soil resources are expected, nor are any significant changes in surface topography or natural drainages expected. Boreholes (40 m or 130 ft) would be completed in unconsolidated material. The potential for erosion would be reduced by the low precipitation rates and further reduced by best management practices.

 Water resources. Construction of a vault facility would require the most water. Water demands for construction at NNSS would be met by using groundwater from on-site wells completed in the Great Basin aquifer system. No surface water would be used at the site during construction; therefore, no direct impacts on surface water are expected. Indirect impacts on surface water would be reduced by implementing good industry practices and mitigation measures. Construction and operations of the proposed GTCC waste disposal facility would increase the annual water use at NNSS by a maximum of about 0.3% (vault) and 0.5% (trench). These increases would not significantly lower the water table or change the direction of groundwater flow; therefore, impacts due to groundwater withdrawals are expected to be negligible. Because of the extremely arid climate at NNSS, the rate of infiltration is insufficient to cause leaching of radionuclides to the water table (within 100,000 years). As a result, no impacts on groundwater quality and no indirect impacts on surface water quality (as a result of aquifer discharges) are expected.

Human health. Worker impacts from operations would mainly be those from the radiation doses associated with handling of the wastes. The annual radiation dose commitment would be 2.6 person-rem/yr for boreholes, 4.6 person-rem for trenches, and 5.2 person-rem/yr for vaults. These worker doses are not expected to result in any LCFs (see Section 5.3.4.1.1). The maximum dose to any individual worker would not exceed the DOE administrative control level of 2 rem/yr for operations. It is expected that the maximum dose to any individual worker over the entire project would not exceed a few rem.

The worker impacts from accidents would be associated with the physical injuries and possible fatalities that could result from construction and waste handling activities. It is estimated

that the annual number of lost workdays due to injuries and illnesses during disposal operations would range from 1 (for the borehole method) to 2 (for the trench and vault methods), and no fatalities would result from construction and waste handling accidents (see Section 5.3.4.2.2). These injuries would not be associated with the radioactive nature of the wastes but simply be those expected to occur in any construction project of this size.

With regard to the general public, no measurable doses are expected to occur during waste disposal operations at the site, given the solid nature of the wastes and the distance of waste handling activities from potentially affected individuals. It is estimated that the highest dose to an individual from an accident involving the waste packages before their disposal (from a fire affecting an SWB) would be 2.4 rem and not result in any LCFs. The total dose to the affected population from such an event is estimated to be 0.47 person-rem. Because of the extremely arid climate (and an infiltration rate of essentially zero), contamination from groundwater is not projected to reach a nearby hypothetical resident farmer within the first 10,000 years after the disposal facility closes, so this individual would receive no incremental radiation dose from disposal of these wastes.

Ecological resources. The initial loss of creosote bush/white bursage habitat, followed by the eventual establishment of low-growth vegetation, would not create a long-term reduction in the local or regional ecological diversity. After closure, the cover would become vegetated with annual and perennial grasses and forbs. Construction of the GTCC waste disposal facility would affect wildlife species inhabiting the site; however, small mammals, ground-nesting birds, and reptiles would recolonize the site once vegetative cover was reestablished. Larger mammals, such as pronghorn, coyote, and mountain lion, would likely avoid the area or be excluded by fencing.

There are no natural aquatic habitats or wetlands within the immediate vicinity of the GTCC reference location; however, depending on the amount of water in the retention pond and length of retention, certain species (e.g., aquatic invertebrates, waterfowl, shorebirds, and mammals) could become established.

The desert tortoise is the only federally listed species that is a resident at NNSS. It inhabits the southern third of the site at low estimated densities. Mitigation for loss of the desert tortoise is normally required under the terms and conditions of the 1996 Biological Opinion (Mendoza 1996); however, since the area adjacent to the RWMS is not considered suitable habitat for the desert tortoise, it is not subject to the requirements of the Opinion. Project construction activities could destroy the burrows of western burrowing owls or directly kill them. Adverse impacts would be minimized by conducting biological surveys in the project area and identifying mitigation measures accordingly.

 Socioeconomics. Impacts would be small. Construction would create direct employment for up to 145 people (vault method) in the peak construction year and 137 indirect jobs (vault method) in the ROI. The annual average employment growth rate would increase by <1%. The GTCC waste disposal facility would produce about \$12.8 million in income in the peak construction year. Up to 32 people would in-migrate to the ROI as a result of employment on-site; in-migration would have only a marginal effect on population growth and require less

than 1% of vacant housing in the peak year. Impacts from operating a land disposal facility would also be small, creating as many as 51 direct jobs (vault method) annually and an additional 36 indirect jobs (vault method) in the ROI; the facility would produce up to \$5.1 million in income annually during operations.

Environmental justice. Because health impacts on the general population within the 80-km (50-mi) assessment area during construction and operations would be negligible, no impacts on minority and low-income populations as a result of construction and operations of a GTCC waste disposal facility are expected.

Transportation. Transporting all the waste to NNSS by truck would result in approximately 12,600 shipments involving a total of 48 million km (30 million mi) of travel. Transporting all the waste by rail would require 5,010 railcar shipments involving 21 million km (13 million mi) of travel. It is estimated that no LCFs would occur to the public or crew members for either mode of transportation, but one fatality from accidents could occur.

Land use. The GTCC waste disposal facility would be integrated into the radioactive waste management zone of the Area 5 RWMS. This area currently supports defense-related activities.

Cultural resources. No known cultural resources are located within the project area. Potential resources are those associated with cultural properties or resources of concern to American Indian tribes. The borehole method has the greatest potential to affect cultural resources because of its 44-ha (110-ac) land requirement. The amount of land needed to employ this method is twice the amount needed to construct a vault or trench. No impacts are expected from construction, operations, or post-closure activities since no cultural resources have been identified in the project area. Section 106 of the NHPA would be followed to determine the impact of the project on significant cultural resources, as needed. Local tribes would be consulted to ensure no traditional cultural properties were affected by the project.

Waste management. The wastes that could be generated from construction and operations of the land waste disposal facilities are not expected to affect current waste management programs at NNSS.

9.4 CUMULATIVE IMPACTS

Section 5.4 presents the methodology for the cumulative impacts analysis. In the analysis that follows, impacts of the proposed action are considered in combination with the impacts of past, present, and reasonably foreseeable future actions. This section begins with a description of reasonably foreseeable future actions at NNSS, including those that are ongoing, under construction, or planned for future implementation. Past and present actions are generally accounted for in the affected environment section (Section 9.1).

9.4.1 Reasonably Foreseeable Future Actions

Reasonably foreseeable future actions at NNSS are summarized in the following sections. These actions were identified primarily from a review of the *Draft Supplemental Analysis for the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada* (2008 NTS SA; DOE 2008c). These actions are planned, under construction, or ongoing and may not be inclusive of all actions at the site. However, they should provide an adequate basis for determining potential cumulative impacts at NNSS.

9.4.1.1 Defense Programs-Related Facilities and Activities

The key ongoing activities related to NNSS defense programs evaluated in the final NTS EIS (DOE 1996) and the 2002 NTS SA (DOE 2002a) include maintaining readiness to conduct full-scale nuclear testing; conducting underground nuclear weapons testing; handling damaged and foreign nuclear weapons; and conducting dynamic experiments, including subcritical experiments. The status of these activities in provided in Table 3-1 of the 2008 NTS SA (DOE 2008c). New facilities and activities initiated since the final NTS EIS and the 2002 NTS SA were prepared include the following:

• Joint Actinide Shock Physics Experimental Research (JASPER) Facility. The JASPER Facility, constructed in 1999, conducts shock physics experiments on special nuclear material and other actinide materials. As many as 24 special material shots could be conducted each year; more than 24 plutonium experiments have been conducted since the 2002 NTS SA (DOE 2002a). The facility generates small quantities of TRU (DOE 2008c).

Baker Site Facility. The Baker Site Facility, located in NNSS Area 27, was
constructed to stage, assemble, and store explosives used at various approved
NNSS locations, including the Big Explosives Experimental Facility and the
JASPER Facility. The Baker Site Facility was referred to as the Nevada
Energetic Materials Operations Facility in the 2002 NTS SA (DOE 2002a).

• Device Assembly Facility (DAF). The multistructure DAF assembles, disassembles or modifies, stages, and component-tests nuclear devices and high explosives.

• Big Explosives Experimental Facility (BEEF). Research at the BEEF involves experiments on explosive pulsed-power technology and on advanced-shaped charges for augmented conventional weapons and render-safe technologies. The facility has been modified to perform high-explosives pulsed-power experiments; these modifications are not expected to increase the potential size of detonations or change the amount or type of materials involved in detonations beyond those analyzed in the 2002 NTS SA (DOE 2002a).

pulsed-power experiments on macroscopic targets until it was placed in cold stand-by mode in 2006. The relocation of the facility was evaluated in an environmental assessment and a FONSI (DOE 2001).
 * **Ula Complex** The U1a Complex* is an underground laboratory of horizontal

Atlas Facility. The Atlas Facility was relocated from LANL and conducted

- *U1a Complex*. The U1a Complex is an underground laboratory of horizontal tunnels, mined at the base of a vertical shaft about 960 ft (290 m) below the surface; it has several fixed and temporary metal buildings and instrument trailers on the surface. Upgrades to the facility would continue as needed to support program activities. Since June 2007, 22 subcritical experiments and 12 smaller special nuclear material recovery experiments have been conducted at the U1a Complex. The NNSA has plans to install a large-bore powder gun in the complex. The gun would be used to fire a large projectile into fixed special nuclear material targets. Experiments at the U1a Complex could become more complex with time, potentially using larger quantities of special nuclear material, although limits on special material quantities would not be exceeded during future subcritical experiments.
- Emplacement hole subcritical experiments. Emplacement hole experiments are similar to the subcritical experiments described for the U1a Complex, except that they are performed in vertical emplacement holes, similar to those used for underground testing.
- *G-Tunnel improvised nuclear device program*. The U12g Tunnel, also known as the G-Tunnel, is part of an ongoing program (as of 2007) that makes use of the tunnel to stage and minimally assess a damaged nuclear weapon or improvised nuclear device, should one be recovered.
- Tonopah Test Range Fire Experiment Facility open burn experiments. Open burn experiments at the Tonopah Test Range Fire Experiment Facility would involve the construction of a fire and thermal testing facility at either NNSS or the Tonopah Test Range. To date, these experiments have not been conducted, but the NNSA plans to do a NEPA review and analysis if these experiments become necessary in the future.

More in-depth descriptions of these facilities and activities can be found in the 2008 NTS SA (DOE 2008c); some are also described in the appendices of the final NTS EIS (DOE 1996).

9.4.1.2 Non-Defense Research and Development Program-Related Facilities and Activities

Ongoing non-defense R&D activities at NNSS are conducted by the NNSA, universities, industry, and other federal agencies. Among these are the establishment of a solar enterprise zone, an alternate fuel demonstration project, and an environmental research park. The status of these activities (and others that were either cancelled or are inactive) is provided in Table 3-4 of

the 2008 NTS SA (DOE 2008c). New R&D activities initiated since the final NTS EIS and the 2002 NTS SA were prepared include the following:

Nonproliferation Test and Evaluation Complex. Known originally as the
Liquefied Gaseous Fuels Spill Test Facility and then as the HazMat Spill
Center, the Nonproliferation Test and Evaluation Complex continues to
support the Work-for-Others Program by conducting research on the behavior
and safety aspects of chemical handling and releases, including releases due to
explosive detonations.

 • Nevada Environmental Research Center. Two research facilities operated by the Desert Research Institute and the University of Nevada (Las Vegas and Reno) — the Nevada Desert Free Air Carbon Dioxide Enrichment Facility and the Mojave Global Change Facility — conduct research on the impact of elevated CO₂ levels on the Mojave Desert ecosystem and research on the effects of climate change. These facilities are part of the Nevada Environmental Research Park at NNSS.

Solar power plant. A utility-scale, commercial solar power plant has been
proposed for the Solar Enterprise Zone at NNSS Area 22. It would be
developed and constructed over the next 3 to 5 years. The plant would use
concentrated solar power (Fresnel lens/trough type) and could produce up to
200 MW of electricity. Power would be transmitted through the Mercury
substation and existing transmission lines, with upgrades as needed.

9.4.1.3 Work-for-Others Program-Related Facilities and Activities

The Work-for-Others Program provides management, direction, and oversight for ongoing work for the U.S. Department of Defense, the U.S. Department of Homeland Security, law enforcement agencies, and others. These programs usually involve high-hazard operations, operations with nuclear material, training, and other activities through which NNSS can support national security missions. The status of these activities is provided in Table 3-5 of the 2008 NTS SA (DOE 2008c). New work-for-others facilities and activities initiated since the final NTS EIS and the 2002 NTS SA were prepared include the following:

Weapons of Mass Destruction Emergency Responder Training Program. The
Weapons of Mass Destruction Emergency Responder Training Program was
transferred to the Federal Emergency Management Agency in 2006. Its
mission is to enhance the capacity of state and local agencies to respond to
weapons of mass destruction incidents through coordinated training,
equipment acquisition, technical assistance, and support of state and local
exercise planning. NNSA/NSO Mobile Training Teams provide training at
NNSS or at NNSA/NSO facilities in Las Vegas for the program.

- Defense Threat Reduction Agency (DTRA) Hard Target Defeat Program. The Hard Target Defeat Program is a multi-year testing program that demonstrates the capability to detect, identify, and characterize a target and then to disrupt, neutralize, or destroy it. Through this program, DTRA evaluates alternative capabilities by using various platforms (both ground and air) against a variety of different target configurations representing different geographic scenarios. To date, tests have been conducted in NNSS Areas 12 and 16.
- U.S. Military development and training for counter-terrorism and national security defense. The NNSA/NSO supports the U.S. Department of Defense in developing methods for engaging or neutralizing an adversary in a variety of topographical environments, making use of the restricted-access and high desert terrain at NNSS. The U.S. Air Force also conducts military operations in the restricted air space above NNSS and the Tonopah Test Range. It uses NNSS mainly as a transition corridor for Nevada Test and Training Range air traffic at altitudes greater than 14,000 ft (4,300 m). Future military uses could include R&D, testing, evaluation, and integration of training and exercises with unmanned aerial vehicles and/or unmanned aircraft systems.
- Aerial Operations Facility. The Aerial Operations Facility operates and tests a
 variety of unmanned aerial vehicles. The facility was evaluated most recently
 in October 2004 to identify the potential impacts from constructing a new
 runway, hangars, and operations buildings and from performing infrastructure
 upgrades to accommodate an increase in personnel (DOE 2004a).
- National Center for Combating Terrorism. Construction of the National Center for Combating Terrorism was completed in 2006. The center provides a system of facilities and capabilities that include R&D, testing, evaluation, exercises, training, and intelligence support. The impacts of the program were evaluated in the 2003 NTS SA (DOE 2003).
- Nonproliferation Test and Evaluation Complex. Known originally as the Liquefied Gaseous Fuels Spill Test Facility and then as the HazMat Spill Center, the Nonproliferation Test and Evaluation Complex serves as a chemical and biological test center. It conducts research on the behavior and safety aspects of chemical handling and releases, including releases due to explosive detonations. Capabilities were expanded in 2002 to address national needs for emergency response and counter-terrorism training. Capabilities were expanded again in 2004 to include tests and experiments involving the release of biological simulants and low concentrations of chemicals at various NNSS locations (under the Work-for-Others Program).
- Activities using biological simulants and releases of chemicals. These activities involve chemical release tests designed to assess risks from accidental releases of hazardous and biohazardous materials, provide data on sensor development, and provide first responder training. DOE completed an

EA for this facility in June 2004 (DOE 2004b). To date, there have been an average of 8 to 16 campaigns per year with approximately 10 testing days per campaign.

• Radiological/Nuclear Countermeasures Test and Evaluation Complex. The Radiological/Nuclear Countermeasures Test and Evaluation Complex is currently under construction. The complex is located in Area 6 south of the Device Assembly Facility. Testing and evaluation activities will include prototype detector testing; evaluation systems testing and evaluation; performance standards validation; demonstration of prototype detectors, systems, and performance standards; verified threat demonstration; concept of operations evaluation and verification; and training. DOE completed an EA for this facility in August 2004 (DOE 2004c).

9.4.1.4 Radioactive Waste Disposal Facilities

Two active disposal facilities are located within the boundary of NNSS: Area 3 and Area 5 of the RWMS. Area 5 is located in the southeastern section of NNSS in Frenchman Flat, within a topographically closed basin. Area 3 is located about 24 km (15 mi) north of Area 5 in the Yucca Flat basin, also a closed basin. Operations at these facilities began in the 1960s. Both facilities are shallow-land disposal facilities; Area 5 uses engineered shallow-land burial cells to dispose of packaged waste, and Area 3 uses subsidence craters formed from underground testing of nuclear weapons to dispose of packaged and unpackaged bulk waste. Originally, the waste that was being disposed of was generated by nuclear weapons research, development, and testing conducted at NNSS. Now the waste comes from environmental cleanup activities at NNSS and other DOE sites. There are 34 disposal cells within a 160-acre (65-ha) area at Area 5 RWMS; 24 cells have been closed. To date, approximately 510,000 m³ (18 million ft³) of low-level and mixed low-level waste has been disposed of in Area 5.

Area 3 covers 49 ha (120 ac) and includes a total of seven craters, representing five cells, designated for LLRW disposal operations. The current inventory of waste at Area 3 is about 570,000 m³ (20 million ft³). Available open capacity in the two developed cells is approximately 28,000 m³ (6.7 million ft³). Capacity in the remaining craters is approximately 280,000 m³ (10 million ft³). The Area 3 RWMS is in cold standby. If low-level waste volumes would significantly increase or if a specific low-level waste shipment campaign would be better disposed of at the facility, then the Area 3 RWMS would be used.

9.4.1.5 Environmental Restoration Program-Related Activities

The Environmental Restoration Program continues to assess and remediate DOE-contaminated sites to ensure compliance with all applicable environmental regulations and statutes and to ensure protection of public and worker safety and health. The program addresses three "sub-project" areas: underground test area, soils media, and industrial sites (formerly referred to as corrective active units). Remedial actions include the closure of the

- decontamination and decommissioning facilities and DTRA (formerly the Defense Nuclear
- 2 Agency) sites and the characterization and remediation of sub-projects at the Tonopah Test
- 3 Range. The responsibility for characterization and remediation at two NNSS areas, the Central
- 4 Nevada Test Area and the Project Shoal Area, was transferred to DOE's Office of Legacy
- 5 Management, which will oversee environmental restoration and NEPA documentation
- 6 (DOE 2008c). The status of all these activities is provided in Table 3-3 of the 2008 NTS SA 7 (DOE 2008c).

9.4.1.6 Future Projects at NNSS

Future projects at NNSS are related to the proposed Complex Transformation, which identifies NNSS as an alternative site for the following facilities and activities:

• Consolidated Plutonium Center;

Consolidated Weapons Program special nuclear material storage;

• Consolidated hydrotesting, originally proposed as the Advanced Hydrotest Facility in DOE (2002a);

Consolidated major environmental testing on nuclear weapons components;

 NNSA flight test operations currently performed at the Tonopah Test Range; and

Consolidated Nuclear Production Center.

 The Notice of Availability (73 FR 2023) for the draft Complex Transformation Supplemental Programmatic EIS was published on January 11, 2008. The Complex Transformation will not include NNSA's original proposal to build a modern pit facility, as evaluated in the 2002 NTS SA (DOE 2002a).

9.4.2 Cumulative Impacts from the GTCC Proposed Action at NNSS

 Potential impacts of the proposed action are considered in combination with the impacts of past, present, and reasonably foreseeable future actions. The impacts from Alternatives 3 to 5 at NNSS are described in Section 9.2 and summarized in Section 9.3. These sections indicate that the potential impacts from the proposed action (construction and operations of a borehole, trench, or vault facility) would be small for all the resources evaluated. On the basis of the total impacts (including the reasonably foreseeable future actions summarized in Section 9.4.1), the incremental potential impacts from the GTCC proposed action are not expected to contribute substantially to cumulative impacts on the various resource areas evaluated for NNSS. For example, the land area requirement of about 44 ha (110 ac) is a fraction of the projected 2,351 ha (5,800 ac) of new ground disturbance that is indicated in the NTS EIS (DOE 1996). In addition,

- 1 the GTCC reference location would be located in an area that is already used for disposal of
- 2 other types of waste. The estimated dose to the worker population from GTCC LLRW and
- 3 GTCC-like waste disposal operations (2.6 to 5.2 person-rem) would be less than the worker
- 4 population doses from other LLRW activities at NNSS. For example, a worker population dose
- of 386 person-rem is estimated under the maximum impact alternative in the Complex
- 6 Transformation EIS (DOE 2008b). The estimates of human health impacts from post-closure
- 7 activities at the GTCC waste disposal facility indicate there would be very low doses within
- 8 10,000 years after closure (i.e., doses would be lower than the 8 mrem/yr at 250 years after
- 9 closure at Area 3 and the 6 mrem/yr at 250 years after closure at Area 5 (Shott et al. 2000;
- 10 Bechtel Nevada 2001). Finally, follow-on NEPA evaluations and documents prepared to support
- any further considerations of siting a new borehole, trench, or vault disposal facility at NNSS
- 12 would provide more detailed analyses of site-specific issues, including cumulative impacts.

9.5 SETTLEMENT AGREEMENTS AND CONSENT ORDERS FOR NNSS

16 17

A review of existing settlement agreements and consent orders for NNSS did not identify any that would contain requirements that would be triggered by Alternatives 3 to 5 for this EIS.

19 20

18

9.6 REFERENCES FOR CHAPTER 9

21 22

- AMA (American Medical Association), 2006, *Physician Characteristics and Distribution in the U.S.*, Chicago, Ill., last updated in July 2007, http://www.ama-assn.org/ama/pub/category
- 25 /2676.html. Accessed Jan. 2008.

26

27 ANSS (Advance National Seismic System), 2008, ANSS Catalog Search, http://www.ncedc.org/ 28 anss/catalog-search.html. Accessed Jan. 2008.

29

- 30 Bechtel Nevada, 2001, Performance Assessment/Composite Analysis for the Area 5 Radioactive
- 31 Waste Management Site at the Nevada Test Site, Nye County, Nevada, DOE/NV-594, prepared
- 32 for U.S. Department of Energy, Nevada Operations Office, Sept.

33

- 34 Bechtel Nevada, 2002a, Nevada Test Site 2001 Data Report: Groundwater Monitoring
- 35 Program Area 5 Radioactive Waste Management Site, DOE/NV/11718-694, prepared for
- 36 U.S. Department of Energy, Feb.

37

- 38 Bechtel Nevada, 2002b, Nevada Test Site 2001 Waste Management Monitoring Report Area 3
- 39 and Area 5 Radioactive Waste Management Sites, DOE/NV/11718-718, prepared for U.S.
- 40 Department of Energy, June.

41

- 42 Bechtel Nevada, 2005a, A Hydrostratigraphic Framework Model and Alternatives for the
- 43 Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98:
- 44 Frenchman Flat, Clark, Lincoln, and Nye Counties, Nevada, DOE/NV/11718-1064, prepared
- 45 for U.S. Department of Energy, Sept.

- 1 Bechtel Nevada, 2005b, Geomorphic Surface Maps of Northern Frenchman Flat, Nevada Test
- 2 Site, Southern Nevada, DOE/NV/11718-1091, prepared for U.S. Department of Energy, Aug.

- 4 Becker, B.D., et al., 2000, Low-Level Radioactive Waste Management at the Nevada Test Site —
- 5 Year 2000 Current Status.

6

- 7 Blomquist, K.W., et al, 1995, Current Distribution, Habitat, and Status of Category 2 Candidate
- 8 Plant Species on and near the U.S. Department of Energy's Nevada Test Site, EG&G/EM
- 9 Report 11265-1149, UC-708, prepared by EG&G, Santa Barbara, Calif., for U.S. Department of
- 10 Energy, Las Vegas Area Operations, Las Vegas, Nev., Dec.

11

- 12 Bright, D.J., et al., 2001, Analysis of Water Levels in the Frenchman Flat Area, Nevada Test Site,
- 13 Water Resources Investigations Report 00-4272, U.S. Geological Survey.

14

- 15 Buqo, T.S., 2004, Nye County Water Resources Plan, Department of Natural Resources and
- 16 Federal Facilities, Blue Diamond, Nev., Aug.

17

- 18 Byers, Jr., F.M., et al., 1989, "Volcanic Centers of Southwestern Nevada: Evolution of
- 19 Understanding, 1960–1988," Journal of Geophysical Research 94(B5):5908–5924.

20

- 21 CEQ (Council on Environmental Quality), 1997, Environmental Justice Guidance under the
- 22 National Environmental Policy Act, Executive Office of the President, Washington, D.C.,
- 23 http://www.whitehouse.gov/CEQ/December.

24

- 25 Clark University, 2006, Nevada Test Site Mixed Waste Disposal Facilities, Worcester, Mass.,
- 26 http://www.clarku.edu/mtafund/prodlib/legal_advocates/round5/Nevada_Test_Site.pdf.
- 27 Accessed July 2008.

28

- 29 Crowe, B.M., et al., 1983, Status of Volcanic Hazard Studies for the Nevada Nuclear Waste
- 30 Storage Investigations, Report No. LA-9325-MS, Los Alamos National Laboratory, Los Alamos,
- 31 Nev., Mar.

32

- 33 CRWMS M&O (Civilian Radioactive Waste Management System Management and Operating
- 34 Contractor), 2000, Yucca Mountain Site Description Document, TDR-CRW-GS-000001,
- 35 Rev. 01, ICN 01, Las Vegas, Nev.

36

- 37 DeNovio, N., et al., 2006, Phase II Groundwater Flow Model of Corrective Action Unit 98:
- 38 Frenchman Flat, Nevada Test Site, Nye County, Nevada, S-N/99205-074, Stoller-Navarro Joint
- 39 Venture, May.

40

- 41 DOC (U.S. Department of Commerce), 2008, Local Area Personal Income, Bureau of Economic
- 42 Analysis, http://www.bea.doc.gov/bea/regional/reis/. Accessed Jan. 2008.

43

- 44 DOE (U.S. Department of Energy), 1992, Radiological Control Manual, DOE/EH-0256T,
- 45 Assistant Secretary for Environment, Safety and Health, Washington, D.C., June.

- 1 DOE, 1994, Preliminary Assessment of Geothermal Potential, Nevada Test Site, prepared by the
- 2 Harry Reid Center for Environmental Studies and Progression Analysis, Inc., Las Vegas, Nev.,
- 3 Dec.

- 5 DOE, 1996, Final Environmental Impact Statement for the Nevada Test Site and Off-Site
- 6 Locations in the State of Nevada, DOE/EIS-0243, Nevada Operations Office, Las Vegas, Nev.,
- 7 Aug.

8

- 9 DOE, 1999, Intermodal and Highway Transportation of Low-Level Radioactive Waste to the
- 10 Nevada Test Site, DOE/NV-544, Nevada Operations Office, Las Vegas, Nev., Apr.

11

- 12 DOE, 2000, Nevada Test Site Resource Management Plan, Annual Summary January 2000,
- 13 DOE/NV-604, Nevada Operations Office, Las Vegas, Nev.

14

- 15 DOE, 2001, Atlas Relocation and Operation at the Nevada Test Site, Final Environmental
- 16 Assessment, DOE/EA-1334, Nevada Operations Office, Las Vegas, Nev., Mar.

17

- 18 DOE, 2002a, Supplemental Analysis for the Final Environmental Impact Statement for the
- 19 Nevada Test Site and Off-Site Locations in the State of Nevada, DOE/EIS-0243-SA-01, Nevada
- 20 Operations Office, Las Vegas, Nev., July.

21

- 22 DOE, 2002b, Final Environmental Impact Statement for a Geologic Repository for the Disposal
- 23 of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County,
- 24 Nevada, DOE/EIS-0250, Office of Civilian Radioactive Waste Management, North Las Vegas,
- 25 Nev., Feb.

26

- 27 DOE, 2003, Supplemental Analysis for the Final Environmental Impact Statement for the
- 28 Nevada Test Site and Off-Site Locations in the State of Nevada to Address the Increase in
- 29 Activities Associated with the National Center for Combating Terrorism and Counterterrorism
- 30 Training and Related Activities, DOE/EIS-0243-SA-02, Nevada Site Office, Las Vegas, Nev.,
- 31 Nov.

32

- 33 DOE, 2004a, Final Environmental Assessment for Aerial Operations Facility Modifications,
- 34 Nevada Test Site, DOE/EA-1512, Nevada Site Office, Las Vegas, Nev., Oct.

35

- 36 DOE, 2004b, Final Environmental Assessment for Activities Using Biological Simulants and
- 37 Releases of Chemicals at the Nevada Test Site, DOE/EA-1494, Nevada Site Office, Las Vegas,
- 38 Nev., June.

39

- 40 DOE, 2004c, Radiological/Nuclear Countermeasures Test and Evaluation Complex, Nevada
- 41 Test Site, Final Environmental Assessment, DOE/EA-1499, Nevada Site Office, Las Vegas,
- 42 Nev., Oct.

- 44 DOE, 2007a, Annual Transportation Report for Radioactive Waste Shipments to and from the
- 45 Nevada Test Site, DOE/NV-1187, National Nuclear Security Administration, Nevada Site Office,
- 46 Las Vegas, Nev., Jan.

- 1 DOE, 2007b, Desert Tortoise Compliance Program, National Nuclear Security Administration,
- 2 Nevada Site Office, Las Vegas, Nev., www.nv.doe.gov/emprograms/biota/tortoise.htm.

- 4 DOE, 2007c, DOE Occupational Radiation Exposure 2006 Report and Appendices,
- 5 http://www.hss.energy.gov.

6

- 7 DOE, 2008a, Final Supplemental Environmental Impact Statement for a Geologic Repository for
- 8 the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye
- 9 County, Nevada, DOE/EIS-0250F-S1, Office of Civilian Radioactive Waste Management, North
- 10 Las Vegas, Nev., June.

11

- 12 DOE, 2008b, Final Complex Transformation Supplemental Programmatic Environmental
- 13 Impact Statement, DOE/EIS-0236-S4, Oct.

14

- 15 DOE, 2008c, Draft Supplemental Analysis for the Final Environmental Impact Statement for the
- 16 Nevada Test Site and Off-Site Locations in the State of Nevada, DOE/EIS-0243-SA-03, National
- 17 Nuclear Security Administration, Nevada Site Office, Las Vegas, Nev., April.

18

- 19 Drellack, S.L., Jr., 1997, Selected Stratigraphic Data for Drill Holes Located in Frenchman Flat,
- 20 Nevada Test Site, Rev. 1, DOE/NV/11718-077, Feb.

21

- 22 EIA (Energy Information Administration), 2008, International Energy Outlook 2008 —
- 23 Highlights, DOE/EIA-0484(2008), U.S. Department of Energy, June, http://www.eia.doe.gov/
- 24 oiaf/ieo/index.html. Accessed July 2008.

25

- 26 Eldred, K.M., 1982, Standards and Criteria for Noise Control An Overview, Noise Control
- 27 Engineering 18(1):16–23, Jan.–Feb.

28

- 29 EPA (U.S. Environmental Protection Agency), 1995, "Guidance for Presidential Memorandum
- 30 on Environmentally and Economically Beneficial Landscape Practices on Federal Landscaped
- 31 Grounds," Office of the Federal Environmental Executive, Federal Register, Vol. 60, No. 154,
- 32 Aug. 10.

33

- 34 EPA, 2008a, National Ambient Air Quality Standards (NAAOS), last updated Oct. 20, 2008,
- 35 http://www.epa.gov/air/criteria.html. Accessed Oct. 22, 2008.

36

- 37 EPA, 2008b, Energy CO₂ Emissions by State, last updated Apr. 19, 2008, http://www.epa.gov/
- 38 climatechange/emissions/ state_energyco2inv.html. Accessed July 2008.

39

- 40 EPA, 2009, AirData: Access to Air Pollution Data, last updated Oct. 5, 2007, http://www.epa.
- 41 gov/air/data. Accessed Nov. 2009.

42

- 43 Fehner, T.R., and F.G. Gosling, 2000, Origins of the Nevada Test Site, DOE/MA-0518, History
- 44 Division, Executive Secretariat, Management and Administration, U.S. Department of Energy.

- 1 GSA (Geological Society of America), 2006, Tuffs Their Properties, Uses, Hydrology, and
- 2 Resources, Special Paper 408.

- 4 Hall, D.B., et al., 2003, Ecology of the Western Burrowing Owl on the Nevada Test Site,
- 5 DOE/NV/11718-701, prepared for the U.S. Department of Energy, Nevada Operations Office,
- 6 Las Vegas, Nev., Dec.

7

- 8 Hershey, R.L., et al., 2005, Evaluation of Groundwater Movement in the Frenchman Flat CAU
- 9 Using Geochemical and Isotopic Analysis, DOE/NV/13609-36, Publication No. 45207, Mar.

10

- 11 Holz, B., 1991, Desert Research Institute Cultural Research Institute Cultural Resources
- 12 Reconnaissance Short Report SR092091-1, NTS Project #915205, prepared for U.S. Department
- 13 of Energy.

14

- 15 Hoover, D.L., et al., 1981, Correlation Characteristics of Surficial Deposits with a
- 16 Description of Surficial Stratigraphy in the Nevada Test Site Region, Open File
- 17 Report 81-512, U.S. Geological Survey.

18

- 19 Hunt, C.B., 1973, Natural Regions of the United States and Canada, W.H. Freeman and
- 20 Company, San Francisco, Calif.

21

- 22 IPCC (Intergovernmental Panel on Climate Change), 2007, Climate Change 2007: The Physical
- 23 Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the IPCC,
- 24 S. Solomon et al. (editors), Cambridge University Press, Cambridge, U.K., http://www.ipcc.ch/
- 25 ipccreports/ar4-wg1.htm. Accessed July 2008.

26

- 27 Jones, R.C., and H. Drollinger, 2001, Desert Research Institute Cultural Resource
- 28 Reconnaissance Short Report No. SR060401-1, A Class III Cultural Resources Reconnaissance
- 29 of the Proposed Underground Test Area Seismic Lines in Frenchman Flat, Nevada Test Site,
- 30 Areas 5 and 11, and Nellis Air Force Range, Nye County, Nevada, prepared for U.S. Department
- 31 of Energy and the U.S. Air Force, Dec.

32

- 33 Klute, D.S., et al., 2003, Status Assessment and Conservation Plan for the Western Burrowing
- 34 Owl in the United States, Biological Technical Publication BTP-R6001-2003.

35

- 36 Laczniak, R.J., et al., 1996, Summary of Hydrogeologic Controls on Ground-Water Flow at
- 37 the Nevada Test Site, Nye County, Nevada, Water Resources Investigation Report 96-4109,
- 38 U.S. Geological Survey.

39

- 40 Mendoza, C.H., 1996, Final Programmatic Biological Opinion for Nevada Test Site Activities,
- 41 File No. 1-5-96-F-33, letter from Mendoza (U.S. Department of the Interior, Fish and Wildlife
- 42 Service, Nevada State Office, Reno, Nev.) to D.R. Elle (Environmental Protection Division,
- 43 Department of Energy, Las Vegas, Nev.), Aug. 22.

- 45 Miller, N.P., 2002, "Transportation Noise and Recreational Lands," *Proceedings of Inter-Noise*
- 46 2002, Dearborn, Mich., Aug. 19–21.

- 1 Moreo, M.T., et al., 2003, Estimated Ground-Water Withdrawals from the Death Valley
- 2 Regional Flow System, Nevada and California, 1913–1998, Water Resources Investigations
- 3 Report 03-4245, U.S. Geological Survey.

- 5 National Center for Educational Statistics, 2008, Search for Public Schools, http://www.nces.ed.
- 6 gov/ccd/schoolsearch/.

7

- 8 National Security Technologies, LLC, 2007, Nevada Test Site Environmental Report 2006
- 9 Attachment A: Site Description, DOE/NV/25946-259, prepared for U.S. Department of Energy,
- 10 National Nuclear Security Administration, Nevada Site Office, Las Vegas, Nev.

11

- 12 National Security Technologies, LLC, 2008, 2007 Data Report: Groundwater Monitoring
- 13 Program, Area 5 Radioactive Waste Management Site, DOE/NV/25946-344, Las Vegas, Nev.,
- 14 Jan.

15

- 16 NCDC (National Climatic Data Center), 2008, Storm Events, National Oceanic and Atmospheric
- 17 Administration (NOAA) Satellite and Information Service, http://www4.ncdc.noaa.gov/cgi-win/
- 18 wwcgi.dll?wwEvent~Storms. Accessed Feb. 2008.

19

- 20 NCRP (National Council on Radiation Protection and Measurements), 2009, *Ionizing Radiation*
- 21 Exposure of the Population of the United States, NCRP Report No. 160, Bethesda, Md.

22

- 23 NDOT (Nevada Department of Transportation), 2007, 2006 Annual Traffic Report, Traffic
- 24 Information Division, Carson City, Nev.

25

- 26 Nevada Seismological Laboratory, 2008, Feature: How Does Nevada Rank?, http://www.
- 27 seismo.unr.edu/feature/2006/NVrank.html. Accessed Jan. 2008.

28

- 29 Ng, D.S., et al., 1998, Seismic Evaluation of the U1a Complex at the Nevada Test Site, Report
- 30 No. UCRL-D-132382, Lawrence Livermore National Laboratory, Livermore, Calif., Oct. 16.

31

- 32 NNHP (Nevada Natural Heritage Program), 2007, Animal and Plant at-Risk Tracking List,
- 33 Department of Conservation and Natural Resources, Carson City, Nev.

34

- 35 NOAA (National Oceanic and Atmospheric Administration), 2008, Climatological Information
- 36 and Archived Data, http://www.sord.nv.doe.gov/home_climate.htm. Accessed May 2008.

37

- 38 Perry, F.V., 2002, The Geologic Basis for Volcanic Hazard Assessment for the Proposed
- 39 High-Level Radioactive Waste Repository at Yucca Mountain, Nevada, DOE Technical Report,
- 40 U.S. Department of Energy, Oct. 15.

41

- 42 Prudic, D.E., et al., 1995, Conceptual Evaluation of Regional Ground-Water Flow in the
- 43 Carbonate-Rock Province of the Great Basin, Nevada, Utah, and Adjacent States, Professional
- 44 Paper 1409-D, U.S. Geological Survey.

- 1 REEC (Reynolds Electrical & Engineering Co., Inc.), 1994, Site Characterization and
- 2 Monitoring Data from Area 5 Pilot Wells, Nevada Test Site Nye County, Nevada,
- 3 DOE/NV/11432-74, prepared for U.S. Department of Energy, Nevada Operations Office,
- 4 Las Vegas, Nev., Feb.

- 6 Shott, G.J., et al., 2000, Performance Assessment/Composite Analysis for the Area 3
- 7 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada,
- 8 Revision 2.1, DOE/NV-491-Rev.2.1, prepared by Bechtel Nevada for U.S. Department
- 9 of Energy, Nevada Operations Office, Oct.

10

- 11 Soule, D.A., 2006, Climatology of the Nevada Test Site, Technical Memorandum SORD 2006-3,
- 12 prepared by Special Operations and Research Division, Las Vegas, Nev., for National Oceanic
- 13 and Atmospheric Administration, Silver Spring, Md., Apr., http://www.sord.nv.doe.gov/climate/
- 14 Climatology_of_The_Nevada_Test_Site.Soule.pdf. Accessed May 2008.

15

- 16 Steen, D.C., et al., 1997, Distribution of the Chuckwalla, Western Burrowing Owl, and Six Bat
- 17 Species on the Nevada Test Site, DOE/NV/11718-149, prepared for the U.S. Department of
- 18 Energy, Nevada Operations Office, Las Vegas, Nev., May.

19

- 20 Stoller-Navarro, 2006, Analysis of ER-12-3 FY 2005 Hydrologic Testing, Nevada Test Site, Nye
- 21 County, Nevada, S-N/99205-080, http://www.osti.gov/energycitations/servlets/purl/892017-
- 22 DKKugH/892017.PDF. Accessed July 2008.

23

- 24 University of Arizona, 2008, Active Deformation of the Walker Lane Belt, UA Geosciences,
- 25 http://www.geo.arizona.edu/geo5xx/geos577/projects/walkerlane/index.html. Accessed Jan. 23,
- 26 2008.

27

- 28 U.S. Bureau of the Census, 2008a, County Business Patterns, 2005, Washington, D.C.
- 29 http://www.census.gov/ftp/pub/epcd/cbp/view/cbpview.html. Accessed Jan. 2008.

30

- 31 U.S. Bureau of the Census, 2008b, *American Fact Finder*, Washington, D.C., http://factfinder.
- 32 census.gov/. Accessed Jan. 2008.

33

- 34 U.S. Bureau of the Census, 2008c, Census of Governments, Washington, D.C., http://www.
- 35 census.gov/gov/www/index. Accessed Jan. 2008.

36

- 37 USDA (U.S. Department of Agriculture), 2008, Census of Agriculture, 2002, National
- 38 Agricultural Statistics Service, Washington, D.C., http://www.nass.usda.gov/census/
- 39 census97/volume1/vol1pubs.htm. Accessed Jan. 2008.

40

- 41 U.S. Department of Labor, 2009a, Bureau of Labor Statistics Homepage: Local Area
- 42 Unemployment Statistics: County Data, http://www.bls.gov/lau/#tables. Accessed Apr. 2009.

43

- 44 U.S. Department of Labor, 2009b, FTP Directory /pub/time.series/la/ at ftp.bls.gov,
- 45 ftp://ftp.bls.gov/pub/time.series/la/. Accessed Apr. 2009.

- 1 U.S. Department of Labor, 2009c, Local Area Unemployment Statistics: States and Selected
- 2 Areas: Employment Status of the Civilian Noninstitutional Population, 1976 to 2007, Annual
- 3 Averages, Bureau of Labor Statistics, http://www.bls.gov/lau/staadata.txt. Accessed Apr. 2009.
- 5 U.S. Department of Labor, 2009d, Local Area Unemployment Statistics: Unemployment Rates
- 6 for States, Bureau of Labor Statistics, http://www.bls.gov/web/laumstrk.htm. Accessed
- 7 Apr. 2009.

4

- 9 USFWS (U.S. Fish and Wildlife Service), Protecting Burrowing Owls at Construction Sites in
- 10 Nevada's Mojave Desert Region, U.S. Fish and Wildlife Office, Las Vegas, Nev.

11

- 12 USGS (U.S. Geological Survey), 2007, USGS/USDOE Cooperative Studies in Nevada: Water
- 13 Use Wells Nevada Test Site and Vicinity, http://nevada.usgs.gov/doe_nv/wateruse/
- 14 wu_map.htm. Accessed Jan. 2008.

15

- 16 USGS, 2008, Earthquakes Hazard Program Nevada Earthquake Information,
- 17 http://earthquake.usgs.gov/regional/states/?region=Nevada. Accessed Jan. 2008.

18

- 19 Williams, R.D., 2009, Subject: Final Programmatic Biological Opinion for Implementation of
- 20 Actions Proposed on the Nevada Test Site, Nye County, Nevada, letter from Williams (U.S. Fish
- 21 and Wildlife Service, Nevada Fish and Wildlife Office, Las Vegas, Nev.) to J.L. Appenzeller-
- 22 Wing (U.S. Department of Energy, National Nuclear Security Administration, Nevada Site
- 23 Office, Las Vegas, Nev.). Feb. 12.

24

- 25 Wills, C.A., 2007, Nevada Test Site Environmental Report 2006, DOE/NV/25946-259, prepared
- 26 for U.S. Department of Energy, Nevada Site Office, National Security Technologies, LLC,
- 27 Las Vegas, Nev., Sept., http://www.nv.doe.gov/library/publications/NTSER/DOENV_
- 28 25946_259.pdf. Accessed May 2008.

29

- 30 Wills, C.A., 2009, Nevada Test Site Environmental Report 2008, DOE/NV/25946-790, prepared
- 31 by National Security Technologies, LLC, Las Vegas, Nev., for U.S. Department of Energy,
- 32 National Nuclear Security Administration, Nevada Site Office, Sept.

33

- 34 Wills, C.A., and W.K. Ostler, 2001, Ecology of the Nevada Test Site: An Annotated
- 35 Bibliography, prepared for the U.S. Department of Energy, Nevada Operations Office,
- 36 Las Vegas, Nev., Dec.

37

- 38 Wills, C.A., et al., 2005, Nevada Test Site Environmental Report 2004, DOE/NV/11718-1080,
- 39 prepared for U.S. Department of Energy, National Security Technologies, LLC, Las Vegas,
- 40 Nev., Sept.

41

- 42 Winograd, I.J., and W. Thordarson, 1975, Hydrogeologic and Hydrochemical Framework,
- 43 South-Central Great Basin, Nevada-California, with Special Reference to the Nevada Test Site,
- 44 Professional Paper 712-C, U.S. Geological Survey.

D C	CTCC	TIC
Dratt	GTCC	EIS

1 2 3 4 5 6 7 8 9 10 11 12 13 This page is intentionally left blank. 14

10 SAVANNAH RIVER SITE: AFFECTED ENVIRONMENT AND CONSEQUENCES OF ALTERNATIVES 4 AND 5

This chapter provides an evaluation of the affected environment, environmental and human health consequences, and cumulative impacts from the disposal of GTCC LLRW and GTCC-like waste under Alternative 4 (in a new trench disposal facility) and Alternative 5 (in a new vault disposal facility) at SRS. Alternative 3 (disposal in a new borehole disposal facility) is not evaluated for SRS primarily because of the shallow depth to groundwater conditions prevalent there. Alternative 3 is described in Section 5.6.1. Environmental consequences that are common to all the sites for which Alternatives 4 and 5 are evaluated (including SRS) are discussed in Chapter 5 and not repeated in this chapter. Impact assessment methodologies used for this EIS are described in Appendix C. Federal and state statutes and regulations and DOE Orders relevant to SRS are discussed in Chapter 13 of this EIS.

10.1 AFFECTED ENVIRONMENT

This section discusses the affected environment for the various environmental resource areas evaluated for the GTCC reference location at SRS. The GTCC reference location is situated on an upland ridge within the Tinker Creek drainage, about 3.2 km (2 mi) to the northeast of the Z-Area in the north-central portion of SRS (see Figure 10.1-1). The reference location shown was selected primarily for evaluation purposes for this EIS. The actual location would be identified on the basis of follow-on evaluations if and when it is decided to locate a GTCC waste disposal facility at SRS.

10.1.1 Climate, Air Quality, and Noise

10.1.1.1 Climate

South Carolina is located between the southern slopes of the Appalachian Mountains and the Atlantic Ocean. It has a long coastline along which the warm Gulf Stream current flows. During the summer, weather in South Carolina is dominated by a maritime tropical air mass known as the Bermuda high. Passing over the Gulf Stream, it brings warm and moist air inland from the ocean (SCSCO 2007). As the air comes inland, it rises and forms localized thunderstorms, resulting in maximum precipitation. The mountains to the north and west tend to block or delay many cold air masses approaching from those directions, thus making the winters somewhat milder. The area around SRS has a temperate climate, characterized by long, humid summers and short, mild winters (DCS 2002).

 The annual average wind speed is 2.5 m/s (5.7 mph) at Bush Field, which is located in Augusta, Georgia, about 31 km (19 mi) west-northwest of the GTCC reference location (NCDC 2008a). Wind speed is higher in winter and spring, with the highest speed being 2.9 m/s (6.5 mph) in spring, and it is lower in summer and autumn, with the lowest speed being 2.2 m/s

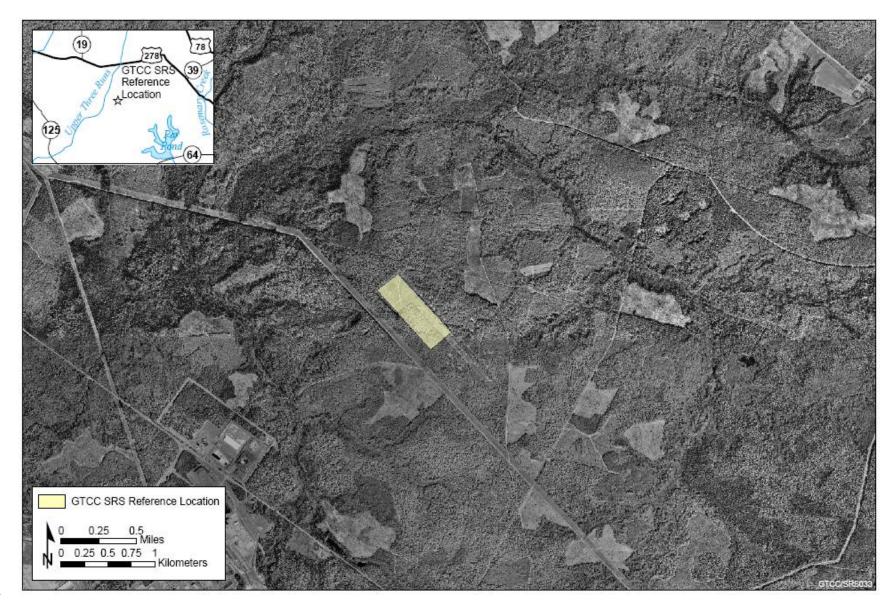


FIGURE 10.1-1 GTCC Reference Location at SRS

northeast in September and October.

14

6 7

A wind rose at the 61-m (200-ft) meteorological tower in the H-Area at SRS for the 5-year period of 1992 through 1996 is presented in Figure 10.1.1-1. There is no prominent wind direction at SRS; about 30% of the time, the wind blows from the northeast quadrant, and about 40% of the time, it blows from southwest quadrant. The annual average wind speed is about 3.9 m/s (8.8 mph), and the wind speed is relatively uniform with the wind direction. The wind patterns are different at Bush Field and at the on-site H-Area meteorological tower; the pattern at Bush Field is representative of the surface wind, which is considerably affected by surface

(5.0 mph) in autumn. Overall, the prevailing wind direction is from the west, albeit it is not

November through March, from south to southeast in April through August, and from north-

prominent. Monthly prevailing wind directions vary, being mostly from west-northwest in

Site: SRS H-Area, SC

Anem. Ht: 61 m Period: 1992-1996

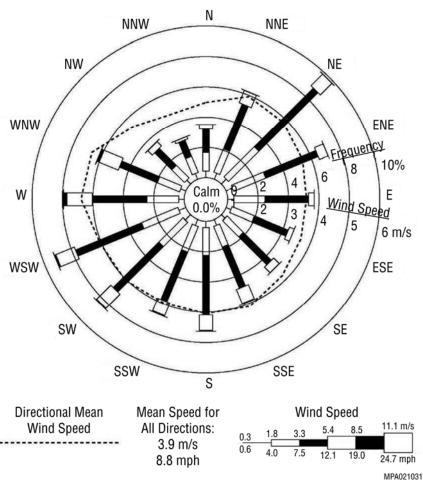


FIGURE 10.1.1-1 Wind Rose at the 61-m (200-ft) Level for the SRS H-Area Meteorological Tower, South Carolina, 1992–1996 (Source: **Arnett and Mamatey 2000)**

18 19

15

16

friction, and the pattern at the tower is representative of general upper wind. On-site wind patterns reflect the presence and orientation of the Appalachian Mountains somewhat, and they generally run in a general northeast-southwest direction.

For the last 30-year period, the annual average temperature at Bush Field has been 17.3°C (63.2°F) (NCDC 2008a). January is the coldest month, averaging 7.1°C (44.8°F), and July is the warmest month, averaging 27.1°C (80.8°F). During the last 57 years, the highest temperature was 42.2°C (108°F), and the lowest was –18.3°C (–1°F). The number of days with a maximum temperature higher than or equal to 32.2°C (90°F) is about 75, while days with a minimum temperature lower than or equal to 0°C (32°F) number about 52.

 Generally, precipitation is ample in all parts of the state. Annual precipitation at Bush Field averages about 113.2 cm (44.58 in.) (NCDC 2008a). Precipitation is light in autumn, increases in winter and spring, and peaks in summer. Measurable precipitation of 0.025 cm (0.01 in.) or more occurs on an average of 109 days per year. Measurable snow is a rarity, and, if it occurs, remains on the ground for only a short time. Light snow typically occurs from December through February, and the annual average snowfall in the area is about 3.6 cm (1.4 in.).

Severe weather occurs in South Carolina occasionally in the form of violent thunderstorms and tornadoes (Ruffner 1985). Thunderstorms are common in the summer months, but the really violent ones generally accompany the squall lines and active cold fronts of spring. Strong thunderstorms usually bring high winds, hail, and considerable lightning, and they sometimes spawn a tornado.

Tornadoes are rare in the area surrounding SRS, and they are less frequent and destructive than those in the tornado alley in the central United States. For the period 1950–2008, 878 tornadoes were reported in South Carolina, with an average of 15.1 tornadoes per year (NCDC 2008b). For the same period, a total of 93 tornadoes, at an average of 1.6 tornadoes per year, were reported in the SRS area; 57 occurred in the three counties encompassing SRS, and 36 occurred in the neighboring counties in Georgia (Burke, Richmond, and Screven). However, most tornadoes occurring in those counties were relatively weak (i.e., 91 tornadoes were less than or equal to F2 on the Fujita tornado scale, and two were F3). Nine tornadoes caused damage on SRS, one of which had estimated wind speeds as high as 67 m/s (150 mph). None caused damage to buildings on SRS (DCS 2002).

Tropical storms or hurricanes affect South Carolina about once every other year. Most do little damage and affect only the outer coastal plains, decreasing rapidly in intensity as they move inland. Those that do move far inland can cause considerable flooding (Ruffner 1985). Between 1851 and 2007, 28 major storms (4 hurricanes and 24 tropical storms) passed within 80 km (50 mi) of the GTCC reference location (NOAA 2008). Most hurricanes had been downgraded to tropical storms or tropical depressions before reaching SRS, which is located approximately 160 km (100 mi) inland. The only hurricane-force winds measured at SRS were associated with Hurricane Gracie on September 29, 1959, when wind speeds of 34 m/s (75 mph) were measured at the F-Area (DCS 2002).

10.1.1.2 Existing Air Emissions

The CAA of 1970 and CAAA of 1990 provide the basis for protecting and maintaining ambient air quality. The EPA delegated implementation and enforcement authority for the CAA to the State of South Carolina. The air pollution control rules developed and administered by the South Carolina Department of Health and Environmental Control (SCDHEC) are designed to ensure compliance with the CAA. The SCDHEC Air Permit Program is the primary driver by which emission sources are reported to and regulated by the State. Operating permits are legally enforceable documents that permitting authorities issue to air pollution sources after the source has begun to operate. In particular, a Title V permit is required for large stationary sources, such as power plants or major industrial facilities.

The SRS currently has two Title V (or Part 70 Air Quality Permit) operating permits: one including all SRS emission sources, and one for the 484-D Powerhouse (WSRC 2007a).¹

The primary emission sources of criteria air pollutants and/or air toxics are the coal-fired powerhouse boiler in the D-Area, No. 2 oil-fired package steam generating boilers (those in the K-Area and portable units), fuel-oil-fired water heaters, and the biomass-fired and fuel-oil-fired boilers in the A-Area (WSRC 2007a). Other emissions include those from diesel-fired equipment (including portable air compressors, generators, and emergency cooling water pumps), several soil vapor extraction units, two air strippers, coal piles and coal processing facilities, vehicle traffic, controlled burning of forestry areas, and temporary emissions from construction-related activities.

Annual emissions from major facility sources and total point and area sources of criteria pollutants and VOCs in year 2002 in Aiken, Allendale, and Barnwell Counties, South Carolina, which encompass SRS, are presented in Table 10.1.1-1 (EPA 2008a). Data for 2002 are the most recent emission inventory data available on the EPA website. Area sources consist of nonpoint and mobile sources. Annual emissions are much higher in Aiken County than in Allendale and Barnwell Counties for both source categories and pollutant types because it has many industrial facilities and Interstate 20 (I-20). Point sources account for most of the SO₂ emissions, and point and area sources are equally attributable to NO_x emissions. Area sources are major contributors to CO, VOC, PM₁₀, and PM_{2.5}. Emissions of criteria pollutants except CO and of VOCs from two South Carolina Electric and Gas (SCE&G) coal-fired power stations in Urquhart and in the SRS D-Area in Aiken County were predominant for point source emissions in three counties.

Annual emissions of criteria pollutants and VOCs for the period 2003–2005 were estimated by SRS and are presented in Table 10.1.1-2 (WSRC 2007a). Recently, emissions of several pollutants, notably SO_2 and NO_x , increased significantly. During the 2006 annual air compliance inspection, all SRS permitted sources were found to be in compliance with their respective permit conditions and limits, and all required reports were determined to have been submitted to SCDHEC within specified time limits.

On February 1, 2006, Washington Savannah River Company (WSRC) assumed operational responsibility from South Carolina Electric and Gas (SCE&G), which had operated the facility for DOE under a separate contract since 1995.

TABLE 10.1.1-1 Annual Emissions of Criteria Pollutants and Volatile Organic Compounds from Selected Major Facilities and Total Point and Area Source Emissions in Counties Encompassing SRS^a

		E	mission Ra	tes (tons/yr)		
Emission Category	SO ₂	NO _x	СО	VOCs	PM ₁₀	PM _{2.5}
Aiken County						
SCE&G Urquhart Power Station ^b	13,724	4,374	123	15.1	858	668
•	67.85% ^c	28.68%	0.21%	0.14%	8.76%	23.13%
	66.30%	25.23%	0.17%	0.10%	6.27%	16.87%
SCE&G SRS Area-D Powerhouse ^d	3,830	2,479	40.5	3.3	429	315
	18.93%	16.26%	0.07%	0.03%	4.38%	10.91%
	18.50%	14.30%	0.05%	0.02%	3.14%	7.95%
Westinghouse: Savannah River Site	272	325	117	10.6	25.0	18.7
	1.34%	2.13%	0.20%	0.10%	0.26%	0.65%
	1.31%	1.87%	0.16%	0.07%	0.18%	0.47%
Point sources	18,634	8,569	775	1,055	1,724	1,291
Area sources	1,595	6,681	57,779	9,934	8,067	1,597
Total	20,229	15,250	58,555	10,989	9,791	2,888
Allendale County						
Point sources	47.6	25.1	14.2	112	25.8	13.4
Area sources	113	807	8,143	1,896	1,917	651
Total	161	832	8,157	2,008	1,943	664
Barnwell County						
Point sources	68.2	73.2	19.5	217	16.1	14.5
Area sources	242	1,181	7,427	1,881	1,928	393
Total	310	1,254	7,447	2,098	1,944	408
Three-county total	20,700	17,336	74,159	15,095	13,678	3,960

^a Emission data for selected major facilities and for total point and area sources are for year 2002. CO = carbon monoxide, NO_x = nitrogen oxides, $PM_{2.5}$ = particulate matter \leq 2.5 μ m, PM_{10} = particulate matter \leq 10 μ m, SO_2 = sulfur dioxide, VOCs = volatile organic compounds.

Source: EPA (2009)

b Data in italics are not added to yield totals.

^c The top and bottom rows with % signs show emissions as percentages of Aiken County total emissions and three-county total emissions, respectively.

d On February 1, 2006, WSRC assumed operational responsibility from SCE&G, which had operated the facility for DOE under a separate contract since 1995.

TABLE 10.1.1-2 Annual Emissions of Criteria Pollutants and Volatile Organic Compounds Estimated by SRS for the Period 2003–2005^a

				Emis	sion Rate	(tons/yr)			
Year	SO_2	NO_x	СО	O ₃ (VOCs)	PM_{10}	PM _{2.5}	Lead	Total PM	Gaseous Fluorides (as HF)
2003	536	266	2,290	93.3	118	NCb	0.558	302	0.114
2004	2,150	4,240	982	544	189	NC	0.158	489	0.114
2005	6,970	7,180	1,030	548	571	477	0.174	928	0.143

^a CO = carbon monoxide, HF = hydrogen fluoride, NO_x = nitrogen oxides, O₃ = ozone, PM = particulate matter, PM_{2.5} = particulate matter \leq 2.5 μm, PM₁₀ = particulate matter \leq 10 μm, SO₂ = sulfur dioxide, VOCs = volatile organic compounds.

Source: WSRC (2007a)

10.1.1.3 Air Quality

4 5

 The South Carolina SAAQS for six criteria pollutants — SO_2 , NO_2 , CO, O_3 , PM_{10} and $PM_{2.5}$, and lead — are almost the same as the NAAQS (EPA 2008a; Flynn 2007), as shown in Table 10.1.1-3. In addition, the State has adopted standards for gaseous fluorides (expressed as HF) and has still retained the annual standard for total suspended particulates (TSP), which used to be one of criteria pollutants but was replaced by PM_{10} in 1987 (SCDHEC 2004).

The GTCC reference location (which is within SRS, mostly in Aiken and Barnwell Counties and with a much smaller section in Allendale County) is situated in the Augusta (Georgia)-Aiken (South Carolina) Interstate Air Quality Control Region (AQCR). Currently, the entire AQCR is designated as being in attainment for all criteria pollutants (40 CFR 81.311 and 81.341).

Under existing regulations, SRS is not subject to on-site monitoring requirements for ambient air quality; however, the site is required to demonstrate compliance with various air quality standards (WSRC 2007a). To accomplish this compliance, air dispersion modeling was conducted during 2006 for new emission sources or modified sources as part of the sources' construction permitting process. The modeling analysis indicated that SRS air emission sources were in compliance with all applicable regulations.

The highest concentration levels of criteria pollutants (such as SO_2 , NO_2 , CO, TSP, PM_{10} , and lead) around SRS are less than or equal to 49% of their respective standards in Table 10.1.1-3 (EPA 2009; SCDHEC 2008), except for O_3 , which exceeded the applicable standard, and $PM_{2.5}$, which was 97% of the applicable standard. Both pollutants are primarily of regional concern. Monitoring data in Jackson, Aiken County, showed that concentration levels for O_3 and $PM_{2.5}$ vary from year to year. It is hard to determine any trend for $PM_{2.5}$

b NC = not calculated.

TABLE 10.1.1-3 National Ambient Air Quality Standards (NAAQS) or South Carolina State Ambient Air Quality Standards (SAAQS) and Highest Background Levels Representative of the GTCC Reference Location at SRS, 2003–2007

			Highe	est Background Level
		NAAQS/		
Pollutant ^a	Averaging Time	SAAQS ^b	Concentration ^{c,d}	Location (Year)
20	1-hour	75 nnh	_e	
SO_2	3-hour	75 ppb 0.50 ppm	0.019 ppm (3.8)	Barnwell Co. (2004)
	3-110u1 24-hour	0.30 ppm 0.14 ppm	0.019 ppin (5.8) 0.007 ppm (5.0)	Barnwell Co. (2003)
	Annual	0.14 ppiii 0.03 ppm	0.007 ppin (5.0) 0.002 ppm (6.7)	Barnwell Co. (2007)
	Almuai	0.03 ppiii	0.002 ppiii (6.7)	Barnwen Co. (2007)
NO_2	1-hour	0.100 ppm	_	_
- · - <u>/</u>	Annual	0.053 ppm	0.004 ppm (7.5)	Jackson, Aiken Co. (2007)
		rr	rr (····)	,
CO	1-hour	35 ppm	3.0 ppm (8.6)	Columbia, Richland Co. (2004)
	8-hour	9 ppm	2.3 ppm (26)	Columbia, Richland Co. (2004)
O_3	1-hour	$0.12 \text{ ppm}^{\text{f}}$	0.101 ppm (84)	Jackson, Aiken Co. (2007)
	8-hour	0.075 ppm	0.082 ppm (109)	Jackson, Aiken Co. (2007)
TSP	Annual geometric mean	$75 \mu g/m^3$	35.9 (49)	Cayce, Lexington Co. (2003)
PM_{10}	24-hour	150 $\mu g/m^3$	$56 \mu g/m^3 (37)$	Barnwell Co. (2006)
	Annual	$50 \mu g/m^3$	_	_
D) (24.1	25 / 3	24 / 3 (07)	Y 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$PM_{2.5}$	24-hour	$35 \mu g/m^3$	$34 \mu g/m^3 (97)$	Jackson, Aiken Co. (2004)
	Annual	$15.0 \mu g/m^3$	14.5 μ g/m ³ (97)	Jackson, Aiken Co. (2006)
Lead ^g	Colondon avanton	1.5 $\mu g/m^3$	$0.00 \ \mu g/m^3 \ (0.0)$	Aiken Co. (2003)
Leads	Calendar quarter		0.00 μg/m² (0.0)	Alkell Co. (2003)
	Rolling 3 month	$0.15 \ \mu g/m^3$	_	_
Gaseous fluorides	12 hours	$3.7 \mu g/m^{3 h}$	_	_
(as HF)	24 hours	$2.9 \mu \text{g/m}^{3 \text{h}}$	_	_
\/	1 week	$1.6 \mu g/m^{3 h}$	_	_
	1 month	$0.8 \mu g/m^{3 h}$	_	_

a CO = carbon monoxide, HF = hydrogen fluoride, NO₂ = nitrogen dioxide, O₃ = ozone, PM_{2.5} = particulate matter ≤2.5 μm, PM₁₀ = particulate matter ≤10 μm, SO₂ = sulfur dioxide, TSP = total suspended particulates.

Footnotes continue on next page.

b The more stringent standard between the NAAQS and the SAAQS is listed when both are available.

Monitored concentrations are the highest arithmetic mean for calendar-quarter lead; 2nd-highest for 3-hour and 24-hour SO₂, 1-hour and 8-hour CO, 1-hour O₃, and 24-hour PM₁₀; 4th-highest for 8-hour O₃; 98th percentile for 24-hour PM_{2.5}; arithmetic mean for annual SO₂, NO₂, PM₁₀, and PM_{2.5}; geometric mean for annual TSP.

d Values in parentheses are monitored concentrations as a percentage of SAAQS or NAAQS.

TABLE 10.1.1-3 (Cont.)

- e A dash indicates that no measurement is available.
- f On June 15, 2005, the EPA revoked the 1-hour O₃ standard for all areas except the 8-hour O₃ nonattainment Early Action Compact (EAC) areas (those do not yet have an effective date for their 8-hour designations). The 1-hour standard will be revoked for these areas 1 year after the effective date of their designation as attainment or nonattainment for the 8-hour O₃ standard.
- g Used old standard because no data in the new standard format are available.
- h Arithmetic average.

Sources: 40 CFR 52.21; EPA (2008a, 2009); Flynn (2007); SCDHEC (2004, 2008)

1 2

concentrations because data were limited (for 2004–2006 only), but there was a general downward trend in O₃ concentrations during the period 1997–2006 (SCDHEC 2008). Measured concentration levels for TSP in the neighboring county of SRS were consistently less than 50% of the SAAQS, and no recent measurement data were available for hydrogen fluoride.

7 8

9

SRS and its vicinity are classified as PSD Class II areas. No Class I areas are located within 100 km (62 mi) of the GTCC reference location. The nearest Class I area is the Cape Romain National Wildlife Refuge, about 190 km (120 mi) east of the GTCC reference location; it is the only Class I area in South Carolina (40 CFR 81.426). The facilities at SRS have not been required to obtain a PSD permit (DCS 2002).

12 13 14

11

10.1.1.4 Existing Noise Environment

15 16 17

Aiken County has quantitative noise-limit ordinances by frequency band, as shown in Table 10.1.1-4, although the States of South Carolina and Georgia do not.

18 19 20

21

22

23

Similar to those at any other industrial site, major noise sources in active areas at SRS include industrial facilities and equipment (e.g., cooling systems, transformers, engines, vents, paging systems), construction and materials-handling equipment, and vehicles. Noise impacts on the general public arise primarily from transportation of people and materials to and from the site by vehicles, helicopters, and trains (DCS 2002).

242526

27

28

29

30

SRS is located in a rural setting, and no residences and sensitive receptors (e.g., schools, hospitals) are located in the immediate vicinity of the GTCC reference location. Most SRS activities are far enough from the site boundaries and any neighboring communities, and trees and other vegetation in-between tend to attenuate sound considerably, so the associated noise levels at the boundary are not measurable or are barely distinguishable from background levels. A noise survey was conducted in the SRS area in 1989 and 1990 (NUS Corporation 1990)

- 31 A noise survey was conducted in the SRS area in 1989 and 1990 (NUS Corporation 1990).
- 32 Seven off-site locations were selected along major routes used by SRS employees entering and
- 33 leaving the site. Summer L_{dn} levels ranged from 62 to 72 dBA; winter L_{dn} levels ranged from

TABLE 10.1.1-4 Maximum Allowable Noise Levels in Aiken County, South Carolina

Maximum Allowable Sound Pressure Levels at Property Boundary (dB)

Frequency Band (Hz)	Residential	Nonresidential
0–75	72	79
75–150	67	74
150-300	59	66
300-600	52	59
600–1,200	46	53
1,200–2,400	40	47
2,400–4,800	34	41
4,800–10,000	32	39

Source: County of Aiken (2008)

 51 to 70 dBA. Measured L_{dn} levels at three on-site locations were in a range of 54–62 dBA in summer and 37–59 dBA in winter. These levels for a typical rural environment primarily result from the traffic and/or bird and insect noise. For the general area surrounding SRS, the countywide L_{dn} levels based on population density are estimated to be 36, 38, and 43 dBA for Allendale, Barnwell, and Aiken Counties, respectively, typical of rural areas (Miller 2002; Eldred 1982).

10.1.2 Geology and Soils

10.1.2.1 Geology

10.1.2.1.1 Physiography. SRS is located on the Aiken Plateau of the Upper Atlantic Coastal Plain physiographic province, about 40 km (25 mi) southeast of the fall line, an erosional scarp that separates the crystalline rocks of the Piedmont province to the west from the sedimentary rocks of the Atlantic Coastal Plain (Figure 10.1.2-1). The Coastal Plain is underlain by a wedge of seaward-dipping unconsolidated and poorly consolidated sediments deposited during a series of sea transgressions and regressions and reflecting a variety of depositional environments, including fluvial, deltaic, and shallow marine. The sediments increase in thickness from zero at the fall line to more than 1,219 m (4,000 ft) near the South Carolina coast. At SRS, Coastal Plain sediments range in thickness from about 183 to 366 m (600 to 1,200 ft) (Hunt 1973; Aadland et al. 1995; Denham 1995; Fallaw and Price 1992).

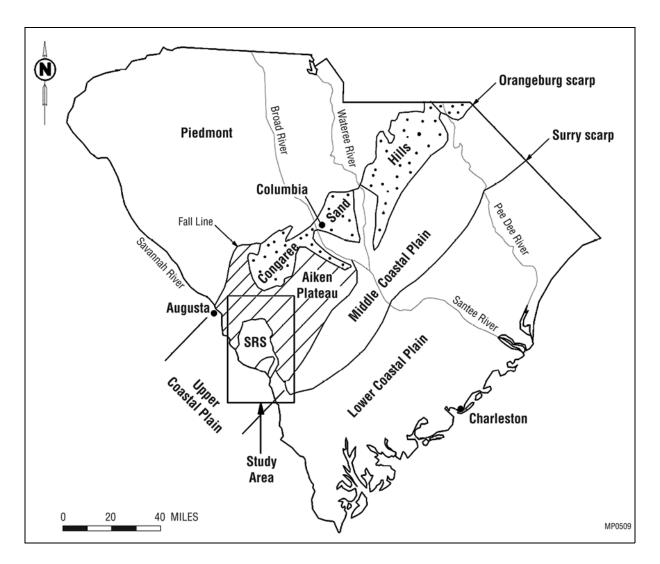


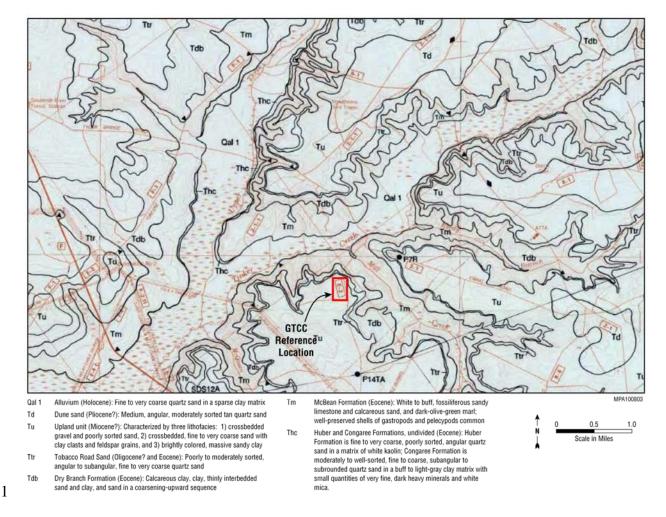
FIGURE 10.1.2-1 Location of SRS on the Atlantic Coastal Plain near the Fall Line (Source: Wyatt et al. 2000)

The Aiken Plateau is bounded by the Savannah and Congaree Rivers. It is highly dissected and characterized by broad interfluvial areas with narrow, steep-sided valleys. Regional dip is to the southeast; the plateau slopes from an elevation of approximately 200 m (650 ft) above mean sea level (MSL) at the fall line to an elevation of about (250 ft MSL) on its southeast edge. It is typically well drained, although poorly drained sinks and depressions occur in topographically high areas (above 75 m MSL [250 ft MSL]). Because SRS is situated near the Piedmont province, its relief is greater than near-coastal areas, with on-site elevations ranging from 128 m MSL (420 ft MSL) near the Aiken Gate House on Road 2 to about 24.4 m MSL (80 ft MSL) where Steel Creek enters the Savannah River (Aadland et al. 1995; Denham 1995; Rogers 1990).

The Congaree Sand Hills region of the Coastal Plain province stretches across the base of the Piedmont province at the fall line, just to the north and northeast of the Aiken Plateau

(Figure 10.1.2-1). The hills are composed of sandy soils and are typically gently sloping with rounded summits. The sand hills are remnants of ancient coastal dunes deposited during an episode of sea regression (Aadland et al. 1995).

10.1.2.1.2 Topography. The GTCC reference location is situated on a broad upland area typical of the Aiken Plateau. The elevation is fairly flat, ranging from about 90 to 100 m (300 to 330 ft) MSL, with an average slope of less than 4%. The upland area extends to the south but drops off steeply to the north, east, and west. Slopes range from 10% to 40% along the narrow valleys between the upland area and the floodplains along nearby Mill Creek, McQueen Branch, Tinker Creek, and Upper Three Runs.


 10.1.2.1.3 Site Geology and Stratigraphy. Coastal Plain sediments at SRS consist of sand, silt, clay, limestone, and conglomerate ranging in age from Late Cretaceous to Holocene. These sediments are underlain by Paleozoic metamorphic rocks (gneiss and schist, with lesser amounts of quartzite) that have been intruded by somewhat younger Paleozoic granitic plutons. In the southeastern portion of SRS, coastal plain sediments have a thickness of up to 366 m (1,200 ft) and rest unconformably on (Mesozoic Triassic) age rocks in the Dunbarton basin (Fallaw and Price 1995; Prowell 1996).

The GTCC reference location is about 32 km (2 mi) to the east-northeast of the Z-Area, in the north-central portion of SRS. It is situated on an upland ridge overlooking Tinker Creek to the north, on unconsolidated Tertiary sediments (Tobacco Road sand; Figure 10.1.2-2). Tertiary deposits make up a majority of surface exposures and most of the shallow subsurface rocks at SRS. These deposits represent marine (deltaic) and marginal marine (fluvial) depositional environments typical of the Coastal Plain province (Prowell 1996).

 The following summary of stratigraphy at the SRS is based on the work of Fallaw et al. (1992), Fallaw and Price (1995), Prowell (1996), and Wyatt et al. (2000). Figure 10.1.2-2 shows the geology of the area surrounding the GTCC reference location. Figure 10.1.2-3 presents a stratigraphic column for the SRS and vicinity.

Paleozoic and Triassic Basement Rock. Igneous and metamorphic rocks of the Piedmont and Blue Ridge provinces are the source of sediments in the Coastal Plain. Rocks similar to those exposed in the Piedmont province underlie the Coastal Plain sediments at the SRS. These include metamorphic rocks (slate, phyllite, schist, gneiss), volcanic and metavolcanic rocks, and intrusive rocks (granite) of Paleozoic age that formed during several orogenic episodes in the Appalachians.

 The southeastern portion of SRS is underlain by rocks of the Triassic Newark Supergroup in Dunbarton Basin. The Dunbarton Basin is a Triassic-Jurassic rift basin filled with lithified terrigenous and lacustrine sediments (predominantly fanglomerate, sandstone, siltstone, and mudstone), with minor amounts of mafic volcanic and intrusive rock.

FIGURE 10.1.2-2 Geologic Map of the GTCC Reference Location at SRS (Source: Adapted from Prowell 1996)

The surface of the Paleozoic rocks and Triassic sediments was leveled by erosion over time, forming the basement rock over which Coastal Plain sediments were deposited. The surface of the basement rock dips about 9.5 m/km (50 ft/mi) to the southeast at SRS.

Upper Cretaceous Sediments. Upper Cretaceous sediments overlie Paleozoic basement rock or lower Mesozoic (Triassic) rocks throughout SRS. The Upper Cretaceous section is divided into four units (from older to younger): Cape Fear Formation, Middendorf Formation, Black Creek Group, and Steel Creek Formation. Its thickness at SRS ranges from 120 m (400 ft) at the site's northwestern boundary to 240 m (800 ft) at the southeastern boundary. The sediments are typical of braided stream deposits, consisting predominantly of poorly consolidated, clay-rich, fine- to medium-grained micaceous sand, sandy clay, and gravels, suggesting a high relief in the Appalachians during this time.

10-13

MPA021032

FIGURE 10.1.2-3 Stratigraphic Column for SRS and Vicinity (Source: Adapted from Fallaw and Price 1995)

5 6

1

2

3

8 9

1 2

3

7

12

10 11

13 14

20 21

22

29 30 31

32 33

34

28

35 36 37

38

39

40 41

45

46

42 43 44

Tertiary (Paleocene, Eocene and Miocene) Sediments. Tertiary sediments range in age from Early (Lower) Paleocene to Miocene. These sediments consist predominantly of lightcolored, kaolinitic, coarse-grained, cross-bedded quartz sands, micaceous sands, and kaolin, and they were deposited in fluvial to marine shelf environments.

Quaternary Deposits. SRS lies within the interfluvial area between the Savannah and Salkahatchie Rivers; its drainage systems consist entirely of streams that are tributaries of the Savannah River. Fluvial terraces are preserved above the modern floodplain along the river and some of its major tributaries. These features, along with colluvial and alluvial deposits, make up the Quaternary section at SRS.

10.1.2.1.4 Seismicity. Earthquakes have been recorded in both the Piedmont and Coastal Plain provinces of South Carolina. Most of the seismicity in the Piedmont province has been associated with reservoirs in northwestern and central South Carolina. The largest earthquake in the Piedmont occurred in Union County in 1913 (with a modified Mercalli intensity of VI to VIII and an estimated body wave magnitude of 4.5), about 150 km (93 mi) north of SRS (Stephenson 1992; DOE 2002).

Seismicity in the Coastal Plain occurs in three distinct zones: Middleton Place-Summerville seismic zone (MPSSZ), about 20 km (12 mi) northwest of Charleston; Bowman seismic zone (BSZ), about 60 km (37 mi) northwest of the MPSSZ; and Adams Run seismic zone (ARSZ), about 30 km (19 mi) southwest of the MPSSZ. Earthquakes also occur in spatially isolated areas of the Coastal Plain. The largest earthquake in the southeastern United States occurred in the South Carolina Coastal Plain in 1886 (with a measured body wave magnitude of 6.7); its epicenter was about 20 to 30 km (12 to 19 mi) northwest of Charleston in the MPSSZ. The Charleston area is considered the most seismically active region in the Coastal Plain province, and it is the most significant source of seismicity affecting SRS (Stephenson 1992).

Figure 10.1.2-4 shows the major fault lines (and relative movement along them) at SRS, based on the work of Stephenson and Stieve (1992) and Wike et al. (1996). The lines shown are projections to the ground surface; the actual faults do not reach the ground surface (most are several hundred feet bgs). The Upper Three Runs fault (a Paleozoic fault located in the crystalline rock below the Coastal Plain sediments) crosses SRS about 1.6 km (1 mi) to the north and west of E-Area.

None of the fault systems at SRS is considered "capable" (as defined in 10 CFR Part 100) because there has been no movement along these faults that can be traced to the ground surface in the past 35,000 years (DOE 2002).

The locations of earthquakes at SRS are also shown on Figure 10.1.2-4. They include the most recent earthquake, which occurred on October 8, 2001, near Upper Three Runs Creek, about 2.5 km (1.6 mi) north of the GTCC reference site. It had a body wave magnitude of 2.6 and a focal depth of about 3.9 km (2.4 mi). Three earthquakes with magnitudes ranging from 2.0 to 2.6 occurred before this 2001 event and after the SRS seismic recording network was

FIGURE 10.1.2-4 Seismic Fault Lines and Locations of On-Site Earthquakes at SRS (Source: Adapted from DOE 2002)

7 8

1

2

3

installed in 1976; all were clustered near the south-central region of SRS (Stevenson and Talwani 2004; DOE 2002). Also, a 3.2-magnitude earthquake occurred on August 8, 1993, near Aiken, South Carolina, about 19 km (12 mi) to the north of the SRS north boundary. It was felt most strongly in Couchton, South Carolina (Stevenson and Talwani 2004).

10 11

12

13

Probabilistic seismic hazard assessments conducted since the late 1960s have determined the seismic design basis for SRS reactors to be 0.20g peak horizontal ground acceleration. These assessments have estimated the annual probability of exceeding the design basis to be within a range of 0.002 to 0.00005 (once every 500 to 20,000 years) (Stephenson 1992).

10.1.2.1.5 Volcanic Activity. There are no active volcanoes in the vicinity of SRS.

10.1.2.1.6 Slope Stability, Subsidence, and Liquefaction. No natural factors at the GTCC reference location have been reported that would affect the engineering aspects of slope stability, as long as the facility is built at some distance from the edge of the upland ridge to the north, east, and west. The upland area itself is fairly flat, with a slope of generally less than 4%.

The Santee Formation (Figure 10.1.2-3) comprises a soil zone of marine origin occurring at depths of 30 to 70 m (100 to 250 ft) across SRS. This zone has locally high concentrations of calcium carbonate and is characterized by a stronger matrix of material through which weak zones, referred to as "soft zones," are interspersed. Soft zones occur in the saturated zone and are generally stable under static conditions (showing minimal carbonate dissolution). However, load increases that could result from a seismic event could lead to subsidence, especially in areas where the soft zone is thick and laterally extensive. It is not known whether soft zones exist below the GTCC reference site (Aadland et al. 1999; WSRC 2000).

Liquefaction of saturated sediments is a potential hazard during or immediately after large earthquakes. Whether soils will liquefy depends on several factors, including the magnitude of the earthquake, peak ground velocity, liquefaction susceptibility of soils, and depth to groundwater. Previous studies at other SRS sites (e.g., F-Area) found the liquefaction susceptibility of soils to be low because of their low clay content and liquid limit and because earthquakes at SRS historically do not have the shear wave velocities required to subject soils to liquefaction (WSRC 2000). Lewis et al. (2004) also report that the liquefaction potential for soils at SRS is very low; soil strength is attributed to factors such as aging and over-consolidation.

10.1.2.2 Soils

The undisturbed soils within the study area are predominantly sands, and they overlie a substratum of loamy sand or sandy clay loam. These soils tend to be low in organic content and water storage capacity. Upland soils (Ailey and Lakeland sands) are gently sloping (0 to 6%) and well to excessively drained. These soils have a permeability that ranges from low to high and a low erosion hazard rating. Soils on the southeastern banks of Upper Three Runs Creek and Tinker Creek (Troup and Lucy sands) occur on steep slopes (15 to 25%) and are well drained. These soils are moderately permeable and have a moderate erosion hazard rating (Rogers 1990).

10.1.2.3 Mineral and Energy Resources

There are no reported mineral or energy resources being developed within the boundaries of SRS. Economic mineral resources in South Carolina include gold, copper, lead, zinc, silver, titanium, rare earths, zirconium, tin, refractory minerals, lithium, mica, and feldspar minerals. Industrial resources include clay, limestone, sand, gravel, crushed rock, building stone, slate, and aggregate.

10.1.3 Water Resources

10.1.3.1 Surface Water

10.1.3.1.1 Rivers and Streams. The major surface water systems and their 100-year floodplains at the 800-km² (310-mi²) SRS are shown in Figure 10.1.3-1. SRS streams and the Savannah River are classified as "freshwater," which is defined as surface water that is suitable (1) for primary and secondary contact recreation, (2) as a source of drinking water after conventional treatment, (3) for fishing and the survival and propagation of a balanced indigenous aquatic community of fauna and flora, and (4) for industrial and agricultural uses. None of these water features are classified as Wild and Scenic.

 The largest river in the area is Savannah River, which forms the southwestern border of SRS for about 32 km (20 mi). It is formed by the confluence of the Tugaloo and Seneca Rivers in northeast Georgia. The Savannah River watershed drains about 27,388 km² (10,547 mi²) and encompasses western South Carolina, eastern Georgia, and a small portion of southwestern North Carolina. It forms the boundary between Georgia and South Carolina. At SRS, flow within the Savannah River averages about 283 cms (10,000 cfs) (DOE 2002; Wike et al. 2006).

Five upstream reservoirs — Jocassee, Keowee, Hartwell, Richard B. Russell, and Strom Thurmond/Clarks Hill — moderate the effects of droughts and low flows on downstream water quality and accompanying impacts on aquatic and wildlife resources that depend on the river (DOE 1997, 2002; Wike et al. 2006).

Upstream of SRS, the Savannah River supplies domestic and industrial water for Augusta, Georgia, and for North Augusta, South Carolina. The river also receives sewage treatment plant effluents from Augusta, Georgia; North Augusta, Aiken, and Horse Creek Valley, South Carolina; and from a variety of SRS operations through permitted stream discharges. About 209 river km (130 river mi) downstream, the river supplies domestic and industrial water for the Port Wentworth (Savannah, Georgia) water treatment plant at River Mile 29 and for Beaufort and Jasper Counties in South Carolina at River Mile 39.2. Georgia Power's Vogtle Electric Generating Plant withdraws an average of 1.3 cms (46 cfs) for cooling and returns an average of 0.35 cms (12 cfs). Also, SCE&G's Urquhart Steam Generating Station at Beech Island, South Carolina, withdraws approximately 7.4 cms (261 cfs) of once-through cooling water (DOE 1997, 2002).

There are five SRS tributaries that discharge directly into the Savannah River: Upper Three Runs Creek, Beaver Dam Creek, Fourmile Branch, Steel Creek, and Lower Three Runs (Figure 10.1.3-1). A sixth tributary, Pen Branch, discharges to the Savannah River floodplain swamp. All these streams flow to the south/southwest, descending 15.2 to 61 m (50 to 200 ft) before discharging into the river. These streams have historically received effluent from SRS operating areas; they are not commercial sources of water.

FIGURE 10.1.3-1 Major Surface Water Stream Systems and the 100-Year Floodplain at SRS (Source: DOE 2002)

> 5 6

E-Area is situated between F-Area and H-Area on a divide that separates the drainage into the Upper Three Runs Creek to the north (with its tributaries Tinker Creek, McQueen Branch, Crouch Branch, and Tims Branch) and Fourmile Branch to the south. The upper aquifer zone of the Upper Three Runs Aquifer crops out and seeps along both the Upper Three Runs and Fourmile Branch (DOE 2002; Wike et al. 2006). The GTCC reference location at SRS is situated a short distance northeast of Z-Area, which is located about 5 km (3 mi) northeast of E-Area.

Z-Area is located just west of McQueen Branch, near the confluence of McQueen Branch and Upper Three Runs Creek. McQueen Branch is joined by the Tinker Branch on SRS. Tinker Branch then joins Upper Three Runs Creek about 50 km (31 mi) downstream of the McQueen/Tinker Creek confluence. McQueen Branch is typical of the streams in the area; it has a small gradient, a predominantly sandy substrate, little gravel, and no cobble or bedrock (Sheldon and Meffe 1994).

10.1.3.1.2 Upper Three Runs Creek. Upper Three Runs Creek, the longest of the SRS streams, is a large, blackwater stream just north of the General Separations Area (GSA). The GSA is a 40-km² (15-mi²) region in central SRS that includes the E-, F-, H-, S-, and Z-Areas (Figure 10.1.3-1). A blackwater stream has a dark color attributable to tannins released from the decomposition of leaves and acids released from heavily organic soils (North Augusta 2004). The creek is about 40-km (25-mi) long, with its lower 28 km (17 mi) being within the boundaries of SRS. It drains an area of about 545 km² (209 mi²) and flows to the southwest, discharging directly into the Savannah River. Its two significant tributaries are Tinker Creek, the largest, and Tims Branch. Upper Three Runs Creek receives more water from underground sources than do other SRS streams, and it is the only stream with headwaters that arise off-site (near Aiken, South Carolina) (DOE 2002; Wike et al. 2006).

The creek receives various NPDES-permitted effluents (either directly or through its tributaries), including cooling water, blowdown, stormwater, lab drains, air stripper discharge, steam condensate, M-Area wastes, process water, neutralization wastewater, and F/H-Area Effluent Treatment Project (ETP) wastewater. It is the only major tributary that has not received thermal discharges. The F/H-Area ETP discharges to the creek just downstream of the Road C bridge (DOE 2002; Wike et al. 2006; Mast and Turk 1999).

Stream flow was monitored between 1974 and 2002 at three locations on Upper Three Runs Creek, including two on-site locations (Road A [Station 02197315] and Road C [Station 02197310]). Annual discharge at the stations at Road C between 1975 and 2002 (based on a water year, which lasts from October of one year through September of the next year) averaged 5.78 cms (204.2 cfs), with a range of 3.45 cms (121.8 cfs) in 2002 to 8.34 cms (294.5 cfs) in 1995. At Road A station, it averaged 6.63 cms (234.3 cfs), with a range of 3.68 cms (130.0 cfs) in 2002 to 8.21 cms (289.8 cfs) in 1991 (USGS 2007). Neither station is currently monitored; no data after September 2002 are available (Wike et al. 2006).

10.1.3.1.3 Fourmile Branch. Fourmile Branch is a blackwater stream that originates to the south of the GSA. It is about 24-km (15-mi) long. The stream drains an area of about 57 km² (22 mi²) and flows to the southwest, discharging through a main delta channel into the Savannah River. A small portion of its discharge flows west and enters Beaver Dam Creek. When the Savannah River floods, water from Fourmile Branch flows south along the northern boundary of a floodplain swamp and joins Pen Branch and Steel Creek (DOE 2002; Wike et al. 2006).

Fourmile Branch receives various NPDES-permitted effluents from the F-, H-, and C-Areas and Central Shops. Discharges from the C Reactor ceased after it shut down in 1985. (Prior to that, thermal discharges of reactor cooling water were discharged to Castor Creek, a tributary to Fourmile Branch.) Effluent discharges from the Central Sanitary Wastewater Treatment Facility (CSWTF) began in 1995.

 Stream flow was monitored between 1974 and 2002 at two locations on Fourmile Branch (Site No. 7 [Station 02197342], just upstream of Castor Creek, and Road A-12.2 [Station 02197344]). Annual discharge at Site No. 7 between 1975 and 2002 (based on a water year) averaged 0.47 cms (16.5 cfs), with a range of 0.19 cms (6.78 cfs) in 2002 to 0.93 cms (32.7 cfs) in 1991. Annual discharge at Road A-12.2 between 1986 (when C Reactor discharges were discontinued) and 2002 (based on a water year) averaged 0.90 cms (31.9 cfs), with a range of 0.30 cms (10.6 cfs) in 2002 to 1.79 cms (63.1 cfs) in 1991 (USGS 2007). Neither station is currently monitored; no data after September 2002 are available (Wike et al. 2006).

Both Fourmile Branch and Upper Three Runs Creek at SRS are prone to flooding. Upstream reservoirs, additional tributaries, and crossing conduits complicate floodplain analyses. However, a 100-year floodplain has been produced for the site (Figure 10.1.3-1). Flood potential is greatest along the southwestern boundary of the site along the Savannah River. The potential for flooding in the E-Area and nearby Z-Area is small; any flooding would occur on the north side of Upper Three Runs Creek and along McQueen Branch.

 10.1.3.1.4 Reservoirs. There are two reservoirs at SRS: L Lake and Par Pond (Figure 10.1.3-1). Both ponds are located south of the GSA. L Lake is in the south-central portion of the site. It was formed in 1985 by damming the headwaters of Steel Creek about 7.2 km (4.5 mi) above its mouth. Its average width is about 0.64 km (0.40 mi), reaching a maximum of about 1.3 km (0.8 mi). At its normal pool elevation of 58 m (190 ft) MSL, the dam impounds about 31 million m³ (1,100 million ft³) of water. L Lake gains water via groundwater flow at its upstream end and loses water to the groundwater system along its downstream shorelines (Wike et al. 2006).

Par Pond is a 1,012-ha (2,500-ac) reactor-cooling reservoir created in 1958 by constructing an earthen dam, Cold Dam, across Lower Three Runs Creek (Wike et al. 2006). It was constructed to augment the cooling system for the P and R Reactors. Par Pond's capacity is 85,900 ac-ft (3,742 million ft³); normal storage is 54,400 ac-ft (2,370 million ft³). Maximum discharge from Cold Dam is 66 cms (2,340 cfs) (Find Lakes 2008). The pond runs along the course of Poplar Branch, Joyce Branch, and the upper reach of the Lower Three Runs drainage

system. The reservoir surface elevation fluctuates between 61.0 and 59.4 m (200 and 195 ft) MSL.

10.1.3.1.5 Other Surface Water. Other surface waters at SRS include the Savannah River swamp, wetlands, and Carolina Bays. The SRS Savannah River swamp borders 16 km (10 mi) of SRS and has an average width of about 2.2 km (1.4 mi). About 3,800 ha (9,400 ac) of the Savannah River swamp lie within SRS between Upper Three Runs Creek and Steel Creek. A levee and embankment run along the east side of the Savannah River. Breaches in the levee allow water from Beaver Dam Creek, Fourmile Branch, and Steel Creek to flow to the river. The combined discharges of Steel Creek and Pen Branch enter the river near the southeast edge of the swamp. During periods of high water, river water overflows the levee and floods the swamp. The river begins to overflow into the swamp when river elevations reach between 27 and 28 m (89 and 92 ft) above MSL or at flows of about 433 cms (15,300 cfs). During flooding, the water from SRS streams flows through the swamp parallel to the river and enters the river downstream of Steel Creek (Wike et al. 2006). There are no wetlands in the vicinity of Z-Area.

10.1.3.1.6 Surface Water Quality. Contamination in the Upper Three Runs Creek and Fourmile Branch watersheds is related to operational areas F and H and has been listed in the *Federal Facility Agreement for the Savannah River Site* (WSRC 1993). Table 10.1.3-1 summarizes the water quality of Upper Three Runs Creek and Fourmile Branch for 1998.

Tritium, the predominant radionuclide detected above background levels in SRS streams, was observed at all stream locations in 2006 except the Upper Three Runs Creek control point and Site X-008 near T-Area. In 2006, tritium concentrations generally declined in all site streams, except in Steel Creek, where they remained stable. In 2006, tritium concentrations in Upper Three Runs Creek and Fourmile Branch were 189 and 650 pCi/L, respectively. Tritium measured in the Savannah River below SRS in 2006 was 3,830 pCi/L. No detectable concentrations of Co-60 were observed in any of the five major SRS streams. The maximum concentration of Cs-137 in Fourmile Branch was 34.9 pCi/L; for Upper Three Runs Creek, the maximum Cs-137 concentration was 5.0 pCi/L. Maximum gross beta measurements taken in 2006 at Upper Three Runs Creek and Fourmile Branch were 2.84 and 35.1 pCi/L, respectively. Gross alpha values, at the same time, were 1.59 and 14.0 pCi/L, respectively (WSRC 2007a).

Cs-137 and Co-60 were the only man-made gamma-emitting radionuclides observed in river and stream sediments. The highest Cs-137 concentration in streams, 497 pCi/g, was detected in sediment from R Canal; the lowest levels were below detection at several locations. The highest level found on the river, 0.486 pCi/g, was measured at River Mile 129. Co-60 was detected in stream sediment at a concentration of 0.441 pCi/g at the R Canal location — the only location where Co-60 was detected. Sr-89 and Sr-90 were above the minimum detectable concentrations in sediment at six stream locations. The maximum detected value was 0.37 pCi/g at the Fourmile Branch at the Road A-7 location. Pu-238 was detected in sediment during 2006 at all stream locations and at four river locations. The results ranged from a maximum of 0.139 pCi/g at FM-A7 to below detection at several locations. Pu-239 was detected in sediment

TABLE 10.1.3-1 Water Quality Data for Upper Three Runs Creek and Fourmile Branch in 1998

Parameter ^a	Unit of Measure	Fourmile Branch (FM-6) Average	Upper Three Runs (U3R-4) Average	Water Quality Criterion, ^b MCL, ^c or DCG ^d
Aluminum	mg/L	0.285 ^e	0.294 ^e	0.087
Cadmium	mg/L	NR^f	NR	0.00066
Calcium	mg/L	NR	NR	NA ^g
Ce-137	pCi/L	4.74	0.67	120 ^d
Chromium	mg/L	$\mathrm{ND^{h}}$	ND	0.011
Copper	mg/L	0.006	ND	0.0065
Dissolved oxygen	mg/L	8.31	6.3	≥5
Iron	mg/L	0.717	0.547	1
Lead	mg/L	0.18	0.011	0.0013
Magnesium	mg/L	NR	NR	0.3
Manganese	mg/L	0.045	0.026	1
Mercury	mg/L	0.0002	ND	0.000012
Nickel	mg/L	ND	ND	0.088
Nitrate (as nitrogen)	mg/L	1.29	0.26	10 ^{c1}
pН	pН	6.4	5.8	6-8.5
Pu-238	pCi/L	0.003	ND	1.6 ^d
Pu-239	pCi/L	0.001	0.005	1.2 ^d
Sr-89 and Sr-90	pCi/L	6.79	0.04	8^{c2}
Suspended solids	mg/L	3.9	5.9	NA
Temperature ⁱ	°C	20.2	18.8	32.2
Tritium	pCi/L	1.9×10^5	4.2×10^3	$20,000^{c2}$
U-234	pCi/L	0.69	0.093	20^{d}
U-235	pCi/L	0.053	0.046	24 ^d
U-238	pCi/L	0.84	0.11	24 ^d
Zinc	mg/L	0.019	0.02	0.059

Parameters DOE routinely measures as a regulatory requirement or as part of ongoing monitoring programs.

Sources: Arnett and Mamatey (1999); DOE (2002)

b Water quality criterion is "aquatic, chronic toxicity" unless otherwise indicated.

MCL = maximum contaminant level: State Primary Drinking Water Regulations.
 c1 = Chapter 61-58.5 (b)(2)h of Arnett and Mamatey (1999); c2 = Chapter 61-58.5(h)(2)b of Arnett and Mamatey (1999).

DCG = DOE derived concentration guides for water (DOE Order 5400.5). DCG values are based on a committed effective dose of 100 mrem per year; however, because the drinking water MCL is based on 4 mrem per year, the value listed is 4% of DCG.

^e Concentration exceeded water quality criterion; however, these criteria are for comparison only. Water quality criteria are not legally enforceable.

f NR = not reported.

 $^{^{}g}$ NA = not applicable.

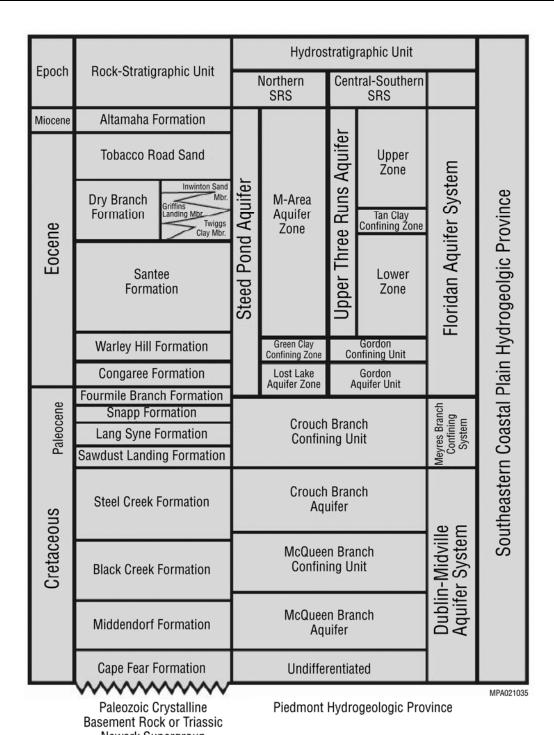
 $^{^{\}rm h}$ ND = not detected.

Shall not be increased more than 2.8°C (5°F) above natural temperature conditions or exceed a maximum of 32.2°C (90°F) as a result of the discharge of heated liquids, unless an appropriate temperature criterion mixing zone has been established.

at most stream locations and four river locations. The maximum value was 0.182 pCi/g, also found at FM-A7. U-234, U-235, and U-238 were detected at most locations (WSRC 2007a).

At every site, most nonradiological water quality parameters and metals were detected in at least one sample. Only three samples had detectable pesticides/herbicides in 2006. These results continue to indicate that SRS discharges are not significantly affecting the water quality of the on-site streams or the river. The maximum mercury concentration for Fourmile Branch in 2006 was 0.022 μ g/L; the maximum aluminum concentration was 0.023 mg/L. No detectable pesticides or herbicides were found. In 2006, maximum concentrations of mercury and aluminum in Tims Branch (a tributary of Upper Three Runs Creek) were 0.02 μ g/L and 0.5 mg/L, respectively. As was the case for Fourmile Branch, no detectable pesticides or herbicides were found (WSRC 2007a).

In 2006, as in the previous five years, no pesticides or herbicides were found to be above the quantitation limits in sediment samples from SRS surface waters. Results from metal analyses for 2006 also were comparable to those of the previous five years (WSRC 2007a).


10.1.3.2 Groundwater

10.1.3.2.1 Unsaturated Zone. Groundwater at SRS occurs in both unsaturated (vadose) and saturated (phreatic) zones. In topographically high areas, the thickness of the unsaturated zone can reach 30 m (100 ft); in regions adjacent to streams, the thickness of the unsaturated zone can be small and varies from zero to tens of feet.

10.1.3.2.2 Aquifer Units. The sand and clay sediments of the Atlantic Coastal Plain are the principal source of groundwater for SRS. These sediments are collectively referred to as the Southeastern Coastal Plain hydrogeologic province. Beneath the GSA, there are two major aquifer systems — the overlying Floridan Aquifer System and the underlying Dublin-Midville Aquifer System — separated by the Meyers Branch Confining System. Figure 10.1.3-2 shows the hydrostratigraphic units within these systems at SRS and their relationship to the lithologic units described in Section 10.1.2.1, based on the nomenclature established by Aadland et al. (1995).

The following unit descriptions are taken from Aadland et al. (1995), Denham (1995), Harris et al. (1998), Flach and Harris (1999), Wyatt et al. (2000), and WSRC (2007a) and include information specific to two reference wells, P-27 and P-28, located near the GTCC reference location.

Floridan Aquifer System. The Floridan Aquifer System consists of a thick sequence of Paleocene to Miocene sands with minor amounts of gravel, clay, and limestone deposited in a marine environment. The aquifer system is divided into the overlying Upper Three Runs Aquifer and the underlying Gordon Aquifer, separated by the Gordon Confining Unit.

Newark Supergroup
Source: Modified from Aadland et al. (1995) and Fallaw and Price (1995).

1

2

3 4 source. Insuline in the manufacture (1999) and talker and 1999.

FIGURE 10.1.3-2 Hydrogeologic Units at SRS (Source: WSRC 2007a)

Upper Three Runs Aquifer Unit. The Upper Three Runs Aquifer Unit occurs between the water table and the Gordon Confining Unit (Figure 10.1.3-2). It includes all the strata above the Warley Hill Formation and the Blue Bluff Member of the Santee Limestone. The aquifer is defined by the hydrogeologic properties of the sediments penetrated in Reference Well P-27. In this well, the aquifer is about 40.2-m (132-ft) thick and consists mainly of quartz sand and clayey sand of the Tinker/Santee Formation; sand with interbedded tan to gray clay of the Dry Branch Formation; and sand, pebbly sand, and minor clay beds of the Tobacco Road Formation. Calcareous sand, clay, and limestone occur throughout the GSA.

The hydraulic head distribution within the Upper Three Runs Aquifer is controlled by the location and depth of incisement of streams that dissect the area. The incisement of streams divides the interstream areas of the water table aquifer into "groundwater islands" that behave independently, with their own unique recharge and discharge areas. Head distribution tends to follow the topography; higher heads occur in the interstream areas and decline in the direction of the bounding streams. Groundwater divides are present near the center of the interstream areas (Figure 10.1.3-3). Water table elevations range from 76 m (250 ft) MSL to the northwest of E-Area (Figure 10.1.3-4) and to about 30 m (100 ft) MSL near the Savannah River.

The porosity and permeability of the Upper Three Runs Aquifer are variable across SRS and are reduced by the presence of interstitial silt and clay and poorly sorted sediments.

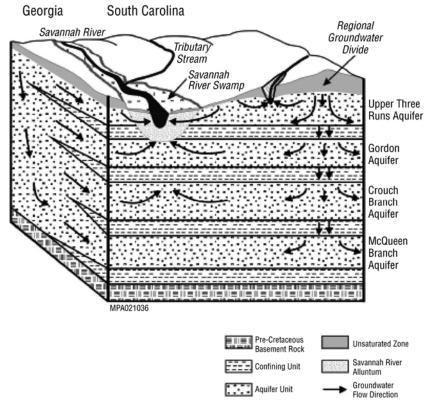


FIGURE 10.1.3-3 Groundwater Flow System at SRS (Source: WSRC 2007a)

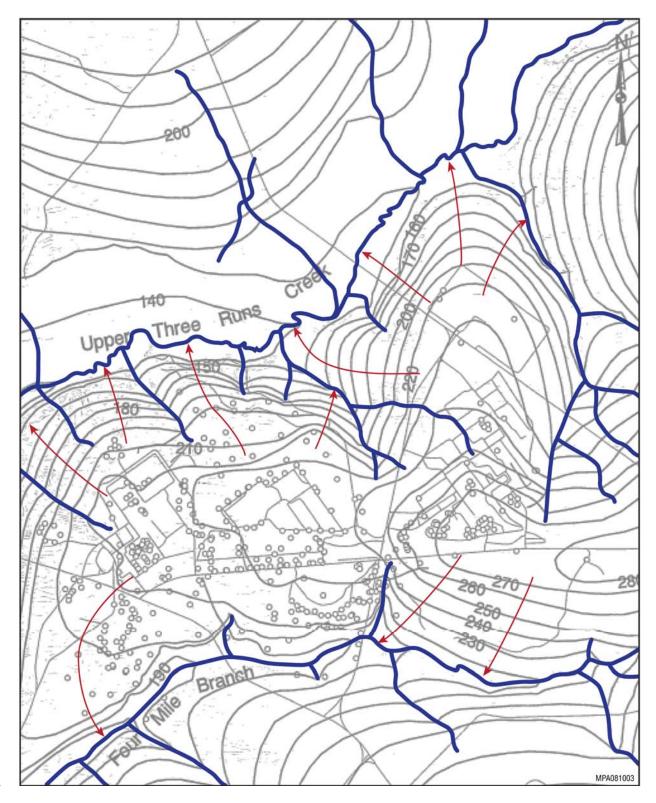


FIGURE 10.1.3-4 Water Table Elevation in the Vicinity of the General Separations Area at SRS (Source: modified from Hiergesell 1998)

10-27

1

3

High-permeability zones occur beneath the GSA and may locally increase the movement of groundwater.

The aquifer is divided into two aquifer zones — an upper aquifer zone and a lower aquifer zone — separated by the tan clay confining zone. The upper aquifer zone consists of sand and clayey sand with minor intercalated clay layers. The lower aquifer zone is predominantly fine-grained, well-sorted sand and clayey sand. The tan clay confining zone, which has an average thickness of about 3.4 m [11 ft] beneath the GSA, is leaky across most of the site and absent in places.

In the vicinity of the GTCC reference location, the thickness of the Upper and Lower Three Runs Aquifer is approximately 28 m (92 ft). This value represents the mean of the range of site-specific data (15.5 to 40.2 m [51 to 132 ft]), including thicknesses from the upper and lower aquifer zones and the tan clay confining zone (Cook et al. 2004).

Recharge of the water table in the upper aquifer zone occurs by infiltration from the land surface. The upper aquifer zone has a downward potential; groundwater leaking across the tan clay recharges the lower aquifer zone. Most of the water then moves laterally toward the bounding streams; the remainder flows vertically downward across the Gordon Confining Unit into the Gordon Aquifer.

Gordon Confining Unit. The Gordon Confining Unit consists of clayey sand and clay of the Warley Hill Formation and clayey, micritic limestone of the Blue Bluff Member of the Santee Limestone. The clay is stiff to hard and commonly fissile. Glauconite is a common constituent and imparts a distinctive greenish cast to the sediment; hence, the informal name of "green clay" was given to this unit (Hiergesell et al. 2000). Thicknesses measured by Aadland et al. (1995) in GSA Wells P-27 and P-28 were 2.1 m (7 ft) and 5.5 m (18 ft), respectively. Wyatt et al. (2000) notes that the confining unit thickens (up to 25 m [85 ft]) to the southeast.

 Gordon Aquifer. The Gordon Aquifer is the basal unit of the Floridan Aquifer System. It consists of all the saturated strata that occur between the Gordon Confining Unit and the Crouch Branch Confining Unit. The strata are the sandy parts of the Snapp Formation and the overlying Fourmile and Congaree Formations. Thin clay layers and stringers occur in places but are discontinuous across SRS. Thicknesses measured by Aadland et al. (1995) in GSA Wells P-27 and P-28 were 24 m (77 ft) and 23 m (75 ft), respectively.

Recharge occurs via precipitation in outcrop areas and by leakage from overlying and underlying aquifers (upward potential occurs along streams that incise the Upper Three Runs Aquifer). Discharge areas are the swamps and marshes along Upper Three Runs Creek and the Savannah River. The aquifer is under confined to semiconfined conditions.

Meyers Branch Confining System. The Meyers Branch Confining System corresponds to clay and interbedded sand of the uppermost Steel Creek Formation and clay and laminated shale of the Sawdust Landing, Lang Syne, and Snapp Formations. The clay in these formations tends to be thick and relatively continuous. The Crouch Branch Confining Unit is the sole unit making up the Meyers Branch Confining System. It ranges in thickness from about 17 to 56 m (57 to 184 ft) and dips about 3.0 m/km (16 ft/mi) to the southeast. The unit has an upper and lower confining zone composed of clay and sandy clay beds, separated by a middle sand zone of clayey sand and sand.

Groundwater in the confining system has an upward potential mainly because of the deep incisement by the Savannah River and Upper Three Runs Creek into the overlying Gordon Aquifer (Figure 10.1.3-3).

Dublin-Midville Aquifer System. The Dublin-Midville Aquifer System includes all the Cretaceous sediments from the Middendorf Formation up to the sand beds in the lower part of the Steel Creek Formation. The aquifer system ranges in thickness from about 76 to 168 m (250 to 550 ft) and dips about 3.8 m/km (20 ft/mi) to the southeast. At GSA Well P-27, the aquifer system is about 154 m (505 ft) thick.

The Dublin-Midville Aquifer System is divided into the overlying Crouch Branch Aquifer and the underlying McQueen Branch Aquifer. These aquifers are separated by the McQueen Branch Confining Unit. The Crouch Branch Aquifer ranges in thickness from 30 to 107 m (100 to 350 ft) and thins significantly to the east. Sediments are mainly sand, muddy sand, and gravelly sand with thin, discontinuous layers of sandy clay and sandy mud. Highpermeability zones occur near the Pen Branch Fault (Gellici et al. 1994).

The McQueen Branch Confining Unit consists of interbedded, silty, sandy clay, and sand beds of the middle portion of the Black Creek Formation. At GSA Well P-27, the confining unit is 17-m (55-ft) thick and occurs between elevations of -100 to -117 m (-329 to -384 ft) MSL. Clay makes up about 82% of the total thickness of the unit.

The McQueen Branch Aquifer Unit underlies the confining unit. At GSA Well P-27, the aquifer system is about 62-m (203-ft) thick and occurs between elevations of -117 to -180 m (-384 to -587 ft) MSL. It dips 4.7 m/km (25 ft/mi) to the southeast. Sand makes up about 90% of the total thickness of this unit.

10.1.3.2.2 Groundwater Flow. Upon entering the saturated zone at the water table, water moves predominantly in a horizontal direction toward local discharge zones along the headwaters and midsections of streams, while some of the water moves into the deeper aquifers. The water lost to successively deeper aquifers also migrates laterally within those units toward the more distant regional discharge zones. These are typically located along the major streams and rivers in the area, such as the Savannah River discharge zones. Groundwater flow within these units is extremely slow when compared with surface water flow. Groundwater velocities of

aquitards and aquifers are also different; they range from several inches to several feet per year in aquitards and from tens to hundreds of feet per year in aquifers (WSRC 2007a).

 By using a simplified model for a number of pumping scenarios on SRS (i.e., advection only), Cherry (2006) demonstrated that transriver contaminant transport from recharge areas in the central SRS (D- and K-Areas) to receptors in Georgia could occur within 80 to 1,100 years. The shortest time of travel was for particles moving vertically from the base of the Upper Three Runs Aquifer and then laterally through the Gordon Aquifer beneath the Savannah River to discharge points in Georgia. The transit times do not include the time required for groundwater to migrate vertically downward across the uppermost aquifer and do not include other processes, such as the radioactive decay of tritium. Actual travel times could be up to several decades longer than what is reported. SRS continues to maintain and sample Georgia monitoring wells annually. In 2006, none of the tritium results exceeded 1,000 pCi/L; EPA's MCL for tritium is 20,000 pCi/L (WSRC 2007a).

Measured hydraulic head distributions in the upper aquifer (water table) zone of the Upper Three Runs Aquifer and the deeper Gordon Aquifer are shown in Figures 10.1.3-5 and 10.1.3-6, respectively; they are based on the work of Flach and Harris (1999).

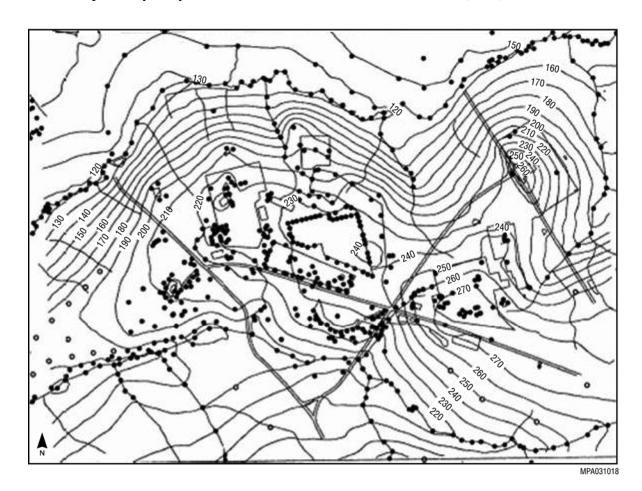


FIGURE 10.1.3-5 Measured Hydraulic Head (in feet) in the Upper Aquifer Zone of the Three Runs Aquifer (Source: Flach and Harris 1999)

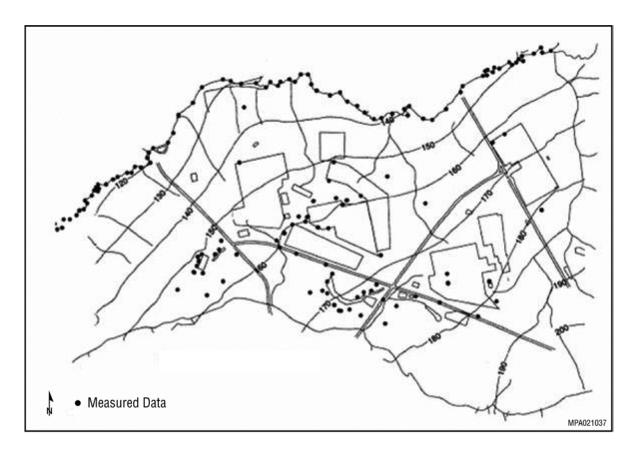


FIGURE 10.1.3-6 Measured Hydraulic Head (in feet) in the Gordon Aquifer (Source: Flach and Harris 1999)

Natural recharge for the water table aquifers (i.e., the Upper Three Runs Creek Aquifer and Gordon Aquifer) is primarily the result of infiltration of local rainfall at the land surface. Recharge areas for the deeper aquifers are updip of SRS, near the fall line, although some recharge areas are located at the northernmost edge of the site. Natural recharge over the GSA travels as deep as the Gordon Aquifer before discharging to Upper Three Runs Creek, Fourmile Branch, McQueen Branch, or a tributary of these. Artificial recharge occurs as a result of infiltration within man-made basins and ponds (as shown in Figure 10.1.3-7) and the various process, domestic, storm, and wastewater systems.

10.1.3.2.3 Groundwater Quality. The water in Coastal Plain sediments is generally of good quality and suitable for municipal and industrial use with only minimum treatment needed. The water is generally soft, slightly acidic (pH of 4.9 to 7.7), and low in dissolved and suspended solids. High dissolved iron concentrations occur in some aquifers. Groundwater is the only source of domestic water at SRS, and, where necessary, it is treated to raise the pH and remove the iron (WSRC 2007a).

FIGURE 10.1.3-7 Sources of Artificial Groundwater Recharge within the General Separations Area (Source: Flach and Harris 1999)

8

9

10

11

12 13

14

15

16 17

1

2

3

Industrial solvents, metals, tritium, and other constituents used or generated at SRS have contaminated the shallow aquifers beneath 5% to 10% of SRS. Groundwater contamination has not been detected outside SRS boundaries. In the general separations and waste management areas (E-, F-, H-, S-, and Z-Areas), located in the center of the site, groundwater is contaminated with VOCs (mainly TCE and PCE), radionuclides, metals, and other constituents. These areas encompass many smaller and, in some cases, overlapping groundwater plumes. The shallow groundwater in the southern portion of the E-, F-, and H-Areas discharges to Four Mile Creek and its tributaries; in the northern portion of these areas, the shallow groundwater discharges to Upper Three Runs Creek and its tributaries. The S- and Z-Areas are located on the groundwater divide between Upper Three Runs Creek and its tributaries to the west (ATSDR 2007). Groundwater flow below the Z-Area is to the northeast toward McQueen Branch (DOE 2002). Table 10.1.3-2 lists maximum groundwater concentration exceedances for the Z-Area prior to 2002.

TABLE 10.1.3-2 Summary of Groundwater Exceedances for Z-Area Prior to 2002

Analyte	Concentration (μCi/mL)	Regulatory Limit (µCi/mL)
Gross alpha Nonvolatile beta	9.77×10^{-8} 5.26×10^{-8}	1.5×10^{-8} 5.0×10^{-8}
Ra-226	7.78×10^{-9}	5.0×10^{-9}
Ra-228	8.09×10^{-9}	5.0×10^{-9}
Radium, total alpha emitting	5.55×10^{-8}	5.0×10^{-9}
Ruthenium-106	3.08×10^{-8}	3.0×10^{-8}

Source: DOE (2002)

10.1.3.3 Water Use

SRS is the largest self-supplied industrial consumer of groundwater in South Carolina; it used about 14.8 million L/d (3.9 million gal/d) in 2006. Drinking and process water are supplied by a network of approximately 40 wells across the site; 8 of these wells are dedicated to the domestic water system (there are treatment facilities at A-, D-, and K-Areas). The wells range in capacity from 760 to 5,700 L/min (200 to 1,500 gpm). Most groundwater production is from the deep Crouch Branch and McQueen Aquifers, with a few lower-capacity wells pumping from the shallower Gordon Aquifer and the lower zone of the Upper Three Runs Aquifer. Every major operating area at SRS has groundwater-producing wells. The amount of water pumped at SRS has decreased significantly since 1986, when the pump rate was as high as 41 million L/d (11 million gal/d), owing to the consolidation of the domestic water system completed in 1997 (DOE 2002; WSRC 2007a).

Regional domestic water supplies are primarily drawn from the shallow aquifers, including the Gordon Aquifer and the Upper Three Runs Aquifer. The municipal and industrial water supplies in Aiken County come from the deeper Crouch Branch and McQueen Aquifers. In Barnwell and Allendale Counties, municipal water supplies are drawn from the Gordon Aquifer and overlying units that thicken to the southeast. In 2005, Aiken County ranked as the 16th largest public water suppliers in South Carolina, with an average pump rate of 33.3 million L/d (8.8 million gal/d) and a per capita use of about 890 L/d (235 gal/d) (DOE 2002; Newcome 2005).

10.1.4 Human Health

 Potential radiation exposures to the off-site general public residing in the vicinity of SRS would be a relatively small fraction of the dose limit of 100 mrem/yr set by DOE to protect the public from the operations of its facilities (DOE Order 5400.5). The dose to the highest-exposed individual is estimated to be 0.12 mrem/yr under normal operating conditions (SRNS 2009). This

dose is composed of the dose from airborne releases of radionuclides (0.04 mrem/yr) and 0.08 mrem contributed by exposures associated with waterborne releases of radionuclides. For the waterborne component, about 38% of the dose is from Cs-137 (mainly from fish ingestion), 24% is from H-3 (mainly from drinking water), 19% is from ingestion of unspecified alpha emitters, 11% is from ingestion of Pu-238, and less than 3% is from all other radionuclides.

There are other unlikely situations under which the radiation dose incurred by the off-site general public could be higher. For example, an individual could hunt in the Savannah River Swamp on the privately owned Creek Plantation (which contains the highest concentrations of radioactive contamination in soil). If this individual hunted for 120 hours per year at that location, he or she could incur a radiation dose of 2.9 mrem/yr from direct radiation, soil ingestion, and inhalation of resuspended dust particles. If the hunter consumed a deer harvested at that location, which is assumed to be sufficient to meet all of an individual's requirements for meat for a year, the hunter might incur another dose of 5.7 mrem/yr (SRNS 2009). This estimate was obtained by using the average measured Cs-137 concentration in the flesh of all deer harvested in 2008. Table 10.1.4-1 provides the radiation doses estimated for the different exposure scenarios; the footnotes provide more detailed explanations regarding the methods used to develop these dose estimates.

According to the 2006 worker radiation exposure data published in DOE (2007), a total of 2,387 workers received measurable doses. A collective total dose of 107.2 person-rem was recorded, resulting in an average individual dose of 45 mrem/yr. This collective total dose is based on 1.12 person-rem from internal exposure and 106.1 person-rem from external exposure. Only 25 workers had measurable internal radiation doses. In 2006, less than 1% of the 2,387 workers with measurable doses received a total dose greater than 500 mrem/yr. For comparison, the primary DOE radiation dose limit for workers is 5 rem/yr (10 CFR Part 835), with an administrative control limit of 2 rem/yr (DOE 1994). Use of DOE's ALARA program ensures that worker doses are kept well below applicable standards.

10.1.5 Ecology

A Natural Resources Management Plan (USFS 2005) was prepared for SRS. It covers all natural resource operations, including management, education, and research programs. For natural resource management purposes, SRS is divided into six management areas (USFS 2005). The GTCC waste disposal facility would be located within the 15,558-ha (38,444-ac) Industrial Core Management Area. The primary objective in this area is to support facilities and site missions, with other important objectives being promoting conservation and restoration, providing research and educational opportunities, and generating the sale of forest products (USFS 2005). Natural resource management programs conducted within SRS include (1) habitat, population, invasive species, threatened species, and endangered species management; (2) forest products harvesting and silviculture management; (3) secondary roads, boundary, and trails management; (4) watershed management; (5) fire management; (6) DOE research set-aside areas; and (7) research (USFS 2005). In 1972, SRS was designated as the first National Environmental Research Park (NERP). Significant components of the NERP include the 30 DOE research set-aside areas that total 5,568 ha (14,005 ac). These areas are representative habitats

TABLE 10.1.4-1 Estimated Annual Radiation Doses to Workers and the General Public at SRS

Receptor	Radiation Source	Exposure Pathway	Annual Dose to Individual (mrem/yr)	Annual Dose to Population (person-rem/yr)
On-site workers	Radioactive materials handled in operations	Inhalation and ingestion	45 ^a	1.12 ^a
on site workers	Radioactive materials handled in operations	Direct radiation	44 ^b	106.1 ^b
General public	Airborne release	Submersion; inhalation; ingestion of plant foods (contaminated through deposition), meat, and milk; direct radiation from deposition	0.04 ^c	1.8 ^d
	Surface water contamination	Ingestion of water	0.04 ^e 0.011 ^f	
		Ingestion of fish Ingestion of leafy and nonleafy vegetables, meat, and milk (resulting from irrigation)	0.011 ^g	
	Swamp soil	External radiation, soil ingestion, and dust inhalation (from hunting activities)	2.9 ^h	
	Wildlife animals	Ingestion of deer or hog	5.7/7.7 ⁱ	
Worker/public	Natural background radiation and man-made sources		620 ^j	442,370 ^k

^a In 2006, among the workers monitored for internal exposure, 25 had measurable doses. A collective dose of 1.12 person-rem was recorded, which would give an average internal dose of about 45 mrem per worker (DOE 2007).

Footnotes continue on next page.

In 2006, 2,387 workers received measurable doses. The total collective dose for these workers was 107.2 person-rem (DOE 2007). After subtracting the collective dose of internal exposure from the total collective dose and distributing the remaining dose evenly among the workers, an average individual external dose of 44 mrem/yr was obtained.

Radiation dose was calculated with MAXDOSE-SR, a computer code developed to demonstrate compliance with DOE environmental orders at SRS. Estimated airborne releases of diffuse and fugitive materials were used with meteorological data in the calculation (SRNS 2009).

The collective dose was estimated with POPDOSE-SR by using the population data within 80 km (50 mi) around the SRS. The population size is about 713,500 (SRNS 2009). Like MAXDOSE-SR, POPDOSE-SR was developed to demonstrate compliance with DOE environmental orders at SRS. The collective dose estimated with CAP88-PC was 4.6 person-rem; however, a site-specific study indicated that the assumptions used by POPDOSE-SR matched site conditions better than those used by CAP88-PC (SRNS 2009).

TABLE 10.1.4-1 (Cont.)

- ^e The dose corresponds to drinking 730 L/yr (190 gal/yr) of water supplied by the public water treatment plant (BJSWA Chelsea, BJSWA Purrysburg, and Savannah I&D) (WSRC 2007a). The potential dose was calculated by using the measured tritium concentration in surface water and calculated concentrations of other radionuclides on the basis of monitored liquid effluent discharge rates along with data on the river flow rate.
- The dose corresponds to eating 19 kg (42 lb) of catfish caught exclusively from the mouth of Upper Three Runs (SRNS 2009). The potential dose resulted mainly from Cs-137, of which the concentration in the flesh of fish caught from the river was measured and used in the dose calculation.
- g The dose was calculated by assuming that contaminated Savannah River water was used for irrigation. A land area of 400 ha (1,000 ac) was assumed to be devoted to each of the four major food types: vegetation, leafy vegetation, milk, and meat (SRNS 2009).
- The dose corresponded to hunting for 120 hours in Savannah River Swamp soil on the privately owned Creek Plantation that had the highest soil contamination in 2008 (SRNS 2009). The radiation dose was calculated by using the RESRAD computer code (Yu et al. 2000). The potential dose corresponding to fishing activities would be less; a dose of 0.28 mrem/yr was calculated, assuming an exposure duration of 250 hours per year on the South Carolina bank of the Savannah River near the mouth of Steel Creek (SRNS 2009).
- The dose was calculated on the basis of the average concentration of Cs-137 measured in all deer (2.40 pCi/g) or hogs (2.91 pCi/g) harvested from SRS during 2008. The deer or hogs were assumed to constitute the entire meat diet of the hunter (SRNS 2009). For a fisherman, the potential dose would be much lower; a dose of 0.4 mrem/yr was reported for the consumption of catfish at the mouth of Upper Three Runs in SRNS (2009).
- J Average dose to a member of the U.S. population as estimated in Report No. 160 of the National Council on Radiation Protection and Measurements (NCRP 2009).
- k Collective dose to the population of 713,500 within 80 km (50 mi) of the SRS from natural background radiation and man-made sources.

that DOE has preserved for ecological research. They are protected from public intrusion and most site-related activities (DOE 2002).

SRS is in the transition area between the northern oak-hickory-pine forest and the southern mixed forest. It therefore contains species common to both forest types. About 90% of SRS contains upland pine, hardwood, and mixed (pines and hardwoods) forests and bottomland hardwood forests. The loblolly-longleaf-slash pine (*Pinus taeda*, *P. palustris*, *P. elliottii*) community covers about 65% of the site (DOE 1997). More than 1,300 plant species have been reported from SRS (Wike et al. 2006).

The GTCC reference location would be situated in an area dominated by stands of loblolly and slash pine. Understory species in the pine stands include black cherry (*Prunus serotina*), oaks (*Quercus* spp.), and persimmon (*Diospyros virginiana*). The site area also has small pockets of upland hardwood stands of white oak (*Quercus alba*), southern red oak (*Quercus falcata*), and hickory (*Carya* spp.). Ground cover at the site includes Japanese honeysuckle (*Lonicera japonica*), greenbrier (*Smilax* spp.), muscadine grape (*Vitis rotundifolia*), spotted wintergreen (*Chimaphila maculata*), and various grasses, legumes, and composites (DOE 1997).

More than 19,830 ha (49,000 ac) of wetlands occur on SRS (DOE 1997). They are widely distributed throughout the site, making up more than 20% of the site. Wetlands present include bottomland hardwood forests, cypress-tupelo swamp forests, floodplains, creeks, impoundments, and more than 300 Carolina bays (naturally occurring pond formations that cover about 445 ha [1,100 ac] of SRS) and wetland depressions. The Savannah River Swamp is a major wetland area that borders the Savannah River and covers about 3,800 ha (9,400 ac) of SRS (DOE 1997). No wetlands occur within the GTCC reference location.

Wildlife species that occur at SRS include 55 species of mammals, 255 species of birds, and 104 species of reptiles and amphibians (Wike et al. 2006). More than 150 species have been documented as using developed areas on SRS, with most species using landscaped areas away from buildings or other structures (Mayer and Wike 1997). White-tailed deer, feral hog, and American beaver populations are controlled through selective harvests, including public hunts for deer and boars. Concern has been expressed that the nine-banded armadillos may disturb and possibly breach waste unit closure caps, which could result in increased rainwater infiltration (Wike et al. 2006).

Bird species likely to occur within the pine-dominated forests of the GTCC reference location include Carolina wren (*Thryothorus ludovicianus*), wood thrush (*Hylocichla mustelina*), northern mockingbird (*Mimus polyglottus*), eastern towhee (*Pipilo erythrophthalmus*), pine warbler (*Dendroica pinus*), prairie warbler (*D. discolor*), red-eyed vireo (*Vireo olivaceus*), red-bellied woodpecker (*Melanerpes carolinus*), yellow-shafted flicker (*Colaptes auratus auratus*), sharp-shinned hawk (*Accipiter striatus*), eastern screech owl (*Megascops asio*), northern bobwhite (*Colinus virginianus*), and wild turkey (*Meleagris gallopavo*) (DOE 1997).

The Savannah River is the major aquatic habitat in the SRS vicinity. SRS also contains more than 50 man-made ponds, including two large water bodies: the 1,012-ha (2,500-ac) Par

- Pond and the 405-ha (1,000-ac) L Lake. These water bodies were created by damming Lower
- 2 Three Runs Creek and Steel Creek, respectively. More than 80 species of fish have been
- 3 identified on SRS, including commercial and recreational species (NRC 2005). The designated
- 4 area for the GTCC reference location is within Upper Three Runs Creek watershed. Tinker, Mill,
- 5 and McQueen Creeks are the bodies of water that are closest to the site (Figure 10.1.3-1).
 - Minnow and sunfish species dominate the fish population in Upper Three Runs, while shiners, madtoms, and darters occur within the tributary streams (DOE 1997).

 The federally and state-listed species identified from Aiken County are listed in Table 10.1.5-1. No designated critical habitat for any federally threatened or endangered species occurs within the area designated for the GTCC reference location (DOE 1997). The Eastern indigo snake (*Drymarchon couperi*, federally threatened), while not known to occur in Aiken County (SCDNR 2009), may be present in the county. Major natural resource management actions on SRS are aimed at habitat management for the red-cockaded woodpecker (*Picoides borealis*).

10.1.6 Socioeconomics

Socioeconomic data for SRS describes an ROI surrounding the site composed of four counties: Columbia County and Richmond County in Georgia and Aiken County and Barnwell County in South Carolina. More than 80% of SRS workers reside in these counties (NRC 2005).

10.1.6.1 Employment

 In 2005, total employment in the ROI stood at 174,509, and it was expected to decrease to 171,670 by 2008. Employment grew at an annual average rate of 0.4% between 1995 and 2005 (U.S. Bureau of the Census 2008a). The economy of the ROI is dominated by the trade and service industries, with employment in these activities currently contributing more than 64% of all employment (see Table 10.1.6-1). The manufacturing sector is also a significant employer in the ROI, with 20% of total ROI employment. Employment at SRS was 13,616 in 2000 (NRC 2005).

10.1.6.2 Unemployment

Unemployment rates have varied across the counties in the ROI (Table 10.1.6-2). Over the 10-year period 1999–2008, the average rate in Richmond County was 8.6%, with lower rates in Barnwell County (5.7%), Columbia County (5.2%), and Aiken County (3.6%). The average rate in the ROI over this period was 5.8%, higher than the average rate for Georgia (4.6%) and the same as that for South Carolina (5.8%). Unemployment rates for the first two months of 2009 contrasted markedly with rates for 2008 as a whole; in Richmond County, the unemployment rate increased to 16.9%, while in Barnwell County, the rate reached 9.6%, and in Columbia County, it reached 9.0%. The average rates for the ROI (10.5%) and for Georgia (11.0%) and

TABLE 10.1.5-1 Federally and State-Listed Threatened, Endangered, and Other Special-Status Species in Aiken County, South Carolina

Common Name (Scientific Name)	Status ^a Federal/State
Common Traine (Scientific Traine)	1 cdcrai/State
Plants	
Harperella (Ptilimnium nodosum)	E/-
Relict trillium (<i>Trillium reliquum</i>)	E/-
Smooth coneflower (Echinacea laevigata)	E/-
Fishes	
Shortnose sturgeon (Acipenser brevirostrum)	E/SE
Amphibians	
Gopher frog (Rana capito)	-/SE
Reptiles	
Eastern indigo snake (<i>Drymarchon couperi</i>)	T/-
Gopher tortoise (Gopherus polyphemus)	-/SE
Spotted turtle (Clemmys guttata)	-/ST
Birds	
Bald eagle (Haliaeetus leucocephalus)	-/SE
Red-cockaded woodpecker (<i>Picoides borealis</i>)	E/SE
Mammals	
Rafinesque's big-eared bat (<i>Plecotus rafinesquii</i>)	-/SE

^a E (endangered): A species in danger of extinction throughout all or a significant portion of its range.

SE (state endangered): An animal species or subspecies whose prospects of survival or recruitment in South Carolina are in jeopardy.

ST (state threatened): An animal species likely to be classified as state endangered within the foreseeable future throughout all or a significant portion of its South Carolina range.

T (threatened): A species likely to become endangered within the foreseeable future throughout all or a significant portion of its range.

-: Not listed.

Source: SCDNR (2006)

1 2 3

4

South Carolina (9.3%) during this period were higher than the corresponding average rates for 2008.

5 6 7

10.1.6.3 Personal Income

8

Personal income in the ROI stood at almost \$14 billion in 2005 and was expected to reach \$14.7 billion in 2008, growing at an annual average rate of growth of 2.0% over the period

TABLE 10.1.6-1 SRS County and ROI Employment by Industry in 2005

	Georgia		South	South Carolina		
Sector	Columbia County	Richmond County	Aiken County	Barnwell County	ROI Total	% of ROI Total
Agriculture ^a	116	143	508	306	1,073	0.6
Mining	60	76	175	0	308	0.2
Construction	2,862	3,426	2,469	129	8,886	5.1
Manufacturing	3,972	10.087	17,345	2,790	34,194	20.0
Transportation and public utilities	326	2,060	2,446	120	4,952	2.8
Trade	5,910	13,905	7,536	1,103	28,454	16.3
Finance, insurance, and real estate	5,976	4,431	1,720	172	12,299	7.0
Services	10,448	52,579	19,299	1,976	84,302	48.3
Other	7	10	14	10	41	0.0
Total	29,677	86,717	51,512	6,606	174,509	

a USDA (2008).

Source: U.S. Bureau of the Census (2008a)

TABLE 10.1.6-2 SRS Average County, ROI, and State Unemployment Rates (%) in Selected Years

Location	1999–2008	2008	2009 ^a
Columbia County, Georgia	5.2	6.0	9.0
Richmond County, Georgia	8.6	11.4	16.9
Aiken County, South Carolina	3.6	4.7	6.6
Barnwell County, South Carolina	5.7	7.0	9.6
ROI	5.8	7.3	10.5
Georgia	4.6	6.2	11.0
South Carolina	5.8	6.9	9.3

^a Rates for 2009 are the average for January and February.

Source: U.S. Department of Labor (2009a-d)

3 4

6

1 2

1995–2005 (Table 10.1.6-3). ROI personal income per capita also rose in the 1990s and was expected to reach \$30,120 in 2008, compared to \$29,693 in 1995. Per capita incomes are higher in Columbia County (\$36,464 in 2005) than elsewhere in the ROI.

8 9 10

11 12

13

10.1.6.4 Population

The population of the ROI was 455,096 in 2000 (U.S. Bureau of the Census 2008b) and was expected to reach 488,343 by 2008 (Table 10.1.6-4). In 2006, 194,398 people were living in

TABLE 10.1.6-3 SRS County, ROI, and State Personal Income in Selected Years

			Average Annual Growth Rate (%),	
Income	1995	2005	1995–2005	2008a
Calumbia Caustu				
Columbia County Total personal income (2006 \$ in millions)	2,555	3,774	4.0	4,193
Personal income per capita (2006 \$)	31,355	36,464	1.5	36,939
Richmond County				
Total personal income (2006 \$ in millions)	4,795	5,318	1.0	5,423
Personal income per capita (2006 \$)	23,974	27,395	1.3	27,813
Aiken County				
Total personal income (2006 \$ in millions)	3,598	4,402	2.0	4,623
Personal income per capita (2006 \$)	26,504	29,335	1.0	29,601
Barnwell County				
Total personal income (2006 \$ in millions)	548	491	-1.1	469
Personal income per capita (2006 \$)	24,494	21,067	-1.5	19,831
ROI total				
Total personal income (2006 \$ in millions)	11,496	13,985	2.0	14,709
Personal income per capita (2006 \$)	26,150	29,693	1.3	30,120
Georgia				
Total personal income (2006 \$ in millions)	210,143	291,429	3.3	317,789
Personal income per capita (2006 \$)	28,675	31,911	1.1	32,431
South Carolina				
Total personal income (2006 \$ in millions)	94,831	123,998	2.7	132,847
Personal income per capita (2006 \$)	25,298	29,197	1.4	29,945

^a Argonne National Laboratory estimates.

Source: DOC (2008)

1 2 3

5

Richmond County (41% of the ROI total), and 151,800 people (32% of the total) resided in Aiken County. Over the period 1990–2006, population in the ROI as a whole grew slightly, with an average growth rate of 1.1% and a higher-than-average growth in Columbia County (3.1%). Population in Georgia as a whole grew at a rate of 2.3% over the same period; and in South Carolina, the population grew at a rate of 1.3%.

8 9

7

10.1.6.5 Housing

10 11 12

13

Housing stock in the ROI as a whole grew at an annual rate of 1.4% over the period 1990–2000 (Table 10.1.6-5), with total housing units expected to reach 200,883 in 2008. A total

TABLE 10.1.6-4 SRS County, ROI, and State Population in Selected Years

Location	1990	2000	2006	Average Annual Growth Rate (%), 1990–2006	2008 ^a
C					
Georgia					
Columbia County	66,031	89,287	106,887	3.1	113,520
Richmond County	189,719	199,775	194,398	0.2	194,991
South Carolina					
Aiken County	120,991	142,556	151,800	1.4	156,166
Barnwell County	20,293	23,478	23,265	0.9	23,666
ROI total	397,034	455,096	476,350	1.1	488,343
Georgia	6,512,602	8,186,453	9,363,941	2.3	9,798,773
South Carolina	3,501,155	4,012,012	4,321,249	1.3	4,436,434

^a Argonne National Laboratory projections based on the average growth rate from 1990–2006.

Sources: U.S. Bureau of the Census (2008b); estimated data for 2006

1 2

of 29,658 new units were added to the existing housing stock in the ROI between 1990 and 2000. On the basis of annual population growth rates, there were expected to be 19,180 vacant housing units in the county in 2008, of which 5,202 were expected to be rental units available to construction workers at the proposed facility.

10.1.6.6 Fiscal Conditions

 Construction and operations of a GTCC waste disposal facility could result in increased expenditures for local government jurisdictions, including counties, cities, and school districts. Revenues to support these expenditures could come primarily from state and local sales tax revenues associated with employee spending during construction and operations and be used to support additional local community services currently provided by each jurisdiction. Table 10.1.6-6 presents information on expenditures by the various local government jurisdictions and school districts in the ROI.

10.1.6.7 Public Services

Construction and operations of a GTCC waste disposal facility could require increases in employment in order to provide public safety, fire protection, community, and educational services in the counties, cities, and school districts likely to host relocating construction workers and operations employees. Additional demands could also be placed on local physician services. Table 10.1.6-7 presents data on employment and levels of service (number of employees per 1,000 population) for public safety and general local government services. Table 10.1.6-8 provides data on teachers and level of service, and Table 10.1.6-9 covers physicians.

TABLE 10.1.6-5 SRS County, ROI, and State Housing Characteristics in Selected Years

Type of Housing	1990	2000	2008 ^a
Columbia County			
Owner occupied	17,322	25,557	32,493
Rental	4,519	5,563	7,073
Vacant units	1,904	2,201	2,798
Total units	23,745	33,321	42,364
	- 7:	,-	,
Richmond County			
Owner occupied	38,762	42,840	41,814
Rental	29,913	31,080	30,336
Vacant units	8,613	8,392	8,191
Total units	77,288	82,312	80,341
Aiken County			
Owner occupied	33,491	42,036	46,049
Rental	11,392	13,551	14,845
Vacant units	4,383	6,400	7,011
Total units	49,266	61,987	67,905
Dominall County			
Barnwell County Owner occupied	5,194	6,810	6,864
Rental	1,906	2,211	2,229
Vacant units	754	1,170	1,179
Total units	7,854	10,191	10,272
Total units	7,054	10,171	10,272
ROI total			
Owner occupied	94,769	117,243	127,221
Rental	47,730	52,405	54,482
Vacant units	15,654	18,163	19,180
Total units	158,153	187,811	200,883
Georgia		- 0-0	
Owner occupied	1,536,759	2,029,154	2,534,442
Rental	829,856	977,215	1,220,555
Vacant units	271,803	275,368	343,939
Total units	2,638,418	3,281,737	4,098,936
South Carolina			
Owner occupied	878,704	1,107,617	1,332,991
Rental	379,340	426,237	512,966
Vacant units	166,111	219,816	264,543
Total units	1,424,155	1,753,670	2,110,500
2000 0000	-,,	1,,20,070	_,,

^a Argonne National Laboratory projections.

Source: U.S. Bureau of the Census (2008b)

TABLE 10.1.6-6 SRS County, ROI, and State Public Service Expenditures in 2006 (\$ in millions)

Location	Local Government	School District
Georgia		
Columbia County	47.2	92.1
Richmond County	109.3	170.6
South Carolina		
Aiken County	79.3	107.6
Barnwell County	18.7	21.4
ROI total	254.5	391.7
Georgia	37,933	12,498
South Carolina	15,504	5,380

Source: U.S. Bureau of the Census (2008c)

10.1.7 Environmental Justice

Figures 10.1.7-1 and 10.1.7-2 and Table 10.1.7-1 show the minority and low-income compositions of the total population located in the 80-km (50-mi) buffer around SRS from Census Bureau data for the year 2000 and from CEQ guidelines (CEQ 1997). Persons whose incomes fall below the federal poverty threshold are designated as low income. Minority persons are those who identify themselves as Hispanic or Latino, Asian, Black or African American, American Indian or Alaska Native, Native Hawaiian or other Pacific Islander, or multi-racial (with at least one race designated as a minority race under CEQ). Individuals identifying themselves as Hispanic or Latino are included in the table as a separate entry. However, because Hispanics can be of any race, this number also includes individuals who also identified themselves as being part of one or more of the population groups listed in the table.

10.1.8 Land Use

SRS occupies about 80,130 ha (198,000 ac) within a generally rural area. Existing land use at SRS can be characterized under three main categories: (1) 73% is undeveloped/forest, (2) 22% is wetlands/water, and (3) 5% is developed (NRC 2005). The developed areas of the site contain production and support facilities, infrastructure, R&D, and waste management facilities to meet SRS's mission of serving the nation through safe, secure, cost-effective management of the U.S. nuclear stockpile, nuclear materials, and the environment. The remainder of SRS is primarily forest and wetlands (DOE 2002; USFS 2005). Most of the forested areas are pine forests managed by the USFS through an interagency agreement with DOE. In 1972, the entire site was designated as a NERP. A little more than 5,666 ha (14,000 ac) within 30 set-aside areas have been established on SRS to be used exclusively for nondestructive environmental research coordinated by the University of Georgia's Savannah River Ecology Laboratory (Davis and

TABLE 10.1.6-7 SRS County, ROI, and State Public Service Employment in 2006

	Colum	bia County	Richmo	ond County	Aiker	County
Service	No.	Level of Service ^a	No.	Level of Service ^a	No.	Level of Service ^a
Police protection	224	2.1	491	2.5	255	1.7
Fire protection ^b	150	1.4	318	1.6	150	1.0
General	715	6.7	1,522	7.8	1,055	6.9
	Barnw	ell County	I	ROI	Ge	orgia

-	Barnw	ell County	F	ROI		orgia
Service	No.	Level of Service ^a	No.	Level of Service ^a	No.	Level of Service ^a
Police protection	56	2.4	1,026	2.2	19,170	2.0
Fire protection	0	0.0	618	1.3	10,411	1.1
General	258	11.1	3,550	7.5	351,702	37.6

	South Carolina	
		Level of
Service	No.	Service ^a
Police protection	8,799	2.0
Fire protection	4,680	1.1
General	159,019	36.8

a Level of service represents the number of employees per 1,000 persons in each county.

Sources: U.S. Bureau of the Census (2008b,c)

1 2 3

Janecek 1997). None of the set-aside areas are located near the GTCC reference location. Public use of the site is limited primarily to controlled hunts and science literacy programs (DOE 2002). Fishing also is allowed within the Crackerneck Wildlife Management Area.

5 6 7

10 11

12

13

4

The Savannah River Future Use Plan (DOE 1998, as cited in DOE 2002) states as policy that (1) SRS boundaries will remain unchanged and the land shall remain under ownership of the federal government, consistent with the site's designation as a NERP; (2) residential use of all SRS land is prohibited; and (3) the integral site model that incorporates three planning zones (industrial, industrial support, and restricted public uses) will be utilized. The land between Upper Three Runs Creek and Fourmile Branch (which includes the designated area for the GTCC reference location) is considered to be within the industrial land use category (DOE 2002).

141516

17

For natural resources management purposes, SRS has been divided into six management areas on the basis of existing biological and physical conditions, operations capability, and

b Does not include volunteers.

TABLE 10.1.6-8 SRS County, ROI, and State Education Employment in 2006

Location	No. of Teachers	Level of Service ^a
Georgia		
Columbia County	1,321	12.4
Richmond County	2,245	11.6
South Carolina		
Aiken County	1,608	10.6
Barnwell County	336	14.6
ROI total	5,510	11.6
Georgia	108,535	11.6
South Carolina	48,212	11.2

a Level of service represents the number of teachers per 1,000 persons in each county.

Sources: National Center for Educational Statistics (2008); U.S. Bureau of the Census (2008b,c)

TABLE 10.1.6-9 SRS County, ROI, and State Medical Employment in 2006

Location	No. of Physicians	Level of Service ^a
Georgia		
	260	1.7
Columbia County	_00	217
Richmond County	14	0.6
South Carolina		
Aiken County	749	7.0
Barnwell County	1,232	6.3
ROI total	2,255	4.7
Georgia	19,143	2.0
South Carolina	9,100	2.1

a Level of service represents the number of physicians per 1,000 persons in each county.

Sources: AMA (2006); U.S. Bureau of the Census (2008b)

1 2

suitability for mission objectives. These areas are the (1) 15,558-ha (38,444-ac) Industrial Core Management Area, (2) 35,289-ha (87,200-ac) Red-Cockaded Woodpecker Management Area, (2) 10,061 ha (47,100 as) Samplamental Bad Godland Woodpecker Management Area,

5 (3) 19,061-ha (47,100-ac) Supplemental Red-Cockaded Woodpecker Management Area,

6 (4) 4,532-ha (11,200-ac) Crackerneck Wildlife Management Area and Ecological Reserve,

(5) 4,047-ha (10,000-ac) Savannah River Swamp Management Area, and (6) 1,781-ha (4,400-ac)

8 Lower Three Runs Corridor Management Area (USFS 2005). The GTCC reference location is

located within the Supplemental Red-Cockaded Woodpecker Management Area. The goal of

protecting the red-cockaded woodpecker has a strong influence on natural resource decisions in this management area. Natural resource management in this area is designed to promote

conservation and restoration, provide research and educational opportunities, and generate revenue from the sale of forest products (USFS 2005).

13 14 15

16 17

10

11 12

Forest and agricultural lands are the predominant lands bordering the SRS site (NRC 2005). Various industrial, manufacturing, medical, and farming operations occur near SRS (DOE 2005).

18 19 20

10.1.9 Transportation

21 22

23

2425

Vehicular access to SRS is provided by South Carolina SRs 19, 64, and 125 and by US 278. SR 19 runs north from the site through New Ellenton toward Aiken, approximately 16 km (10 mi) from the northern border of SRS. SR 64 runs in an easterly direction from the site toward Barnwell. SR 125 runs through the site in a southeasterly direction between North Augusta and Allendale, passing through Beech Island and Jackson. US 278 also runs through the

FIGURE 10.1.7-1 Minority Population Concentrations in Census Block Groups within an 80-km (50-mi) Radius of the GTCC Reference Location at SRS (Source: U.S. Bureau of the Census 2008b)

10-47

1 2

3

4

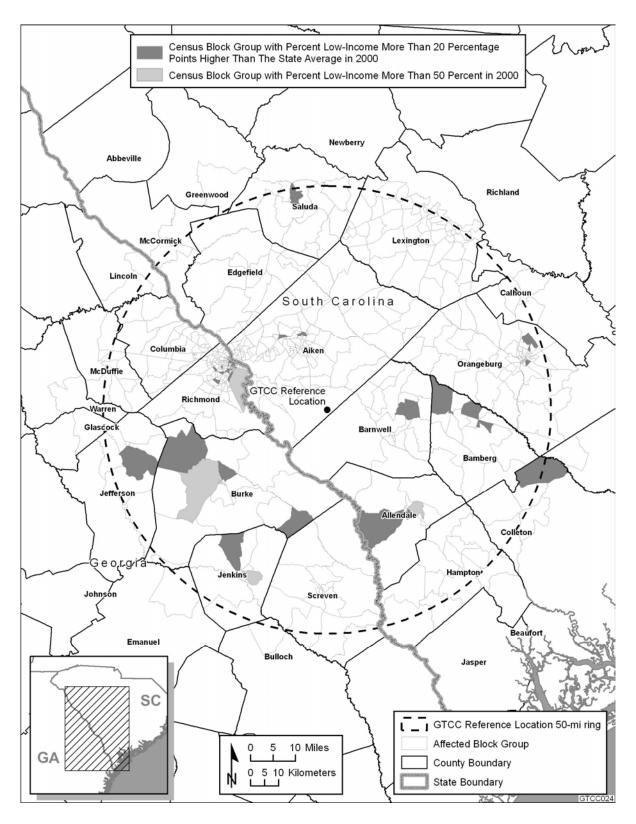


FIGURE 10.1.7-2 Low-Income Population Concentrations in Census Block Groups within an 80-km (50-mi) Radius of the GTCC Reference Location at SRS (Source: U.S. Bureau of the Census 2008b)

10-48

1

2

3

TABLE 10.1.7-1 Minority and Low-Income Populations within an 80-km (50-mi) Radius of SRS

Population	Georgia Block Groups	South Carolina Block Groups
Total population	381,808	402,799
White, Non-Hispanic	210,569	246,056
Hispanic or Latino	9,356	8,093
Non-Hispanic or Latino minorities	161,883	148,650
One race	157,240	145,541
Black or African American	149,323	142,142
American Indian or Alaskan Native	917	1,350
Asian	6,150	1,702
Native Hawaiian or other Pacific Islander	316	68
Some other race	534	279
Two or more races	4,643	3,109
Total minority	171,239	156,743
Percent minority	44.8	38.9
Low-income	62,469	64,573
Percent low-income	16.4	16.0
State percent minority	34.9	32.8
State percent low-income	13.0	14.1

Source: U.S. Bureau of the Census (2008b)

site between North Augusta and Barnwell in a southeasterly direction. SR 781 connects US 278 with Williston to the northeast of the site. Annual traffic counts for local roads are provided in Table 10.1.9-1.

On-site, SRS has approximately 210 km (130 mi) of primary roads and 1,800 km (1,100 mi) of secondary roads to handle the site's transportation needs (DOE 2005). About 20,000 vehicle trips per day (employees driving to and from work as well as driving between site areas) occur on-site to support shipments of materials and obtain access to test wells, utility lines, research sites, and natural resource management activities (DOE 2005).

The railroad infrastructure at SRS consists of 53 km (33 mi) of track for deliveries of foreign fuel shipments, movement of material and equipment on-site, and deliveries of materials for construction projects (DOE 2005). Rail service to SRS is provided by CSX Transportation.

10.1.10 Cultural Resources

Research on the archaeological resources at SRS has been ongoing since 1973. The Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, has been the primary group involved in the research. The SRARP has been involved in identifying cultural resources at the

TABLE 10.1.9-1 Traffic Counts in the Vicinity of SRS

		Average Daily
	Location	Traffic Volume
US 278	West of SR 302	4,400
	Between SR 125 and SR 302	7,100
	North of the city of Barnwell	6,800
	Between SR 300 and US 301	3,900
SR 3	Near US 278	1,350
	Between SR 125 and US 301	900
SR 19	In the vicinity of US 78	7,200
	North of New Ellenton at Medwell Hill Rd.	13,200
SR 125	In Aiken County near Barnwell County line	3,200
	South of site boundary	2,100
	West of SR 3	1,650
SR 302	SR 125 to US 278	1,150
	North of US 278	5,400
	SR 118 to SR 19	22,400

Source: SCDOT (2007)

site and developing management documents for maintaining them there. In 1999, the DOE Savannah River Operations Office, South Carolina SHPO, and ACHP developed a Programmatic Agreement to define how the site will consider the resources under its jurisdiction.

Cultural resources at SRS include archaeological sites, historic structures, and traditional cultural properties. Two main prehistoric periods have been defined for the region in which SRS is located. Each of these periods is divided into subsets of early, middle, and late. The older period is the Archaic, which spans the period between 8000 and 1000 B.C. The subsets of the Archaic are Early (8000 to 6000 B.C.), Middle (6000 to 3000 B.C.), and Late (3000 to 1000 B.C.). In general, the Archaic period is characterized by variable weather patterns, which, in turn, greatly affected the density and distribution of people across the continent. The next major period is the Woodland period (1000 B.C to A.D. 1100). The Woodland period is defined by major changes in subsistence strategies, such as the introduction of agriculture and the bow and arrow for more efficient hunting. During the Woodland period, populations continued to grow, and the first large-scale permanent settlements are found. It was during the Woodland Period that pottery was first widely produced. A final prehistoric period noted in the SRS region is the Mississippian period, which extends from A.D. 1100 to 1450.

European settlement of the area began during the colonial period between 1730 and 1780 and was focused along major waterways, such as the Savannah River and its tributaries. During the 1700s and early 1800s, this pattern of concentration of settlements along rivers persisted. Early farms used the richer soils along the rivers and focused on subsistence farming, with only surpluses being sold. During the 19th century, the situation began to change, with more cash crops, such as cotton, being grown. A relatively small amount of slave labor was employed. Settlement patterns did not begin changing until after the Civil War. The introduction of the

railroads, which relieved the dependence on rivers for transportation, was a major factor in the land use changes (Cabak et al. 1996). After the Civil War, the tenant farming and share cropper systems began to take hold in the region. The Depression of the 1930s caused many people to leave the region for urban centers. After World War II, the increased mechanization of farming also resulted in people leaving the region as larger land holdings became common.

The Savannah River Project was established in 1950 by the AEC. The plant was operated by E.I. duPont de Nemours and Company, Inc., to produce basic materials for use in the manufacture of nuclear weapons. The plant site was constructed between 1951 and 1956. The site consisted of five nuclear reactors, two large chemical separation plants, a tritium processing facility, a heavy-water extraction plant, a uranium fuel processing facility, a fuel and target fabrication facility, and a waste management facility. The contract to operate and manage the operations switched to the Westinghouse Savannah River Company in 1989. The name of the facility changed from the Savannah River Project to Savannah River Site in 1989 as well.

There are more than 850 archaeological sites known on the SRS property (NRC 2005). Of these 850 sites, 67 have been determined potentially eligible for listing on the *National Register*. Prehistoric sites at SRS include village sites, base camps, limited activity sites, quarries, and workshops. Historic sites at SRS include farmsteads, tenant dwellings, mills, plantations, slave quarters, rice farm dikes, dams, cattle pens, ferry locations, churches, schools, towns, cemeteries, commercial buildings, and roads. Roughly 400 historic sites have been documented at SRS. No architectural surveys have been conducted at SRS. Numerous specialized facilities at SRS have the potential to be considered eligible for the NRHP.

A predictive model for the presence of cultural resources was developed during the 1970s for SRS. The model identifies three zones of archaeological sensitivity. Zone 1 has the highest potential for having numerous large archaeological sites. Zone 2 has moderate potential, and Zone 3 has the lowest potential (DOE 1997). The GTCC reference location is in Zone 3.

 Traditional cultural properties are locations that are important to a group for maintaining its cultural identity. While these resources are most often related to Native Americans, they can be associated with other groups as well. The Apalachee, Cherokee, Chicksaw, Creek, Shawnee, Westo, and Yuchi all have traditional ties to the SRS property. The Yuchi Tribal Organization, the National Council of Muskogee Creek, and the Indian People's Muskogee Tribal Town Confederacy have expressed interest in the SRS property with regard to it containing traditional religious locations. The Yuchi Tribal Organization and the National Council of Muskogee Creek expressed concern about plants that they use in traditional ceremonies that can be found on SRS land.

10.1.11 Waste Management

Site management of the waste types generated by the land disposal methods for Alternatives 4 and 5 are discussed in Section 5.3.11.

10.2 ENVIRONMENTAL AND HUMAN HEALTH CONSEQUENCES

2 3

 The potential impacts from the construction, operations, and post-closure of the trench (Alternative 4) and vault (Alternative 5) disposal methods are presented in this section for the resource areas evaluated. The affected environment for each resource area is described in Section 10.1 The GTCC reference location for SRS is shown in Figure 10.1-1.

10.2.1 Climate and Air Quality

This section discusses potential climate and air quality impacts from the construction and operations of each of the two disposal methods (trench and vault) at SRS. Noise impacts are presented in Section 5.3.1.

10.2.1.1 Construction

During the construction period, emissions of criteria pollutants (SO_2 , NO_x , CO, PM_{10} , and $PM_{2.5}$), VOCs, and the primary greenhouse gas CO_2 would be caused by fugitive dust emissions from earth-moving activities and engine exhaust emissions from heavy equipment and commuter, delivery, and support vehicles. Typically, the potential impacts from exhaust emissions on ambient air quality would be smaller than those from fugitive dust emissions. Accordingly, only the potential impacts of fugitive PM_{10} and $PM_{2.5}$ emissions from construction activities on ambient air quality are discussed.

Air emissions of criteria pollutants, VOCs, and CO₂ from construction activities were estimated for the peak year when site preparation and construction of the support facility and some disposal cells would take place. Estimates for PM₁₀ and PM_{2.5} include diesel particulate emissions. The estimates are provided in Table 10.2.1-1 for each disposal method. Detailed information on emission factors, assumptions, and emission inventories is available in Appendix C. As shown in the table, total peak-year emission rates are estimated to be rather small when compared with emission totals for all three counties encompassing SRS (Aiken, Allendale, and Barnwell Counties). Peak-year emissions for all criteria pollutants and VOCs would be higher for the vault method, which would consume more materials and resources for vault construction and disturb more areas than would the trench method. In terms of absolute value and contribution to the emissions total, the peak-year emissions of NO_x for the vault method would be the highest, about 0.18% of the three-county emissions total, while it is estimated that other criteria pollutants and VOCs would be less than 0.03% of the three-county emissions total.

 The highest background concentration levels for $PM_{2.5}$ in the area approached the standards (around 97%) (see Table 10.1.1-3). Construction activities would occur at least 14 km (9 mi) from the site boundary and thus would not be likely to result in exceedances of the standards. However, construction activities would still be conducted in a manner that would minimize potential impacts of construction-related emissions on ambient air quality. Also, construction permits typically require fugitive dust control by means of established standard dust

TABLE 10.2.1-1 Peak-Year Emissions of Criteria Pollutants, Volatile Organic Compounds, and Carbon Dioxide from Construction of the Trench and Vault Disposal Facilities at SRS

	Total	Construction Emissions (tons/yr)									
Pollutant	Emissions (tons/yr) ^a	Tre	ench (%) ^b	Vault (%) ^b							
SO_2	20,700	0.90	(<0.01)	3.2	(0.02)						
NO_x	17,336	8.1	(0.05)	31	(0.18)						
CO	74,159	3.3	(<0.01)	11	(0.01)						
VOCs	15,095	0.90	(0.01)	3.6	(0.02)						
PM_{10}^{c}	13,678	5.0	(0.04)	8.6	(0.06)						
$PM_{2.5}^{c}$	3,960	1.5	(0.04)	3.6	(0.09)						
CO_2		670		2,300							
County ^d	4.25×10^{6}		(0.02)		(0.05)						
South Carolinae	9.62×10^{7}		(0.0007)		(0.002)						
U.S.e	6.54×10^{9}		(0.00001)		(0.00004)						
Worlde	3.10×10^{10}		(0.000002)		(0.000007)						

- ^a Total emissions in 2002 for all three counties encompassing SRS (Aiken, Allendale, and Barnwell Counties). See Table 10.1.1-1 for criteria pollutants and VOCs.
- b Numbers in parentheses are percent of total emissions.
- ^c Estimates for GTCC construction include diesel particulate emissions.
- d Emission data for the year 2005. Currently, data on CO₂ emissions at the county level are not available, so county-level emissions were estimated from available state total CO₂ emissions on the basis of population distribution.
- e Annual CO₂ emissions in South Carolina, the United States, and worldwide in 2005.

Source: EIA (2008); EPA (2008b, 2009)

1 2 3

control practices, primarily by watering unpaved roads, disturbed surfaces, and temporary stockpiles.

4 5 6

8

9

10

11

Although O_3 levels in the area exceeded the standard (about 109%) (see Table 10.1.1-3), the three counties encompassing SRS are currently in attainment for O_3 (40 CFR 81.341). O_3 precursor emissions from the proposed GTCC waste disposal facility for both methods would be relatively small (less than 0.18% and 0.02% of the three-county total NO_x and VOC emissions, respectively), and they would be much lower than those for the regional air shed in which emitted precursors are transported and formed into O_3 . Accordingly, potential impacts of O_3 precursor releases from construction on regional O_3 would not be of concern.

12 13 14

15

16 17 The major air quality concern with respect to emissions of CO_2 is that it is a greenhouse gas, which traps solar radiation reflected from the earth, keeping it in the atmosphere. The combustion of fossil fuels makes CO_2 the most widely emitted greenhouse gas worldwide. CO_2 concentrations in the atmosphere have continuously increased from approximately 280 ppm in

preindustrial times to 379 ppm in 2005, a 35% increase, and most of this increase has occurred in the last 100 years (IPCC 2007).

 The climatic impact of CO₂ does not depend on the geographic location of its sources because CO₂ is stable in the atmosphere and is essentially uniformly mixed; that is, the global total is the important factor with respect to global warming. Therefore, a comparison between U.S. and global emissions and the total emissions from the construction of a disposal facility is useful in understanding whether CO₂ emissions from the site would be significant with respect to global warming. As shown in Table 10.2.1-1, the highest peak-year amount of CO₂ emissions from construction would be less than 0.05%, 0.002% and 0.00004%, respectively, of 2005 county, state, and U.S. CO₂ emissions. In 2005, CO₂ emissions in the United States were about 21% of worldwide emissions (EIA 2008). Emissions from construction would be less than 0.00001% of global emissions. Potential impacts on climate change from construction emissions would be small.

Appendix D assumes an initial construction period of 3.4 years. The disposal units would be constructed as the waste became available for disposal. The construction phase would extend over more years; thus, emissions in nonpeak years would be lower than peak-year emissions in the table. In addition, construction activities would occur only during daytime hours, when air dispersion is most favorable. Accordingly, potential impacts from construction activities on ambient air quality would be minor and intermittent in nature.

General conformity applies to federal actions taking place in nonattainment or maintenance areas and is not applicable to the proposed action at SRS because the area is classified as being in attainment for all criteria pollutants (40 CFR 81.341).

10.2.1.2 Operations

Criteria pollutants, VOCs, and CO_2 would be released into the atmosphere during operations. These emissions would include fugitive dust emissions from emplacement activities and exhaust emissions from heavy equipment and commuter, delivery, and support vehicles. Estimated annual emissions of criteria pollutants, VOCs, and CO_2 at the facility are presented in Table 10.2.1-2. Detailed information on emission factors, assumptions, and emission inventories is available in Appendix C. As shown in the table, annual emissions from operations are estimated to be higher than those from construction under the trench method; estimates for PM_{10} and $PM_{2.5}$ include diesel particulate emissions. Except for PM_{10} emissions, the emission estimates for the vault method are about the same for the construction and operations phases. Compared with annual emissions for counties encompassing SRS, annual NO_x emissions for both the trench and vault methods are about 0.15% of the total emissions, while emissions of other criteria pollutants and VOCs are about 0.02% of the total.

Concentration levels from operational activities, except O_3 and $PM_{2.5}$ concentrations, are expected to remain well below the standards. Estimates for PM_{10} and $PM_{2.5}$ include diesel particulate emissions. As discussed in the construction section, established fugitive dust control

TABLE 10.2.1-2 Annual Emissions of Criteria Pollutants, Volatile Organic Compounds, and Carbon Dioxide from Operations of the Trench and Vault Disposal Facilities at SRS

	Total		peration Emi	ssions (to	ns/yr)
Pollutant	Emissions (tons/yr) ^a	Tre	nch (%) ^b	Va	ult (%) ^b
SO_2	20,700	3.3	(0.02)	3.3	(0.02)
NO_x	17,336	27	(0.16)	27	(0.16)
CO	74,159	15	(0.02)	15	(0.02)
VOCs	15,095	3.1	(0.02)	3.1	(0.02)
PM_{10}^{c}	13,678	2.5	(0.02)	2.5	(0.02)
$PM_{2.5}^{c}$	3,960	2.2	(0.06)	2.2	(0.06)
CO_2		3,200		3,300	
County ^d	4.25×10^{6}		(0.08)		(0.08)
South Carolina ^e	9.62×10^{7}		(0.003)		(0.003)
U.S.e	6.54×10^{9}		(0.00005)		(0.00005)
Worlde	3.10×10^{10}		(0.00001)		(0.00001)

- ^a Total emissions in 2002 for all three counties encompassing SRS (Aiken, Allendale, and Barnwell Counties). See Table 10.1.1-1 for criteria pollutants and VOCs.
- b Numbers in parentheses are percent of total emissions.
- ^c Estimates for GTCC operations include diesel particulate emissions.
- Emission data for the year 2005. Currently, data on CO₂ emissions at the county level are not available, so county-level emissions were estimated from available state total CO₂ emissions on the basis of population distribution.
- e Annual CO₂ emissions in South Carolina, the United States, and worldwide in 2005.

Source: EIA (2008); EPA (2008b, 2009)

measures (primarily the watering of unpaved roads, disturbed surfaces, and temporary stockpiles) would be implemented to minimize potential impacts on ambient air quality.

With regard to regional O_3 , precursor emissions of NO_x and VOCs would be comparable to those resulting from construction activities (about 0.16% and 0.02% of the three-county emission totals, respectively) and are not anticipated to contribute much to regional O_3 levels. The highest emissions of CO_2 among the disposal methods would be comparable to the highest construction-related emissions; thus, their potential impacts on climate change would also be negligible.

PSD regulations are not applicable to the proposed action because the proposed action is not a major stationary source.

13 14 15

1 2

3 4 5

9

10.2.2 Geology and Soils

 Direct impacts from land disturbance would be proportional to the total area of land disturbed during site preparation activities (e.g., grading and backfilling) and construction of the GTCC waste disposal facility and related infrastructure (e.g., roads). Land disturbance would include the surface area covered for both the trench and vault disposal methods and the vertical displacement of geologic materials for the trench disposal method (the borehole disposal method is not evaluated for SRS). The increased potential for soil erosion would be an indirect impact from land disturbance at the construction site. Indirect impacts would also result from the consumption of geologic materials (e.g., aggregate) for facility and other associated infrastructure construction. The impact analysis also considers whether the proposed action would preclude the future extraction and use of mineral materials or energy resources.

10.2.2.1 Construction

Impacts from disturbing the land surface area would be a function of the disposal method (trench or vault) implemented at the site, but the impacts from the two methods would be comparable. Geologic and soil material requirements are listed in Table 5.3.2-1. The vault facility would require the most material since it would involve the installation of interim and final cover systems. This material would be considered permanently lost. However, neither of the disposal methods is expected to result in adverse impacts on geologic and soil resources at SRS, since these resources are in abundant supply in South Carolina.

No significant changes in surface topography or natural drainages are anticipated in the construction area. However, the disturbance of soil during the construction phase would increase the potential for erosion in the immediate vicinity. Mitigation measures would be implemented to avoid or minimize the risk of erosion.

The GTCC waste disposal facility would be sited and designed with safeguards to avoid or minimize the risks associated with seismic hazards. SRS is in a seismically active region, and small-magnitude earthquakes occur regularly. There is no volcanic risk for SRS. The potential for other hazards (e.g., subsidence and liquefaction) is considered to be low.

10.2.2.2 Operations

The disturbance of soil and the increased potential for soil erosion would continue throughout the operations phase as waste was delivered to the site for disposal over time. Mitigation measures would be implemented to avoid or minimize the risk of erosion.

Impacts related to the extraction and use of valuable geologic materials are expected to be low, since mineral and energy development does not occur within the boundary of SRS.

10.2.3 Water Resources

Direct and indirect impacts on water resources could result from water use at the proposed GTCC waste disposal facility during construction and operations. Table 5.3.3-1 provides an estimate of the water consumption and discharge volumes for the land disposal methods; Tables 5.3.3-2 and 5.3.3-3 summarize the water use impacts (in terms of change in annual water use) on water resources from construction and operations, respectively. A discussion of potential impacts during each project phase is presented in the following sections. In addition, contamination due to potential leaching of radionuclides from the waste inventory into groundwater could occur, depending on the post-closure performance of the trench and vault disposal facilities discussed in Section 10.2.4.2.

10.2.3.1 Construction

Of the two land disposal methods considered for SRS, construction of a vault facility would have the higher water requirement (Table 5.3.3-1). Water demands for construction at SRS would be met by using groundwater from on-site wells. (Wells at the SRS currently draw from the deep Crouch Branch and McQueen Aquifers, with a few lower-capacity wells pumping from the shallower Gordon Aquifer and the lower zone of the Upper Three Runs Aquifer.) No surface water would be used at the site during construction. As a result, no direct impacts on surface water resources are expected. The potential for indirect surface water impacts on the Savannah River and its tributaries related to soil erosion, contaminated runoff, and sedimentation would be reduced by implementing good industry practices and mitigation measures. The GTCC reference location is not within the 100-year floodplain of Fourmile Branch or Upper Three Run Creek.

Currently, SRS uses about 5.3 billion L (1.4 billion gal) of groundwater per year. Construction of the proposed GTCC waste disposal facility would increase the annual water use at SRS by a maximum of about 0.06% (vault method) over the 20-year period that construction would occur. Because withdrawals of groundwater would be relatively small, they would not significantly lower the water table or change the direction of groundwater flow at SRS. As a result, impacts due to groundwater withdrawals are expected to be negligible.

Construction activities could potentially change the infiltration rate at the site of the proposed GTCC waste disposal facility, first by increasing the rate as ground would be disturbed in the initial stages of construction and then by decreasing the rate as impermeable materials (e.g., the clay material and geotextile membrane assumed for the cover or cap in the land disposal facility designs) would cover the surface. These changes are expected to be negligible since the area of land associated with the proposed GTCC waste disposal facility (up to 25 ha [60 ac], depending on the disposal method) is small relative to the SRS land area.

Disposal of waste (including sanitary waste) generated during construction of the trench or vault disposal facility would have a negligible impact on the quality of water resources at SRS (see Sections 5.3.11 and 10.2.11). The potential for indirect surface water or groundwater

impacts related to spills at the surface would be reduced by implementing good industry practices and mitigation measures.

10.2.3.2 Operations

 The two land disposal methods considered for SRS would have the same water requirement (Table 5.3.3-1). Water demands for operations at SRS would be met by using groundwater from on-site wells. No surface water would be used at the site during operations. As a result, no direct impacts on surface water resources are expected. The potential for indirect surface water impacts related to soil erosion, contaminated runoff, and sedimentation would be reduced by implementing good industry practices and mitigation measures.

 Operations of the proposed GTCC waste disposal facility would increase the annual water use at SRS by a maximum of about 0.1% (trench or vault method). Because withdrawals of groundwater would be relatively small, they would not significantly lower the water table or change the direction of groundwater flow at SRS. As a result, impacts due to groundwater withdrawals are expected to be small.

Disposal of waste (including sanitary waste) generated during operations of the trench or vault disposal facility would have a negligible impact on the quality of water resources at SRS (see Sections 5.3.11 and 10.2.11). The potential for indirect impacts on surface water or groundwater related to spills at the surface would be reduced by implementing good industry practices and mitigation measures.

10.2.4 Human Health

Potential impacts on members of the general public and on involved workers from the construction and operations of the waste disposal facilities are expected to be comparable for all of the sites evaluated in this EIS for the land disposal methods, and these impacts are described in Section 5.3.4. The following sections discuss the impacts from hypothetical facility accidents associated with waste handling activities and the impacts during the post-closure phase. They address impacts on members of the general public who might be affected by these waste disposal activities at the SRS GTCC reference location, since these impacts would be site dependent.

10.2.4.1 Facility Accidents

 Data on the estimated human health impacts from hypothetical accidents at a GTCC waste disposal facility located at SRS are provided in Table 10.2.4-1. The accident scenarios are discussed in Section 5.3.4.2.1 and Appendix C. A reasonable range of accidents that includes operational events and natural causes is analyzed. The impacts presented for each accident scenario are for the sector with the highest impacts, and no protective measures are assumed; therefore, they represent maximum impacts expected for such an accident.

TABLE 10.2.4-1 Estimated Radiological Human Health Impacts from Hypothetical Facility Accidents at SRS^a

		Off-Site	Individual ^b		
Accident Number	Accident Scenario	Collective Dose (person-rem)	Latent Cancer Fatalities ^c	Dose (rem)	Likelihood of LCF ^c
1	Single drum drops, lid failure in Waste Handing Building Single SWB drops, lid failure in Waste Handing Building	0.001 0.002	<0.00001 <0.00001	0.0001 0.0002	<0.00001 <0.00001
3	Three drums drop, puncture, lid failure in Waste Handling Building Two SWBs drop, puncture, lid failure in Waste Handling Building	0.002 0.002 0.003	<0.00001 <0.00001 <0.00001	0.0002 0.0002 0.0003	<0.00001 <0.00001 <0.00001
5	Single drum drops, lid failure outside Single SWB drops, lid failure outside	1 2.2	0.0006 0.001	0.0003 0.095 0.22	0.00001 0.00006 0.0001
7 8	Three drums drop, puncture, lid failure outside Two SWB drops, puncture, lid failure outside	1.8 3.1	0.001 0.001 0.002	0.17 0.3	0.0001 0.0001 0.0002
9 10	Fire inside the Waste Handling Building, one SWB assumed to be affected Single RH waste canister breach	45 <0.001	0.03 <0.0001	4.3 <0.00001	0.003 <0.0001
11 12	Earthquake, affects 18 pallets, each with 4 CH drums Tornado, missile hits one SWB, contents released	29 8.9	0.02 0.005	2.7 0.86	0.0001 0.002 0.0005

 $^{^{}a}$ CH = contact-handled, RH = remote-handled, LCF = latent cancer fatality, SWB = standard waste box.

b The individual receptor is assumed to be 100 m (330 ft) downwind from the release point. This individual is expected to be a noninvolved worker because there would be no public access within 100 m (330 ft) of the GTCC reference location.

^c LCFs are calculated by multiplying the dose by the health risk conversion factor of 0.0006 fatal cancer per person-rem (see Section 5.2.4.3). Values are rounded to one significant figure.

The collective population dose includes exposure from inhalation of airborne radioactive material, external exposure from radioactive material deposited on the ground, and ingestion of contaminated crops. The exposure period is considered to last for 1 year immediately following the accidental release. It is recognized that interdiction of food crops would likely occur if a significant release did occur, but this assessment conservatively addresses what could happen without interdiction. For the accidents involving CH waste (Accidents 1–9, 11, 12), the ingestion dose accounts for approximately 20% of the collective population dose shown in Table 10.2.4-1. External exposure is negligible in all cases. All exposures are dominated by the inhalation dose from the passing plume of airborne radioactive material downwind of the hypothetical accident immediately following release.

The highest estimated impact on the general public, 45 person-rem, would be from a hypothetical release from a SWB caused by a fire in the Waste Handling Building (Accident 9). This dose is not expected to lead to any additional LCFs in the population. This dose would be released to the 263,000 people living to the west-northwest of the facility, resulting in an average dose of less than 0.0002 rem per person. Because this dose would be from internal intake (primarily inhalation, with some ingestion) and because the DCFs used in this analysis are for a 50-year CEDE, this dose would be accumulated over the course of 50 years.

The dose to an individual (expected to be a noninvolved worker because there would be no public access within 100 m [330 ft] of the GTCC reference location) includes exposure from inhalation of airborne radioactive material and 2 hours of exposure to radioactive material deposited on the ground. As shown in Table 10.2.4-1, the highest estimated dose to an individual, 4.3 rem, would result from Accident 9 from inhalation exposure immediately after the postulated release. This estimated dose is for a hypothetical individual located 100 m (330 ft) to the north of the accident location. As discussed above, the estimated dose of 4.3 rem would be accumulated over a 50-year period after intake and would not result in any symptoms of acute radiation syndrome. A maximum annual dose of about 5% of the total dose would occur in the first year. The increased lifetime probability of a fatal cancer for this individual is approximately 0.3% on the basis of a total dose of 4.3 rem.

10.2.4.2 Post-Closure

The potential radiation dose from airborne releases of radionuclides to the off-site public after the closure of either the trench or vault disposal facility would be small. RESRAD-OFFSITE calculation results indicate that the potential inhalation dose at a distance of 100 m (330 ft) from the disposal facility is estimated to be less than 1.8 mrem/yr for trench disposal and 0.52 mrem/yr for vault disposal. The potential radiation exposure would be caused mainly by inhalation of radon gas and its short-lived progeny.

 At SRS, the climate is generally humid, with an average annual precipitation rate of about 1.2 m/yr (3.9 ft/yr). The natural water infiltration rate to deeper soils is estimated to be about 0.38 m/yr (1.2 ft/yr), which is much larger than the natural infiltration rate estimated for other sites considered in this EIS. As a result, more radionuclides would be carried to the groundwater table in a shorter period of time. It is estimated that within 10,000 years, the peak annual

radiation dose associated with the use of contaminated groundwater from disposal of the entire GTCC waste inventory at SRS by a hypothetical resident farmer living 100 m (330 ft) from the disposal facility would be 1,300 mrem/yr for the vault method and 1,700 mrem/yr for the trench method (see Table 10.2.4-2).

The peak annual doses are calculated to occur quite quickly for SRS because the water infiltration rate is so high there. The maximum annual dose would occur about 54 years (for the vault method) and 29 years (for the trench method) after failure of the engineered cover and barriers. These times represent the time after failure of the engineered barriers (including the cover), which is assumed to begin 500 years after closure of the disposal facility. The exposure pathways related to the use of contaminated groundwater considered in this analysis include the ingestion of contaminated groundwater, soil, plants, meat, and milk; external radiation; and the inhalation of radon gas and its short-lived progeny.

The peak annual doses and LCF risks given in Tables 10.2.4-2 and 10.2.4-3 to the hypothetical resident farmer (from use of potentially contaminated groundwater within the first 10,000 years after closure of the disposal facility) are those associated with the disposal of the entire GTCC waste inventory by using the vault and trench disposal methods. In these tables, the annual doses and LCF risks contributed by each waste type (i.e., dose and risk for each waste type at the time or year when the peak dose or risk for the entire inventory is observed) to the peak dose and risk are also tabulated. The doses and LCF risks presented for the various waste types do not necessarily represent the peak dose and LCF risk of the waste type itself when it is considered on its own. Tables E-22 through E-25 in Appendix E present peak doses for each waste type when considered on its own. Because these peak doses generally occur at different times, the results should not be summed to obtain total doses for comparison with those presented in Table 10.2.4-2 (although for some cases, these sums might be close to those presented in the site-specific chapters).

The radiation doses are largely associated with the GTCC-like Other Waste - RH; GTCC LLRW Other Waste - RH contributes about one-fourth of the peak annual dose. Activated metals also contribute a measurable amount to the peak dose and LCF risk for each disposal method.

It is calculated that within 100 years after a breach of the engineered barriers (including cover), C-14, Tc-99, I-129, and Np-237 would reach the groundwater table and a well installed by the hypothetical resident farmer. These radionuclides are highly soluble in water, a characteristic that could lead to potentially significant groundwater concentrations and subsequently high doses and LCF risks to this hypothetical receptor. Additional radionuclides that would contribute to the groundwater dose within 10,000 years include Ni-59, Ni-63, Ra-226, Am-241, and Th-230. Of these five radionuclides, it is calculated that Ni-59, Ni-63, and Ra-226 would reach the groundwater table and a well located 100 m (330 ft) downgradient of the disposal facility, while the radiation doses attributable to Am-241 and Th-230 would largely be those associated with the decay products of these two radionuclides (Np-237 and Ra-226).

 Figure 10.2.4-1 is a temporal plot of the doses associated with the use of contaminated groundwater for the vault and trench disposal methods for a period extending to 10,000 years, and Figure 10.2.4-2 shows these results to 100,000 years. Note that the time scale in

TABLE 10.2.4-2 Estimated Peak Annual Doses (in mrem/yr) from the Use of Contaminated Groundwater within 10,000 Years of Disposal at the GTCC Reference Location at SRS^a

		GT	CC LLRW			Peak Annual Dose from			
Disposal Technology/ Waste Group	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	Entire Inventory
Vault disposal									1,300 ^b
Group 1 stored	2.0	-	0.0	1.3	0.21	0.0	15	1,000	
Group 1 projected	30	0.0	-	0.039	0.53	0.0	4.2	3.6	
Group 2 projected	14	0.0	6.5	230	-	-	8.3	18	
Trench disposal									1,700 ^b
Group 1 stored	2.2	-	0.0	1.0	0.24	0.0	31	1,100	
Group 1 projected	33	0.0	-	0.031	0.60	0.0	8.7	2.9	
Group 2 projected	16	0.0	13	460	=	-	17	31	

These annual doses are associated with the use of contaminated groundwater by a hypothetical resident farmer located 100 m (330 ft) from the edge of the disposal facility. All values are given to two significant figures, and a hyphen means there is no inventory for that waste type. The values given in this table represent the annual doses to the hypothetical resident farmer at the time of peak annual dose from the entire GTCC waste inventory. These contributions do not represent the maximum doses that could result from each of these waste types separately. Because of the different radionuclide mixes and activities contained in the different waste types, the maximum doses that could result from each waste type individually generally occur at different times than the peak annual dose from the entire inventory. The peak annual doses that could result from each of the waste types are presented in Tables E-22 through E-25 in Appendix E.

The times for the peak annual doses of 1,300 mrem/yr for vaults and 1,700 mrem/yr for trenches were calculated to be about 54 years and 29 years, respectively, for disposal of the entire GTCC waste inventory. These times represent the time after failure of the cover and engineered barriers (which is assumed to begin 500 years after closure of the disposal facility). The values reported for the other entries in this table represent the annual doses from the specific waste types at the time of these peak doses. The primary contributors to the dose are GTCC LLRW Other Waste - RH and GTCC-like Other Waste - RH. The primary radionuclides causing this dose would be C-14, Tc-99, I-129, and Np-237.

TABLE 10.2.4-3 Estimated Peak Annual LCF Risks from the Use of Contaminated Groundwater within 10,000 Years of Disposal at the GTCC Reference Location at SRS^a

		GTO	CC LLRW			Peak Annual			
Disposal Technology/ Waste Group	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	LCF Risk from Entire Inventory
Vault disposal									8E-04 ^b
Group 1 stored	1E-06	-	0E+00	8E-07	1E-07	0E+00	9E-06	6E-04	
Group 1 projected	2E-05	0E+00	-	2E-08	3E-07	0E+00	3E-06	2E-06	
Group 2 projected	9E-06	0E+00	4E-06	1E-04	-	-	5E-06	1E-05	
Trench disposal									1E-03 ^b
Group 1 stored	1E-06	-	0E+00	6E-07	1E-07	0E+00	2E-05	7E-04	
Group 1 projected	2E-05	0E+00	-	2E-08	4E-07	0E+00	5E-06	2E-06	
Group 2 projected	9E-06	0E+00	8E-06	3E-04	-	-	1E-05	2E-05	

These annual LCF risks are associated with the use of contaminated groundwater by a hypothetical resident farmer located 100 m (330 ft) from the edge of the disposal facility. All values are given to one significant figure, and a hyphen means there is no inventory for that waste type. The values given in this table represent the annual LCF risks to the hypothetical resident farmer at the time of peak annual LCF risk from the entire GTCC waste inventory. These contributions do not represent the maximum LCF risks that could result from each of these waste types separately. Because of the different radionuclide mixes and activities contained in the different waste types, the maximum LCF risks that could result from each waste type individually generally occur at different times than the peak annual LCF risk from the entire inventory.

b The times for the peak annual LCF risks of 8E-04 for vaults and 1E-03 for trenches were calculated to be about 54 years and 29 years, respectively, for disposal of the entire GTCC waste inventory. These times represent the time after failure of the cover and engineered barriers (which is assumed to begin 500 years after closure of the disposal facility). The values reported for the other entries in this table represent the annual LCF risks from the specific waste types at the time of peak LCF risks. The primary contributors to the LCF risk are GTCC LLRW Other Waste - RH and GTCC-like Other Waste - RH. The primary radionuclides causing this risk would be C-14, Tc-99, I-129, and Np-237.

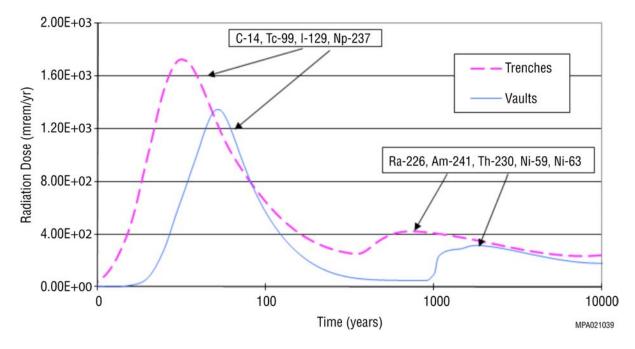


FIGURE 10.2.4-1 Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 10,000 Years of Disposal for the Trench and Vault Disposal Methods at SRS

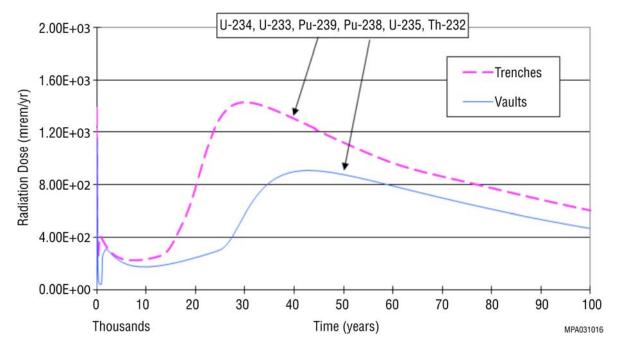


FIGURE 10.2.4-2 Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 100,000 Years of Disposal for the Trench and Vault Disposal Methods at SRS

Figure 10.2.4-1 is logarithmic, while the time scale in Figure 10.2.4-2 is linear. A logarithmic time scale was used in the first figure to better illustrate the projected radiation doses to a hypothetical resident farmer in the first 10,000 years.

As shown in Figure 10.2.4-2, a number of additional actinides (mainly isotopes of uranium, plutonium, and thorium) would contribute to the groundwater dose thousands of years after closure and last over a very long duration. The peak annual doses from these radionuclides would occur about 30,000 years following closure of the trench disposal facility and about 40,000 years following closure of the vault facility. These maximum doses are lower than those that are predicted to occur within the first 10,000 years by the RESRAD-OFFSITE computer code.

The results given here are assumed to be conservative because the location selected for the residential exposure is 100 m (330 ft) from the edge of the disposal facility. Use of a longer distance, which might be more realistic for the sites being evaluated, would significantly lower these estimated doses (i.e., by as much as 70%). A sensitivity analysis performed to determine the effect of a distance longer than 100 m (330 ft) is presented in Appendix E.

These analyses assume that engineering controls would be effective for 500 years following closure of the disposal facility. This means that essentially no infiltrating water would reach the wastes from the top of the disposal units during the first 500 years. It is assumed that after 500 years, the engineered barriers would begin to degrade, allowing infiltrating water to come in contact with the disposed-of wastes. For purposes of analysis in the EIS, it is assumed that the amount of infiltrating water that would contact the wastes would be 20% of the site-specific natural infiltration rate for the area, and that the water infiltration rate around and beneath the disposal facilities would be 100% of the natural rate for the area. This approach is conservative because it is expected that the engineered systems (including the disposal facility cover) would last longer than 500 years, even in the absence of active maintenance measures.

It is assumed that the Other Waste would be stabilized with grout or other material and that this stabilizing agent would be effective for 500 years. Consistent with the assumptions used for engineering controls, no credit was taken in this analysis for the effectiveness of this stabilizing agent after 500 years. That is, it is assumed that any water that would contact the wastes after 500 years would be able to leach radioactive constituents from the disposed-of materials. These radionuclides could then move with the percolating groundwater to the underlying groundwater system. This assumption is conservative because grout or other stabilizing materials could retain their integrity for longer than 500 years.

Sensitivity analyses performed relative to these assumptions indicate that if a higher infiltration rate to the top of the disposal facilities was assumed, the doses would increase in a linear manner from those presented. Conversely, the doses would decrease in a linear manner with lower infiltration rates. This finding indicates the need to ensure good cover is placed over the closed disposal units. Also, the doses would be lower if it was assumed that the grout would last for a longer time. Because of the long-lived nature of the radionuclides associated with some of the GTCC LLRW and GTCC-like waste, any stabilization effort (such as grouting) would

have to be effective for longer than 5,000 years in order to substantially reduce doses that could result from potential future leaching of the disposed-of waste.

The radiation doses presented in the post-closure assessment in this EIS are intended to be used for comparing the performance of each land disposal method at each site evaluated. The results indicate that the use of robust engineering designs and redundant measures (e.g., types and thicknesses of covers and long-lasting grout) in the disposal facility could delay the potential release of radionuclides and could reduce any releases to very low levels, thereby minimizing potential groundwater contamination and associated human health impacts in the future. DOE will consider the potential doses to the hypothetical farmer and other factors in developing the preferred alternative as discussed in Section 2.9.

10.2.5 Ecology

Section 5.3.5 presents an overview of the potential impacts on ecological resources that could result from the construction, operations, and post-closure maintenance of the GTCC waste disposal facility regardless of the location selected for the facility. This section evaluates the potential impacts of the facility on the ecological resources at SRS.

Initial loss of mostly upland pine and some hardwood forest habitats, followed by eventual establishment of low-growth vegetation on the disposal site, are not expected to create a long-term reduction in the regional ecological diversity. After closure of the GTCC waste disposal facility, the cover would be planted with annual and perennial grasses and forbs. As appropriate, regionally native plants would be used to landscape the disposal site in accordance with "Guidance for Presidential Memorandum on Environmentally and Economically Beneficial Landscape Practices on Federal Landscaped Grounds" (EPA 1995).

 Clearing of forest habitat for the GTCC waste disposal facility could result in a localized loss of wildlife species that occupy forest habitats. White-tailed deer could also lose a source of mast and potential cover against weather extremes. Species that might occur at the GTCC waste disposal facility once vegetation became established include species that are currently found on urban areas near SRS. However, fencing of the disposal site would lessen the potential for midto large-size mammals to enter the area. Some wildlife species might frequent the area between the forest and GTCC reference location (field/forest-edge habitat) (Peterson et al. 2005). Species more dependent on forested habitat or more sensitive to disturbance (e.g., wood warblers and vireos) would probably be permanently displaced from the GTCC reference location (DOE 1997).

Wildlife-vehicle collisions stemming from increased traffic associated with construction and operations of the GTCC waste disposal facility would result in mortality of some wildlife species. Population-level impacts are not expected from these losses since these species are common throughout SRS (DOE 1997).

Because no aquatic or wetland habitats occur within the immediate vicinity of the GTCC reference location, direct impacts on aquatic and wetland biota are not expected. DOE would use

appropriate erosion control measures to minimize off-site movement of soil. The GTCC waste disposal facility retention pond is not expected to become a highly productive aquatic habitat. However, depending on the amount of water and length of time that water would be retained within the pond, aquatic invertebrates could become established within it. Waterfowl, shorebirds, and other birds might also make use of the retention pond, as would amphibian, reptile, and mammal species that might enter the site.

Several of the federally and state-listed or special-status species listed in Table 10.1.5-1 could occur at the GTCC reference location. However, the area of forested habitat that would be disturbed by construction would be small relative to the overall area of such habitat on SRS. Also, mitigation measures would minimize the potential for adverse impacts on these species. Therefore, construction of the GTCC disposal facility would have a small to negligible impact on the populations of special-status species at SRS.

 The GTCC reference location does not contain red-cockaded woodpecker nesting or foraging areas that are utilized by the birds; however, it does contain unoccupied habitat approaching suitable age that could be utilized by the species (DOE 1997). Forest removal during construction of the facility would eliminate only about 0.1% of the Supplemental Red-Cockaded Woodpecker Management Area at SRS. This small reduction is not expected to have an effect on the population of the red-cockaded woodpecker at SRS (USFS 2005).

No other threatened or endangered species occur on the GTCC reference location. The site could establish a vegetative cover that could provide habitat suitable for the smooth coneflower (*Echinacea laevigata*) (i.e., abundant sunlight with little competition in the herbaceous layer). Habitats at SRS that provide suitable habitat for that species include open woods, cedar barrens, roadsides, clearcuts, and transmission line ROWs (DOE 1997). DOE would continue to review the site during construction and operations to ensure that no adverse impacts on listed species were occurring.

Among the goals of the waste management mission at DOE sites is to maintain disposal facilities in a manner that protects the environment and complies with regulations (DOE 2002). Therefore, impacts associated with the GTCC waste disposal facility that could affect ecological resources would be minimized and mitigated.

10.2.6 Socioeconomics

10.2.6.1 Construction

 The potential socioeconomic impacts from constructing a GTCC waste disposal facility and support buildings at SRS would be relatively small for both the trench and vault disposal methods. Construction activities would create direct employment of 62 people (trench method) to 145 people (vault method) in the peak construction year and an additional 64 indirect jobs (trench method) to 168 indirect jobs (vault method) in the ROI (Table 10.2.6-1). Construction activities would constitute less than 1% of the total ROI employment in the peak year. A GTCC

TABLE 10.2.6-1 Effects of GTCC Waste Disposal Facility Construction and Operations on Socioeconomics at the ROI for SRS^a

	Tren	ch	Vau	lt
Impact Category	Construction	Operations	Construction	Operations
Employment (number of jobs)				
Direct	62	48	145	51
Indirect	64	43	168	45
Total	126	91	313	96
Income (\$ in millions)				
Direct	2.3	3.2	6.2	3.4
Indirect	2.5	1.6	6.5	1.6
Total	4.8	4.8	12.7	5.0
Population (number of new residents)	27	2	64	2
Housing (number of units required)	14	1	32	1
Public finances (% impact on				
expenditures) Cities and counties ^b	.1	.1	.1	.1
	<1	<1	<1	<1
Schools ^c	<1	<1	<1	<1
Public service employment (number				
of new employees)				
Local government employees ^d	0	0	1	0
Teachers	0	0	1	0
Traffic (impact on current levels of service)	Small	Small	Moderate	Small

^a Impacts shown are for waste facility and support buildings in the peak year of construction and the first year of operations.

Includes impacts that would occur in the cities of Aiken, Jackson, New Ellenton, North Augusta, Wagener, Barnwell, Blackville, Williston, Grovetown, Harlem, Augusta, Blyth, and Hephzibah; in Aiken and Barnwell Counties in South Carolina; and in Colombia and Richmond Counties in Georgia.

Includes impacts that would occur in Aiken County, Barnwell Additional Voluntary Contribution, Barnwell #19, Barnwell #29, Barnwell #45, Columbia, and Richmond County School Districts.

d Includes police officers, paid firefighters, and general government employees.

waste disposal facility would produce between \$4.8 million in income (trench method) and \$12.7 million in income (vault method) in the peak year of construction.

In the peak year of construction, between 27 people (trench) and 64 people (vault method) would in-migrate to the ROI (Table 10.2.6-1), as a result of employment on-site. In-migration would have only a marginal effect on population growth and would require less than 1% of vacant rental housing in the peak year. No significant impact on public finances would occur as a result of in-migration, and no new local public service employees would be required to maintain existing levels of service in the various local public service jurisdictions in the ROI. In addition, on-site employee commuting patterns would have a small to moderate impact on levels of service in the local transportation network surrounding the site.

10.2.6.2 Operations

The potential socioeconomic impacts from operating a GTCC waste disposal facility would be relatively small for both the trench and vault disposal methods. Operational activities would create about 48 direct jobs (trench method) to 51 direct jobs (vault method) annually and an additional 43 indirect jobs (trench method) to 45 indirect jobs (vault method) in the ROI (Table 10.2.6-1). A GTCC waste disposal facility would also produce between \$4.8 and \$5.0 million in income annually during operations.

Two people would move to the area at the beginning of operations (Table 10.2.6-1). However, in-migration would have only a marginal effect on population growth and would require less than 1% of vacant owner-occupied housing during facility operations. No significant impact on public finances would occur as a result of in-migration, and no new local public service employees would be required to maintain existing levels of service in the various local public service jurisdictions in the ROI. In addition, on-site employee commuting patterns would have a small impact on levels of service in the local transportation network surrounding the site.

10.2.7 Environmental Justice

10.2.7.1 Construction

No radiological risks and only very low chemical exposure and risk are expected during construction of the trench and vault methods. Chemical exposure during construction would be limited to airborne toxic air pollutants at less than standard levels and would not result in any adverse health impacts. Because the health impacts of each facility on the general population within the 80-km (50-mi) assessment area during construction would be negligible, impacts from the construction of each facility on the minority and low-income populations would not be significant.

10.2.7.2 Operations

Because incoming GTCC waste containers would only be consolidated for placement in trench and vault facilities, with no repackaging necessary, there would be no radiological impacts on the general public during disposal operations and no adverse health impacts on the general population. In addition, no surface releases that might enter local streams or interfere with subsistence activities by low-income or minority populations would occur. Because the health impacts from routine operations on the general public would be negligible, it is expected that there would be no disproportionately high and adverse impact on minority and low-income population groups within the 80-km (50-mi) assessment area. Subsequent NEPA analysis to support any GTCC implementation would consider any unique exposure pathways (such as subsistence fish, vegetation, or wildlife consumption, or well water use) to determine any additional potential health and environmental impacts.

10.2.7.3 Accidents

A release of GTCC waste at either of the disposal facilities could cause radiation exposures and the risk of LCFs in the surrounding area. However, it is highly unlikely that such an accident would occur. Therefore, the risk to any population, including low-income and minority communities, is considered to be low. In the unlikely event of a release of GTCC waste at a waste disposal facility, the communities most likely to be affected could be minority or low-income, given the demographics within 80 km (50 mi) of the GTCC reference location.

 In the event that an accident producing significant contamination occurred, appropriate measures would be taken to ensure that the impacts on low-income and minority populations were minimized. The extent to which low-income and minority population groups would be affected would depend on the amount of material released and the direction and speed at which airborne material was dispersed from any of the facilities by the wind. Although the overall risk would be very small, the greatest short-term risk of exposure following an airborne release and the greatest one-year risk would be to the population groups residing to the west-northwest of the GTCC reference location because of the prevailing wind direction. Airborne releases following an accident would likely have a larger impact on the area than would an accident that released contaminants directly into the soil surface. A surface release entering local steams could temporarily interfere with subsistence activities being carried out by low-income and minority populations within a few miles downstream of the site.

Monitoring of contaminant levels in soil and surface water following an accident would provide the public with information on the extent of any contaminated areas. Analysis of contaminated areas to decide how to control the use of high-health-risk areas would reduce the potential impact on local residents.

10.2.8 Land Use

Section 5.3.8 presents an overview of the potential impacts on land use that could result from the GTCC waste disposal facility regardless of the location selected for the facility. This section evaluates the potential impacts from the GTCC waste disposal facility on land use at SRS.

The GTCC reference location is situated in an area designated as a forest timber unit (DOE 1997). The site would be redesignated to accommodate the GTCC waste disposal facility and be considered a developed site. Marketable timber on the site would be removed and sold. As mentioned in Section 10.2.5, forest removal during construction of the facility would eliminate about 0.1% of the Supplemental Red-Cockaded Woodpecker Management Area at SRS. Land use on areas surrounding SRS would not be affected. Future land use activities that would be permitted within or immediately adjacent to the GTCC waste disposal facility would be limited to those that would not jeopardize the integrity of the facility, create a security risk, or create a worker or public safety risk.

10.2.9 Transportation

The transportation of GTCC LLRW and GTCC-like waste necessary for the disposal of all waste at SRS was evaluated. As discussed in Section 5.3.9, transportation of all cargo is considered for both truck and rail modes of transport as separate options for the purposes of this EIS. Transportation impacts are expected to be the same for disposal in trenches or vaults because the same type of transportation packaging would be used regardless of the disposal method.

As discussed in Appendix C, the impacts of transportation were calculated in three areas: (1) collective population risks during routine conditions and accidents (Section 10.2.9.1), (2) radiological risks to individuals receiving the highest impacts during routine conditions (Section 10.2.9.2), and (3) consequences to individuals and populations after the most severe accidents involving a release of a radioactive or hazardous chemical material (Section 10.2.9.3).

Radiological impacts during routine conditions are a result of human exposure to the low levels of radiation near the shipment. The regulatory limit established in 49 CFR 173.441 (Radiation Level Limitations) and 10 CFR 71.47 (External Radiation Standards for All Packages) to protect the public is 0.1 mSv/h (10 mrem/h) at 2 m (6 ft) from the outer lateral sides of the transport vehicle. This dose rate corresponds roughly to 14 mrem/h at 1 m (3 ft). As discussed in Appendix C, Section C.9.4.4, the external dose rates for CH shipments to SRS are assumed to be 0.5 and 1.0 mrem/h at 1 m (3 ft) for truck and rail shipments, respectively. For shipments of RH waste, the external dose rates are assumed to be 2.5 and 5.0 mrem/h at 1 m (3 ft) for truck and rail shipments, respectively. These assignments are based on shipments of similar types of waste. Dose rates from rail shipments are approximately double the rates for truck shipments because rail shipments are assumed to have twice the number of waste packages as a truck shipment. Impacts from accidents depend on the amount of radioactive material in a

shipment and the fraction that is released if an accident occurs. The parameters used in the transportation accident analysis are described further in Appendix C, Section C.9.4.3.

10.2.9.1 Collective Population Risk

The collective population risk is a measure of the total risk posed to society as a whole by the actions being considered. For a collective population risk assessment, the persons exposed are considered as a group, without specifying individual receptors. Exposures to four different groups are considered: (1) persons living and working along the transportation routes, (2) persons sharing the route, (3) persons at stops along the route, and (4) transportation crew members. The collective population risk is used as the primary means of comparing various options. Collective population risks are calculated for cargo-related causes for routine transportation and accidents. Vehicle-related risks are independent of the cargo in the shipment and are calculated only for traffic accidents (fatalities caused by physical trauma).

Estimated impacts from the truck and rail options are summarized in Tables 10.2.9-1 and 10.2.9-2, respectively. For the truck option, it is estimated that about 12,600 shipments resulting in about 18 million km (11 million mi) of travel would cause no LCFs in the truck crew members or members of the public. One fatality directly related to accidents is expected. No LCFs are estimated for the rail option, with approximately 5,010 railcar shipments resulting in about 8 million km (5 million mi) of travel. However, one fatality from accidents could occur.

10.2.9.2 Highest-Exposed Individuals during Routine Conditions

 During the routine transportation of radioactive material, specific individuals might be exposed to radiation in the vicinity of a shipment. Risks to these individuals for a number of hypothetical exposure-causing events were estimated. The receptors included transportation workers, inspectors, and members of the public exposed during traffic delays, while working at a service station, or while living and/or working near a destination site. The assumptions about exposure are given in Appendix C, and transportation impacts are provided in Section 5.3.9. The scenarios for exposure are not meant to be exhaustive; they were selected to provide a range of representative potential exposures. On a site-specific basis, if someone was living or working near the SRS entrance and present for all 12,600 truck or 5,010 rail shipments projected, that individual's estimated dose would be approximately 0.5 or 1.0 mrem, respectively, over the course of more than 50 years. The individual's associated lifetime LCF risk would then be 3×10^{-7} or 6×10^{-7} for truck or rail shipments, respectively.

10.2.9.3 Accident Consequence Assessment

 Whereas the collective accident risk assessment considers the entire range of accident severities and their related probabilities, the accident consequence assessment assumes that an accident of the most severe category has occurred. The consequences, in terms of committed dose (rem) and LCFs for radiological impacts, were calculated for both exposed populations and

 $TABLE\ 10.2.9-1\ Estimated\ Collective\ Population\ Transportation\ Risks\ for\ Shipment\ of\ GTCC\ LLRW\ and\ GTCC\ Luke\ Waste\ by\ Truck\ for\ Disposal\ at\ SRS^a$

				_							
				I	Oose Risk (J				Vehicle-Related Impacts ^c		
		Total			Routine	Public				Cancer lities ^d	_ Physical
Waste	No. of Shipments	Distance (km)	Routine Crew	Off-Link	On-Link	Stops	Total	Accident ^e	Crew	Public	Accident Fatalities
Group 1											
GTCC LLRW											
Activated metals - RH	20	20,000	0.41	0.022	0.067	0.073	0.16	0.00022	0.0002	.0.0001	0.0011
Past BWRs	20	39,000	0.41	0.023	0.067	0.072	0.16	0.00022	0.0002	< 0.0001	0.0011
Past PWRs	143	331,000	3.4	0.18	0.56	0.61	1.3	0.0015	0.002	0.0008	0.0082
Operating BWRs	569	778,000	8.1	0.44	1.3	1.4	3.2	0.0035	0.005	0.002	0.023
Operating PWRs	1,720	2,500,000	26	1.3	4.2	4.6	10	0.01	0.02	0.006	0.069
Sealed sources - CH	209	283,000	0.12	0.063	0.19	0.2	0.45	0.039	< 0.0001	0.0003	0.0078
Cesium irradiators - CH	240	325,000	0.14	0.073	0.21	0.23	0.52	0.0044	< 0.0001	0.0003	0.0089
Other Waste - CH	5	11,200	0.0047	0.0018	0.0068	0.008	0.017	< 0.0001	< 0.0001	< 0.0001	0.00027
Other Waste - RH	54	39,700	0.41	0.026	0.065	0.073	0.16	< 0.0001	0.0002	< 0.0001	0.0016
GTCC-like waste											
Activated metals - RH	38	107,000	1.1	0.039	0.17	0.2	0.4	< 0.0001	0.0007	0.0002	0.003
Sealed sources - CH	1	1,350	0.00057	0.0003	0.00089	0.00097	0.0022	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Other Waste - CH	69	110,000	0.046	0.022	0.068	0.079	0.17	0.001	< 0.0001	0.0001	0.0036
Other Waste - RH	1,160	1,570,000	16	0.84	2.5	2.9	6.3	0.0019	0.01	0.004	0.053

]	Dose Risk (_		Vehicle-Related Impacts ^c			
		Total			Routine	Public		Cancer lities ^d	Physical		
Waste	No. of Shipments	Distance (km)	Routine Crew	Off-Link	On-Link	Stops	Total	Accident ^e	Crew	Public	Accident Fatalities
Group 2											
GTCC LLRW											
Activated metals - RH											
New BWRs	202	293,000	3	0.15	0.48	0.54	1.2	0.0012	0.002	0.0007	0.0075
New PWRs	833	1,160,000	12	0.54	1.9	2.1	4.5	0.0043	0.007	0.003	0.032
Additional commercial waste	1,990	2,940,000	31	1.6	4.7	5.4	12	< 0.0001	0.02	0.007	0.1
Other Waste - CH	139	205,000	0.086	0.043	0.13	0.15	0.32	0.0026	< 0.0001	0.0002	0.0071
Other Waste - RH	3,790	5,170,000	53	2.8	8.3	9.5	21	0.00056	0.03	0.01	0.18
GTCC-like waste											
Other Waste - CH	44	44,800	0.019	0.01	0.029	0.032	0.072	0.00035	< 0.0001	< 0.0001	0.0015
Other Waste - RH	1,400	1,920,000	20	1	3.1	3.5	7.7	0.0016	0.01	0.005	0.066
Total Groups 1 and 2	12,600	17,800,000	170	9.2	28	32	69	0.072	0.1	0.04	0.57

^a BWR = boiling water reactor, PWR = pressurized water reactor, CH = contact-handled, RH = remote-handled.

b Cargo-related impacts are impacts attributable to the radioactive nature of the material being transported.

^c Vehicle-related impacts are impacts independent of the cargo in the shipment.

d LCFs were calculated by multiplying the dose by the health risk conversion factor of 6×10^{-4} fatal cancer per person-rem (see Section 5.2.4.3).

^e Dose risk is a societal risk and is the product of accident probability and accident consequence.

10: Savannah River Site (Alternatives 4 and 5)

TABLE 10.2.9-2 Estimated Collective Population Transportation Risks for Shipment of GTCC LLRW and GTCC-Like Waste by Rail for Disposal at SRS^a

				<u>_</u>							
				Ε	Oose Risk (p	_,		Vehicle-Related Impacts ^c			
		Total			Routine	Public		t Cancer alities ^d	_ Physical		
Waste	No. of Shipments	Distance (km)	Routine Crew	Off-Link	On-Link	Stops	Total	Accidente	Crew	Public	Accident Fatalities
Group 1											
GTCC LLRW											
Activated metals - RH											
Past BWRs	7	16,600	0.14	0.07	0.0037	0.069	0.14	0.00054	< 0.0001	< 0.0001	0.0019
Past PWRs	37	92,700	0.79	0.38	0.021	0.38	0.78	0.0025	0.0005	0.0005	0.0074
Operating BWRs	154	234,000	2.4	1	0.05	1.2	2.3	0.0039	0.001	0.001	0.018
Operating PWRs	460	734,000	7.4	3	0.15	3.6	6.7	0.01	0.004	0.004	0.054
Sealed sources - CH	105	187,000	0.53	0.29	0.012	0.34	0.64	0.0021	0.0003	0.0004	0.0087
Cesium irradiators - CH	120	214,000	0.6	0.33	0.014	0.39	0.73	0.00024	0.0004	0.0004	0.01
Other Waste - CH	3	7,800	0.019	0.013	0.00058	0.013	0.026	< 0.0001	< 0.0001	< 0.0001	0.00051
Other Waste - RH	27	29,000	0.35	0.11	0.0037	0.17	0.29	< 0.0001	0.0002	0.0002	0.0032
GTCC-like waste											
Activated metals - RH	11	33,000	0.27	0.09	0.0046	0.12	0.21	< 0.0001	0.0002	0.0001	0.003
Sealed sources - CH	1	1,780	0.005	0.0027	0.00011	0.0033	0.0061	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Other Waste - CH	35	65,500	0.18	0.11	0.0051	0.12	0.24	< 0.0001	0.0001	0.0001	0.0046
Other Waste - RH	579	936,000	9.3	3.8	0.17	4.2	8.2	0.00019	0.006	0.005	0.066

TABLE 10.2.9-2 (Cont.)

				<u>_</u>							
				Γ	Oose Risk (p			Vehicle-Related Impacts ^c			
		Total Distance (km)			Routine	Public		<u>-</u>		Cancer lities ^d	Physical
Waste	No. of Shipments		Routine Crew	Off-Link	On-Link	Stops	Total	Accidente	Crew	Public	Accident Fatalities
Group 2											
GTCC LLRW											
Activated metals - RH											
New BWRs	54	86,000	0.86	0.35	0.015	0.4	0.77	0.00059	0.0005	0.0005	0.006
New PWRs	227	341,000	3.5	1.2	0.056	1.7	3	0.0029	0.002	0.002	0.021
Additional commercial waste	498	883,000	8.5	3.7	0.17	3.8	7.7	< 0.0001	0.005	0.005	0.067
Other Waste - CH	70	124,000	0.35	0.22	0.01	0.23	0.46	0.00029	0.0002	0.0003	0.0094
Other Waste - RH	1,900	3,160,000	31	13	0.57	14	28	< 0.0001	0.02	0.02	0.25
GTCC-like waste											
Other Waste - CH	22	26,300	0.088	0.05	0.0022	0.058	0.11	< 0.0001	< 0.0001	< 0.0001	0.0018
Other Waste - RH	702	1,150,000	11	4.8	0.22	5.1	10	0.00017	0.007	0.006	0.085
Total Groups 1 and 2	5,010	8,320,000	78	33	1.5	36	70	0.024	0.05	0.04	0.62

^a BWR = boiling water reactor, PWR = pressurized water reactor, CH = contact-handled, RH = remote-handled.

b Cargo-related impacts are impacts attributable to the radioactive nature of the material being transported.

^c Vehicle-related impacts are impacts independent of the cargo in the shipment.

d LCFs were calculated by multiplying the dose by the health risk conversion factor of 6×10^{-4} fatal cancer per person-rem (see Section 5.2.4.3).

^e Dose risk is a societal risk and is the product of accident probability and accident consequence.

individuals in the vicinity of an accident. Because the exact location of such a transportation accident is impossible to predict and thus not specific to any one site, generic impacts were assessed, as presented in Section 5.3.9.

10.2.10 Cultural Resources

The GTCC reference location at SRS is situated northeast of Zone Z along the Aiken and Barnwell County line. The location is in Archaeological Zone 3, which means it has a low potential for containing cultural resources. The project area was partially examined for the presence of archaeological material in 1986, and no materials were found at that time (Brooks et al. 1986). The remaining portion was examined in 1996 by the Savannah River Archaeological Research Program. The survey identified seven archaeological sites: one prehistoric lithic scatter and six late 19th and early 20th century homesteads. It is not known if any of these sites have been evaluated for listing on the NRHP. The seven archaeological sites found in the project area would require evaluation for listing on the NRHP. If any archaeological site was found to be eligible for listing and could not be avoided, then appropriate mitigation would be developed. Mitigation would be determined through consultation with the South Carolina SHPO and the appropriate Native American tribes. Before projects could begin, Native American tribes would need to be contacted to determine if they had any concerns about the location chosen for the project. Native Americans have indicated that resources of concern to them are present on SRS.

The land disposal methods evaluated (trench and vault) have the potential to affect cultural resources as a result of the ground clearing needed for construction. Potential impacts from the trench method would be less than those from the vault method. The vault method also requires large amounts of soil to cover the waste. The location for soil extraction has not been chosen. Potential impacts on cultural resources could occur during the removal and hauling of the soil required for this method. Depending on the location chosen for excavating the soil for the cover, the impacts could be greater from this component of the project than from construction of the disposal facility. Impacts on cultural resources would need to be considered for the soil extraction locations. The NHPA Section 106 process would be followed for all project locations.

Minimal impacts are expected from operational and post-closure activities because no new ground-disturbing activities are anticipated; most impacts would occur during construction. If any of the eligible archaeological sites were avoided during construction, they would require consideration during any operational or post-closure activities. In the event that any post-construction activities would affect an eligible archaeological site, mitigation for the impacts would be developed in consultation with the SHPO and the appropriate Native American tribes. Tribal consultation might be necessary, depending on the status of resources of concern to the tribe near the project area.

10.2.11 Waste Management

The construction of either of the land disposal facilities (trench or vault) would generate small quantities of hazardous and nonhazardous solids and hazardous and nonhazardous liquids. Waste generated from operations would include small quantities of solid LLRW (e.g., spent HEPA filters) and nonhazardous solid waste (including recyclable wastes). These waste types would either be disposed of on-site or sent off-site for disposal. It is likely that no impacts on waste management programs at SRS would result from the waste that might be generated from the construction and operation of the land disposal methods. Section 5.3.11 provides a summary of the waste handling programs at SRS for the waste types generated.

10.3 SUMMARY OF POTENTIAL ENVIRONMENTAL CONSEQUENCES AND HUMAN HEALTH IMPACTS

The potential environmental consequences from the disposal of GTCC LLRW and GTCC-like waste under Alternatives 3 and 4 are summarized by resource area as follows:

Air quality. The potential impacts from construction and operations at SRS on ambient air quality would be negligible. Under the trench method, peak-year emissions of all criteria pollutants, VOCs, and CO_2 would be lowest during construction but highest during operations. The highest emissions associated with the trench and vault methods would be about 0.18% of the three-county emissions total for NO_x . O_3 levels in the three counties encompassing SRS are currently in attainment; O_3 precursor emissions from construction and operational activities would be relatively small — less than 0.18% and 0.03% of NO_x and VOC emissions, respectively, and much lower than those for the regional air shed. CO_2 emissions during construction and operations would be negligible. All construction and operational activities would occur at least 14 km (9 mi) from the site boundary and would not contribute much to concentrations at the boundary or the nearest residence.

Noise. The highest composite noise during construction would be about 91 dBA at 15 m (50 ft) from the source. Noise levels at 610 m (2,000 ft) from the source would be below the EPA guidelines. This distance is well within the SRS boundary, and there are no residences within this distance. Noise generated during operations would be less than noise during construction.

Geology. No adverse impacts from the extraction and use of geologic and soil resources are expected, nor are any significant changes in surface topography or natural drainages expected. The potential for erosion would be reduced by best management practices.

 Water resources. Construction of a vault facility would have a higher water requirement than the trench option. Water demands for construction at SRS would be met by using groundwater from on-site wells. No surface water would be used at the site during construction; therefore, no direct impacts on surface water are expected. Indirect impacts on surface water would be reduced by implementing good industry practices and mitigation measures. Construction of the proposed GTCC waste disposal facility would increase the annual water use

at SRS by a maximum of about 0.06% (vault method), and operations would increase it by a maximum of about 0.1% (trench or vault method). Since these increases would not significantly lower the water table or change the direction of groundwater flow, impacts due to groundwater withdrawals are expected to be negligible. Water demands during the decommissioning phase at SRS would be smaller than those during construction, and there would be no water demands during the post-closure period. Groundwater could become contaminated with some radionuclides during the post-closure period; indirect impacts on surface water could occur as a result of aquifer discharges to springs and rivers.

Human health. The impacts on workers from operations would be mainly those from the radiation doses associated with handling the wastes. It is estimated that the annual radiation dose would be 4.6 person-rem/yr for the trench method and 5.2 person-rem/yr for the vault method. Neither of these doses are expected to result in any LCFs (see Section 5.3.4.1.1). The maximum dose to any individual worker would not exceed the DOE administrative control level (2 rem/yr) for site operations. It is expected that the maximum dose to any individual workers over the entire project would not exceed a few rem.

The worker impacts from accidents would be associated with the physical injuries and possible fatalities that could result from construction and waste handling accidents. It is estimated that the annual number of lost workdays due to injuries and illnesses would be 2 for both the trench and vault methods, and no fatalities would result from construction and waste handling accidents (see Section 5.3.4.2.2). These injuries would not be associated with the radioactive nature of the wastes but would simply be those expected to occur in any construction project of this size.

It is not expected that the general public would receive any measurable doses during waste disposal operations, given the solid nature of the wastes and the distance of waste handling activities from potential affected individuals. The highest dose to an individual from an accident involving the waste packages prior to disposal (from a fire affecting an SWB) is estimated to be 4.3 rem and to not result in any LCFs. The total dose to the affected population from such an event is estimated to be 45 person-rem. The peak annual dose to a hypothetical nearby receptor (resident farmer) who resides 100 m (330 ft) from the edge of the disposal site in the first 10,000 years after closure of the disposal facility is estimated to be 1,700 mrem/yr under the trench method and 1,300 mrem/yr under the vault method. These doses would be mainly from GTCC LLRW Other Waste - RH and GTCC-like Other Waste - RH and would occur about 29 years (for the trench method) and 54 years (for the vault method) following failure of the engineered cover and barriers.

 Ecological resources. The initial loss of upland pine and some hardwood forest habitats, followed by eventual establishment of low-growth vegetation, would not create a long-term reduction in the local or regional ecological diversity. Wildlife-vehicle collisions stemming from increased traffic associated with the facility would contribute to losses; however, population-level impacts are not expected. After closure, the cover would become vegetated with annual and perennial grasses and forbs. Clearing of forest habitat for construction of the GTCC waste disposal facility could result in localized loss of wildlife species. White-tailed deer could also lose a source of mast and potential cover against weather extremes. Fences at the site would

lessen the potential for mid-sized to large mammals to enter the site. There are no natural aquatic habitats within the immediate vicinity of the GTCC reference location; however, depending on the amount of water in the retention pond and length of retention, certain species (e.g., aquatic invertebrates, waterfowl, shorebirds, and mammals) could become established. Several statelisted and special-status species occur within the project area. Impacts on these species would likely be small, since the area of habitat disturbance would be small relative to the overall area of such habitat at SRS. Forest removal during construction would eliminate about 0.1% of the Supplemental Red-Cockaded Woodpecker Management Area; population-level impacts are not expected.

Socioeconomics. Impacts would be small. Construction would create direct employment for 145 people (vault method) in the peak construction year and 168 indirect jobs (vault method) in the ROI; the annual average employment growth rate would increase by less than 0.1 of a percentage point. The waste facility would produce up to \$12.7 million in income (vault method) in the peak construction year. Up to 64 people would in-migrate to the ROI as a result of employment on-site; in-migration would have only a marginal effect on population growth and require less than 1% of vacant housing in the peak year. Impacts from operating the facility would also be small, creating up to 51 direct jobs (vault method) and up to 45 indirect jobs (vault method) in the ROI annually. The disposal facility would produce up to \$5 million in income annually during operations.

Environmental justice. Because health impacts on the general population within the 80-km (50-mi) assessment area during construction and operations would be negligible, no impacts on minority and low-income populations as a result of the construction and operation of a GTCC waste disposal facility are expected.

Land use. The GTCC reference location would be in an area designated as a forest timber unit. This area could be reclassified to accommodate the GTCC waste disposal facility and be considered a developed site. Marketable timber on the site would have to be removed and could be sold.

 Transportation. Shipment of all waste to SRS by truck would result in approximately 12,600 shipments involving a total distance of 18 million km (11 million mi). To ship all waste by rail would require 5,010 railcar shipments involving 8 million km (5 million mi) of travel. It is estimated that no LCFs would occur to the public or crew members for either mode of transportation, but one fatality from accidents could occur.

Cultural resources. There are seven archaeological sites within the GTCC reference location area at SRS; these sites would require evaluation for listing on the NRHP. Mitigation for eligible sites would be determined through consultation with the South Carolina SHPO and appropriate tribes. Of the two disposal methods considered, the trench method has the least potential to affect cultural resources (especially during the construction phase) because it has the smallest land requirement. Impacts at the source location for soil to cover a vault facility would also be considered.

Waste management. The waste that could be generated from the construction and operations of the land disposal methods is not expected to affect current waste management programs at SRS.

10.4 CUMULATIVE IMPACTS

Section 5.4 presents the methodology for the cumulative impacts analysis. In the analysis that follows, impacts of the proposed action are considered in combination with the impacts of past, present, and reasonably foreseeable future actions. This section begins with a description of reasonably foreseeable future actions at SRS, including those that are ongoing, under construction, or planned for future implementation. Past and present actions are generally accounted for in the affected environment section (Section 10.1).

10.4.1 Reasonably Foreseeable Future Actions

Reasonably foreseeable actions at SRS are summarized in the following sections. These actions were identified primarily from a review of the EIS on the construction and operation of the proposed Mixed Oxide (MOX) Fuel Fabrication Facility at SRS (NRC 2005). The actions listed are planned, under construction, or ongoing and may not be inclusive of all actions at the site. However, they should provide an adequate basis for determining potential cumulative impacts at SRS.

10.4.1.1 Mixed Oxide Fuel Fabrication Facility

In 1999, DOE signed a contract with a consortium (now called Shaw AREVA MOX Services, LLC) to design, build, and operate a MOX Fuel Fabrication Facility in the F-Area at the center of SRS. The facility is a major component of a U.S. program to dispose of surplus weapons-usable plutonium. The 55,742-m² (600,000-ft²) facility consists of two major sections. The first is a five-level section where weapons-usable material will be cleaned and purified via aqueous polishing; the second section is where fabrication will take place. Current material needs for the facility's construction include 129,974 m³ (170,000 yd³) of concrete, 31,751 metric tons or t (35,000 tons) of reinforcing steel, 914,400 linear m (3 million linear ft) of power and control cable, and 128 km (80 mi) of piping. Once operational, the facility will be capable of converting 3.5 t (3.9 tons) of weapons-grade plutonium into MOX fuel assemblies each year (NNSA 2008).

The NRC is responsible for licensing the facility. On March 30, 2005, it issued a construction authorization (NRC 2008). As of 2008, the \$4.8 billion facility employed more than 1,000 workers, and it will employ at least 1,000 workers for the next two decades. Construction is expected to last into 2016 (Blanchard 2008).

10.4.1.2 Spent Nuclear Fuel Management

SRS, as an important component of the U.S. nonproliferation program, provides for the safe receipt and interim storage of irradiated SNF assemblies from domestic and foreign test and research reactors. The first off-site fuel was received and stored in February 1997. Since then, fuel has been stored in wet storage facilities. Disassembly basins are located in all five of SRS's reactor areas. Currently, only L-Basin still contains and receives fuel material. Thousands more assemblies are expected to be received and stored in L-Basin in the coming decade. The SNF stored and received at L-Basin may be transferred to H-Canyon for disposition off-site or to INL for storage pending disposition (SRS 2007; DOE 2008).

10.4.1.3 Highly Enriched Uranium

In 1996, DOE published a ROD (61 FR 40619, August 1996) to blend HEU at SRS to 4% low-enriched uranium (LEU). Processing the uranium from weapons-usable HEU to LEU makes the material less attractive and supports U.S. nuclear nonproliferation goals. In its HEU blend-down program, SRS blended down approximately 16.7 t (18.4 tons) of HEU into 260.5 t (287.2 tons) of LEU through the site's H-canyon chemical separation facility. This material was provided to the TVA via an Interagency Agreement with DOE. The TVA processed the material into reactor fuel for use in two commercial reactors at the Browns Ferry Nuclear Plant, which produces commercial electrical power in Athens, Alabama. DOE and TVA intend to extend the Interagency Agreement and continue downblending weapons-usable uranium to a non-proliferable form for use in power reactors (DOE 1996, 2002; Savannah River Operations Office 2006).

10.4.1.4 Tritium Extraction Facility

The SRS's Tritium Extraction Facility (TEF) became fully operational in 2007. The facility, located in H-Area, extracts tritium from target-bearing rods irradiated in commercial light water reactors. Its purpose is to ensure a sustainable supply of tritium for the U.S. nuclear weapons stockpile (WSRC 2008).

The TEF consists of three major structures: the Remote Handling Building (RHB), Tritium Processing Building (TPB), and Tritium Support Building (TSB). The RHB is approximately 18-m (60-ft) high, 26-m (86-ft) wide, and 66-m (215-ft) long. It has a truck receiving area, cask decontamination area, tritium-producing burnable absorber rods, waste preparation area, furnaces, hot maintenance area, and glove boxes for extraction pumps and tanks. It also has an overhead crane and RH equipment. The TBP provides preliminary purification of the extracted gases. It is a single-story facility, approximately 38-m (125-ft) wide by 47-m (155-ft) long, and is built above ground. The TPB houses the main control room, crane control room, and miscellaneous rooms for gas analysis and radiation control activities. The TSB houses management and support staff; it also has change rooms, maintenance support areas, and a loading dock (WSRC 2008).

The facility was staffed by about 600 workers during construction and has an operations staff of about 100 permanent employees. Shipments of the irradiated rods are received at TEF. In addition, the NNSA is evaluating the optimum mode of operations for the TEF; it will be based on the most efficient use of SRS resources and the changing demands for new tritium to support the nuclear weapons stockpile (WSRC 2008).

10.4.1.5 Salt Waste Processing Facilities

Salt waste processing facilities at SRS use two removal processes: the actinide removal process (ARP) and the modular caustic side solvent extraction unit (MCU). Removing the salt waste, which fills approximately 90% of the tank space in the SRS tank farms, is a major step toward closing SRS's 49 high-level radioactive waste tanks that currently contain about 136 million L (36 million gal) of waste. ARP and MCU together make up the interim salt disposition processing system, which decontaminates radioactive salt waste from SRS's waste storage tanks to be safely dispositioned. SRS first received radioactive salt waste solution for processing at the ARP and MCU facilities in April 2008, and it completed a successful test run as the facilities were brought on line in a deliberate, sequenced process to ensure safe operations. In combination with the Saltstone Production Facility and Saltstone Disposal Facility, this approach would treat, decontaminate, and dispose of radioactive salt waste removed from SRS storage tanks (SRS 2008). The Salt Waste Processing Facility (SWPF) is currently being constructed at SRS to treat and immobilize the tank high-level radioactive waste. The SWPF will separate the low-activity and high-activity waste fractions, with the former being solidified in a grout form in the existing Saltstone Production and Disposal Facilities and disposed of on-site in large vaults. The SWPF is scheduled to begin operations in FY 2014 and will replace the ARP and MCU.

10.4.1.6 Tank Closure

DOE has considered alternatives for closing the 49 high-level radioactive waste tanks and associated equipment at SRS, such as evaporator systems, transfer pipelines, diversion boxes, and pump pits. DOE needs to close these tanks to reduce human health and safety risks at and near the waste tanks and to reduce the eventual introduction of contaminants into the environment. DOE has selected the preferred alternative identified in its waste tank closure EIS (DOE 2002), "Stabilize Tanks — Fill with Grout," to help develop and implement the process for closing the tanks and associated equipment at SRS. Following bulk waste removal (as described in Section 11.4.12.5 of DOE 2002), DOE will clean the tanks if necessary to meet the performance objectives contained in the general closure plan and the tank-specific closure module, and then fill the tanks with grout (DOE 2002; WSRC 2007b).

10.4.1.7 Defense Waste Processing Facility

 The Defense Waste Processing Facility (DWPF) converts the liquid nuclear waste currently stored at SRS into a solid glass form suitable for long-term storage and disposal. It is the largest such plant in the world. The glassification process, called vitrification, immobilizes

radioactivity in glass, thereby reducing the risks associated with the continued storage of liquid nuclear wastes at SRS, and it prepares the waste for ultimate disposal in a federal repository. About 136 million L (36 million gal) of liquid nuclear wastes (in sludge and salt forms) are now stored in 49 underground waste tanks at SRS; the majority of this waste will be vitrified at the DWPF (WSRC 2007c).

The DWPF vitrifies sludge from waste by mixing a sandlike borosilicate glass, called frit, with the waste and then heating it in a ceramic melter. The molten glass-waste mixture is poured into stainless-steel canisters to cool and harden. Each canister is 3-m (10-ft) tall and 0.6 m (2 ft) in diameter; a filled canister weighs about 2.3 t (5,000 lb). Canisters are welded shut and then sent to storage buildings at SRS, where they are lowered into an underground, reinforced, concrete vault. SRS has the capacity to safely store about 4,400 canisters, a number that represents about 16 to 20 years of canisters at current production rates (although more storage buildings could be built if necessary) (WSRC 2007c).

Construction of the DWPF began in late 1983, and operations began in March 1996. The DWPF is projected to produce more than 5,000 canisters by the year 2019 (WSRC 2007c).

10.4.2 Cumulative Impacts from the GTCC Proposed Action at SRS

Potential impacts of the proposed action are considered in combination with the impacts of past, present, and reasonably foreseeable future actions. The summary of environmental impacts in Section 10.3 indicates that the potential impacts from the GTCC EIS proposed action (construction and operations of either a trench or vault disposal facility) would be small for all the resource areas evaluated. On the basis of the total impacts (including the reasonably foreseeable future actions summarized in Section 10.4.1) reported in NUREG 1767 (NRC 2005), the additional potential impacts from a GTCC proposed action would not result in the exceedance of any of the thresholds discussed in that report. For example, the annual levels of the criteria pollutants related to air quality reported in NUREG 1767 ranged from 32% (NO₂) to 52% (PM₁₀) of the SAAQS standards. It is estimated that the GTCC proposed action would result in no more than 0.16% of the total emissions in the surrounding counties. The highest NO₂ level reported for the surrounding counties of 0.004 ppm is 7.5% of the 0.053-ppm SAAQS standard, and the county level at 56 µg/m³ is 37% of the 150-µg/m³ PM₁₀ SAAQS standard.

 A potential long-term impact from a GTCC action would be the groundwater radionuclide concentrations that could result if the integrity of the facility did not remain intact in the distant future. The human health evaluation for the post-closure phase of the proposed action indicates that as much as 1,700 mrem/yr could be incurred by the hypothetical resident farmer assumed to be 100 m (330 ft) from the edge of the disposal facility in about 29 years (trench method) to 54 years (vault method) after failure of the cover and engineered barrier, which is assumed to begin 500 years after the closure of the disposal facility. The estimates are primarily attributable to the GTCC-like RH waste (primary radionuclide contributors include C-14, Tc-99, I-129, and Np-237). The analysis took credit for engineered barriers incorporated to prolong the protectiveness of the facility. The sensitivity analysis that was performed for this EIS indicates that the doses could be reduced more if the receptor was assumed to be farther away from the

- 1 facility. An annual review of the performance assessment and composite analysis for the E-Area
- 2 low-level waste facility indicated that the calculated maximum dose to a hypothetical future
- 3 member of the public would be about 14 mrem/yr (Millings 2009; Swingle 2008). Finally,
- 4 follow-on NEPA evaluations and documents prepared to support any further considerations of
- 5 siting a new trench or vault disposal facility at SRS would provide more detailed analyses of site-

6 specific issues, including cumulative impacts.

7 8 9

10.5 SETTLEMENT AGREEMENTS AND CONSENT ORDERS FOR SRS

10 11 12

A review of existing settlement agreements and consent orders for SRS did not identify any that would contain requirements that would be affected by Alternatives 4 and 5 for this EIS.

13 14 15

10.6 REFERENCES FOR CHAPTER 10

16

- 17 Aadland, R.K., et al., 1995, Hydrogeologic Framework of West-Central South Carolina,
- 18 Report 5, State of South Carolina Department of Natural Resources, Water Resources Division,
- 19 Columbia, S.C.

20

- 21 Aadland, R.K., et al., 1999, Significance of Soft Zone Sediments at the Savannah River
- 22 Site (U) Historical Review of Significant Investigations and Current Understanding of
- 23 Soft Zone Origin, Extent and Stability, WSRC-TR-99-4083, Westinghouse Savannah River
- 24 Company, Aiken, S.C., Sept.

25

- 26 AMA (American Medical Association), 2006, Physician Characteristics and Distribution in the
- 27 U.S., Chicago, Ill., last updated in July 2007, http://www.ama-assn.org/ama/pub/category/
- 28 2676.html. Accessed Jan. 2008.

29

- 30 Arnett, M.W., and A.R. Mamatey, 1999, Savannah River Site Environmental Data for 1998,
- 31 WSRC-TR-98-0032, Westinghouse Savannah River Company, Aiken, S.C.

32

35

- 33 Arnett, M.W., and A.R. Mamatey (editors), 2000, Savannah River Site Environmental Data for
- 34 1999, WSRC-TR-99-00301, Westinghouse Savannah River Company, Aiken, S.C.
- 36 ATSDR (Agency for Toxic Substances and Disease Registry), 2007, Evaluation of Off-Site 37 Groundwater and Surface Water Contamination at the Savannah River Site, Dec.
- 38
- 39 Blanchard, D., 2008, MOX Facility Makes Big Progress at SRS, news release, NBC Augusta,
- 40 Dec. 15, http://www.nbcaugusta.com/news/local/36208129.html (2 of 3). Accessed Feb. 4, 2009.

41

- 42 Brooks, M.J., et al., 1986, An Intensive Archaeological Survey and Testing of Alternative, New
- 43 Low Level Radioactive and Hazardous/Mixed Waste Storage/Disposal Facilities, Savannah
- 44 River Plant, Aiken and Barnwell Counties, South Carolina, manuscript on file with the Savannah
- 45 River Archaeological Research Program, South Carolina Institute of Archaeology and
- 46 Anthropology, University of South Carolina, Columbia, S.C.

- 1 Cabak, M.A., et al., 1996, Reconnaissance Survey of Site 7 of the Proposed Three Rivers
- 2 Regional Landfill and Technology Center, Savannah River Site, Aiken County, South Carolina,
- 3 DOE/SR/15199-T4, Technical Report Series 22, prepared by the Savannah River Archaeological
- 4 Research Program, University of South Carolina, for U.S. Department of Energy.

- 6 CEQ (Council on Environmental Quality), 1997, Environmental Justice Guidance under the
- 7 National Environmental Policy Act, Executive Office of the President, Washington, D.C.,
- 8 http://www.whitehouse.gov/CEQ/December.

9

- 10 Cherry, G.S., 2006, "Analysis of Groundwater Flowpaths and Potential for Interstate Migration
- of Contaminants in the Vicinity of the Savannah River Site, Georgia and South Carolina, 2002–
- 12 2020," in Proceedings of the 2005 Georgia Water Resources Conference, The University of
- 13 Georgia, Athens, Ga.

14

- 15 Cook, J.R., et al., 2004, Closure Plan for the E Area Low-Level Waste Facility, WSRC-RP-2000-
- 16 00425, Rev. 4, Westinghouse Savannah River Company, Aiken, S.C., May.

17

- 18 County of Aiken, 2008, "Manufacturing Uses," Section 24.3.3 in Code of Ordinances, County of
- 19 Aiken, S.C., http://www.municode.com/resources/gateway.asp?sid=40&pid=10344.

20

- 21 Davis, D.E., and L.L. Janecek, 1997, DOE Research Set-Aside Areas of the Savannah River Site,
- 22 Savannah River Site National Environmental Research Park Program, U.S. Department of
- 23 Energy, Aiken, S.C.

24

- 25 DCS (Duke Cogema Stone & Webster), 2002, Mixed Oxide Fuel Fabrication Facility
- 26 Environmental Report, Revision 1 & 2, Docket Number 070-03098, Charlotte, N.C., July.

27

- 28 Denham, M.E., 1995, SRS Geology/Hydrogeology Environmental Information Document, Report
- 29 WSRC-TR-95-0046, Westinghouse Savannah River Company, Aiken, S.C.

30

- 31 DOC (U.S. Department of Commerce), 2008, Local Area Personal Income, Bureau of Economic
- 32 Analysis, http://www.bea.doc.gov/bea/regional/reis/. Accessed Jan. 2008.

33

- 34 DOE (U.S. Department of Energy), 1994, Radiological Control Manual, DOE/EH-0256T,
- 35 Rev. 1, Assistant Secretary for Environment, Safety and Health, Washington, D.C., Apr.

36

- 37 DOE, 1996, Disposition of Surplus Highly Enriched Uranium Final Environmental Impact
- 38 Statement, DOE/EIS-0240.

39

- 40 DOE, 1997, Environmental Impact Statement, Accelerator Production of Tritium at the
- 41 Savannah River Site, DOE/EIS-0270D, Savannah River Operations Office, Aiken, S.C., Dec.

42

- 43 DOE, 1998, Final Environmental Impact Statement on Management of Certain Plutonium
- 44 Residues and Scrub Alloy Stored at the Rocky Flats Environmental Technology Site, DOE/EIS-
- 45 0277F.

- 1 DOE, 2002, Savannah River Site High-Level Waste Tank Closure Environmental Impact
- 2 Statement, DOE/EIS-0303, Savannah River Operations Office, Aiken, S.C.

4 DOE, 2005, Savannah River Site End State Vision, July.

5

- 6 DOE, 2007, DOE Occupational Radiation Exposure 2006 Report and Appendices, http://www.
- 7 hss.energy.gov.

8

- 9 DOE, 2008, U.S. Department of Energy Environmental Management, Spent Nuclear Fuel,
- 10 July, http://www.em.doe.gov/Pages/spentfuel.aspx?compid=1 (2 of 2). Accessed Feb. 5, 2009.

11

- 12 EIA (Energy Information Administration), 2008, International Energy Outlook 2008 —
- 13 Highlights, DOE/EIA-0484(2008), U.S. Department of Energy, June, http://www.eia.doe.gov/
- 14 oiaf/ieo/index.html. Accessed July 2008.

15

- 16 Eldred, K.M., 1982, "Standards and Criteria for Noise Control An Overview," Noise Control
- 17 Engineering 18(1):16–23, Jan.–Feb.

18

- 19 EPA (U.S. Environmental Protection Agency), 1995, "Guidance for Presidential Memorandum
- 20 on Environmentally and Economically Beneficial Landscape Practices on Federal Landscaped
- 21 Grounds," Office of the Federal Environmental Executive, Federal Register, Vol. 60, No. 154,
- 22 Aug. 10.

23

- 24 EPA, 2008a, National Ambient Air Quality Standards (NAAQS), last updated Oct. 20, 2008,
- 25 http://www.epa.gov/air/criteria.html. Accessed Oct. 22, 2008.

26

- 27 EPA, 2008b, Energy CO₂ Emissions by State, last updated Apr. 19, 2008, http://www.epa.gov/
- 28 climatechange/emissions/state_energyco2inv.html. Accessed July 2008.

29

- 30 EPA, 2009, AirData: Access to Air Pollution Data, last updated Oct. 5, 2007, http://www.epa.
- 31 gov/air/data/. Accessed Nov. 2009.

32

- 33 Fallaw, W., and V. Price, 1992, "Outline of Stratigraphy at the Savannah River Site," in
- 34 Geological Investigations of the Central Savannah River Area, South Carolina and Georgia,
- 35 Carolina Geological Society Field Trip Guidebook, W. Fallaw and V. Price (editors),
- 36 South Carolina Geological Survey, Columbia, S.C., Nov. 13–15.

37

- 38 Fallaw, W., and V. Price, 1995, "Stratigraphy of the Savannah River Site and Vicinity,"
- 39 Southeastern Geology 35(1):21–58.

40

- 41 Fallaw, W.C., et al., 1992, "Stratigraphic Relationships in Eocene Outcrops along Upper Three
- 42 Runs at the Savannah River Site," in Geological Investigations of the Central Savannah River
- 43 Area, South Carolina and Georgia, Carolina Geological Society Field Trip Guidebook,
- 44 W. Fallow and V. Price (editors), South Carolina Geological Survey, Columbia, S.C.,
- 45 Nov. 13-15.

- 1 Find Lakes, 2008, Savannah River Par Pond Lower Dam, South Carolina, http://findlakes.com/
- 2 savannah_river_par_pond_lower_dam_south-carolina~sc83401.htm. Accessed July 2008.

- 4 Flach, G.P., and M.K. Harris, 1999, Integrated Hydrogeological Model of the General
- 5 Separation Area, Vol. 2: Groundwater Flow Model, WSRC-TR-96-0399, Rev. 1, Savannah
- 6 River Operations Office, Westinghouse Savannah River Company, Aiken, S.C.

7

- 8 Flynn, T., 2007, personal communication from Flynn (South Carolina Department of Health and
- 9 Environmental Control, Columbia, S.C.) to Y.-S. Chang (Argonne National Laboratory,
- 10 Argonne, Ill.), Nov. 18.

11

- 12 Gellici, J.A., et al., 1994, Hydrogeologic Investigation and Establishment of a Permanent Multi-
- 13 Observational Well Network in Aiken, Allendale, and Barnwell Counties, South Carolina, Eight-
- 14 Year Interim Report, SCDNR Open-File Report 1, South Carolina Department of Natural
- 15 Resources.

16

- 17 Harris, M.K., et al., 1998, Integrated Hydrogeological Model of the General Separation Area,
- 18 Vol. 1: Hydrogeologic Framework, WSRC-TR-96-0399, Vol. 1, Savannah River Operations
- 19 Office, Westinghouse Savannah River Company, Aiken, S.C.

20

- 21 Hiergesell, R.A., 1998, The Regional Water Table of the Savannah River Site and Related
- 22 Coverages, WSRC-TR-98-00045, Westinghouse Savannah River Company, Aiken, S.C.

23

- 24 Hiergesell, R.A., et al., 2000, Results of Aquifer Tests Performed near R-Area, Savannah River
- 25 Site (U), WSRC-TR-2000-00180, Westinghouse Savannah River Company, Aiken, S.C., Aug.

26

- 27 Hunt, C.B., 1973, Natural Regions of the United States and Canada, W.H. Freeman and
- 28 Company, San Francisco, Calif.

29

- 30 IPCC (Intergovernmental Panel on Climate Change), 2007, Climate Change 2007: The Physical
- 31 Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the IPCC,
- 32 S. Solomon et al. (editors), Cambridge University Press, Cambridge, U.K., http://www.ipcc.ch/
- 33 ipccreports/ar4-wg1.htm. Accessed July 2008.

34

- 35 Lewis, M.R., et al., 2004, "Liquefaction Evaluations at the Savannah River Site A Case
- 36 History," in Proceedings of the Fifth International Conference on Case Histories in
- 37 Geotechnical Engineering, New York, N.Y., Apr. 13–17.

38

- 39 Mast, M.A., and J.T. Turk, 1999, Environmental Characteristics and Water Quality of
- 40 Hydrologic Benchmark Network Stations in the Eastern United States, 1963–95,
- 41 Circular 1173-A, U.S. Geological Survey.

42

- 43 Mayer, J.J., and L.D. Wike, 1997, SRS Urban Wildlife, Environmental Information Document,
- 44 WSRC-TR-97-0093, prepared for the U.S. Department of Energy, Dec.

- 1 Miller, N.P., 2002, "Transportation Noise and Recreational Lands," in *Proceedings of Inter-*
- 2 Noise 2002, Dearborn, Mich., Aug. 19–21.

- 4 Millings, M.R., et al., 2009, 2008 Annual Review, E-Area Low-Level Waste Facility
- 5 Performance Assessment and Composite Analysis, SRNS-RP-2008-01314, prepared by
- 6 Savannah River National Laboratory, Aiken, S.C., for U.S. Department of Energy, Jan.

7

- 8 National Center for Educational Statistics, 2008, Search for Public Schools, http://www.nces.ed.
- 9 gov/ccd/schoolsearch/.

10

- 11 NCDC (National Climatic Data Center), 2008a, 2007 Local Climatological Data Annual
- 12 Summary with Comparative Data, National Oceanic and Atmospheric Administration,
- 13 http://www5.ncdc.noaa.gov/Pubs/publications.html#LCD. Accessed Aug. 2008.

14

- 15 NCDC, 2008b, Storm Events, National Oceanic and Atmospheric Administration, Satellite and
- 16 Information Service, http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwEvent~Storms.

17

- 18 NCRP (National Council on Radiation Protection and Measurements), 2009, *Ionizing Radiation*
- 19 Exposure of the Population of the United States, Report No. 160, Bethesda, Md.

20

- 21 Newcome, R., 2005, The 100 Largest Public Water Supplies in South Carolina 2005, Water
- 22 Resources Report 37, Land, Water and Conservation Division, State of South Carolina
- 23 Department of Natural Resources.

24

- 25 NNSA (National Nuclear Security Administration), 2008, About the MOX Project,
- 26 http://www.moxproject.com/about/index.shtml. Accessed Feb. 4, 2009.

27

- 28 NOAA (National Oceanic and Atmospheric Administration), 2008, Historical Hurricane Tracks,
- 29 U.S. Department of Commerce, NOAA Coastal Services Center, updated May 15, 2008,
- 30 http://maps.csc.noaa.gov/hurricanes/viewer.html?QE=NAME& ATLBASIN=371. Accessed
- 31 Aug. 2008.

32

- 33 North Augusta, 2004, What's That Stuff in the Water?, http://www.northaugusta.net/Dept_Serv/
- 34 Engin PublicWorks/stormwater/newsletters/newsspring04.pdf. Accessed July 2008.

35

- 36 NRC (U.S. Nuclear Regulatory Commission), 2005, Environmental Impact Statement on the
- 37 Construction and Operation of a Proposed Mixed Oxide Fuel Fabrication Facility at the
- 38 Savannah River Site, South Carolina, NUREG-1767, Jan.

39

- 40 NRC, 2008, Mixed Oxide Fuel Fabrication Facility Licensing, http://www.nrc.gov/materials/
- 41 fuel-cycle-fac/mox/licensing.html. Accessed Feb. 4, 2009.

42

- 43 NUS Corporation, 1990, Sound-Level Characterization of the Savannah River Site, Report
- 44 No. NUS-5251, prepared for U.S. Department of Energy, Aug.

- 1 Peterson, M.J., et al, 2005, Environmental Survey Report for the ETTP: Environmental
- 2 Management Waste Management Facility (EMWMF) Haul Road Corridor, Oak Ridge,
- 3 Tennessee, ORNL/TM-2005/215, Oak Ridge National Laboratory, Oak Ridge, Tenn., Sept.
- 5 Prowell, D.C., 1996 Geologic Map of the Savannah River Site, Aiken, Allendale, and Barnwell
- 6 Counties, South Carolina, MF-2300, U.S. Geological Survey.
- 8 Rogers, V.A., 1990, Soil Survey of Savannah River Plant Area, Parts of Aiken, Barnwell, and
- 9 Allendale Counties, South Carolina, U.S. Department of Agriculture, Soil Conservation Service,
- 10 June.

4

12 Ruffner, J.A., 1985, Climates of the States, 3rd edition, Gale Research Company, Detroit, Mich.

13

- 14 Savannah River Operations Office, 2006, DOE News: SRS Makes 200th Shipment of Low
- 15 Enriched Uranium, SR-06-01, May 4, http://sro.srs.gov/nr_2006/sr0601.htm (2 of 2). Accessed
- 16 Feb. 4, 2009.

17

- 18 SCDHEC (South Carolina Department of Health and Environmental Control), 2004,
- 19 Regulation 61-62.5: Air Pollution Control Standards, Standard No. 2: Ambient Air Quality
- 20 Standards, Sept. 24.

21

- 22 SCDHEC, 2008, Ambient Air Quality Data Summaries, http://www.scdhec.gov/environment/
- 23 bag/scozone.aspx?Page=scozone. Accessed Jan. 2008.

24

- 25 SCDNR (South Carolina Department of Natural Resources), 2006, South Carolina Rare,
- 26 Threatened, & Endangered Species Inventory, last updated Jan. 17, 2006, https://www.dnr.sc.
- 27 gov/pls/heritage/county_species.list?pcounty=aiken.

28

- 29 SCDNR, 2009, Rare, Threatened, and Endangered Species Known to Occur in Aiken County,
- 30 http://www.dnr.sc.gov/species/pdf/aiken.pdf. Accessed Apr. 2, 2010.

31

- 32 SCDOT (South Carolina Department of Transportation), 2007, Average Annual Daily Traffic,
- 33 2006 data, http://www.dot.state.sc.us/getting/aadt.shtml. Accessed Jan. 16, 2008.

34

- 35 SCSCO (South Carolina State Climatology Office), 2007, South Carolina Climate,
- 36 http://www.dnr.sc.gov/climate/sco/ClimateData/cli_sc_climate.php. Accessed Dec. 2007.

37

- 38 Sheldon, A.L., and G.K. Meffe, 1994, "Short-Term Recolonization by Fishes of Experimentally
- 39 Defaunated Pools of a Coastal Plain Stream," Copeia 4:825–837, http://www.jstor.org/pss/
- 40 1447031. Accessed Oct. 2008.

41

- 42 SRNS (Savannah River Nuclear Solutions, LLC), 2009, Savannah River Site Environmental
- 43 Report for 2008, SRNS-STI-2009-00190, A.R. Mamatey (editor), Savannah River Site, Aiken,
- 44 S.C.

- 1 SRS, 2007 (Savannah River Site), Savannah River Site: Spent Fuel Management,
- 2 http://www.srs.gov/general/programs/spentfuel/index.htm (2 of 2). Accessed Feb. 4, 2009.

- 4 SRS, 2008, Cleanup and Closure Milestones at SRS, http://www.srs.gov/general/news/
- 5 top_news/side2.htm. Accessed Oct. 2008.

6

- 7 Stephenson, D.E., 1992, Review of Seismicity and Ground Motion Studies Related to the
- 8 Development of Seismic Design Criteria at SRS (U), WSRC-TR-90-0284, Westinghouse
- 9 Savannah River Company, Aiken, S.C., Aug.

10

- 11 Stephenson, D.E., and A.L. Stieve, 1992, Structural Model of the Basement in the Central
- 12 Savannah River Area, South Carolina and Georgia, WSRC-TR-92-120, Westinghouse Savannah
- 13 River Company, Aiken, S.C.

14

- 15 Stevenson, D.A., and P. Talwani, 2004, "2001–2002 Upper Three Runs Sequence of
- 16 Earthquakes at the Savannah River Site, South Carolina," Seis. Res. Lett. 75:107–116.

17

- 18 Swingle, R.F., II, et al., 2008, 2007 Annual Review, E-Area Low-Level Waste Facility
- 19 Performance Assessment and Composite Analysis, SRNS-RP-2008-00228, prepared by
- 20 Washington Savannah River Company, Aiken, S.C., for U.S. Department of Energy, Feb.

21

U.S. Bureau of the Census, 2008a, *County Business Patterns*, 2005, http://www.census.gov/ftp/pub/epcd/cbp/view/cbpview.html. Accessed Jan. 2008.

24

- 25 U.S. Bureau of the Census, 2008b, *American Fact Finder*, Washington, D.C., http://factfinder.
- 26 census.gov/. Accessed Jan. 2008.

27

- $28\quad U.S.\ Bureau\ of\ the\ Census,\ 2008c,\ \textit{Census\ of\ Governments},\ http://www.census.gov/gov/delta/d$
- 29 www/index. Accessed Jan. 2008.

30

- 31 USDA (U.S. Department of Agriculture), 2008, Census of Agriculture, 2002, National
- 32 Agricultural Statistics Service, Washington, D.C., http://www.nass.usda.gov/census/
- 33 census97/volume1/vol1pubs.htm. Accessed Jan. 2008.

34

- 35 U.S. Department of Labor, 2009a, Bureau of Labor Statistics Homepage: Local Area
- 36 Unemployment Statistics: County Data, http://www.bls.gov/lau/#tables. Accessed Apr. 2009.

37

- 38 U.S. Department of Labor, 2009b, *FTP Directory*, ftp://ftp.bls.gov/pub/time.series/la/. Accessed
- 39 Apr. 2009.

40

- 41 U.S. Department of Labor, 2009c, Local Area Unemployment Statistics: States and Selected
- 42 Areas: Employment Status of the Civilian Noninstitutional Population, 1976 to 2007, Annual
- 43 Averages, Bureau of Labor Statistics, http://www.bls.gov/lau/staadata.txt. Accessed Apr. 2009.

- 1 U.S. Department of Labor, 2009d, Local Area Unemployment Statistics: Unemployment Rates
- 2 for States, Bureau of Labor Statistics, http://www.bls.gov/web/laumstrk.htm. Accessed

3 Apr. 2009.

4

- 5 USFS (U.S. Forest Service), 2005, Natural Resources Management Plan for the Savannah River
- 6 Site, prepared by the U.S. Department of Agriculture, Forest Service-Savannah River,
- 7 New Ellenton, S.C., for U.S. Department of Energy, May.

8

- 9 USGS (U.S. Geological Survey), 2007, National Water Information System, Surface Water
- 10 Annual Statistics for the Nation, http://nwis.waterdata.usgs.gov/nwis/annual/. Accessed Jan. 14,
- 11 2007.

12

- 13 Wike, L.D., et al., 1996, Site Selection for the Accelerator for Production of Tritium at the
- 14 Savannah River Site, WRSC-TR-96-0279, Rev. 1, Westinghouse Savannah River Company,
- 15 Aiken, S.C.

16

- 17 Wike, L.D., et al., 2006, SRS Ecology Environmental Information Document, WSRC-TR-2005-
- 18 00201, Westinghouse Savannah River Company, Aiken, S.C.

19

- 20 WSRC (Westinghouse Savannah River Company), 1993, Federal Facility Agreement for the
- 21 Savannah River Site, WSRC-OS-94-42, Administrative Document No. 89-05-FF, effective date
- 22 Aug. 13.

23

- 24 WSRC, 2000, Natural Phenomena Hazards (NPH) Design Criteria and Other Characterization
- 25 Information for the Mixed Oxide (MOX) Fuel Fabrication Facility at Savannah River Site (U),
- 26 Aiken, S.C, WSRC-TR-2000-00454, Rev. 0, Aiken, S.C., Nov.

27

- 28 WSRC, 2007a, Savannah River Site Environmental Report for 2006, WSRC-TR-2007-00008,
- 29 A.R. Mamatey (editor), Savannah River Site, Aiken, S.C., http://www.srs.gov/general/pubs/
- 30 ERsum/er07/index.html. Accessed July 2008.

31

- 32 WSRC, 2007b, Facts about the Savannah River Site: Liquid Nuclear Waste Tank Closures,
- 33 Aiken, S.C., Dec., http://www.srs.gov/general/news/facts.htm. Accessed Feb. 4, 2009.

34

- 35 WSRC, 2007c, Facts about the Savannah River Site: Defense Waste Processing Facility, Aiken,
- 36 S.C., Dec., http://www.srs.gov/general/news/facts.htm. Accessed Feb. 4, 2009.

37

- 38 WSRC, 2008, Facts about the Savannah River Site: SRS Tritium Facilities, Aiken, S.C., Jan.,
- 39 http://www.srs.gov/general/news/facts.htm. Accessed Feb. 4, 2009.

40

- 41 Wyatt, D.E., et al. (editors), 2000, "Overview of the Savannah River Site Stratigraphy,
- 42 Hydrostratigraphy, and Structure," in Carolina Geological Society 2000 Field Trip Guidebook,
- 43 Savannah River Site Environmental Remediation Systems in Unconsolidated Upper Coastal
- 44 Plain Sediments: Stratigraphic and Structural Considerations, WSRC-MS-2000-00606,
- 45 Westinghouse Savannah River Company, Aiken, S.C.

- 1 Yu, C., et al., 2000, Development of Probabilistic RESRAD 6.0 and RESRAD BUILD 3.0
- 2 Computer Codes, NUREG/CR-6697, ANL/EAD/TM-98, prepared by Argonne National
- 3 Laboratory, Argonne, Ill., for Division of Risk Analysis and Applications, Office of Nuclear
- 4 Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, D.C., Nov.

1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
10	10	
11	11	

This page is intentionally left blank.

10: Savannah River Site (Alternatives 4 and 5)

Draft GTCC EIS

12

11 WASTE ISOLATION PILOT PLANT VICINITY: AFFECTED ENVIRONMENT AND CONSEQUENCES OF ALTERNATIVES 3, 4, AND 5

1 2

This chapter provides an evaluation of the affected environment, environmental and human health consequences, and cumulative impacts from the disposal of GTCC LLRW and GTCC-like waste under Alternative 3 (in a new borehole disposal facility), Alternative 4 (in a new trench disposal facility), and Alternative 5 (in a new vault disposal facility) at the WIPP Vicinity reference locations. Alternatives 3 to 5 are described in Section 5.1. Environmental consequences common to the sites for which Alternatives 3 to 5 are evaluated (including the WIPP Vicinity locations) are discussed in Chapter 5 and not repeated in this chapter. Impact assessment methodologies used for this EIS are described in Appendix C. Federal and state statutes and regulations and DOE Orders relevant to the WIPP Vicinity locations are discussed in Chapter 13 of this EIS.

11.1 AFFECTED ENVIRONMENT

This section discusses the affected environment for the various environmental resource areas evaluated for the GTCC reference locations at the WIPP Vicinity. One reference location is in Section 27 (inside the WIPP Land Withdrawal Boundary [WIPP LWB]), and the other is in Section 35 (on a parcel of land managed by the BLM just outside the WIPP LWB) (see Figure 11.1-1). Both the reference locations are located within T22S, R31E. These reference locations were selected primarily for evaluation purposes for this EIS. The actual location or locations would be identified on the basis of follow-on evaluations if and when it is decided to locate a land disposal facility at the WIPP Vicinity.

11.1.1 Climate, Air Quality, and Noise

Climate, air quality, and noise conditions at the WIPP Vicinity reference locations (within Sections 27 and 35) are similar to the conditions at the WIPP site described in Section 4.2.1 because of their proximity to each other, so the descriptions are not repeated here.

11.1.2 Geology and Soils

 The WIPP Vicinity reference locations occupy two 2.6-km² (1-mi²) or 260-ha (640-ac) parcels: Section 27, which is inside the WIPP LWB, and Section 35, which is outside and immediately adjacent to the southeast corner of the WIPP repository site. Given the close proximity of the WIPP Vicinity reference locations to the WIPP repository site, their regional geologic setting and stratigraphy at the reference locations can be inferred from the extensive data on the WIPP site that are summarized in Section 4.2.2. The text that follows summarizes the site stratigraphy on the basis of the work discussed in Powers (2009), with an emphasis on near-surface formations (above the Rustler Formation) in the vicinity of Sections 27 and 35.

FIGURE 11.1-1 WIPP Vicinity GTCC Reference Locations

The topography across the WIPP Vicinity reference locations exhibits some broad valley forms, possibly indicating areas of concentrated surface runoff and integrated drainages during prolonged rainfall events. Sand dunes are present, but likely thinner and more uniform than local dune fields. Calcrete¹ exposures appear as heavily vegetated semicircular features on aerial photos of Section 35. These are thought to represent intradune areas that focus water drainage and enhance vegetation growth, causing degradation of the underlying calcrete and creating slight topographic depressions. These surface features, however, have no relationship to dissolution or subsidence of deeper evaporite units.

The WIPP Vicinity reference locations are situated on Quaternary age alluvium, playa lake deposits, and semi-stabilized and active dune sands. These deposits compose the majority of surface exposures and most of the shallow subsurface sediments in the WIPP Vicinity region. Just below these deposits is a fairly continuous mantle of caliche (called the Mescalero). The Mescalero caliche is a well-lithified alluvial deposit of chalky, finely crystalline limestone that is fairly continuous across the WIPP site and can be up to 1.8-m (6-ft) thick. It thickens and is more indurated to the east of the site near Sections 27 and 35. There is a caliche borrow pit

¹ Calcrete is a conglomerate of surficial gravel and sand that is cemented by carbonate material.

near the southeast corner of Section 35; deposits in the pit indicate the Mescalero is thick and indurated enough to be quarried. Overlying the Mescalero is the Berino soil, a thick, reddish, semiconsolidated sand containing little carbonate, ranging in thickness from centimeters (inches) to 0.3 to 0.6 m (1 to 2 ft).

The top of the Dewey Lake Formation is at least 15-m (50-ft) deep across both Sections 27 and 35, with depths of more than 30 m (100 ft) expected in Section 27. The overlying Santa Rosa Formation likely occurs within 11 m (35 ft) of the ground surface across both sections, with shallower depths (less than 3 m [10 ft]) expected along the eastern portion of Section 27 and possibly all of Section 35. The Gatuña Formation thins to the east and may be absent along much of the eastern portion of both sections.

No natural factors within the WIPP Vicinity reference locations that would affect the engineering aspects of slope stability or subsidence have been reported. The presence of the Mescalero caliche is generally considered to be an indicator of surface stability (DOE 1997).

Liquefaction of saturated sediments is a potential hazard during or immediately following large earthquakes. Whether soils will liquefy depends on several factors, including the magnitude of the earthquake, peak ground velocity, susceptibility of soils to liquefaction, and depth to groundwater. No surface displacement or faulting younger than early Permian has been reported at WIPP, indicating that tectonic movement since then, if any, has not been noteworthy. No mapped Quaternary (last 1.9 million years) or Holocene (last 10,000 years) faults exist closer to the site than the western escarpment of the Guadalupe Mountains, about 100 km (60 mi) to the west-southwest (DOE 1997). The strongest earthquake on record within 290 km (180 mi) of the site was the Valentine, Texas, earthquake of August 16, 1931 (DOE 1997), with an estimated Richter magnitude of 6.4. From 1974 to 2006, recorded earthquakes within a 300-km (184-mi) radius of WIPP ranged from magnitude 2.3 to 5.7 (USGS 2010).

11.1.3 Water Resources

Given the close proximity of the WIPP Vicinity reference locations to the WIPP repository site, the hydrological conditions at the reference locations can be inferred from the extensive amount of information available on the WIPP site, which is summarized in Section 4.2.3. The discussions that are most relevant to the WIPP Vicinity reference locations are those on surface water (Section 4.2.3.1) and those on the aquifer units above the Salado Formation (Section 4.2.3.2.1).

11.1.4 Human Health

The two WIPP Vicinity GTCC reference locations are Section 27 (within the WIPP LWB) and Section 35 (adjacent to the WIPP LWB). The following discussion is based on current operations at WIPP and assumed to be applicable to both reference locations.

Radiation exposures of the off-site general public could occur as a result of three pathways: (1) air transport, (2) water ingestion, and (3) ingestion of game animals. Of these three pathways, only the air pathway is considered to be credible. Elevated concentrations of radionuclides have not been detected in groundwater or game animals in the site vicinity. In 2008, the whole body dose to the highest-exposed individual from airborne releases was estimated to be less than 9.05×10^{-6} mrem/yr (DOE 2009). This individual was assumed to reside 7.5 km (4.6 mi) west-northwest of the site. A hypothetical individual residing at the site fence line in the northwest sector was estimated to receive a whole body dose of less than 7.14×10^{-4} mrem/yr. These values are well below the dose limit of 100 mrem/yr from all exposure pathways set by DOE to protect the general public from the operation of its facilities.

In 2008, the collective dose to the 101,017 people living within 80 km (50 mi) of WIPP was calculated to be 2.72×10^{-5} rem/yr (DOE 2008). If this dose was distributed uniformly to all individuals living within 80 km (50 mi) of the site, the average dose to each person would be about 2.69×10^{-7} mrem/yr. This is an extremely small fraction of the average dose of 620 mrem/yr to members of the general public from exposure to natural background and man-made sources of radiation (NCRP 2009).

11.1.5 Ecology

The description of ecological resources at the WIPP Vicinity reference locations is similar to the description of these resources at the WIPP site, which is provided in Section 4.2.5.

11.1.6 Socioeconomics

Socioeconomic data for the WIPP Vicinity cover the ROI surrounding the reference locations, which is composed of two counties in New Mexico: Eddy County and Lea County. The majority of workers associated with the waste disposal facility at either of the WIPP Vicinity reference locations would reside in these counties (DOE 1997). The socioeconomic data are the same as the data presented in Section 4.2.6 for the WIPP repository.

11.1.7 Environmental Justice

 Because of the proximity of the WIPP Vicinity reference locations to the WIPP repository, the effects on environmental justice are the same as those presented for the WIPP repository site under Alternative 2. Figures 4.2.7-1 and 4.2.7-2 and Table 4.2.7-1 show the minority and low-income compositions of the total population located in the 80-km (50-mi) buffer from Census Bureau data for the year 2000 (U.S. Bureau of the Census 2008) and from CEQ guidelines (CEQ 1997). Persons whose incomes fall below the federal poverty threshold are designated as low income. Minority persons are those who identify themselves as Hispanic or Latino, Asian, Black or African American, American Indian or Alaska Native, Native Hawaiian or other Pacific Islander, or multi-racial (with at least one race designated as a minority race under CEQ). Individuals who identify themselves as Hispanic or Latino are included in the table

as a separate entry. However, because Hispanics can be of any race, this number also includes individuals who also identify themselves as being part of one or more of the population groups listed in the table.

2 3

11.1.8 Land Use

The primary land use within the WIPP Vicinity reference location Section 35 is for oil and gas production. The land use description for the WIPP site contains further information applicable to land use within the WIPP site area (including for Section 27) (see Section 4.2.8). Figures 11.1.8-1 and 11.1.8-2 show potash leases in the vicinity of WIPP and the WIPP Vicinity reference locations, and a map of oil wells within 1.6 km (1 mi) of the WIPP LWB, respectively. There are no potash leases on Sections 27 and 35. There is an oil well on Section 35.

11.1.9 Transportation

Highway access to the WIPP region is by US 285 (north-south) or US 62/180 (northeast-southwest). Both highways pass through Carlsbad, New Mexico. Situated 40 km (25 mi) east of Carlsbad, WIPP can be reached from US 62/180 to the north and from New Mexico SR 128 to the south. The North Access Road from US 62/180 is about 21 km (13 mi) in length and is restricted to official WIPP business or to DOE and BLM personnel, permittees, licensees, or lessees (DOE 2002a). The South Access Road is Eddy County Road 802 originating at SR 128. General public access on Eddy County Road 802 can be restricted at the Off-Limits Area boundary if it is determined that there would be a significant safety risk to WIPP personnel (DOE 2002a). Average daily traffic on the access roads is estimated to be 800 vehicles on the North Access Road and 400 vehicles on the South Access Road (NMED 2007).

Rail access to the WIPP Vicinity locations is provided by a rail line that connects with a spur of the Burlington Northern Santa Fe Railroad near Mosaic Potash's Nash Draw Mine, 10 km (6 mi) southwest of the site (DOE 2002a).

11.1.10 Cultural Resources

Roughly 1,370 ha (3,380 ac) of the 4,140 ha (10,240 ac) managed by WIPP have been surveyed for cultural resources. The surveys identified approximately 60 archaeological sites and 90 isolated finds (DOE 2006). The largest survey was done in 1987 by Mariah and Associates. The 1987 survey examined portions of 45 sections surrounding the WIPP facility (DOE 2002a).

 People have been living in the desert southwest for more than 10,000 years. Prehistoric people tended to live nomadic lifestyles, collecting resources from different areas at different times of the year (DOE 2002a). Most prehistoric archaeological sites in the WIPP area represent short-term use. In the mid 1500s, the Jumano and Apachean people used the area. They collected goods seasonally and traded with nearby Puebloan people. The Spanish were the first Europeans to cross what would become southeastern New Mexico. In historic times, the region was only

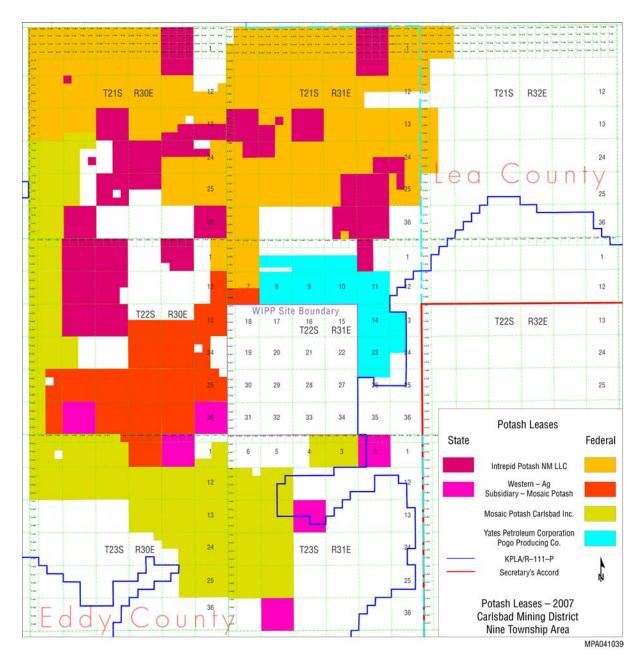


FIGURE 11.1.8-1 Potash Leases in the Vicinity of WIPP (as of 2007)

11-6

2

3

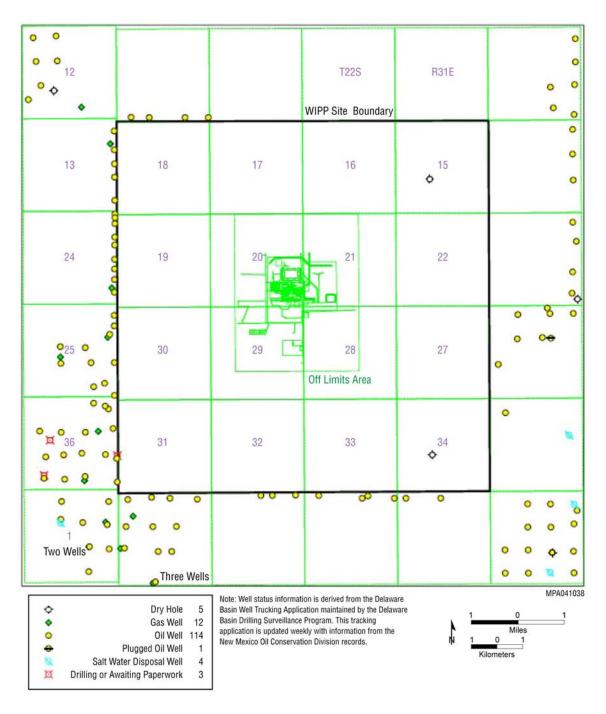


FIGURE 11.1.8-2 Map of Oil Wells within 1.6 km $(1\ mi)$ of WIPP Land Withdrawal Boundary

lightly populated because of a lack of resources. Some ranching took place on the WIPP property during the 1940s and 1950s. Evidence of these activities is still visible in some locations.

 The WIPP Vicinity reference location in Section 27 is in the WIPP LWB, and Section 35 is located on BLM-managed land just to the southeast of the WIPP LWB. The majority of Section 27 (T22S, R31E) and the majority of Section 35 (T22S, R31E) have not been examined for the presence of cultural resources. However, some cultural resource surveys were undertaken, and archaeological sites were found in both sections. In Section 27, a cultural resource survey was done for a proposed haul road. The survey identified Site 32632. The site consists of a surface artifact scatter of prehistoric materials. The site appears to represent a short-term occupation site that was revisited several times. On the basis of the pot sherds found at the site, the resource dates to the Jornada Mogollon period (A.D. 900 to 1450) (Hunt 1994). Site 32632 was recommended as being potentially eligible for listing on the NRHP. Site 32632 is the only cultural resource currently known to be within Section 27.

Section 35 was surveyed on several occasions in anticipation of development. Currently there are seven known cultural resources located in Section 35. Of the seven resources, only one, 54373, is currently recommended as being potentially eligible for listing on the NRHP. Another site, 83670, has been very heavily impacted by past activities and no longer requires consideration.

A review of cultural resource information for the region revealed that the Maroon Cliffs Archaeological District is located northeast of WIPP. It is the closest archaeological district to the reference locations. The 4,770-ha (11,780-ac) district contains evidence of habitation ranging from the Archaic period (5000 B.C.) to the Jornada Mogollon (A.D. 900 to 1450) (BLM 1988). Pit houses have been reported among the archaeological sites documented at this location. The district includes a wide variety of topographic features. The district is located roughly 11 km (7 mi) northwest of the project area.

11.1.11 Waste Management

Currently no waste management activities are being conducted at the WIPP Vicinity reference location in Section 35. It is expected that at the WIPP Vicinity reference location in Section 27, the waste management activities for the WIPP repository could accommodate the waste types generated by the land disposal methods (Alternatives 3 to 5), as discussed in Section 5.3.11.

11.2 ENVIRONMENTAL AND HUMAN HEALTH CONSEQUENCES

The potential impacts from the construction, operations, and post-closure of the land disposal methods (borehole, trench, and vault) are presented in this section for the resource areas evaluated. The discussion of the affected environment for the WIPP Vicinity locations is presented in Section 11.1 (and Section 4.2 for some resource areas, as indicated). The WIPP

Vicinity locations are shown in Figure 11.1-1. The following sections address the potential environmental and human health consequences for each resource area discussed in Section 11.1.

11.2.1 Climate and Air Quality

This section presents potential climate and air quality impacts that could result from construction, operations, decommissioning, and post-closure of each of the three land disposal alternatives (borehole, trench, and vault) at either of the WIPP Vicinity locations. Noise impacts are presented in Section 5.3.1.

11.2.1.1 Construction

During the construction period, emissions of criteria pollutants (such as SO₂, NO_x, CO, PM₁₀, and PM_{2.5}), VOCs, and the primary greenhouse gas CO₂ would be caused by fugitive dust emissions from earth-moving activities and engine exhaust emissions from heavy equipment and commuter, delivery, and support vehicles. Typically, potential impacts from exhaust emissions on ambient air quality would be smaller than those from fugitive dust emissions.

Air emissions of criteria pollutants, VOCs, and CO_2 from construction activities were estimated for the peak year, when site preparation and construction of support facilities and some disposal cells would take place. The estimates are provided in Table 11.2.1-1 for each disposal method. Detailed information on emission factors, assumptions, and emission inventories is presented in Appendix D. As shown in the table, it is estimated that total peak-year emission rates would be rather small when compared with the Eddy County emissions total. Peak-year emissions for all criteria pollutants (except PM_{10} and $PM_{2.5}$) and VOCs would be the highest for the vault method, the construction of which would consume more materials and resources than would construction of the other two methods. The borehole method would disturb more area, so its fugitive dust emissions are estimated to be the highest. Peak-year emissions of all pollutants would be the lowest for the trench method, which would disturb the smallest area among the disposal methods. In terms of contribution to the emissions total, the peak-year emissions of NO_x under the vault method would be the highest, about 0.37% of the total county emissions, while emissions of other criteria pollutants and VOCs would be 0.08% or less of the county emissions total.

Background concentration levels for PM_{10} and $PM_{2.5}$ at the WIPP Vicinity reference locations are well below the standards (less than 59% of SAAQS); estimates for PM_{10} and $PM_{2.5}$ include diesel particulate emissions (Table 4.2.1-2). Construction at the WIPP Vicinity locations could occur within a few tens of meters of the boundary of both sections. Under unfavorable dispersion conditions, high concentrations of PM_{10} or $PM_{2.5}$ are expected and could exceed the standards at the location boundaries, although such exceedances would be rare. Construction activities would not contribute much to concentrations at the expected nearest residence. These activities would be conducted to minimize the potential impacts of related emissions on ambient air quality. In so doing, where appropriate, fugitive dust would be controlled by established,

TABLE 11.2.1-1 Peak-Year Emissions of Criteria Pollutants, Volatile Organic Compounds, and Carbon Dioxide from Construction of the Three Land Disposal Facilities at the WIPP Vicinity

	Total	Construction Emissions (tons/yr)					
Pollutant	Emissions (tons/yr) ^a	Trench		Borehole		Vault	
SO_2	7,783	0.90	$(0.01)^{b}$	3.0	(0.04)	3.2	(0.04)
NO_x	8,437	8.1	(0.10)	26	(0.31)	31	(0.37)
CO	25,725	3.3	(0.01)	11	(0.04)	11	(0.04)
VOCs	8,222	0.90	(0.01)	2.7	(0.03)	3.6	(0.04)
PM_{10}^{c}	27,327	5.0	(0.02)	13	(0.05)	8.6	(0.03)
$PM_{2.5}^{c}$	4,744	1.5	(0.03)	4.1	(0.09)	3.6	(0.08)
CO_2		670		2,200		2,300	
County ^d	1.85×10^{6}		(0.04)		(0.12)		(0.12)
New Mexico ^e	6.50×10^{7}		(0.001)		(0.003)		(0.004)
U.S.e	6.54×10^{9}		(0.00001)		(0.00003)		(0.00004)
Worldwide ^e	3.10×10^{10}		(0.000002)		(0.000007)		(0.000007)

^a Total emissions in 2002 for Eddy County, in which WIPP is located. See Table 4.2.1-1 for criteria pollutants and VOCs.

Sources: EIA (2008); EPA (2008, 2009)

1 2 3

standard dust control practices, primarily by watering unpaved roads, disturbed surfaces, and temporary stockpiles, as stipulated in the construction permits.

4 5 6

7

10

11

12

13

Although O_3 levels in Carlsbad, about 42 km (26 mi) west of the WIPP site area, have exceeded the standard (see Table 4.2.1-2), Eddy County, including the WIPP Vicinity GTCC reference locations, is currently in attainment for O_3 (40 CFR 81.332). The WIPP Vicinity GTCC reference locations are located far from any major cities, and O_3 precursor emissions from a disposal facility under all three methods would be relatively small, 0.37% or less and 0.04% or less of the county total NO_x and VOC emissions, respectively. The O_3 precursor emissions would be much lower than those from the regional air shed in which emitted precursors are transported and formed into O_3 . Accordingly, potential impacts of O_3 precursor releases from construction on regional O_3 would not be of concern.

14 15 16

17

18

The major air quality concern with respect to emissions of CO₂ is that it is a greenhouse gas, which traps solar radiation reflected from the earth, keeping it in the atmosphere. The combustion of fossil fuels makes CO₂ the most widely emitted greenhouse gas worldwide.

b As percent of total emissions.

^c Estimates for GTCC construction include diesel particulate emissions.

d Emission data for the year 2005. Currently, data on CO₂ emissions at the county level are not available, so county-level emissions were estimated from available state total CO₂ emissions on the basis of the population distribution.

e Annual CO₂ emissions in New Mexico, the United States, and worldwide in 2005.

CO₂ concentrations in the atmosphere have continuously increased, going from approximately 280 ppm in preindustrial times to 379 ppm in 2005, a 35% increase. Most of this increase has occurred in the last 100 years (IPCC 2007).

The climatic impact of CO₂ does not depend on the geographic location of its sources because CO₂ is stable in the atmosphere and is essentially uniformly mixed; that is, the global total is the important factor with respect to global warming. Therefore, a comparison between U.S. and global emissions and the total emissions from the construction of a disposal facility is useful in understanding whether CO₂ emissions from the site are significant with respect to global warming. As shown in Table 11.2.1-1, the highest peak-year amount of CO₂ emissions from construction would be under 0.12%, 0.004%, and 0.00004% of 2005 county, state, and U.S. CO₂ emissions, respectively. In 2005, CO₂ emissions in the United States were about 21% of worldwide emissions (EIA 2008). Potential impacts on climate change from construction emissions would be small.

An initial construction period of 3.4 years is assumed (see Appendix D). Because the disposal units would be constructed as the waste became available for disposal, the construction phase would be extended over more years. Emissions would thus be lower in nonpeak years than in the peak year, as presented in Table 11.2.1-1. In addition, construction activities would occur only during daytime hours, when air dispersion is most favorable. Accordingly, potential impacts from construction activities on ambient air quality would be minor and intermittent.

General conformity applies to federal actions taking place in nonattainment or maintenance areas and is not applicable to the proposed action at the WIPP Vicinity locations because the area is classified as being in attainment for all criteria pollutants (40 CFR 81.332).

11.2.1.2 Operations

Criteria pollutants, VOCs, and CO₂ would be released into the atmosphere during operations. These emissions would include fugitive dust emissions from emplacement activities and exhaust emissions from heavy equipment and commuter, delivery, and support vehicles. Estimates of annual emissions of criteria pollutants, VOCs, and CO₂ at the facility are presented in Table 11.2.1-2. Detailed information on emission factors, assumptions, and emission inventories is available in Appendix D. As shown in the table, annual operational emissions are estimated to be lower than those from construction under the borehole method. Annual emissions from operations are about the same for the trench and vault methods but higher than those for the borehole method. Compared with annual emissions for Eddy County, annual emissions of NO_x for the trench and vault methods would be the highest, about 0.32% of the county total, while emissions of other criteria pollutants and VOCs would be about 0.06% or less.

Except for O₃ and particulates, concentration levels from operational activities are expected to remain well below the standards. Estimates for PM₁₀ and PM_{2.5} include diesel particulate emissions. However, although lower than their impacts during construction, fugitive dust emissions during operations (emplacement of waste) could exceed the standards under unfavorable meteorological conditions. Established fugitive dust control measures (primarily

TABLE 11.2.1-2 Annual Emissions of Criteria Pollutants, Volatile Organic Compounds, and Carbon Dioxide from Operations of the Three Land Disposal Facilities at the WIPP Vicinity

		Operation Emissions (tons/yr)						
	Total Emissions						_	
Pollutant	(tons/yr) ^a	Trench		Borehole		Vault		
			_					
SO_2	7,783	3.3	$(0.04)^{b}$	1.2	(0.02)	3.3	(0.04)	
NO_{x}	8,437	27	(0.32)	10	(0.12)	27	(0.32)	
CO	25,725	15	(0.06)	6.7	(0.03)	15	(0.06)	
VOCs	8,222	3.1	(0.04)	1.2	(0.01)	3.1	(0.04)	
PM_{10}^{c}	27,327	2.5	(0.01)	0.91	(0.003)	2.5	(0.01)	
$PM_{2.5}^{c}$	4,744	2.2	(0.05)	0.81	(0.02)	2.2	(0.05)	
CO_2		3,200		1,700		3,300		
County ^d	1.85×10^{6}		(0.17)		(0.09)		(0.18)	
New Mexico ^e	6.50×10^{7}		(0.005)		(0.003)		(0.005)	
U.S.e	6.54×10^9		(0.00005)		(0.00003)		(0.00005)	
Worldwide ^e	3.10×10^{10}		(0.00001)		(0.00001)		(0.00001)	

- ^a Total emissions in 2002 for Eddy County, in which WIPP is located. See Table 4.2.1-1 for criteria pollutants and VOCs.
- b As percent of total emissions.
- ^c Estimates for GTCC operations include diesel particulate emissions.
- d Emission data for the year 2005. Currently, data on CO₂ emissions at the county level are not available, so county-level emissions were estimated from available state total CO₂ emissions on the basis of the population distribution.
- e Annual CO₂ emissions in New Mexico, the United States, and worldwide in 2005.

Sources: EIA (2008); EPA (2008, 2009)

1 2

watering unpaved roads, disturbed surfaces, and temporary stockpiles) would be implemented to minimize potential impacts on ambient air quality.

4 5 6

> 7 8

9

10 11 With regard to regional O_3 , precursor emissions of NO_x and VOCs during operations would be comparable to those during construction (about 0.32% and 0.04% of the county total, respectively) and are not anticipated to contribute much to regional O_3 levels. The highest emissions of CO_2 among the three disposal methods would be comparable to the highest construction-related emissions, and thus their potential impacts on climate change would also be negligible. PSD regulations are not applicable to the proposed action because the proposed action is not a major stationary source.

12 13 14

11.2.2 Geology and Soils

15 16 17

18

Direct impacts from land disturbance would be proportional to the total area of land disturbed during site preparation activities (e.g., grading and backfilling) and construction of the

waste disposal facility and related infrastructure. Land disturbance would include the surface area covered for each disposal method and the vertical displacement of geologic materials for the borehole and trench disposal methods. The increased potential for soil erosion would be an indirect impact of land disturbance at the construction site. Indirect impacts would also result from the consumption of geologic materials (e.g., aggregate) for facility and new road construction. The impact analysis also considers whether the proposed action would preclude the future extraction and use of mineral materials or energy resources.

11.2.2.1 Construction

Land surface area disturbance impacts would be a function of the disposal method implemented at the site (Table 5.1-1). Of the three disposal facility layouts, the borehole facility layout would result in the greatest impact in terms of land area disturbed (44 ha or 110 ac). It also would result in the greatest disturbance with depth 40 m (130 ft), with boreholes completed in unconsolidated sand, silt, clay, caliche, and evaporites.

Geologic and soil material requirements are provided in Table 5.3.2-1. Of the three disposal facilities, the vault facility would require the most material since it would involve the installation of cover systems that use soil material. This material would be considered permanently lost. However, none of the three disposal methods are expected to result in adverse impacts on geologic and soil resources in the WIPP Vicinity reference locations, since these resources are in abundant supply at the site and in the surrounding area.

No significant changes in surface topography or natural drainages are anticipated in the construction area. However, the disturbance of soil during the construction phase would increase the potential for erosion in the immediate vicinity. This potential would be greatly reduced by the low precipitation rates in the WIPP Vicinity. Mitigation measures also would be implemented to avoid or minimize the risk of erosion.

The GTCC waste disposal facility would be sited and designed with safeguards to avoid or minimize the risks associated with seismic and volcanic hazards. The WIPP Vicinity is in a seismically active region, and small-magnitude earthquakes (usually less than 3 on the Richter scale) occur frequently. Larger-magnitude earthquakes are probable at the site. New facilities in the WIPP Vicinity would be sited and designed with safeguards to avoid or minimize the risks associated with seismic hazards. The annual probability of a volcanic event is considered to be very low, since the nearest volcanic field is in northwestern New Mexico, and the volcanoes within this field are dormant. The potential for liquefaction and subsidence are also considered to be low, given the deep water table and low precipitation rates in the area.

11.2.2.2 Operations

 The disturbance of soil and the increased potential for soil erosion would continue throughout the operational phase, because waste would be delivered to the site for disposal over time. The potential for soil erosion would be greatly reduced by the low precipitation rates at the

WIPP Vicinity reference locations. Mitigation measures would also be implemented to avoid or minimize the risk of erosion.

Impacts related to the extraction and use of valuable geologic materials are expected to be low, since only the area within the facility itself would be unavailable for mining or drilling. The WIPP Vicinity reference locations are currently closed to commercial mineral development; however, oil and gas production is currently taking place in Section 35, and potash mining does occur at other sections (especially to the north and southwest). Waste disposal activities in Section 35 would not have adverse impacts on the extraction of economic minerals in the surrounding region.

11.2.3 Water Resources

Direct and indirect impacts on water resources could occur as a result of water use at the proposed GTCC waste disposal facility during construction and operations. Table 5.3.3-1 provides an estimate of the water consumption and discharge volumes for the three land disposal methods; Tables 5.3.3-2 and 5.3.3-3 summarize the impacts from water use (in terms of change in annual water use) on water resources that would occur during construction and normal operations, respectively. A discussion of potential impacts during each project phase is presented in the following sections. In addition, contamination due to potential leaching of radionuclides from the waste inventory into groundwater could occur, depending on the post-closure performance of the land disposal facilities discussed in Section 11.2.4.2.

11.2.3.1 Construction

Of the three types of land waste disposal facilities considered for the WIPP Vicinity reference locations, a vault facility would require the greatest amount of water during construction (Table 5.3.3-1). Water demands for construction at the WIPP Vicinity reference locations would be met by using groundwater piped in from off-site wells within the city of Carlsbad's water supply system. There are no surface water bodies at the site, and no surface water would be used during construction. As a result, no direct or indirect impacts on surface water resources are expected. The WIPP Vicinity reference locations are not located within 100-year or 500-year floodplains.

Currently, no water is used at the WIPP Vicinity reference locations. The Carlsbad Double Eagle South Well Field supplies water to the WIPP repository site to the south; its annual water production is about 1.4 million L (360 million gal). Construction of the proposed GTCC waste disposal facility would increase the pumpage for the Double Eagle water system by a maximum of about 0.24% (vault method) (Table 5.3.3-2). Because increased withdrawals of groundwater would be relatively small, they would be easily accommodated by the Double Eagle water system. The 61-cm (24-in.) pipeline that carries water from this water system to the WIPP repository site has the capacity to transport the increased volume of water effectively. The increase in the water volume needed would be relatively small, and impacts on the water table elevation and any change in the direction of groundwater flow would be negligible.

Disposal of waste (including sanitary waste) generated during construction of the land disposal facilities would have a negligible impact on the quality of water resources at the WIPP Vicinity locations. The potential for indirect surface water or groundwater impacts related to spills at the surface would be reduced by implementing good industry practices and mitigation measures.

11.2.3.2 Operations

Of the three land waste disposal facilities considered for the WIPP Vicinity reference locations, the trench and vault facilities would require the most water during operations (Table 5.3.3-1). Water demands for operations at the WIPP Vicinity reference locations would be met by using groundwater from the Carlsbad water supply system. There are no surface water bodies at the site, and no surface water would be used during operations. As a result, no direct or indirect impacts on surface water resources are expected. The GTCC WIPP Vicinity reference locations are not located within 100-year or 500-year floodplains.

Operations of the proposed GTCC waste disposal facility would increase the overall demand on the Double Eagle water system by about 0.39% (Table 5.3.3-3). Because withdrawals of groundwater would be relatively small, they would be easily accommodated by the Double Eagle water system. The increased water demand would slightly lower the existing water table below the well fields. However, because the volume increase would be relatively small, impacts on the water table elevation and any change in the direction of groundwater flow would be negligible.

Disposal of waste (including sanitary waste) generated during operations of the land disposal facilities would have a negligible impact on the quality of water resources at the WIPP Vicinity reference locations. The potential for indirect surface water or groundwater impacts related to spills at the surface would be reduced by implementing good industry practices and mitigation measures.

11.2.4 Human Health

Potential impacts on members of the general public and the involved workers from the construction and operations associated with the land disposal facilities are expected to be comparable for all of the sites evaluated in this EIS for the land disposal methods. These impacts are discussed in Section 5.3.4. The following sections discuss the impacts from hypothetical facility accidents associated with waste handling activities and the impacts during the long-term post-closure phase. They address impacts on members of the general public who might be affected by these waste disposal activities at the WIPP Vicinity reference locations, since these impacts would be site dependent but are expected to be the same for both sections (27 and 35).

11.2.4.1 Facility Accidents

Data on the estimated human health impacts from hypothetical accidents at a land GTCC waste disposal facility located at a WIPP Vicinity reference location are provided in Table 11.2.4-1. The accident scenarios are discussed in Section 5.3.4.2.1 and Appendix C. A reasonable range of accidents that included operational events and natural causes was analyzed. The impacts presented for each accident scenario are for the sector with the highest impacts, and no protective measures are assumed; therefore, the impacts represent the maximum expected for such an accident.

The collective population dose includes exposure from inhalation of airborne radioactive material, external exposure from radioactive material deposited on the ground, and ingestion of contaminated crops. The exposure period is considered to last for 1 year immediately following the accidental release. It is recognized that interdiction of food crops would likely happen if a significant release did occur, but many stakeholders are interested in what could happen without interdiction. For the accidents involving CH waste (see Accidents 1–9, 11, and 12 on Table 11.2.4-1), the ingestion dose accounted for about 20% of the collective population dose shown in Table 11.2.4-1. External exposure was found to be negligible in all cases. All exposures were dominated by the inhalation dose from the passing plume of airborne radioactive material downwind of the hypothetical accident immediately following release.

The highest estimated impact on the general public, 7.0 person-rem, would be from a hypothetical release from an SWB caused by a fire in the Waste Handling Building (Accident 9). The Waste Handling Building discussed in Chapter 11 is hypothetical and does not refer to the Waste Handling Building or WHB that currently exists at the nearby WIPP geologic repository facility. Such a dose is not expected to lead to any additional LCFs in the population. This dose would be to the 28,800 people living west of the facility, resulting in an average dose of about 0.0002 rem per person. Because this dose would be from internal intake (primarily inhalation, with some ingestion) and because the DCFs used in this analysis are for a 50-year CEDE, this dose would be accumulated over the course of 50 years.

The dose to an individual (expected to be a noninvolved worker) includes exposure from inhalation of airborne radioactive material and 2 hours of exposure to radioactive material deposited on the ground. As shown in Table 11.2.4-1, the highest estimated dose to an individual, 7.5 rem, would be for Accident 9 from inhalation exposure immediately after the postulated release. This estimated dose would be to a hypothetical individual located 100 m (330 ft) north-northeast or east-southeast of the accident location. As discussed above, the estimated dose of 7.5 rem would be accumulated over a 50-year period after intake; it is not expected that it would result in symptoms of acute radiation syndrome. A maximum annual dose of about 5% of the total dose would occur in the first year. The increased lifetime probability of a fatal cancer for this individual would be about 0.5% on the basis of a total dose of 7.5 rem.

TABLE 11.2.4-1 Estimated Radiological Human Health Impacts from Hypothetical Facility Accidents at the WIPP Vicinity Reference Locations^a

		Off-Site	Public	Individual ^b	
Accident No.	Accident Scenario	Collective Dose (person-rem)	Latent Cancer Fatalities ^c	Dose (rem)	Likelihood of LCF ^c
1	Single drum drops, lid failure in Waste Handing Building	0.00015	< 0.0001	0.00017	< 0.0001
2	Single SWB drops, lid failure in Waste Handing Building	0.00035	< 0.0001	0.00038	< 0.0001
3	Three drums drop, puncture, lid failure in Waste Handling Building	0.00027	< 0.0001	0.0003	< 0.0001
4	Two SWBs drop, puncture, lid failure in Waste Handling Building	0.00049	< 0.0001	0.00053	< 0.0001
5	Single drum drops, lid failure outside	0.15	< 0.0001	0.17	< 0.0001
6	Single SWB drops, lid failure outside	0.35	0.0002	0.38	0.0002
7	Three drums drop, puncture, lid failure outside	0.27	0.0002	0.3	0.0002
8	Two SWBs drop, puncture, lid failure outside	0.49	0.0003	0.53	0.0003
9	Fire inside the Waste Handling Building, one SWB assumed to be affected	7	0.004	7.5	0.005
10	Single RH waste canister breach	< 0.0001	< 0.0001	< 0.0001	< 0.0001
11	Earthquake affects 18 pallets, each with 4 CH drums	4.3	0.003	4.8	0.003
12	Tornado, missile hits one SWB, contents released	1.4	0.0008	1.5	0.0009

^a CH = contact-handled, RH = remote-handled, LCF = latent cancer fatality, SWB = standard waste box. The Waste Handling Building discussed in this chapter is hypothetical and does not refer to the Waste Handling Building or WHB that currently exists at the nearby WIPP geologic repository facility.

b The individual receptor is assumed to be 100 m (330 ft) downwind from the release point. This individual is expected to be a noninvolved worker.

^c LCFs are calculated by multiplying the dose by the health risk conversion factor of 0.0006 fatal cancer per person-rem (see Section 5.2.4.3). LCF values are rounded to one significant figure.

11.2.4.2 Post-Closure

The potential radiation dose from airborne releases of radionuclides to the off-site public after the closure of a waste disposal facility would be small. RESRAD-OFFSITE calculation results indicate that there would be no measurable exposure from this pathway from a borehole facility. Small radiation exposures are estimated to occur from use of the trench and vault disposal methods. The potential inhalation dose at a distance of 100 m (330 ft) from the disposal facility is estimated to be less than 1.8 mrem/yr for trench disposal and 0.52 mrem/yr for vault disposal. The potential radiation exposures would be caused mainly by inhalation of radon gas and its short-lived progeny.

The use of boreholes would provide better protection against potential exposures from airborne releases of radionuclides because of the greater depth of cover material involved. The top of the waste placement zone of the boreholes would be 30 m (100 ft) bgs, and this depth of overlying soil would inhibit the diffusion of radon gas, CO₂ gas (containing C-14), and tritium (H-3) water vapor to the atmosphere above the disposal area. However, because the distance to the groundwater table would be closer under the borehole method than under the trench and vault methods, radionuclides that leached out from wastes in the boreholes would reach the groundwater table in a shorter time than would radionuclides that leached out from a trench or vault disposal facility.

On the basis of the RESRAD-OFFSITE calculation results, within 10,000 years, no radiation exposure would be incurred by a hypothetical resident farmer living 100 m (330 ft) from the disposal facility as a result of using groundwater. Potential exposure could occur after 10,000 years and would be caused mainly by I-129 and Tc-99 that reached the groundwater table. Transport times needed by other radionuclides to reach the groundwater table would be longer than 100,000 years as a result of their greater retardation in the soil.

Figure 11.2.4-1 shows the temporal plot of the radiation doses associated with the use of contaminated groundwater for a time frame extended to 100,000 years under the three land disposal methods. The late occurrence of radiation exposure associated with the use of contaminated groundwater is attributed to a small natural water infiltration rate (0.2 cm/yr or 0.08 in./yr) and a deep groundwater table of about 150 m (500 ft). The peak annual doses are calculated to be 84 mrem/yr for use of boreholes, 99 mrem/yr for use of trenches, and 110 mrem/yr for use of the vault disposal method. These peak annual doses are estimated to occur in about 11,000 years, 14,000 years, and 15,000 years for the borehole, trench, and vault methods, respectively. Most of this dose would be from Tc-99 and associated with the GTCC LLRW activated metal waste and GTCC-like Other Waste - RH. There is a high degree of uncertainty associated with results like these, which are for such a long time of analysis.

 The results given here are assumed to be conservative because the location selected for the residential exposure is 100 m (330 ft) from the edge of the disposal facility. Use of a longer distance, which might be more realistic for the sites being evaluated, would significantly lower these estimated doses (i.e., by as much as 70%). A sensitivity analysis performed to determine the effect of a distance longer than 100 m (330 ft) is presented in Appendix E.

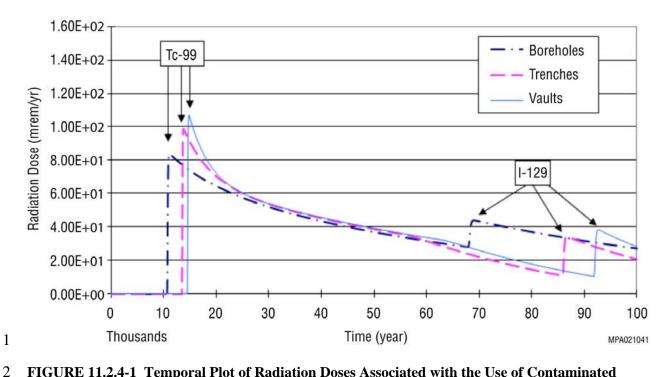


FIGURE 11.2.4-1 Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 100,000 Years of Disposal for the Three Land Disposal Methods at the WIPP Vicinity

These analyses assume that engineering controls would be effective for 500 years following closure of the disposal facility. This means that essentially no infiltrating water would reach the wastes from the top of the disposal units during the first 500 years. It is assumed that after 500 years, the engineered barriers would begin to degrade, allowing infiltrating water to come in contact with the disposed-of wastes. For purposes of analysis in the EIS, it is assumed that the amount of infiltrating water that would contact the wastes would be 20% of the site-specific natural infiltration rate for the area, and that the water infiltration rate around and beneath the disposal facilities would be 100% of the natural rate for the area. This approach is assumed to be conservative because it is expected that the engineered systems (including the

disposal facility cover) would last longer than 500 years, even in the absence of active

maintenance measures.

It is assumed that the Other Waste would be stabilized with grout or other material and that this stabilizing agent would be effective for 500 years. Consistent with the assumptions used for engineering controls, no credit was taken for the effectiveness of this stabilizing agent after 500 years in this analysis. That is, it is assumed that any water that would contact the wastes after 500 years would be able to leach radioactive constituents from the disposed-of materials. These radionuclides could then move with the percolating groundwater to the underlying groundwater system. This scenario is assumed to be conservative because grout or other stabilizing materials could retain their integrity for longer than 500 years.

The radiation doses presented in the post-closure assessment in this EIS are intended to be used for comparing the performance of each land disposal method at each site evaluated. The

results indicate that the use of robust engineering designs and redundant measures (e.g., types and thicknesses of covers and long-lasting grout) in the disposal facility could delay the potential release of radionuclides and could reduce any releases to very low levels, thereby minimizing potential groundwater contamination and associated human health impacts in the future. DOE will consider the potential doses to the hypothetical farmer and other factors in developing the preferred alternative, as discussed in Section 2.9.

11.2.5 Ecology

 Section 5.3.5 presents an overview of the potential impacts on ecological resources from the construction, operations, and post-closure maintenance of the GTCC waste disposal facility, regardless of the location selected for the facility. This section evaluates the potential impacts of the GTCC waste disposal facility on the ecological resources at the WIPP Vicinity reference locations at Sections 27 and 35.

It is not expected that the initial loss of shrub-dominated sand dune habitat, followed by the eventual establishment of low-growth vegetation on the disposal site, would create a long-term reduction in the local or regional ecological diversity. After closure of the GTCC waste disposal site, the cover would be planted with annual and perennial grasses and forbs. As appropriate, regionally native plants would be used to landscape the disposal site in accordance with "Guidance for Presidential Memorandum on Environmentally and Economically Beneficial Landscape Practices on Federal Landscaped Grounds" (EPA 1995). Priority would be given to native plant species that are conducive to soil stabilization and to wildlife needs. A revegetation program would also be recommended in order to minimize the potential for nonnative species to become established at the site.

Since wetlands do not occur within the area of the WIPP Vicinity reference locations, direct impacts on wetlands from construction, operations, and post-closure of the GTCC waste disposal facility would not occur. However, wetland plants could potentially develop along the borders of the GTCC waste disposal facility retention pond, and depending on the slope of the pond margins and the amount and length of time that the pond would retain water, the shoreline areas of the pond might function in a manner similar to that of a natural emergent wetland.

DOE's objectives for managing wildlife habitat within the WIPP land withdrawal area include the protection and maintenance of (1) crucial habitats for big game, upland game birds, and raptors; (2) crucial habitats for nongame species of special interest and concern to state or federal agencies; and (3) habitats for federally or state-listed species identified as inhabiting the land within the WIPP LWB (DOE 2002a). DOE's objectives for managing wildlife habitat at the WIPP Vicinity reference locations would be similar.

 Because no aquatic habitats occur within the immediate area of the WIPP Vicinity reference locations, impacts on aquatic biota are not expected. DOE would use appropriate erosion control measures to minimize off-site movement of soils. The GTCC waste disposal facility stormwater retention pond is not expected to become a highly productive aquatic habitat. However, depending on the amount of water and length of time that water would be retained in

the pond, aquatic invertebrates could become established within it. Waterfowl, shorebirds, and other birds might also make use of the retention pond, as would mammal species that might enter the site.

None of the endangered, threatened, and other special-status species listed in Table 4.2.5-1 have been observed in the WIPP Vicinity (DOE 1997). However, favorable habitat for the lesser prairie-chicken (*Tympanuchus pallidicinctus*), a federal candidate species, does occur within the WIPP Vicinity reference locations, although Section 35 appears to provide a less favorable habitat than do the sections north of it (BLM 2008). One measure for minimizing potential impacts on wildlife is the establishment of periods during which off-site field activities may not be performed during the species' breeding season. Also, special seed mixes for replanting disturbed areas identified by BLM are used where possible to preserve lesser prairie-chicken habitat (BLM 2008). Similar measures would be enacted for the GTCC waste disposal facility. Because only a small proportion of the sand dune habitat within the area would be affected by the GTCC waste disposal facility, it is not expected that there would be a population-level impact on the lesser prairie-chicken.

Among the goals of the waste management mission at DOE sites is to maintain disposal facilities in a manner that protects the environment and complies with regulations (DOE 2002b). Therefore, potential impacts on ecological resources from the GTCC waste disposal facility would be minimized and mitigated.

11.2.6 Socioeconomics

11.2.6.1 Construction

The potential socioeconomic impacts from constructing a GTCC waste disposal facility would be small for all disposal methods. Construction activities would create direct employment of 47 people (borehole method) to 145 people (vault method) in the peak construction year and an additional 58 indirect jobs (trench method) to 152 indirect jobs (vault method) in the ROI (Table 11.2.6-1). Construction activities would constitute less than 1% of the total ROI employment in the peak year. A GTCC waste disposal facility would produce between \$4.4 million in income (trench method) and \$11.7 million in income (vault method) in the peak year of construction.

In the peak year of construction, between 41 people (borehole method) and 127 people (vault method) would in-migrate to the ROI (Table 11.2.6-1) as a result of employment on-site. In-migration would have only a marginal effect on population growth and would require up to 2% of vacant housing in the peak year. No significant impact on public finances would occur as a result of in-migration; up to four local public service employees would be required to maintain existing levels of service in the various local public service jurisdictions in the ROI. In addition, on-site employee commuting patterns would have a small to moderate impact on levels of service in the local transportation network surrounding the site.

TABLE 11.2.6-1 Effects of GTCC Waste Disposal Facility Construction and Operations on Socioeconomics at the ROI for the WIPP Vicinity^a

	Tren	nch	Borel	nole	Vault	
Impact Category	Construction	Operations	Construction	Operations	Construction	Operations
Employment (number of jobs)						
Direct	62	48	47	38	145	51
Indirect	58	37	78	32	152	38
Total	120	85	125	70	297	89
Income (\$ in millions)						
Direct	2.2	3.2	1.9	2.6	6.0	3.4
Indirect	2.2	1.3	3.3	1.2	5.7	1.4
Total	4.4	4.5	5.2	3.8	11.7	4.8
Population (number of new residents)	55	4	41	3	127	4
Housing (number of units required)	27	2	21	2	63	2
Public finances (% impact on expenditures)						
Cities and counties ^b	<1	<1	<1	<1	<1	<1
Schools ^c	<1	<1	<1	<1	<1	<1
Public service employment (number of new employees)						
Local government employees ^d	1	0	1	0	2	0
Teachers	1	0	1	0	2	0
Traffic (impact on current levels of service)	Small	Small	Small	Small	Moderate	Small

^a Impacts shown are for waste facility and support buildings in the peak year of construction and the first year of operation.

b Includes impacts that would occur in the cities of Artesia, Carlsbad, Loving, Eunice, Hobbs, Jal, Lovington, and Tatum and in Eddy and Lea Counties.

^c Includes impacts that would occur in the Artesia, Carlsbad, Loving, Eunice, Hobbs, Jal, Lovington, and Tatum school districts.

^d Includes police officers, paid firefighters, and general government employees.

11.2.6.2 Operations

 The potential socioeconomic impacts from operating a GTCC waste disposal facility would be small for all disposal methods. Operational activities would create about 38 direct jobs (borehole method) to 51 direct jobs (vault method) annually and an additional 32 indirect jobs (borehole method) to 38 indirect jobs (vault method) in the ROI (Table 11.2.6-1). A GTCC waste disposal facility would also produce between \$3.8 million in income (borehole method) and \$4.8 million in income (vault method) annually during operations.

Three to four people would move to the area at the beginning of operations (Table 11.2.6-1). However, in-migration would have only a marginal effect on population growth and would require less than 1% of vacant owner-occupied housing during facility operations. No significant impact on public finances would occur as a result of in-migration, and no new local public service employees would need to be hired in order to maintain existing levels of service in the various local public service jurisdictions in the ROI. In addition, on-site employee commuting patterns would have only a small impact on levels of service in the local transportation network surrounding the site.

11.2.7 Environmental Justice

11.2.7.1 Construction

No radiological risks and only very low chemical exposure and risk are expected during construction of a trench, borehole, or vault facility. Chemical exposure during construction would be limited to airborne toxic air pollutants at less than standard levels and would not result in any adverse health impacts. Since the health impacts from each facility on the general population within the 80-km (50-mi) assessment area during construction would be negligible, impacts from construction of each facility on the minority and low-income population would not be significant.

11.2.7.2 Operations

 Because incoming GTCC waste containers would only be consolidated for placement in trench, borehole, and vault facilities, with no repackaging necessary, there would be no radiological impacts on the general public during operations, nor would there by any adverse health effects on the general population. In addition, no surface releases that might enter local streams or interfere with subsistence activities by low-income or minority populations would occur. Because the health impacts of routine operations on the general public would be negligible, it is expected that here would be no disproportionately high and adverse impacts on minority or low-income population groups within the 80-km (50-mi) assessment area. Subsequent NEPA analysis to support any GTCC implementation would consider any unique exposure pathways (such as subsistence fish, vegetation, or wildlife consumption or well water use) to determine any additional potential adverse health and environmental impacts.

11.2.7.3 Accidents

A GTCC waste release at any of the facilities could cause LCFs in the surrounding area. However, it is highly unlikely that such an accident would occur. Therefore, the risk to any population, including low-income and minority communities, is considered to be low. In the unlikely event of a release from the GTCC waste facility, the communities most likely to be affected could be minority or low-income, given the demographics within 80 km (50 mi) of the WIPP Vicinity reference locations.

If an accident that produced significant contamination occurred, appropriate measures would be taken to ensure that the impacts on low-income and minority populations would be minimized. The extent to which low-income and minority population groups would be affected would depend on the amount of material released and the direction and speed at which airborne material was dispersed from any of the facilities by the wind. Although the overall risk would be very small, the greatest short-term risk of exposure following an airborne release and the greatest one-year risk would be to the population groups residing to the west of the site (see Section 11.2.4.1. Airborne releases following an accident would likely have a larger impact on the area than would an accident that released contaminants directly into the soil surface.

Monitoring of contaminant levels in soil and surface water following an accident would provide the public with information on the extent of any contaminated areas. Analysis of contaminated areas to decide how to control the use of high-health-risk areas would reduce the potential impact on local residents.

11.2.8 Land Use

Section 5.3.8 presents an overview of the potential land use impacts that could result from the GTCC waste disposal facility, regardless of the location selected for the facility. This section evaluates the potential impacts from the GTCC waste disposal facility on land use at the WIPP Vicinity reference locations.

 Use of the WIPP Vicinity reference location Section 27 would have to be considered against requirements described in the WIPP Land Withdrawal Act (LWA). Use of the WIPP Vicinity reference location Section 35 for disposal of GTCC wastes would alter the current land use of up to 44 ha (110 ac) from multiple use to use by a waste disposal facility. DOE would consider existing lease holders in determining implementability at Section 35. A loss of about 0.2% of a 22,493-ha (55,581-ac) grazing allotment would also occur.

 As was the case for the WIPP repository, the land (in Section 35) would be permanently withdrawn from all forms of entry, appropriation, and disposal under the public land laws and reserved for uses associated with the purposes of the GTCC waste disposal facility. DOE would prepare a land management plan, as appropriate, and provide opportunities for the public and for federal, state, and local agencies to participate in the land use planning. Land use on areas surrounding the WIPP Vicinity locations is not expected to be affected. Future land use activities that would be permitted within or immediately adjacent to the GTCC waste disposal facility

would be limited to those that would not jeopardize the integrity of the facility, create a security risk, or create a worker or public safety risk.

11.2.9 Transportation

The transportation impacts of all GTCC LLRW and GTCC-like waste for disposal at the WIPP Vicinity reference locations was evaluated. As discussed in Section 5.2.9, transportation of all cargo is considered for both truck and rail modes of transport as separate options for the purposes of this EIS. Transportation impacts are expected to be the same for the borehole, trench, and vault methods because the same type of transportation packaging would be used regardless of the disposal method. In addition, it is expected that impacts for both Sections 27 and 35 would be the same because the transportation routes would be similar.

 As discussed in Appendix C, Section C.9, the impacts of transportation were calculated in three areas: (1) collective population risks during routine conditions and accidents (Section 11.2.9.1), (2) radiological risks to individuals receiving the highest impacts during routine conditions (Section 11.2.9.2), and (3) consequences to individuals and populations after the most severe accidents involving a release of radioactive or hazardous chemical material (Section 11.2.9.3).

Radiological impacts during routine conditions are a result of human exposure to the low levels of radiation near the shipment. The regulatory limit established in 49 CFR 173.441 (Radiation Level Limitations) and 10 CFR 71.47 (External Radiation Standards for All Packages) to protect the public is 0.1 mSv/h (10 mrem/h) at 2 m (6 ft) from the outer lateral sides of the transport vehicle. This dose rate corresponds roughly to 14 mrem/h at 1 m (3 ft). As discussed in Appendix C, Section C.9.4.4, the external dose rates for CH shipments to the WIPP Vicinity locations are assumed to be 0.5 and 1.0 mrem/h at 1 m (3 ft) for truck and rail shipments, respectively. For shipments of RH waste, the external dose rates are assumed to be 2.5 and 5.0 mrem/h at 1 m (3 ft) for truck and rail shipments, respectively. These assignments are based on shipments of similar types of waste. Dose rates from rail shipments are approximately double the rates for truck shipments because rail shipments are assumed to have twice the number of waste packages as a truck shipment. Impacts from accidents depend on the amount of radioactive material in a shipment and the fraction that is released if an accident occurs. The parameters used in the transportation accident analysis are described further in Appendix C, Section C.9.4.3.

11.2.9.1 Collective Population Risk

 The collective population risk is a measure of the total risk posed to society as a whole by the actions being considered. For a collective population risk assessment, the persons exposed are considered as a group, without specifying individual receptors. Exposures to four different groups are considered: (1) persons living and working along the transportation routes, (2) persons sharing the route, (3) persons at stops along the route, and (4) transportation crew members. The collective population risk is used as the primary means of comparing various

options. Collective population risks are calculated for cargo-related causes for routine transportation and accidents. Vehicle-related risks are independent of the cargo in the shipment and are only calculated for traffic accidents (fatalities caused by physical trauma).

Estimated impacts from the truck and rail options are summarized in Tables 11.2.9-1 and 11.2.9-2, respectively. For the truck option, it is estimated that approximately 12,600 shipments involving about 36 million km (23 million mi) of travel would cause no LCFs to truck crew members or members of the general public. One fatality related to accidents is expected. No LCFs are estimated for the rail option, involving approximately 5,010 railcar shipments and about 14 million km (9 million mi) of travel. However, one fatality from accidents could occur.

11.2.9.2 Highest-Exposed Individuals during Routine Conditions

During the routine transportation of radioactive material, specific individuals might be exposed to radiation in the vicinity of a shipment. Risks to these individuals for a number of hypothetical exposure-causing events were estimated. The receptors include transportation workers, inspectors, and members of the public exposed during traffic delays, while working at a service station, or while living and or working near a destination site. The assumptions about exposure are given in Appendix C, and transportation impacts are provided in Section 5.3.9. The scenarios for exposure are not meant to be exhaustive; they were selected to provide a range of representative potential exposures. On a site-specific basis, if someone was living or working near the entrance to the WIPP Vicinity locations and present for all 12,600 truck or 5,010 rail shipments projected, that individual's estimated dose would be approximately 0.5 or 1.0 mrem, respectively, over the course of more than 50 years. The individual's associated lifetime LCF risk would then be 3×10^{-7} or 6×10^{-7} for truck or rail shipments, respectively.

11.2.9.3 Accident Consequence Assessment

 Whereas the collective accident risk assessment considers the entire range of accident severities and their related probabilities, the accident consequence assessment assumes that an accident of the highest severity category has occurred. The consequences, in terms of committed dose (rem) and LCFs for radiological impacts, were calculated for both exposed populations and individuals in the vicinity of an accident. Because the exact location of such a transportation accident is impossible to predict and thus is not specific to any one site, generic impacts were assessed, as presented in Section 5.3.9.

11.2.10 Cultural Resources

Eight cultural resources have been identified in Section 27 (T22S, R31E) and Section 35 (T22S, R31E); one is in Section 27, and seven are in Section 35. Neither section has been fully examined for the presence of cultural resources. Most of the cultural resources being discovered appear to be the remains of camps that show the evidence of food preparation.

TABLE 11.2.9-1 Estimated Collective Population Transportation Risks for Shipment of GTCC LLRW and GTCC-Like Waste by Truck for Disposal at the WIPP Vicinity Reference Locations^a

	Cargo-Related ^b Radiological Impacts										
					Dose Risk (person-rem	n)				Vehicle-Related Impacts ^c
		Total			Routine	Public			Latent Cancer Fatalities ^d		Physical
Waste	No. of Shipments	Distance (km)	Routine Crew	Off-Link	On-Link	Stops	Total	Accidente	Crew	Public	Accident Fatalities
Group 1											
GTCC LLRW											
Activated metals - RH											
Past BWRs	20	63,300	0.66	0.027	0.1	0.12	0.24	0.00022	0.0004	0.0001	0.0015
Past PWRs	143	407,000	4.2	0.16	0.64	0.75	1.5	0.0012	0.003	0.0009	0.0091
Operating BWRs	569	1,550,000	16	0.57	2.4	2.8	5.8	0.0039	0.01	0.003	0.035
Operating PWRs	1,720	4,170,000	43	1.5	6.4	7.7	16	0.011	0.03	0.009	0.095
Sealed sources - CH	209	360,000	0.15	0.031	0.2	0.26	0.49	0.017	< 0.0001	0.0003	0.0091
Cesium irradiators - CH	240	413,000	0.17	0.036	0.23	0.3	0.56	0.0028	0.0001	0.0003	0.01
Other Waste - CH	5	603	0.00025	< 0.0001	0.00032	0.00043	0.00077	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Other Waste - RH	54	150,000	1.5	0.062	0.23	0.28	0.57	< 0.0001	0.0009	0.0003	0.0034
GTCC-like waste											
Activated metals - RH	38	85,800	0.89	0.021	0.12	0.16	0.3	< 0.0001	0.0005	0.0002	0.0035
Sealed sources - CH	1	1,720	0.00072	0.00015	0.00096	0.0012	0.0023	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Other Waste - CH	69	211,000	0.088	0.029	0.12	0.15	0.3	0.00097	< 0.0001	0.0002	0.0044
Other Waste - RH	1,160	3,370,000	35	1.2	5.1	6.2	12	0.0022	0.02	0.007	0.07

					_						
				Vehicle-Related Impacts ^c							
		Total	Routine Public						Latent (Fatali		Physical
	No. of	Distance	Routine			_			_		Accident
Waste	Shipments	(km)	Crew	Off-Link	On-Link	Stops	Total	Accidente	Crew	Public	Fatalities
Group 2											
GTCC LLRW											
Activated metals - RH											
New BWRs	202	348,000	3.6	0.099	0.51	0.64	1.3	0.00077	0.002	0.0008	0.0083
New PWRs	833	1,940,000	20	0.7	3	3.6	7.2	0.0049	0.01	0.004	0.044
Additional commercial waste	1,990	6,200,000	64	2.2	9.4	11	23	< 0.0001	0.04	0.01	0.13
Other Waste - CH	139	433,000	0.18	0.06	0.26	0.31	0.63	0.003	0.0001	0.0004	0.009
Other Waste - RH	3,790	11,500,000	120	4.2	17	21	43	0.0008	0.07	0.03	0.24
GTCC-like waste											
Other Waste - CH	44	117,000	0.049	0.016	0.069	0.084	0.17	0.0004	< 0.0001	0.0001	0.0025
Other Waste - RH	1,400	4,210,000	43	1.5	6.4	7.7	16	0.0022	0.03	0.009	0.088
Total Groups 1 and 2	12,600	35,600,000	350	12	52	64	130	0.051	0.2	0.08	0.76

^a BWR = boiling water reactor, PWR = pressurized water reactor, CH = contact-handled, RH = remote-handled.

b Cargo-related impacts are impacts attributable to the radioactive nature of the material being transported.

^c Vehicle-related impacts are impacts independent of the cargo in the shipment.

d LCFs were calculated by multiplying the dose by the health risk conversion factor of 6×10^{-4} fatal cancer per person-rem (see Section 5.2.4.3).

e Dose risk is a societal risk and is the product of accident probability and accident consequence.

TABLE 11.2.9-2 Estimated Collective Population Transportation Risks for Shipment of GTCC LLRW and GTCC-Like Waste by Rail for Disposal at the WIPP Vicinity Reference Locations^a

			Cargo-Related ^b Radiological Impacts								_
				I	Oose Risk (p	erson-ren	n)				Vehicle-Related Impacts ^c
		Total		Routine Public						Cancer ities ^d	Physical
Waste	No. of Shipments	Distance (km)	Routine Crew	Off-Link	On-Link	Stops	Total	Accidente	Crew	Public	Accident Fatalities
Group 1											
GTCC LLRW											
Activated metals - RH											
Past BWRs	7	21,300	0.17	0.056	0.0033	0.077	0.14	0.00035	0.0001	< 0.0001	0.0017
Past PWRs	37	103,000	0.86	0.27	0.016	0.39	0.67	0.0014	0.0005	0.0004	0.006
Operating BWRs	154	422,000	3.5	1.1	0.062	1.7	2.8	0.0025	0.002	0.002	0.018
Operating PWRs	460	1,200,000	10	3.4	0.18	4.8	8.4	0.0081	0.006	0.005	0.055
Sealed sources - CH	105	190,000	0.53	0.16	0.0085	0.38	0.56	0.00095	0.0003	0.0003	0.0062
Cesium irradiators - CH	120	217,000	0.61	0.19	0.0097	0.44	0.64	0.00013	0.0004	0.0004	0.0071
Other Waste - CH	3	2,740	0.011	0.0025	0.00017	0.0083	0.011	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Other Waste - RH	27	85,600	0.68	0.27	0.012	0.33	0.61	< 0.0001	0.0004	0.0004	0.0025
GTCC-like waste											
Activated metals – RH	11	23,400	0.21	0.051	0.0028	0.1	0.16	< 0.0001	0.0001	< 0.0001	0.0024
Sealed sources - CH	1	1,810	0.0051	0.0016	< 0.0001	0.0037	0.0053	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Other Waste - CH	35	99,700	0.24	0.11	0.0066	0.18	0.29	0.00011	0.0001	0.0002	0.0036
Other Waste - RH	579	1,670,000	14	4.5	0.25	6.7	11	0.00024	0.008	0.007	0.061

					_						
				Γ	Oose Risk (Vehicle-Related Impacts ^c			
		Total		Routine Public						Cancer ities ^d	Physical
Waste	No. of Shipments	Distance (km)	Routine Crew	Off-Link	On-Link	Stops	Total	Accidente	Crew	Public	Accident Fatalities
Group 2											
GTCC LLRW											
Activated metals - RH											
New BWRs	54	113,000	1	0.32	0.017	0.5	0.84	0.00058	0.0006	0.0005	0.0052
New PWRs	227	569,000	4.9	1.7	0.08	2.3	4.1	0.0033	0.003	0.002	0.026
Additional commercial waste	498	1,450,000	12	3.8	0.23	6	10	< 0.0001	0.007	0.006	0.054
Other Waste - CH	70	203,000	0.49	0.23	0.014	0.36	0.6	0.00035	0.0003	0.0004	0.0076
Other Waste - RH	1,900	5,550,000	45	15	0.85	23	38	< 0.0001	0.03	0.02	0.2
GTCC-like waste											
Other Waste - CH	22	64,300	0.15	0.078	0.0039	0.11	0.19	< 0.0001	< 0.0001	0.0001	0.0023
Other Waste - RH	702	2,040,000	17	5.4	0.31	8.3	14	0.00022	0.01	0.008	0.076
Total Groups 1 and 2	5,010	14,000,000	110	36	2.1	55	94	0.018	0.07	0.06	0.53

^a BWR = boiling water reactor, PWR = pressurized water reactor, CH = contact-handled, RH = remote-handled.

b Cargo-related impacts are impacts attributable to the radioactive nature of the material being transported.

^c Vehicle-related impacts are impacts independent of the cargo in the shipment.

d LCFs were calculated by multiplying the dose by the health risk conversion factor of 6×10^{-4} fatal cancer per person-rem (see Section 5.2.4.3).

e Dose risk is a societal risk and is the product of accident probability and accident consequence.

If this location was chosen for development, the NHPA Section 106 process for considering the impact of the project on significant cultural resources would be followed. The Section 106 process requires the facility location and any ancillary locations that would be affected by the project to be investigated for the presence of cultural resources prior to disturbance. If the project occurred near one of the known resources, additional research would be needed to determine if the resource was eligible for listing on the NRHP. If it was, all impacts on the resource would need to be mitigated. Avoidance is always the preferred mitigation measure.

The borehole method has the greatest potential to affect cultural resources because of its 44-ha (110-ac) land requirement. The amount of land needed to employ this method is almost twice the amount needed to construct the vault or the trench method. The majority of the impacts on cultural resources are expected to occur during the construction phase. On the basis of previous research in the region, it is expected that some isolated prehistoric artifacts and possibly some larger prehistoric cultural resources would be found in the project area. One prehistoric site is known within the project area, and it has yet to be evaluated for listing on the NRHP. If additional archaeological sites were identified, they would require evaluation for listing on the NRHP.

Unlike the other two methods being considered, the vault method requires large amounts of soil to cover the waste. Impacts on cultural resources could occur during the removal and hauling of the soil required for this method. Impacts on cultural resources would need to be considered for the soil extraction locations. The NHPA Section 106 process would be followed for all locations. Potential impacts on cultural resources from the operations of the vault method could be comparable to those expected from the borehole method. While the actual footprint would be smaller for the vault method, additional land would be disturbed to obtain the soil for the cover. Most impacts on significant cultural resources could be mitigated through data recovery, but avoidance is the preferred mitigation. The appropriate mitigation would be determined through consultation with the New Mexico SHPO and the appropriate Native American tribes. These tribes would be consulted to ensure that no traditional cultural properties that could be disturbed were located in the project area.

It is expected that activities associated with construction, operations, and post-closure would have a minimal impact on cultural resources. No new ground-disturbing activities are expected to occur in association with operations and post-closure activities.

11.2.11 Waste Management

The construction of the land disposal facilities would generate small quantities of hazardous and nonhazardous solids and hazardous and nonhazardous liquids. Waste generated from operations would include small quantities of solid LLRW (e.g., spent HEPA filters) and nonhazardous solid waste (including recyclable wastes). These wastes could be sent off-site for disposal; therefore, no impacts from the waste generated from the construction and operations of the land disposal methods are expected. Section 5.3.11 summarizes the management and

handling procedures that could be followed for the waste that might be generated by the land disposal facilities at the WIPP Vicinity.

11.3 SUMMARY OF POTENTIAL ENVIRONMENTAL CONSEQUENCES AND HUMAN HEALTH IMPACTS

The potential environmental consequences from Alternatives 3, 4, and 5 discussed in Section 11.2 are summarized by resource area as follows:

 Air quality. Total peak-year emission rates are estimated to be rather small when compared with the Eddy County total emissions. Peak-year emissions for all criteria pollutants (except PM_{10} and $PM_{2.5}$) would be small. Construction at the WIPP Vicinity GTCC reference locations could occur within less than 100 m (330 ft) of the site boundary. Under unfavorable dispersion conditions, high concentrations of PM_{10} or $PM_{2.5}$ could occur and exceed the standards at the site boundary, although such exceedances would be rare. Compared with annual emissions for Eddy County, annual emissions of NO_x for the vault method during construction would be the highest, about 0.37% of the county total, while emissions of other criteria pollutants and VOCs would be about 0.06% or less. Except for O_3 and particulates, concentration levels from operational activities are expected to remain well below the standards. During operations, fugitive dust emissions could exceed the standards under unfavorable meteorological conditions.

Noise. The highest composite noise level during construction would be about 92 dBA at 15 m (50 ft) from the source. Noise levels at 690 m (2,300 ft) from the source would be below the EPA guideline of 55 dBA as L_{dn} for residential zones. There would be no residences within this distance. Noise generated during operations would be less than noise during construction. No impacts from groundborne vibration are anticipated because the generating equipment would not be high-vibration equipment and because there are no residences or vibration-sensitive buildings nearby.

Geology. During the construction phase, the borehole facility footprint would result in the greatest impact in terms of land area disturbed (44 ha or 110 ac). It also would result in the greatest disturbance with depth, 40 m (130 ft), with boreholes being completed in unconsolidated sand, silt, clay, caliche, and evaporites. No adverse impacts from extraction or use of geologic and soil resources are expected. No significant changes in surface topography or natural drainages would occur. The potential for erosion would be reduced because of the low precipitation rates at the WIPP Vicinity and further reduced by best management practices.

 Water resources. Construction of a vault facility and operations of a vault or trench facility would have the highest water requirement. Water demands for construction at the WIPP Vicinity reference locations would be met by using groundwater from the Carlsbad Double Eagle water system. There are no surface water bodies at the site, and no surface water would be used during construction; therefore, no direct or indirect impacts on surface water are expected. Construction and operations of the proposed GTCC waste disposal facility would increase the pumpage for the Double Eagle water system by a maximum of about 0.24% and 0.39%, respectively. This volume increase would be relatively small, and impacts would be negligible. It

is expected that there would be no water demands during the post-closure period. Because of the low infiltration rates and deep water table, groundwater would not likely become contaminated with radionuclides for more than 50,000 years for all three disposal methods.

Human health. The worker impacts from operations would mainly be those from the radiation doses associated with handling and disposing of the wastes. The annual radiation dose would be 2.6 person-rem/yr for boreholes, 4.6 person-rem/yr for trenches, and 5.2 person-rem/yr for vaults. These worker doses are not expected to result in any LCFs (Section 5.3.4.1.1). The maximum dose to any individual worker would not exceed the DOE administrative control level (of 2 rem/yr) for site operations. It is expected that the maximum dose to any individual workers over the entire project would not exceed a few rem.

The worker impacts from accidents would be associated with the injuries and illnesses during disposal operations and possible fatalities that could occur from construction and waste handling activities. The annual number of lost workdays due to injuries and illnesses would range from 1 (for boreholes) to 2 (for trenches and vaults), and no fatalities would occur from construction and waste handling accidents (see Section 5.3.4.2.2). These injuries would not be associated with the radioactive nature of the wastes but would simply be those that are expected to occur in any construction project of this size.

For the general public, no measurable doses are expected to occur during waste disposal at the site during operations, given the solid nature of the wastes and the distance of waste handling activities from potentially affected individuals. The highest dose to an individual from an accident involving the waste packages prior to disposal (from a fire impacting an SWB) is estimated to be 7.5 rem and would not result in any LCFs. The total dose to the affected population from such an event is estimated to be 7.0 person-rem (see Table 11.2.4-1). Groundwater contamination is not projected to reach a nearby hypothetical resident farmer located 100 m (330 ft) from the edge of the disposal facility within the first 10,000 years, so this individual would receive no incremental radiation dose from disposal of these wastes from this potential exposure pathway.

 Ecology. Initial loss of shrub-dominated sand dune habitat, followed by the eventual establishment of low-growth vegetation on the disposal site, is not expected to create a long-term reduction in the local or regional ecological diversity. No aquatic habitats occur within the immediate vicinity of the GTCC reference locations at the WIPP Vicinity; hence, impacts on aquatic biota are not expected. No endangered, threatened, and other special-status species have been observed in the WIPP Vicinity area (DOE 1997). However, favorable habitat for the lesser prairie-chicken (*Tympanuchus pallidicinctus*), a federal candidate species, does occur within the WIPP Vicinity area (BLM 2008).

 Socioeconomics. Impacts associated with construction and operations of the land disposal facilities would be small. Construction would create direct employment for up to 145 people (vault method) in the peak construction year and up to 152 additional indirect jobs (vault method) in the ROI; the annual average employment growth rate would increase by less than 0.1 of a percentage point. The waste facility would produce up to \$11.7 million in income in the peak construction year (vault method). Up to 127 people would in-migrate to the ROI as a

result of employment on-site; in-migration would have only a marginal effect on population growth and require less than 2% of vacant housing in the peak year. Impacts from operating the facility would also be small, creating up to 51 direct jobs annually (vault method) and up to 38 additional indirect jobs (vault method) in the ROI. The disposal facility would produce up to \$4.8 million in income annually during operations.

Environmental justice. Because health impacts on the general population within the 80-km (50-mi) assessment area during construction and operations would be negligible, no impacts on minority and low-income populations as a result of the construction and operation of a GTCC waste disposal facility are expected.

 Land use. The GTCC WIPP Vicinity Section 27 reference location is located within the WIPP LWB and is therefore subject to the WIPP LWA requirements. WIPP Vicinity Section 35 reference location is located within a multiple use area and contains oil and gas leases. A loss of 0.2% of a 22,493-ha (55,581-ac) grazing allotment would occur, and a portion of Section 35 would be altered to a waste disposal area.

Transportation. Shipment of all waste to the WIPP Vicinity by truck would result in approximately 12,600 shipments involving a total distance of 36 million km (23 million mi). Shipment of all waste by rail would involve 5,010 railcar shipments totaling 14 million km (9 million mi) of travel. It is estimated that no LCFs would occur to the public or crew members for either mode of transportation, but one fatality from an accident could occur. For comparison, since starting operations in 1999, WIPP has received more than 8,500 truck shipments of defense TRU waste.

Cultural resources. The majority of the impacts on cultural resources are expected to occur during the construction phase. On the basis of previous research in the region, it is expected that some isolated prehistoric artifacts and possibly some larger prehistoric cultural resources would be found in the project area. One known prehistoric site is within the WIPP Vicinity reference location and has yet to be evaluated for listing on the NRHP. If additional archaeological sites were identified, they would require evaluation for listing on the NRHP. Section 106 of the NHPA would be followed to determine the impacts of disposal facility activities on significant cultural resources, as needed. Local tribes would be consulted to ensure that no traditional cultural properties were affected by the project.

Waste management. The wastes that might be generated from the construction and operations of the land disposal methods could be sent off-site for disposal as commercial waste management facilities became available.

11.4 CUMULATIVE IMPACTS

 Potential impacts of the proposed action are considered in combination with the impacts of past, present, and reasonably foreseeable future actions. Section 5.4 presents the methodology for the cumulative impacts analysis. The analysis provided below begins with a description of reasonably foreseeable future actions at the WIPP Vicinity locations, including those that are

ongoing, under construction, or planned for future implementation. Past and present actions are generally accounted for in the affected environment section (Section 11.1). Impacts of the proposed action are considered in combination with the impacts of past, present, and reasonably foreseeable future actions.

Aside from the adjacent operating WIPP repository, the primary use of land within 16 km (10 mi) of the WIPP Vicinity locations is grazing, with lesser amounts of land used for oil and gas extraction and potash mining. Most of this land is managed and owned by BLM. Two ranches are located within 16 km (10 mi) of the WIPP site. The closest town, Loving, New Mexico, is about 29 km (18 mi) away. Most of the land within 50 km (30 mi) of the WIPP Vicinity locations is owned by either the federal government or the State of New Mexico. At the time of the preparation of this EIS, there were no known plans for large actions on BLM land.

The land use described above, in combination with the low potential impacts discussed in Section 11.2, indicate that the contribution from the construction, operations, and post-closure phases of the proposed action to cumulative impacts at the WIPP Vicinity locations and the nearby WIPP geologic repository would be small and would not have a significant cumulative impact on area air quality, geology and soils, water resources, ecology, socioeconomics, environmental justice, cultural resources, and land use. The post-closure performance analysis incorporating the emplacement of the GTCC waste at the adjacent WIPP repository (as discussed in Section 4.3.4) indicated that releases to the environment (if any) would be negligible. Combining these releases with the results discussed in Section 11.2.4, which indicates that potential post-closure radionuclide releases to the groundwater in Sections 27 and 35 would also be small, indicates that cumulative human health impacts at the WIPP Vicinity would not be significant.

 On June 15, 2005, the NRC staff issued the *Environmental Impact Statement for the Proposed National Enrichment Facility in Lea County, New Mexico* (NRC 2005). This facility was constructed and is now in operation. It is located about 60 km (37 mi) east of the WIPP Vicinity reference locations (town of Eunice). The distance from the WIPP Vicinity reference locations — in combination with NRC staff findings (as reported in the EIS for that action [NRC 2005]) that stated that environmental impacts from this enrichment facility would be small to moderate — indicate that cumulative impacts from the possible GTCC waste disposal activities at the WIPP Vicinity reference locations in combination with the enrichment facility operations would be small and not result in significant cumulative impacts for all resource areas evaluated (including human health and transportation). Finally, follow-on NEPA evaluations and documents prepared to support any further considerations of siting a new borehole, trench, or vault disposal facility at the WIPP Vicinity reference locations would provide more detailed analyses of site-specific issues, including cumulative impacts.

11.5 STATUTORY AND REGULATORY PROVISIONS RELEVANT TO THE EIS

 Siting a vault, trench, or borehole facility for GTCC waste inside the WIPP LWA boundary (i.e., Section 27) would be subject to the limits of the WIPP LWA (as discussed for WIPP in Section 4.7); therefore, federal legislation to develop such facilities would be required.

- 1 Siting a vault, trench, or borehole facility on BLM-administered land outside the WIPP LWB
- 2 (i.e., Section 35) would require a land withdrawal in accordance with DOI regulations at

3 40 CFR Part 2300, "Land Withdrawals." 4

5 6

11.6 REFERENCES FOR CHAPTER 11

/

- 8 Barnes, J.D., et al., 1977, Power Plant Construction Noise Guide, prepared by Bolt, Beranek
- 9 and Newman Inc., Cambridge, Mass., for Empire State Electric Energy Research Corporation,
- 10 New York, N.Y., May.

11

- 12 BLM (Bureau of Land Management), 1988, Carlsbad Resource Management Plan,
- 13 U.S. Department of the Interior, Roswell District, N.M.

14

- 15 BLM, 2008, Special Status Species, Record of Decision and Approved Resource Management
- 16 Plan Amendment, BLM NM/PL-08-05-1610, Pecos District Office, Roswell, N.M., Apr.

17

- 18 CEQ (Council on Environmental Quality), 1997, Environmental Justice Guidance under the
- 19 National Environmental Policy Act, Executive Office of the President, Washington, D.C.,
- 20 http://www.whitehouse.gov/CEQ.

21

- 22 DOE (U.S. Department of Energy), 1997, Waste Isolation Pilot Plant Disposal Phase Final
- 23 Supplemental Environmental Impact Statement, DOE/EIS-0026-S-2, Carlsbad Field Office,
- 24 Carlsbad, N.M., Sept.

25

- 26 DOE, 2002a, Waste Isolation Pilot Plant Land Management Plan, DOE/WIPP 93-004, Carlsbad
- 27 Field Office, Carlsbad, N.M., Jan.

28

- 29 DOE, 2002b, Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact
- 30 Statement, DOE/EIS-0287, Sept.

31

- 32 DOE, 2006, Environmental Assessment for the Actinide Chemistry and Repository Science
- 33 Laboratory, Final, DOE/EA-1404, Carlsbad Field Office, Carlsbad, N.M.

34

- 35 DOE, 2008, Waste Isolation Pilot Plant Annual Site Environmental Report for 2007,
- 36 DOE/WIPP-08-225, Sept.

37

- 38 DOE, 2009, Waste Isolation Pilot Plant Annual Site Environmental Report for 2008,
- 39 DOE/WIPP-09-2225, Sept.

40

- 41 EIA (Energy Information Administration), 2008, International Energy Outlook 2008 —
- 42 Highlights, DOE/EIA-0484(2008), U.S. Department of Energy, June, http://www.eia.doe.gov/
- 43 oiaf/ieo/index.html. Accessed July 2008.

- 1 EPA (U.S. Environmental Protection Agency), 1974, Information on Levels of Environmental
- 2 Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety,
- 3 EPA-550/9-74-004, Washington, D.C., http://www.nonoise.org/library/levels74/levels74.htm.
- 5 EPA, 1995, "Guidance for Presidential Memorandum on Environmentally and Economically
- 6 Beneficial Landscape Practices on Federal Landscaped Grounds," Office of the Federal
- 7 Environmental Executive, Federal Register, Vol. 60, No. 154, Aug. 10.

4

- 9 EPA, 2008, Energy CO₂ Emissions by State, http://www.epa.gov/climatechange/emissions/
- 10 state_energyco2inv.html, last updated Apr. 19, 2008. Accessed July 2008.

11

- 12 EPA, 2009, AirData: Access to Air Pollution Data, last updated Oct. 5, 2007, http://www.epa.
- 13 gov/air/data/. Accessed Nov. 2009.

14

- 15 Hunt, J.E., 1994, Archaeological Clearance Report for Westinghouse Engineer's Proposed Haul
- 16 Road Situated on Public Lands in Eddy County, N.M., Pecos Archaeological Consultants, PAC
- 17 Report 94128, Aug.

18

- 19 IPCC (Intergovernmental Panel on Climate Change), 2007, Climate Change 2007: The Physical
- 20 Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the IPCC,
- 21 S. Solomon et al. (editors), Cambridge University Press, Cambridge, U.K., http://www.ipcc.ch/
- 22 ipccreports/ar4-wg1.htm. Accessed July 2008.

23

- 24 NCRP (National Council on Radiation Protection and Measurements), 2009, *Ionizing Radiation*
- 25 Exposure of the Population of the United States, Report No. 160, Bethesda, Md.

26

- 27 NMED (New Mexico Environment Department), 2007, Waste Isolation Pilot Plant Hazardous
- 28 Waste Permit, Attachment G Traffic Patterns, Santa Fe, N.M., Feb.

29

- 30 NRC (U.S. Nuclear Regulatory Commission), 2005, Environmental Impact Statement for
- 31 the Proposed National Enrichment Facility in Lea County, New Mexico, Final Report,
- 32 NUREG-1790, June.

33

- 34 Powers, D.W., 2009, Geology of the WIPP Vicinity for Disposal of GTCC Low-Level and
- 35 GTCC-Like Radioactive Waste, memorandum from Powers (Consulting Geologist) to
- 36 S. Wagner (Sandia National Laboratories, Carlsbad, N.M.), Sept. 28.

37

- 38 U.S. Bureau of the Census, 2008, *American Fact Finder*, Washington, D.C., http://factfinder.
- 39 census.gov/. Accessed Jan. 2008.

40

- 41 USGS (U.S. Geological Survey), 2010, earthquake search results, USGS Earthquake Database,
- 42 National Earthquake Information Center (NEIC), http://earthquake.usgs.gov/earthquakes/
- 43 eqarchives/epic/epic_circ.php. Accessed May 2010.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	This page is intentionally left blank.
14	

11: Waste Isolation Pilot Plant Vicinity (Alternatives 3, 4, and 5)

Draft GTCC EIS

12 GENERIC DISPOSAL FACILITIES ON NONFEDERAL LANDS

This chapter provides an evaluation of the human health consequences from the disposal of GTCC LLRW and GTCC-like waste under Alternative 3 (use of a new borehole disposal facility), Alternative 4 (use of a new trench disposal facility), and Alternative 5 (use of a new vault disposal facility) at generic nonfederal (commercial) sites in the United States. The evaluation focuses on the human health consequences after closure of the disposal facilities in order to provide information for comparison with the other alternatives presented in this EIS.

 In a Request for Information in the *FedBizOpps* on July 1, 2005, DOE solicited technical capability statements from commercial vendors that might be interested in constructing and operating a GTCC waste disposal facility. Although several commercial vendors expressed an interest, no vendors provided specific information on disposal locations and methods for analysis in the EIS in response to the *FedBizOpps* request at that time, nor have any since that time. Including a generic commercial facility in the EIS would allow DOE to make a programmatic determination regarding the disposal of GTCC LLRW and GTCC-like waste in such a facility. Should one or more commercial facilities be identified at a later time, DOE would conduct further NEPA reviews, as appropriate.

 Because the evaluation is for generic sites, an evaluation of impacts on the remaining resource areas (including potential human health impacts from disposal facility accidents; see list in Section 2 and Figure 2.1) is not included; it is more appropriate that the analyses of these resource areas be based on site-specific information. That is, region-wide input parameters would not result in meaningful information on which subsequent decisions could be based when determining where to implement a GTCC waste disposal facility. However, it can be gleaned from the results of Alternatives 3 to 5 for the federal sites (found in Chapters 6 to 11 of this EIS) that the potential impacts on these resource areas from using the borehole, trench, or vault methods for disposing of GTCC wastes at a commercial site could be similarly small and that the potential long-term impacts on human health could provide a differentiating factor when considering the preferred alternative for GTCC waste disposal. These impacts are thus the focus of this chapter.

 Alternatives 3 to 5 are described in Section 5.1, and the environmental consequences from these alternatives that are common to the federal sites are evaluated in Chapter 5. These impacts would also be generally applicable to commercial facility sites and thus are not repeated here. Impact assessment methodologies used for this EIS are described in Appendix C.

12.1 APPROACH FOR ANALYZING THE GENERIC COMMERCIAL SITES

The analysis here covers four generic sites, one in each of the four major geographic regions of the country coinciding with the four NRC regions (see Figure 1.4-2). These four generic sites are referred to as Regions I, II, III and IV, and they include the same states as those addressed by the corresponding NRC regions. That is, Region I covers the Northeastern states,

Region II the Southeastern states, Region III the Midwestern states, and Region IV the Western states.

The RESRAD-OFFSITE computer code was used to address the post-closure impacts at the four generic sites in a manner similar to that done for the federal sites. This allows for a direct comparison of the results given in this chapter with those given in Chapters 6 through 11. The RESRAD-OFFSITE input parameters describing the setting for each of the four generic sites, including its soil properties and hydrological characteristics, were developed from information used in similar analyses (Poe 1998; Toblin 1998, 1999), and these are presented in Appendix E (see Tables E-19 and E-20).

One of the most important parameters in this evaluation is the depth to groundwater in these four regions. These depths were determined to be as follows from using the references given above (see Table E-19 in Appendix E): Region I (3.4 m or 11 ft), Region II (13 m or 44 ft), Region III (2.2 m or 7 ft), and Region IV (55 m or 180 ft). On the basis of these groundwater depths, a vault facility could be used in each of the four regions, while trenches could be used in only two regions (II and IV), and boreholes could be used only in Region IV. Otherwise, the GTCC wastes would be disposed of in the existing water table by using the three facility designs and the depths to groundwater given above. Note that using this combination of disposal methods and geographic regions allows for a comparison of using trenches in the two regions in which the DOE sites considered in this EIS are located (i.e., in Regions II and IV). None of the federal sites considered in this EIS are located in Regions I or III.

The choice of disposal methods assessed in this chapter for the four geographic regions is meant to provide additional information to allow for an informed decision on the best approach for disposing of GTCC wastes. There may be locations in Regions I, II, and III that could accommodate use of the borehole method. However, without specific sites and characterization information, this EIS limits the evaluation to Region IV, where the depth to groundwater would be generally compatible with use of the borehole method on a regional basis. The same limitation applies with regard to the use of trenches, but in this case, the evaluation is limited to Regions II and IV. There are likely to be some locations in Regions I and III where the depth to groundwater is greater, so that the trench method could be used to effectively dispose of GTCC wastes, should any proposals for a commercial facility in those regions be identified at a later time. However, these two regions generally have shorter distances to groundwater than do Regions II and IV. The vault method is considered to be applicable in all four regions, since this method is largely above grade and involves the greatest distance between the bottom of the disposed-of wastes and the groundwater.

It is assumed that all of the GTCC wastes would be disposed of at each regional site/disposal method combination, as was assumed for the analyses conducted at the federal sites. The results are presented in the same manner as that used for the federal sites in order to provide information that could be useful when the preferred alternative is being developed.

 For this analysis, it is assumed that the conceptual designs of the disposal facilities (borehole, trench, and vault) would be the same as those presented in Section 5.1. Hence, the assumptions about the engineered controls and waste stabilization practices are also similar to

those assumptions for the federal sites evaluated in this EIS (in Chapters 6 through 11). The natural water infiltration rates were taken to be those assumed in the Draft Environmental Impact Statement on 10 CFR Part 61 "Licensing Requirements for Land Disposal of Radioactive Waste" (Vol. 4, Appendix J, Table J.5, in NUREG-0782; see NRC 1981). They are 0.074 m/yr for Region I, 0.18 m/yr for Region II, 0.05 m/yr for Region III, and 0.001 m/yr for Region IV. In addition, it is assumed that the integrity of the engineered covers and waste containers would begin to degrade after 500 years. At that time, an amount of water that is equivalent to 20% of the natural infiltration rate would enter the waste containers and leach radionuclides from the waste materials. The assumption of a water infiltration rate that is 20% of the natural infiltration rate for the area is consistent with the assumption used in the analyses of waste disposal at the federal sites evaluated in this EIS. A summary of the assumptions used to generate the results presented in this chapter is presented in Appendix E.

12.2 HUMAN HEALTH IMPACTS FROM CONSTRUCTION AND OPERATION OF THE LAND DISPOSAL FACILITIES AT THE GENERIC COMMERCIAL SITES

The human health impacts on workers and the general public at these generic commercial facilities during disposal facility construction and waste disposal operations are expected to be similar to those at the federal sites considered in this EIS. These impacts are expected to be mainly the occupational doses from waste disposal operations; no off-site releases are expected because the waste packages would contain the radioactive materials and because monitoring of the site and nearby vicinity would identify the need for any corrective actions. It is possible that the public could be exposed to external gamma radiation from wastes being stored at the site prior to disposal if individuals were to venture close enough to these wastes, but such exposures are expected to be low and not result in any significant LCF risk. In addition, there would be security measures at the facility to ensure that an individual could not gain unauthorized or inadvertent access to the wastes.

It is expected that the doses to the general public in the vicinity of a hypothetical commercial disposal facility during disposal operations would be well below the dose limit of 100 mrem/yr set by DOE and the NRC for radiation protection purposes for reasons described below. Engineering controls would likely be effective in limiting releases of contaminants to the environment, and the site perimeter would be monitored to ensure the effectiveness of these controls. Even though the commercial disposal facility would be licensed by the NRC, it is expected that the facility would adhere to limits that are comparable to those set by DOE for its operations to control radiation exposures. The DOE radiation dose limits for members of the general public are given in DOE Order 5400.5, and the NRC requirements are given in Subpart D of 10 CFR Part 20.

 Individuals working at a commercial disposal facility would be routinely monitored for radiation exposure. The worker doses would be kept below applicable radiation dose standards. DOE has established a primary radiation dose standard of 5 rem/yr to workers for its operations (10 CFR Part 835), and the NRC has the same occupational dose limit in Subpart C of 10 CFR Part 20. In addition, DOE has set an administrative control level of 2 rem/yr for all DOE activities, and it requires contractors to develop a similar level for specific activities that is

consistent with this requirement. The contractor administrative control level is generally not expected to exceed 1.5 rem/yr, and for many activities, the level should be 500 mrem/yr or less. The NRC would be expected to impose similar limits to control occupational doses at a hypothetical commercial site for disposing of GTCC wastes. External gamma exposure would be the primary exposure pathway for workers.

The specific monitoring and maintenance program to be used at a commercial GTCC waste disposal site would be prescribed by the NRC as part of the licensing process. Such a program would be designed to provide effective control of any releases from the site and would include ALARA considerations. The potential impacts on members of the general public and involved workers from the construction and operations of land disposal facilities for GTCC wastes are discussed in Section 5.3.4. The impacts at a commercial disposal facility are expected to be comparable to those at a DOE site, because similar procedures are expected to be used to operate the facility. The impacts presented in Section 5.3.4 for construction and operations are therefore applicable to commercial disposal facilities as well as to DOE sites, and these are not repeated here.

Although all appropriate health and safety procedures and requirements for use of a commercial GTCC waste disposal facility would be met, it is possible that accidents could occur that could injure workers and result in the off-site release of radioactive materials. It is expected that the impacts on workers from accidents would be similar to those estimated for use of federal sites, as given in Table 5.3.4-2. That is, less than one fatality is predicted to occur during construction and operations, but a number of injuries could occur. The numbers of lost workdays due to nonfatal injuries and illness during construction activities are estimated to be 16 for use of boreholes, 49 for use of trenches, and 150 for use of vaults. About one to two lost workdays could occur annually during operational activities.

The impact from accidents involving the release of radioactive materials to off-site locations would depend on the local meteorology and location of nearby individuals. While these factors are very much site-dependent, the radiation doses and LCF risks to a nearby individual would generally be expected to be comparable to those predicted for use of federal sites. The highest dose to an individual (expected to be a noninvolved worker) for the various federal sites evaluated in the EIS ranges from 2.4 to 16 rem, with the highest LCF risk being 0.009. This individual is assumed to be located 100 m (330 ft) from an accident involving a fire to an SWB. The dose to the impacted population in the downwind sector from such an accident would not result in any LCFs.

12.3 POST-CLOSURE PERIOD HUMAN HEALTH IMPACTS FROM THE LAND DISPOSAL FACILITIES AT THE GENERIC COMMERCIAL SITES

 The major differentiating factor for these four geographic regions is related to the impacts that could occur during the post-closure period. These are related to the potential release of contaminants to the environment and the subsequent exposure to nearby individuals. Because it is assumed that the site would not be monitored for the long term, there would be no worker doses during this time period. Also, although airborne releases could occur, it is expected that the

overlying cover system and the dispersion of any released radionuclides by the wind would greatly decrease the air concentrations. Hence, the highest doses are expected to be those associated with the migration of radionuclides to groundwater and their subsequent use by members of the general public. For this assessment, the exposed individual is assumed to be a hypothetical resident farmer located 100 m (330 ft) downgradient from the disposal facility. This assessment is the same as that done for the federal sites considered in this EIS.

It is assumed that following closure of the disposal facility, the engineering controls incorporated into the disposal facility design would degrade and begin to fail, allowing water to infiltrate into the wastes. This infiltration could result in the leaching of contaminants from the packaged wastes over time. These contaminants could move downward with the infiltrating water to the underlying groundwater system and eventually migrate to a well being used to supply potable water. Should this scenario occur, it is possible that an individual could be exposed to relatively high concentrations of radionuclides and incur significant radiation doses. This scenario, which was developed by using the RESRAD-OFFSITE computer code, is evaluated in this section, and it represents an upper bound to the long-term doses and LCF risks that are reasonably expected to occur if a commercial facility was constructed for disposal of GTCC wastes.

The potential radiation dose from the airborne release of radionuclides to off-site members of the public after closure of a disposal facility would be small. Estimates developed by using RESRAD-OFFSITE indicate that there would be no measurable exposure from this pathway for the borehole method. Small radiation exposures are estimated for the trench and vault methods. The potential inhalation dose at a distance of 100 m (330 ft) from the disposal facility is estimated to be less than 1.8 mrem/yr for trench disposal and 0.52 mrem/yr for vault disposal. The potential radiation exposures would result mainly from the inhalation of radon gas and its short-lived progeny.

The borehole method would provide better protection against potential exposures from airborne releases of radionuclides because of the greater depth of the cover material. For the use of boreholes, the wastes would be emplaced 30 to 40 m (100 to 130 ft) bgs, and the depth of overlying soil would inhibit the diffusion of radon gas, CO₂ gas (containing C-14), and tritium (H-3) water vapor to the atmosphere above the disposal area. However, because the distance to the groundwater table from boreholes would be shorter than the distance from trenches or vaults, radionuclides that leached out from the wastes in boreholes would reach the groundwater table in a shorter time than those from wastes in trenches or vaults. This would mean there would be less time for radioactive decay to occur before the radionuclides reached the environment.

 For this assessment, the entire GTCC waste inventory is assumed to be disposed of at a single commercial facility in each of the four geographic regions. Representative parameters were chosen for each site so that the RESRAD-OFFSITE computer code could be used to address the movement of radioactive contaminants from these GTCC wastes to the nearby environment (see Appendix E). It is assumed that engineering controls (the integrity of stabilizing agents in the Other Waste type and the disposal facility cover) would prevent or minimize water infiltration into the wastes for the first 500 years following closure of the disposal facility. This practice would allow time for the short-lived radionuclides to decay

to innocuous levels. It is further assumed that after the first 500 years, the facility covers would still be effective in reducing water infiltration to the top of the facility (i.e., 80% reduction is assumed).

Calculations indicate that within 10,000 years, radionuclides would reach the groundwater table and a well installed by a hypothetical resident farmer located a distance of 100 m (330 ft) from the downgradient edge of a disposal facility in Regions I, II, and III. Radionuclides are not predicted to reach this hypothetical well within 10,000 years in Region IV for any of the three disposal methods. This assumption reflects the more arid climate and greater depth to groundwater in the Western United States. However, calculations indicate that radionuclides would reach the groundwater table and this hypothetical well after 10,000 years, and these results are discussed below.

The results of these modeling calculations are given in Tables 12.3-1 through 12.3-6 and in Figures 12.3-1 through 12.3-7. The tables provide the peak annual doses and LCF risks associated with use of contaminated groundwater resulting from the disposal of the entire GTCC waste inventory at a commercial disposal facility in Regions I, II, and III. The tables show the contributions from the different waste types to the peak annual doses and LCFs at the time of peak impact, and the figures illustrate the radionuclides that provide most of the annual dose and LCF risk. Since the calculations indicate that disposal of GTCC LLRW and GTCC-like waste in a borehole, trench, or vault facility in Region IV would not reach the groundwater table in 10,000 years, tables summarizing the peak annual doses and LCF risks are not provided for this region. However, the radiation doses out to 100,000 years for these three disposal methods in Region IV are shown in Figure 12.3-7. The major dose contributor in all four regions is GTCC-like Other Waste - RH. The primary radionuclides causing this dose are generally C-14, I-129, and isotopes of uranium and plutonium.

Because the radionuclide mixes are different for each waste type (i.e., activated metals, sealed sources, and Other Waste), the peak annual doses and LCF risks do not necessarily occur at the same time for each waste type. In addition, the peak annual doses and LCF risks for the entire GTCC waste inventory considered as a whole could be different from those for the individual waste types. The results presented in Tables 12.3-1 through 12.3-6 are for the entire GTCC waste inventory, and the contributions of the individual waste types given in these tables are those that occur at the time of the peak annual doses and LCF risks for the entire inventory.

 The estimated doses and LCF risks for the hypothetical resident farmer scenario evaluated to assess the post-closure impacts for GTCC waste disposal at a commercial facility are presented in two ways in this EIS. The first presents the peak annual doses and LCF risks when disposal of the entire GTCC waste inventory is considered. These are provided in Tables 12.3-1 through 12.3-6. The second presents the peak annual doses for each waste type considered on its own. These results are presented in Tables E-22 through E-25 in Appendix E. The first set of results could be used as the basis for comparing the performance of each site and land disposal method if the entire GTCC waste inventory was going to be disposed of at one site by using one method. The second set could be used as the basis for comparing the performance of each site and each land disposal method when the disposal of each of the three waste types is being considered.

TABLE 12.3-1 Estimated Peak Annual Dose (in mrem/yr) from the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault Disposal Facility in Region I^a

	GTCC LLRW						GTCC-Like Waste					
Disposal Technology/Waste Group	Activated Metals - RH	Sealed Sources - CH	Other Waste - CH	Other Waste - RH	Activated Metals - RH	Sealed Sources - CH	Other Waste - CH	Other Waste - RH	Annual Dose from Entire Inventory			
Vault disposal									12,000 ^b			
Group 1 stored	0.0	_	0.0	7.2	0.026	0.0	400	370				
Group 1 projected	2.8	400	_	0.22	0.065	0.0	110	9,700				
Group 2 projected	1.3	0.0	71	210	_	_	230	440				

- These annual doses are associated with the use of contaminated groundwater by a hypothetical resident farmer located 100 m (330 ft) from the edge of the vault disposal facility. All values are given to two significant figures, and a dash means there is no inventory for that waste type. The values given in this table represent the annual doses to the hypothetical resident farmer at the time of peak annual dose from the entire GTCC waste inventory. These contributions do not represent the maximum doses that could result from each of these waste types separately. Because of the different radionuclide mixes and activities contained in the different waste types, the maximum doses that could result from each waste type individually generally occur at different times than the peak annual dose from the entire inventory. The peak annual doses that could result from each of the waste types are presented in Tables E-22 through E-25 in Appendix E. Region I is composed of the Northeastern states (see Figure 1.4-2).
- The time for the peak annual dose of 12,000 mrem/yr for disposal of the entire GTCC waste inventory was calculated to be about 49 years after failure of the cover and engineered barriers (which is assumed to begin 500 years after closure of the disposal facility). The values reported for the other entries in this table represent the annual doses from the specific waste types at the time of the peak annual dose (i.e., at 49 years following failure of the cover and engineered barriers). The primary contributor to the dose is GTCC-like Other Waste RH, and the primary radionuclides causing this dose are C-14, I-129, and uranium and plutonium isotopes.

TABLE 12.3-2 Estimated Peak Annual LCF Risk from the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault Disposal Facility in Region I^a

		GTCC	LLRW				Peak		
Disposal Technology/Waste	Activated Metals -	Sealed Sources -	Other Waste -	Other Waste -	Activated Metals -	Sealed Sources -	Other Waste -	Other Waste -	Annual LCF Risk from Entire
Group	RH	СН	CH	RH	RH	СН	CH	RH	Inventory
									b
Vault disposal									7E-03 ^b
Group 1 stored	0E+00	_	0E+00	4E-06	2E-08	0E+00	2E-04	2E-04	
Group 1 projected	2E-06	2E-04	_	1E-07	4E-08	0E+00	7E-05	6E-03	
Group 2 projected	8E-07	0E+00	4E-05	1E-04	_	_	1E-04	3E-04	

- These annual LCF risks are associated with the use of contaminated groundwater by a hypothetical resident farmer located 100 m (330 ft) from the edge of the vault disposal facility. All values are given to one significant figure, and a dash means there is no inventory for that waste type. The values given in this table represent the annual LCF risks to the hypothetical resident farmer at the time of peak annual LCF risk from the entire GTCC waste inventory. These contributions do not represent the maximum LCF risks that could result from each of these waste types separately. Because of the different radionuclide mixes and activities contained in the different waste types, the maximum LCF risks that could result from each waste type individually generally occur at different times than the peak annual LCF risk from the entire inventory. Region I is composed of the Northeastern states (see Figure 1.4-2).
- b The time for the peak annual LCF risk of 7E-03 for disposal of the entire GTCC waste inventory was calculated to be about 49 years after failure of the cover and engineered barriers (which is assumed to begin 500 years after closure of the disposal facility). The values reported for the other entries in this table represent the annual LCF risks from the specific waste types at the time of the peak annual LCF risk (i.e., at 49 years following failure of the cover and engineered barriers). The primary contributor to the LCF risk is GTCC-like Other Waste RH, and the primary radionuclides causing this risk are C-14, I-129, and uranium and plutonium isotopes.

TABLE 12.3-3 Estimated Peak Annual Dose (in mrem/yr) from the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault or Trench Disposal Facility in Region II^a

				_ Peak					
Disposal Technology/Waste Group	Activated Metals - RH	Sealed Sources - CH	Other Waste - CH	Other Waste - RH	Activated Metals - RH	Sealed Sources - CH	Other Waste - CH	Other Waste - RH	Annual Dose from Entire Inventory
Vault disposal									1,200 ^b
Group 1 stored	0.86	_	0.0	0.0	0.12	0.0	11	940	,
Group 1 projected	13	0.0	_	0.0	0.29	0.0	3.1	0.0	
Group 2 projected	6.2	0.0	5.3	210	_	_	6.2	13	
Trench disposal									1,200 ^b
Group 1 stored	1.1	_	0.0	0.0	0.15	0.0	14	950	
Group 1 projected	17	0.0	_	0.0	0.38	0.0	0.39	0.0	
Group 2 projected	8.1	0.0	6.6	210	_	_	7.8	12	

- These annual doses are associated with the use of contaminated groundwater by a hypothetical resident farmer located 100 m (330 ft) from the edge of the disposal facility. All values are given to two significant figures, and a dash means there is no inventory for that waste type. The values given in this table represent the annual doses to the hypothetical resident farmer at the time of peak annual dose from the entire GTCC waste inventory. These contributions do not represent the maximum doses that could result from each of these waste types separately. Because of the different radionuclide mixes and activities contained in the different waste types, the maximum doses that could result from each waste type individually generally occur at different times than the peak annual dose from the entire inventory. The peak annual doses that could result from each of the waste types are presented in Tables E-22 through E-25 in Appendix E. Region II is composed of the Southeastern states (see Figure 1.4-2).
- b The times for the peak annual doses of 1,200 mrem/yr for disposal of the entire GTCC waste inventory using the vault and trench methods were calculated to be about 100 and 34 years, respectively, after failure of the cover and engineered barriers (which is assumed to begin 500 years after closure of the disposal facility). The values reported from the other entries in this table represent the annual doses for the specific waste types at the time of the peak annual dose (i.e., at 100 and 34 years following failure of the cover and engineered barriers for the vault and trench methods, respectively). For both cases, the primary contributor to the dose is GTCC-like Other Waste RH, and the primary radionuclides causing this dose are C-14 and I-129.

TABLE 12.3-4 Estimated Peak Annual LCF Risk from the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault or Trench Disposal Facility in Region II^a

		GTCC	LLRW				Peak		
Disposal Technology/Waste Group	Activated Metals - RH	Sealed Sources - CH	Other Waste - CH	Other Waste - RH	Activated Metals - RH	Sealed Sources - CH	Other Waste - CH	Other Waste - RH	Annual LCF Risk from Entire Inventory
Vault disposal									7E-04 ^b
Group 1 stored	5E-07	_	0E+00	0E+00	7E-08	0E+00	7E-06	6E-04	
Group 1 projected	8E-06	0E+00	_	0E+00	2E-07	0E+00	2E-06	0E+00	
Group 2 projected	4E-06	0E+00	3E-06	1E-04	_	-	4E-06	8E-06	
Trench disposal									7E-04 ^b
Group 1 stored	7E-07	_	0E+00	0E+00	9E-08	0E+00	8E-06	6E-04	
Group 1 projected	1E-05	0E+00	_	0E+00	2E-07	0E+00	2E-07	0E+00	
Group 2 projected	5E-06	0E+00	4E-06	1E-04	_	_	5E-06	7E-06	

These annual LCF risks are associated with the use of contaminated groundwater by a hypothetical resident farmer located 100 m (330 ft) from the edge of the vault disposal facility. All values are given to one significant figure, and a dash means there is no inventory for that waste type. The values given in this table represent the annual LCF risks to the hypothetical resident farmer at the time of peak annual LCF risk from the entire GTCC waste inventory. These contributions do not represent the maximum LCF risks that could result from each of these waste types separately. Because of the different radionuclide mixes and activities contained in the different waste types, the maximum LCF risks that could result from each waste type individually generally occur at different times than the peak annual LCF risk from the entire inventory. Region II is composed of the Southeastern states (see Figure 1.4-2).

The time for the peak annual LCF risk of 7E-04 for disposal of the entire GTCC waste inventory was calculated to be about 100 and 34 years, respectively, after failure of the cover and engineered barriers (which is assumed to begin 500 years after closure of the disposal facility). The values reported for the other entries in this table represent the annual LCF risks from the specific waste types at the time of the peak annual LCF risk (i.e., at 100 and 34 years following failure of the cover and engineered barriers for the vault and trench methods, respectively). The primary contributor to the LCF risk is GTCC-like Other Waste - RH, and the primary radionuclides causing this risk are C-14 and I-129.

TABLE 12.3-5 Estimated Peak Annual Dose (in mrem/yr) from the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault Disposal Facility in Region III^a

		GTCC	LLRW				Peak		
Disposal Technology/Waste Group	Activated Metals - RH	Sealed Sources - CH	Other Waste - CH	Other Waste - RH	Activated Metals - RH	Sealed Sources - CH	Other Waste - CH	Other Waste - RH	Annual Dose from Entire Inventory
Vault disposal									530 ^b
Group 1 stored	11	_	0.0	0.0	0.16	0.0	4.7	410	
Group 1 projected	18	0.0	_	0.0	0.39	0.0	1.4	0.017	
Group 2 projected	7.8	0.0	2.1	83		_	2.5	5.2	

- These annual doses are associated with the use of contaminated groundwater by a hypothetical resident farmer located 100 m (330 ft) from the edge of the vault disposal facility. All values are given to two significant figures, and a dash means there is no inventory for that waste type. The values given in this table represent the annual doses to the hypothetical resident farmer at the time of peak annual dose from the entire GTCC waste inventory. These contributions do not represent the maximum doses that could result from each of these waste types separately. Because of the different radionuclide mixes and activities contained in the different waste types, the maximum doses that could result from each waste type individually generally occur at different times than the peak annual dose from the entire inventory. The peak annual doses that could result from each of the waste types are presented in Tables E-22 through E-25 in Appendix E. Region III is composed of the Midwestern states (see Figure 1.4-2).
- The time for the peak annual dose of 530 mrem/yr for disposal of the entire GTCC waste inventory was calculated to be about 69 years after failure of the cover and engineered barriers (which is assumed to begin 500 years after closure of the disposal facility). The values reported for the other entries in this table represent the annual doses from the specific waste types at the time of the peak annual dose (i.e., at 69 years following failure of the cover and engineered barriers). The primary contributor to the dose is GTCC-like Other Waste RH, and the primary radionuclides causing this dose are C-14 and I-129.

TABLE 12.3-6 Estimated Peak Annual LCF Risk from the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault Disposal Facility in Region III^a

		GTCC	LLRW			GTCC-L	ike Waste		Peak
Disposal Technology/Waste Group	Activated Metals - RH	Sealed Sources - CH	Other Waste - CH	Other Waste - RH	Activated Metals - RH	Sealed Sources - CH	Other Waste - CH	Other Waste - RH	Annual LCF Risk from Entire Inventory
Vault disposal									3E-04 ^b
Group 1 stored	7E-07	_	0E+00	0E+00	9E-08	0E+00	3E-06	2E-04	
Group 1 projected	1E-05	0E+00	_	0E+00	2E-07	0E+00	8E-07	1E-08	
Group 2 projected	5E-06	0E+00	1E-06	5E-05	_	_	2E-06	3E-06	

- These annual LCF risks are associated with the use of contaminated groundwater by a hypothetical resident farmer located 100 m (330 ft) from the edge of the vault disposal facility. All values are given to one significant figure, and a dash means there is no inventory for that waste type. The values given in this table represent the annual LCF risks to the hypothetical resident farmer at the time of peak annual LCF risk from the entire GTCC waste inventory. These contributions do not represent the maximum LCF risks that could result from each of these waste types separately. Because of the different radionuclide mixes and activities contained in the different waste types, the maximum LCF risks that could result from each waste type individually generally occur at different times than the peak annual LCF risk from the entire inventory. Region III is composed of the Midwestern states (see Figure 1.4-2).
- The time for the peak annual LCF risk of 3E-04 for disposal of the entire GTCC waste inventory was calculated to be about 69 years after failure of the cover and engineered barriers (which is assumed to begin 500 years after closure of the disposal facility). The values reported for the other entries in this table represent the annual LCF risks from the specific waste types at the time of the peak annual LCF risk (i.e., at 69 years following failure of the cover and engineered barriers). The primary contributor to the LCF risk is GTCC-like Other Waste RH, and the primary radionuclides causing this risk are C-14 and I-129.

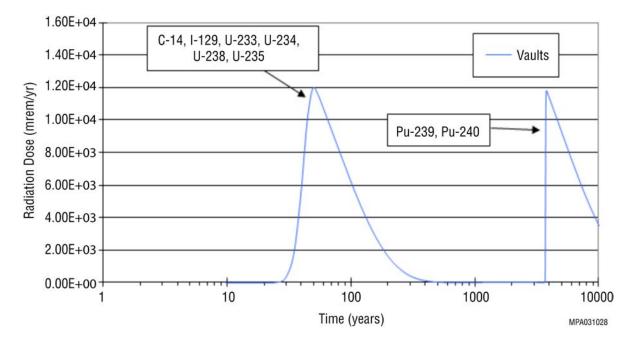


FIGURE 12.3-1 Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault Disposal Facility in Region I

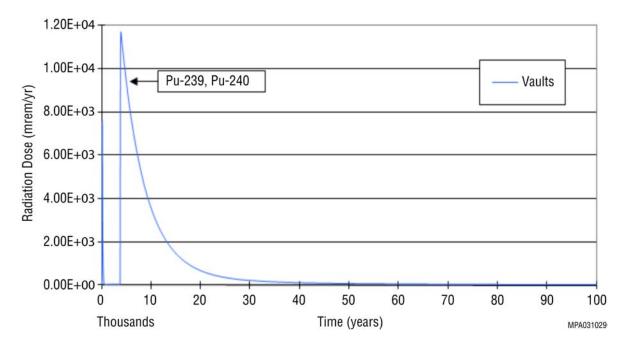


FIGURE 12.3-2 Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 100,000 Years of Disposal in a Commercial Vault Disposal Facility in Region I

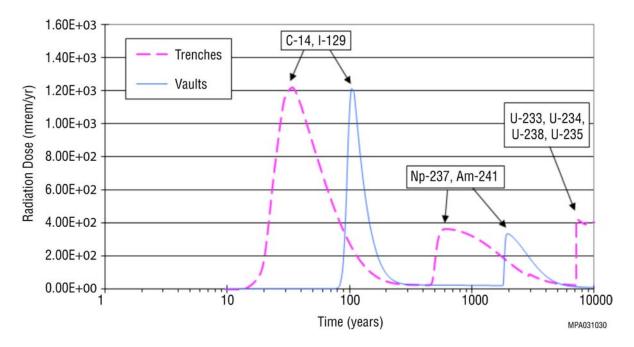


FIGURE 12.3-3 Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault or Trench Disposal Facility in Region II

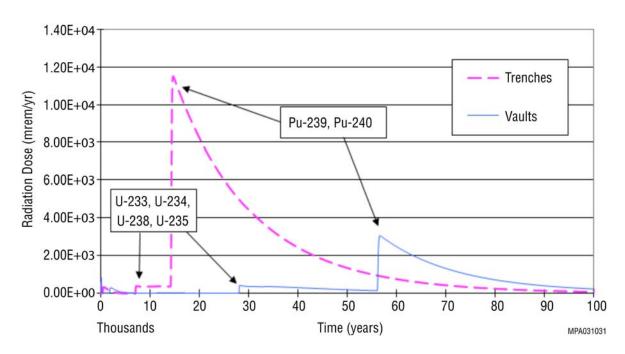


FIGURE 12.3-4 Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 100,000 Years of Disposal in a Commercial Vault or Trench Disposal in Region II

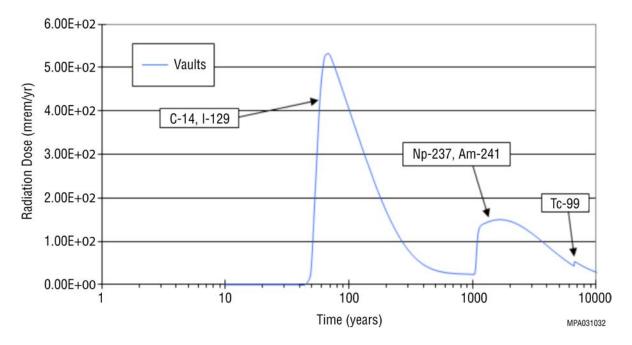


FIGURE 12.3-5 Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 10,000 Years of Disposal in a Commercial Vault Disposal Facility in Region III

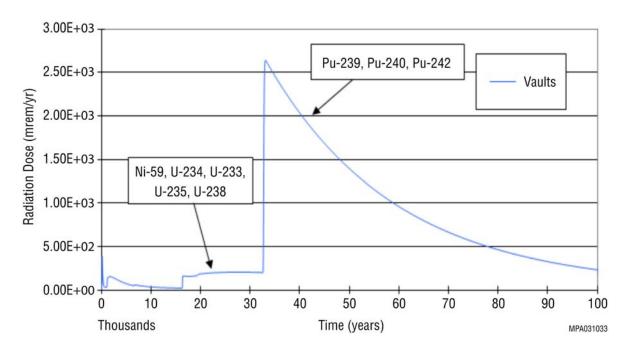


FIGURE 12.3-6 Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 100,000 Years of Disposal in a Commercial Vault Disposal Facility in Region III

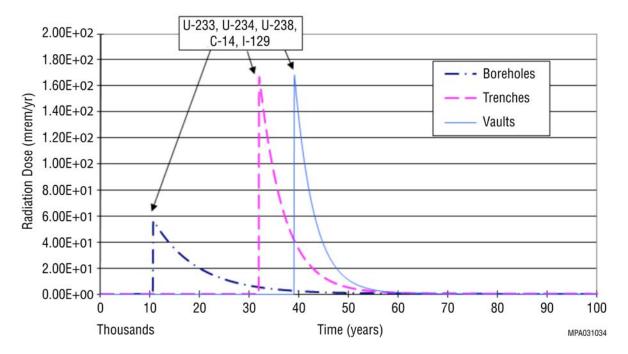


FIGURE 12.3-7 Temporal Plot of Radiation Doses Associated with the Use of Contaminated Groundwater within 100,000 Years of Disposal in a Commercial Borehole, Trench, or Vault Disposal Facility in Region IV

Figures 12.3-1, 12.3-3, and 12.3-5 are temporal plots of the annual doses associated with the use of contaminated groundwater for a time period that extends to 10,000 years in Regions I, II, and III, respectively. Figures 12.3-2, 12.3-4, 12.3-6, and 12.3-7 show these results for a period that extends to 100,000 years in all four geographic regions. Note that the time scale in the figures illustrating the results to 10,000 years is logarithmic, while it is linear in the figures illustrating the results to 100,000 years. A logarithmic time scale was used in the figures that extend the results to 10,000 years to better show the projected radiation doses to a hypothetical resident farmer shortly after closure of the disposal facility.

The highest estimated annual doses and LCF risks associated with the use of a commercial disposal facility for GTCC wastes were calculated to occur in Region I. The peak annual dose within 10,000 years from the use of a vault disposal facility in this region was calculated to be 12,000 mrem/yr, and this dose would occur about 49 years after failure of the cover and engineered barriers (which is assumed to begin 500 years after closure of the disposal facility). This dose would be largely due to C-14, I-129, and uranium isotopes (see Figure 12.3-1). A comparable annual dose was calculated to occur at about 3,800 years from plutonium isotopes.

C-14, I-129, and uranium are relatively soluble in water. (All are assumed to have a distribution coefficient $[K_d]$ value of 0 cm³/g; K_d measures the partitioning of radionuclides to the soil particles relative to the liquid in soil columns.) This solubility could lead to potentially significant groundwater doses to the resident farmer. The exposure pathways considered in this analysis include the ingestion of contaminated groundwater, soil, plants, meat, and milk;

external radiation; and the inhalation of radon gas and its short-lived progeny. Except for the ingestion of contaminated groundwater, all pathways result from using the contaminated groundwater for irrigation and feeding livestock. The doses in Region I are the highest of the doses in the four regions, largely because of (1) the more humid environment there, (2) the generally shorter distance to groundwater there than in the other three regions, and (3) the assumed low K_d s for several important radionuclides.

Two disposal methods (vault and trench) are evaluated for Region II. The peak annual dose within 10,000 years from the use of either of these two methods to dispose of the entire GTCC waste inventory was calculated to be 1,200 mrem/yr. This dose would occur at about 100 years for the vault method and 34 years for the trench method after failure of the cover and engineered barriers (which is assumed to begin 500 years after closure of the disposal facility). These doses would be largely due to C-14 and I-129 (see Figure 12.3-3). A larger annual dose was calculated to occur after 10,000 years from plutonium isotopes. This dose was calculated to be 12,000 mrem/yr at 15,000 years in the future for trenches, and 3,000 mrem/yr at 57,000 years for vaults (see Figure 12.3-4).

The peak annual doses in Region III from vault disposal of the entire GTCC waste inventory are lower than those in Regions I and II. The peak annual dose within 10,000 years was calculated to be 530 mrem/yr, and this dose occurs about 69 years after failure of the cover and engineered barriers (which is assumed to begin 500 years after closure of the disposal facility). This dose would also be largely due to C-14 and I-129 (see Figure 12.3-5). A larger annual dose was calculated to occur in Region III after 10,000 years from plutonium isotopes. This dose was calculated to be 2,600 mrem/yr and to occur about 33,000 years in the future (see Figure 12.3-6).

The peak annual doses are lowest in Region IV. It is predicted that radionuclides would not reach the groundwater table and the well of a hypothetical resident farmer within the first 10,000 years following disposal because of the much lower water infiltration rate assumed for this region than for the other three regions. However, it was calculated that radionuclides would reach the groundwater table after 10,000 years. The peak annual doses were calculated to be 170 mrem/yr for use of vaults and trenches, and 57 mrem/yr for use of boreholes. These peak doses are estimated to occur at about 39,000, 32,000, and 11,000 years in the future for these three disposal methods, respectively. These doses would mainly result from uranium isotopes, C-14, and I-129 (see Figure 12.3-7). These results illustrate that as the distance to the groundwater table increases (from boreholes to trenches to vaults), the length of time it takes for the radionuclides to reach the groundwater table also increases.

As can be seen by these results, the maximum radiation doses are relatively high for all regions except Region IV. This result is expected because the use of an arid site would likely result in lower doses from the groundwater pathway than would the use of a more humid site. The modeling approach used here is assumed to be conservative; the use of a longer distance to a hypothetical receptor might be more realistic and would be evaluated as part of the NRC licensing process.

th di

The highest radiation doses and LCF risks occur in Region I. A disposal facility in this region is expected to be in a generally humid environment, and the distance to the groundwater table is expected to be relatively short. These properties of a humid site are expected to result in higher radiation doses, higher LCF risks, and doses and risks that would occur at an earlier time than those at more arid sites, such as those expected in Region IV.

The results given here are assumed to be conservative because the location selected for the residential exposure is 100 m (330 ft) from the edge of the disposal facility. Use of a longer distance, which might be more realistic for the sites being evaluated, would significantly lower the estimated doses (i.e., by as much as 70%). A sensitivity analysis performed to determine the effect of a distance longer than 100 m (330 ft) is presented in Appendix E.

These analyses assume that engineering controls would be effective for 500 years following closure of the disposal facility. This means that essentially no infiltrating water would reach the wastes from the top of the disposal units during the first 500 years. It is assumed that after 500 years, the engineered barriers would begin to degrade, allowing infiltrating water to come in contact with the disposed-of wastes. For purposes of analysis in this EIS, it is assumed that the amount of infiltrating water that would contact the wastes would be 20% of the site-specific natural infiltration rate for the area, and that the water infiltration rate around and beneath the disposal facilities would be 100% of the natural rate for the area. This approach is considered to be conservative because the engineered systems (including the disposal facility cover) are expected to last significantly longer than 500 years, even in the absence of active maintenance measures.

It is assumed that the Other Waste would be stabilized with grout or other material and that this stabilizing agent would be effective for 500 years. Consistent with the assumptions used for engineering controls, no credit was taken for the effectiveness of this stabilizing agent after 500 years in this analysis. That is, it is assumed that any water that would contact the wastes after 500 years would be able to leach radioactive constituents from the disposed-of materials. These radionuclides could then move with the percolating groundwater to the underlying groundwater system. This assumption is considered to be conservative because grout or other stabilizing materials could retain their integrity for longer than 500 years.

Sensitivity analyses performed relative to these assumptions indicate that if a higher infiltration rate to the top of the disposal facilities was assumed, the doses would increase in a linear manner from those presented. Conversely, they would decrease in a linear manner with lower infiltration rates. This finding indicates the need to ensure a good cover over the closed disposal units. Also, the doses would be lower if the grout was assumed to last for a longer time. Because of the long-lived nature of the radionuclides associated with the GTCC LLRW and GTCC-like waste, any stabilization effort (such as grouting) would have to be effective for longer than 5,000 years in order to substantially reduce doses that could result from potential future leaching of the disposed-of waste.

The radiation doses presented in the post-closure assessment in this EIS are intended to be used for comparing the performance of each land disposal method at each site evaluated. The results indicate that the use of robust engineering designs and redundant measures in the disposal facility could delay the potential release of radionuclides and could reduce the release to very low levels, thereby minimizing potential groundwater contamination and associated human health impacts in the future. DOE will consider the potential doses to the hypothetical farmer and other factors in developing the preferred alternative as discussed in Section 2.9.

5 6

12.4 REFERENCES FOR CHAPTER 12

7 8

- 9 NRC (U.S. Nuclear Regulatory Commission), 1981, Draft Environmental Impact Statement on 10 CFR Part 61 "Licensing Requirements for Land Disposal of Radioactive Waste,"
- 11 NUREG-0782, Vol. 4, Appendices G-Q.

12

Poe, W.L., Jr., 1998, *Regional Binning for Continued Storage of Spent Nuclear Fuel and High-*Level Wastes, Jason Technologies, Las Vegas, Nev.

15

Toblin, A.L., 1998, Near Field Groundwater Transport and Gardener Dose Consequence, Tetra
 Tech NUS, Gaithersburg, Md.

18

- Toblin, A.L., 1999, Radionuclide Transport and Dose Commitment from Drinking Water from
 Continued Storage and Degradation of Spent Nuclear Fuel and High Level Waste Materials
- 21 under Loss of Institutional Control, Tetra Tech NUS, Gaithersburg, Md.

1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			

This page is intentionally left blank.

12: Generic Disposal Facilities on Nonfederal Lands

Draft GTCC EIS

13 APPLICABLE LAWS, REGULATIONS, AND OTHER REQUIREMENTS

This chapter presents the laws, regulations, and other requirements that could impact implementation of the GTCC LLRW and GTCC-like waste disposal alternatives and the No Action Alternative described in this EIS. Federal environmental, cultural, and health and safety laws and regulations are summarized in Section 13.3; Executive Orders in Section 13.4; DOE Orders in Section 13.5; and state environmental laws, regulations, and agreements in Section 13.6. Radioactive material packaging and transportation laws and regulations are discussed in Section 13.7. Consultations with federal, state, and local agencies and federally recognized American Indian Nations are discussed in Section 13.8.

13.1 INTRODUCTION

The NOI announcing the preparation of this EIS states that DOE, in the EIS, will describe the statutory and regulatory requirements for the disposal alternatives and whether legislation or regulatory modifications may be needed for their implementation. This chapter identifies and summarizes the major federal and state laws and environmental requirements that could impact the implementation of the No Action Alternative and the alternatives for disposing of GTCC LLRW and GTCC-like wastes as described in the EIS and the NOI, and it describes some of the statutory or regulatory modifications that may be necessary to implement the disposal alternatives.

A number of federal environmental laws affect environmental protection, health, safety, compliance, and consultation at every location discussed in this EIS. In addition, certain environmental requirements have been delegated to state authorities for enforcement and implementation. Furthermore, state legislatures have adopted laws to protect health and safety and the environment. It is DOE policy to conduct its operations in a manner that ensures the protection of public health, safety, and the environment through compliance with all applicable federal and state laws, regulations, orders, and other requirements.

The various disposal alternatives analyzed in this EIS involve either the operation of an existing DOE facility or the construction and operation of new DOE or commercial facilities, and the transportation of materials. Actions required to comply with statutes, regulations, and other federal and state requirements may depend on whether a facility is newly built or is incorporated in whole or in part into an existing facility and whether a facility is owned and operated by DOE or by a commercial entity. Requirements vary among alternatives and states. The disposal sites considered in this EIS are located in the following states: Idaho (INL), Nevada (NNSS), New Mexico (LANL, WIPP, and WIPP Vicinity), South Carolina (SRS), and Washington (Hanford Site). Disposal could also occur on land withdrawn for the WIPP, land in the public domain, or privately held land not yet identified.

13.2 BACKGROUND

2 3

 Requirements governing the management of radioactive waste arise primarily from the following sources: Congress, federal agencies, Executive Orders, legislatures of the affected states, and state agencies. In general, federal statutes establish national policies, create broad legal requirements, and authorize federal agencies to create regulations that conform to the statutes. Detailed implementation of these statutes is delegated to various federal agencies such as DOE, the U.S. Department of Transportation (DOT), and the EPA. For many environmental laws under EPA jurisdiction, state agencies may be delegated responsibility for the majority of program implementation activities, such as permitting and enforcement, but the EPA usually retains oversight of the delegated program.

Some applicable laws, such as NEPA, the Endangered Species Act (ESA), and the Emergency Planning and Community Right-to-Know Act, require specific reports and/or consultations rather than permits. Other applicable laws, such as CERCLA and the Federal Insecticide, Fungicide, and Rodenticide Act, establish general requirements that must be satisfied during site operation and closeout.

Executive Orders establish policies and requirements for federal agencies. They do not have the general applicability of statutes or regulations.

State statutes implement and supplement federal laws for protection of air and water quality and may address solid waste management programs; locally rare or endangered species; and local resource, historic, and cultural values.

Except for generic disposal facilities on nonfederal lands, the sites being considered for the disposal of GTCC LLRW and GTCC-like wastes are located on property controlled by DOE or other agencies of the federal government. DOE has authority to regulate the health and safety aspects of its nuclear facilities operations and certain environmental activities at its sites. The Atomic Energy Act of 1954, as amended, is the principal authority for DOE's regulatory activities. DOE exercises its regulatory authority primarily through the use of DOE directives and regulations.

13.3 APPLICABLE FEDERAL LAWS AND REGULATIONS

This section describes the federal environmental, cultural, safety, and health laws and several regulations that could apply to the No Action Alternative and the alternatives for disposal of GTCC LLRW and GTCC-like wastes described in the EIS. Section 13.3.1 describes the federal laws that could apply; Section 13.3.2 describes the federal laws and regulations specific to each disposal alternative and whether statutory or regulatory modifications may be necessary to effectuate the alternative. Section 13.3.3 provides descriptions of the federal laws and regulations applicable to the No Action Alternative.

13.3.1 Laws of General Applicability

The laws described in this section are those that could be applicable to the disposal methodologies and sites assessed in this EIS and the No Action Alternative.

American Indian Religious Freedom Act of 1978 (42 USC 1996). This Act (abbreviated AIRFA) reaffirms American Indian religious freedom under the First Amendment and sets U.S. policy to protect and preserve the inherent and constitutional right of American Indians to believe, express, and exercise their traditional religions. The Act requires that federal actions avoid interfering with access to sacred locations and traditional resources that are integral to the practice of tribal religions.

Antiquities Act of 1906, as amended (16 USC 431 to 433). This Act protects historic and prehistoric ruins, monuments, and antiquities, including paleontological resources, on federally controlled lands from appropriation, excavation, injury, and destruction without permission.

Archaeological and Historic Preservation Act of 1974, as amended (16 USC 469 to 469c). This Act provides for the preservation of historical and archaeological data (including relics and specimens) that might otherwise be irreparably lost or destroyed as the result of federal actions. Under the law, federal agencies must notify the Secretary of Interior whenever they find that a federal project may cause loss or destruction of significant scientific, prehistoric, or archeological data.

Archaeological Resources Protection Act of 1979, as amended (16 USC 470 et seq.). This Act requires a permit for any excavation or removal of archaeological resources from federal or American Indian lands. Excavations must be undertaken for the purpose of furthering archaeological knowledge in the public interest, and resources removed remain the property of the United States.

Atomic Energy Act of 1954 (42 USC 2011 et seq.). The Atomic Energy Act (AEA) provides the statutory framework for DOE and NRC regulation of nuclear material and activities, including management of radioactive waste. DOE exercises regulatory authority over activities conducted by DOE or on its behalf. NRC and Agreement States exercise regulatory authority over activities conducted in the commercial sector through licensing regulations. The Act authorizes DOE to set radiation protection standards for itself and its contractors at DOE nuclear facilities. An extensive system of standards and requirements has been established through DOE regulations and directives to protect health and minimize danger to life and property from activities under DOE's jurisdiction. Requirements for environmental protection, safety, and health are implemented at DOE sites primarily through contractual mechanisms that establish the applicable DOE requirements for management and operating contractors.

5

6 7

> 8 9

10 11

12 13

14 15

17 18 19

16

20 21

22

28 29 30

31

38 39 40

37

42 43 44

45

41

Under the Act's respective authorities granted to the DOE and the NRC, radioactive waste generated or owned by DOE and disposed of at DOE facilities is not subject to the NRC's classification system for low-level radioactive waste or its definition of GTCC LLRW. Except as specifically provided by law, DOE facilities are not subject to NRC licensing requirements.

Bald and Golden Eagle Protection Act of 1973, as amended (16 USC 668 through 668d). The Bald and Golden Eagle Protection Act, as amended, makes it unlawful to take, pursue, molest, or disturb bald (American) and golden eagles, their nests, or their eggs anywhere in the United States. The U.S. Department of Interior (DOI) regulates activities that might adversely affect bald and golden eagles.

Clean Air Act of 1970, as amended (42 USC 7401 et seq.). The Clean Air Act (CAA) is intended to "protect and enhance the quality of the nation's air resources so as to promote the public health and welfare and the productive capacity of its population." Section 118 of the Act requires that each federal agency with jurisdiction over any property or facility engaged in any activity that might result in the discharge of air pollutants comply with "all Federal, state, interstate, and local requirements" with regard to the control and abatement of air pollution.

Section 109 directs the EPA to set NAAQS for criteria pollutants. These standards were established for PM, SO₂, CO, O₃, NO₂, and lead. Section 111 of the Act requires the establishment of national standards of performance for new or modified stationary sources of atmospheric pollutants, and Section 160 requires that specific emission increases be evaluated prior to permit approval to prevent significant deterioration of air quality. Specific standards for releases of hazardous air pollutants (including radionuclides) are required per Section 112. Radionuclide emissions from DOE facilities are regulated under the NESHAP Program under 40 CFR Part 61.

Clean Water Act of 1972, as amended (33 USC 1251 et seq.). This Act (abbreviated CWA) provides water quality standards for the nation's waterways, guidelines and limitations for effluent discharges from point-source discharges, and the NPDES permit program that is administered by the EPA. Sections 401 through 405 of the Water Quality Act of 1987 added Section 402(p) to the CWA, which requires the EPA to establish regulations for permits for stormwater discharges associated with industrial activities. Section 404 of the CWA requires permits for the discharge of dredge or fill materials into navigable waters.

Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (42 USC 9604; also known as Superfund). This Act (abbreviated CERCLA) provides authority for federal and state governments to respond directly to hazardous substance incidents. The Act requires reporting of spills, including radioactive spills, to the National Response Center.

Endangered Species Act of 1973, as amended (16 USC 1531 et seq.). The Endangered Species Act (ESA) provides a program for the conservation of threatened and endangered species and the ecosystems on which those species rely. The Act is intended to prevent the further decline of endangered and threatened species and to restore those species and their critical habitats. Section 7 requires federal agencies to ensure that any action authorized, funded, or carried out by them is not likely to jeopardize the continued existence of listed species or modify their critical habitat.

Emergency Planning and Community Right-to-Know Act of 1986 (USC 11001 et seq.; also known as SARA Title III). This Act (abbreviated EPCRA) requires emergency planning and notice to communities and government agencies concerning the presence and release of specific chemicals. Under Subtitle A of the Act, federal facilities are required to provide information, such as inventories of specific chemicals used or stored and releases that occur from these sites, to the state emergency response commission and to the local emergency planning committee to ensure that emergency plans are sufficient to respond to unplanned releases of hazardous substances.

Energy Policy Act of 2005 (P.L. 109-58). This Act requires DOE to prepare a report on the cost and schedule to complete an EIS and ROD for permanent disposal of GTCC. It also requires DOE to, prior to making a final decision on the disposal alternative or alternatives to be implemented, submit to Congress a report that describes all disposal alternatives under consideration and includes all information required in a 1987 DOE report to Congress related to the safe disposal of GTCC. The Act further requires that DOE await action by Congress before making a final decision on the disposal alternative or alternatives to be implemented.

Federal Insecticide, Fungicide, and Rodenticide Act of 1947, as amended (7 USC 136 et seq.). This Act (abbreviated FIFRA) regulates the use, registration, and disposal of several classes of pesticides to ensure that they are applied in a manner that protects the public, workers, and the environment. Implementing regulations include recommended procedures for the disposal and storage of pesticides and worker protection standards.

Fish and Wildlife Coordination Act of 1934, as amended (16 USC 661 et seq.). The Fish and Wildlife Coordination Act promotes effective planning and cooperation among federal, state, public, and private agencies for the conservation and rehabilitation of the nation's fish and wildlife. The Act requires consultation with the USFWS and state authorities whenever a federal action involves impounding, diverting, channel deepening, or otherwise controlling or modifying the waters of any stream or other body of water.

 Low-Level Radioactive Waste Policy Amendments Act of 1985 (42 USC 2021 et seq.). This Act (LLRWPAA) provides that the federal government is responsible for the disposal of LLRW with concentrations of radionuclides that exceed the NRC-established limits

- 1 for Class C radioactive waste (i.e., greater-than-Class C or GTCC LLRW). The Act specifies that
- 2 GTCC LLRW that results from activities licensed by the NRC is to be disposed of in an NRC-
- 3 licensed facility that has been determined to be adequate to protect public health and safety. NRC
- 4 regulations state that GTCC LLRW is generally not acceptable for near-surface disposal and
- 5 must be disposed of in a geologic repository unless alternative methods of disposal are proposed
- 6 to and approved by the NRC. The NRC regulations state that there may be some instances where
- 7 waste with concentrations greater than permitted for Class C would be acceptable for near-
- 8 surface disposal with special processing or design. Unless specifically provided by law, NRC
- 9 does not have authority to license and regulate facilities operated by or on behalf of DOE. DOE
- 10 believes the LLRWPAA is best read to require that, if DOE disposes of GTCC LLRW in a non-
- 11 DOE facility, the facility must be licensed by NRC explicitly for the purpose of GTCC LLRW
- 12 disposal. DOE does not believe the LLRWPAA limits DOE to using only non-DOE facilities for
- 13 GTCC LLRW disposal. However, legislation may be needed to clarify whether a GTCC LLRW

disposal facility owned or operated by or on behalf of DOE must be licensed by the NRC and, if

so, to authorize NRC to license such a facility.

16 17 18

19

20

21

22

15

Migratory Bird Treaty Act of 1918, as amended (16 USC 703 et seq.). This Act, as amended, is intended to protect birds that have common migration patterns between the United States and Canada, Mexico, Japan, and Russia. The Act stipulates that it is unlawful at any time, by any means, or in any manner to "kill any migratory bird unless and except as permitted by regulation."

232425

26

27

28

29

National Environmental Policy Act of 1969, as amended (42 USC 4321 et seq.). This Act (abbreviated NEPA) establishes a national policy promoting awareness of the consequences of human activity on the environment and consideration of environmental impacts during the planning and decision-making stages of a project. It requires federal agencies to prepare an EIS for "major Federal actions significantly affecting the quality of the human environment."

30 31 32

33

34

35

36 37 National Historic Preservation Act of 1966, as amended (16 USC 470 et seq.). This Act (abbreviated NHPA) provides that sites with significant national historic value be placed on the NRHP, maintained by the Secretary of the Interior. Section 106 of the Act requires a federal agency to determine whether its proposed undertaking is the type of activity that could affect historic properties. If so, the agency must consult with the appropriate SHPO or Tribal Historic Preservation Officer. If an adverse effect is found, the consultation often ends with the execution of a Memorandum of Agreement that indicates how the adverse effect will be resolved.

38 39 40

41

42

43

46

Native American Graves Protection and Repatriation Act of 1990 (25 USC 3001). This Act (abbreviated NAGPRA) establishes a means for American Indians to request the return or repatriation of human remains and other cultural items presently held by federal agencies or federally assisted museums or institutions. The Act also contains provisions regarding the

federally assisted museums or institutions. The Act also contains provisions regarding the intentional excavation and removal of, inadvertent discovery of, and illegal trafficking in

American Indian human remains and cultural items. The law requires the establishment of a

review committee with monitoring and policymaking responsibilities, the development of regulations for repatriation, and the development of procedures to handle unexpected discoveries of graves or grave goods during activities on federal or tribal lands. All federal agencies that manage land and/or are responsible for archaeological collections obtained from their lands or generated by their activities must comply with the Act.

Noise Control Act of 1972, as amended (42 USC 4901 et seq.). Section 4 of the Noise Control Act of 1972, as amended, directs all federal agencies to carry out "to the fullest extent within their authority" programs within their jurisdictions in a manner that furthers a national policy of promoting an environment free from noise jeopardizing health and welfare.

Paleontological Resources Preservation Act of 2009 (16 USC 470aaa et seq.). This Act promotes the preservation and use of paleontological resources on federal lands by prohibiting the following: (1) taking or damaging paleontological resources located on federal lands without a permit or permission, (2) selling or purchasing such resources received from federal lands, and (3) submitting false records or identification for such resources removed from federal lands.

Pollution Prevention Act of 1990 (42 USC 13101 et seq.). This Act establishes a national policy for waste management and pollution control. Source reduction is given first preference, followed by environmentally safe recycling, then by treatment, and finally by disposal.

 Resource Conservation and Recovery Act of 1976, as amended (42 USC 6901 et seq.). Under this Act (abbreviated RCRA), which amended the Solid Waste Disposal Act of 1965, the EPA defines and identifies hazardous waste; establishes standards for its transportation, treatment, storage, and disposal; and requires permits for persons engaged in hazardous waste activities. Section 3006 of RCRA allows states to establish and administer these permit programs with EPA approval. The Federal Facility Compliance Act of 1992 (42 USC 6961 et seq.) amended RCRA to require that all federal agencies having jurisdiction over a solid waste facility or disposal site, or engaged in the management of solid or hazardous waste, are subject to all applicable federal, state, and local laws, regulations, and ordinances addressing solid and hazardous waste.

Safe Drinking Water Act of 1974, as amended (42 USC 300(f) et seq.). The primary objective of the Safe Drinking Water Act (SDWA) is to protect the quality of public drinking water supplies and sources of drinking water. The implementing regulations, administered by the EPA unless delegated to states, establish standards applicable to public water systems. These regulations include maximum contaminant levels (including those for radioactivity) in public water systems that have at least 15 service connections used by year-round residents or that regularly serve at least 25 year-round residents.

 Toxic Substances Control Act of 1976 (15 USC 2601 et seq.). This Act (abbreviated TSCA) provides the EPA with the authority to require testing of chemical substances entering the environment and to regulate them as necessary. The law complements and expands existing toxic substance laws such as Section 112 of the CAA and Section 307 of the CWA. TSCA requires compliance with inventory reporting and chemical control provisions of the legislation to protect the public from the risks of exposure to chemicals.

13.3.2 Statutes and Regulations Specific to the Disposal Alternatives

This section describes the major statutes and regulations that impact implementation of the geologic and nongeologic disposal alternatives considered in this EIS. It also describes statutory or regulatory modifications that might be necessary for GTCC LLRW and GTCC-like waste disposal to occur.

13.3.2.1 Geologic Disposal

The statute that governs disposal at WIPP is the Waste Isolation Pilot Plant Land Withdrawal Act.

Waste Isolation Pilot Plant Land Withdrawal Act, as amended (P.L. 102-579). This Act withdrew land from the public domain for the purpose of creating and operating WIPP, the geologic repository in New Mexico designated as the national disposal site for TRU waste generated by atomic energy defense activities. The Act defines the characteristics and amount of waste that will be disposed of at the facility and stipulates that TRU waste must be transported to WIPP in NRC-certified shipping containers. The Act exempts waste to be disposed at WIPP from the RCRA land disposal restrictions.

The WIPP Land Withdrawal Act (LWA) authorizes the EPA to issue regulations regarding the disposal of TRU radioactive waste at WIPP. The EPA exercises this regulatory authority through 40 CFR Part 191, "Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes." WIPP-specific disposal regulations are specified in 40 CFR Part 194, "Criteria for the Certification and Re-Certification of the Waste Isolation Pilot Plant's Compliance with the 40 CFR Part 191 Disposal Regulations."

The WIPP LWA limits the use of WIPP to the disposal of TRU waste generated by atomic defense activities. In addition, it established certain limits on the surface dose rate, total volume, total radioactivity (curies), and maximum activity level (curies per liter averaged over the volume of the canister) for waste received at WIPP. The total capacity for disposal of TRU waste established under the WIPP LWA is 175,675 m³ (6.2 million ft³). The Consultation and Cooperative Agreement with the State of New Mexico (1981) established a total RH TRU capacity of 7,080 m³ (250,000 ft³), with the remaining capacity for CH TRU at 168,500 m³ (5.95 million ft³). In addition, the WIPP LWA limits the total radioactivity of RH waste to

5.1 million curies. For comparison, the GTCC LLRW and GTCC-like CH volume, RH volume, and RH total radioactivity are approximately 6,650 m³ (235,000 ft³), 5,050 m³ (178,000 ft³), and 157 million curies, respectively. On the basis of emplaced and anticipated waste volumes, the 3 disposal of all GTCC LLRW and GTCC-like waste at WIPP would exceed the limits for RH volume and RH total activity. The majority of the GTCC LLRW and GTCC-like RH volume is 5 from the Other Waste category (e.g., DOE non-defense TRU), and activated metal waste contributes most of the RH activity. The WIPP LWA also limits disposal in WIPP to defensegenerated TRU waste. Therefore, the implementation of the WIPP alternative for all GTCC LLRW and GTCC-like waste would require modification of the WIPP LWA to authorize acceptance of non-defense and non-TRU waste, an increase in the disposal capacity limit for RH 10 11 total curies, and a change to the Consultation and Cooperative Agreement to authorize an 12 increase in the total volume of all RH TRU waste. In addition, a corresponding modification of 13 the facility's RCRA permit with the New Mexico Environment Department, a modification to 14 the Agreement for Consultation and Cooperation between U.S. Department of Energy and the 15 State of New Mexico for the Waste Isolation Pilot Plant (updated April 18, 1988), which sets limits (identified above) on the total volume of RH TRU received at WIPP, and compliance 16 17 certification with the EPA might be required. RH GTCC LLRW and GTCC-like waste would be 18 packaged in shielded containers and would not exceed the surface dose and curies-per-liter limits 19 for RH waste in the WIPP LWA. The Low-Level Radioactive Waste Policy Amendment Act 20 (LLRWPAA) requires that GTCC waste be disposed of in a facility licensed by the NRC. Because the LLRWPAA specifies that GTCC LLRW be disposed of in a facility licensed by the 21 22 NRC, implementation of the WIPP alternative may also require legislative changes in order for 23 WIPP to be utilized as a disposal facility for GTCC LLRW consistent with the LLRWPAA. 24

25 26

13.3.2.2 Nongeologic Disposal

2728

29

30

Statutes applicable to nongeologic disposal of GTCC LLRW and GTCC-like wastes include the Low-Level Radioactive Waste Policy Amendments Act of 1985, Atomic Energy Act of 1954, WIPP Land Withdrawal Act, and Federal Land Policy and Management Act.

31 32 33

34

35

36 37

38

39

40

41

42

43

44

45 46

Low-Level Radioactive Waste Policy Amendments Act of 1985 (42 USC 2021

et seq.). This Act (LLRWPAA) provides that the federal government is responsible for the disposal of LLRW with concentrations of radionuclides that exceed the NRC-established limits for Class C radioactive waste (i.e., greater-than-Class C or GTCC LLRW). The Act specifies that GTCC LLRW that results from activities licensed by the NRC is to be disposed of in an NRC-licensed facility that has been determined to be adequate to protect public health and safety. NRC regulations state that GTCC LLRW is generally not acceptable for near-surface disposal and must be disposed of in a geologic repository unless alternative methods of disposal are proposed to and approved by the NRC. The NRC regulations state that there may be some instances where waste with concentrations greater than permitted for Class C would be acceptable for near-surface disposal with special processing or design. Unless specifically provided by law, NRC does not have authority to license and regulate facilities operated by or on behalf of DOE. DOE believes the LLRWPAA is best read to require that, if DOE disposes of GTCC LLRW in a non-DOE facility, the facility must be licensed by NRC explicitly for the purpose of GTCC LLRW

disposal. DOE does not believe the LLRWPAA limits DOE to using only non-DOE facilities for GTCC LLRW disposal. However, legislation may be needed to clarify whether a GTCC LLRW disposal facility owned or operated by or on behalf of DOE must be licensed by NRC and if so, to authorize NRC to license such a facility.

Atomic Energy Act of 1954 (42 USC 2011 et seq.). The Atomic Energy Act (AEA) provides the statutory framework for DOE and NRC regulation of nuclear material and activities, including management of radioactive waste. DOE exercises regulatory authority over activities conducted by DOE or on its behalf. NRC and Agreement States exercise regulatory authority over activities conducted in the commercial sector through licensing regulations. The Act authorizes DOE to set radiation protection standards for itself and its contractors at DOE nuclear facilities. An extensive system of standards and requirements has been established through DOE regulations and directives to protect health and minimize danger to life and property from activities under DOE's jurisdiction. Requirements for environmental protection, safety, and health are implemented at DOE sites primarily through contractual mechanisms that establish the applicable DOE requirements for management and operating contractors.

Waste Isolation Pilot Plant Land Withdrawal Act, as Amended (P.L. 102-579). Two locations in the WIPP Vicinity are considered for the disposal of GTCC waste in an above-grade vault, near-surface trench, or intermediate-depth borehole: (1) property inside the WIPP LWB and (2) property on BLM-administered land outside and adjacent to the WIPP Land Withdrawal Boundary (LWB). Siting a vault, trench, or borehole facility for GTCC waste inside the WIPP LWB would be subject to the limits of the WIPP LWA (as discussed for WIPP); therefore, federal legislation to develop such facilities would be required. Siting a vault, trench, or borehole facility on BLM-administered land outside the WIPP LWB would require a land withdrawal in accordance with DOI regulations at 40 CFR 2300, "Land Withdrawals."

Federal Land Policy and Management Act, as amended (43 USC 1701 et seq.). The Federal Land Policy and Management Act (FLPMA) is applicable to the alternatives to dispose of GTCC LLRW and GTCC-like wastes in a new trench facility or borehole facility on government property in the vicinity of WIPP. Use of that land for a permanent radioactive waste disposal facility would require that it be withdrawn from the public domain, under the FLPMA, as was done for the WIPP land withdrawal.

13.3.2.3 Laws and Regulations Specific to the No Action Alternative

 Atomic Energy Act of 1954 (42 USC 2011 et seq.). The Atomic Energy Act (AEA) provides the statutory framework for DOE and NRC regulation of nuclear material and activities, including management of radioactive waste. DOE exercises regulatory authority over activities conducted by DOE or on its behalf. NRC and Agreement States exercise regulatory authority over activities conducted in the commercial sector through licensing regulations. The Act authorizes DOE to set radiation protection standards for itself and its contractors at DOE nuclear

facilities. An extensive system of standards and requirements has been established through DOE regulations and directives to protect health and minimize danger to life and property from activities under DOE's jurisdiction. Requirements for environmental protection, safety, and health are implemented at DOE sites primarily through contractual mechanisms that establish the applicable DOE requirements for management and operating contractors.

Under the No Action Alternative, GTCC LLRW from commercial nuclear reactors would continue to be stored on-site at NRC-licensed facilities pursuant to 10 CFR Part 50, "Domestic Licensing of Production and Utilization Facilities." These licenses are issued for a 40-year term and can be renewed. Alternatively, or in the event that a facility with a Part 50 license is going through decommissioning or has been decommissioned, GTCC LLRW would be stored in an independent spent fuel storage installation (ISFSI) licensed in accordance with 10 CFR Part 72, "Licensing Requirements for the Independent Storage of Spent Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater-Than-Class C Waste." Licenses issued for ISFSIs have a 20-year term and can be renewed. Sealed sources would remain at generator or other licensee sites. Other Waste would continue to be stored and managed at generator or other interim storage sites.

Under the No Action Alternative, GTCC-like wastes would continue to be stored in accordance with DOE's existing authorities and DOE directives.

Low-Level Radioactive Waste Policy Amendments Act of 1985 (42 USC 2021

et seq.). This Act (LLRWPAA) provides that the federal government is responsible for the disposal of LLRW with concentrations of radionuclides that exceed the NRC-established limits for Class C radioactive waste (i.e., greater-than-Class C or GTCC LLRW). The Act specifies that GTCC LLRW that results from activities licensed by the NRC is to be disposed of in an NRClicensed facility that has been determined to be adequate to protect public health and safety. NRC regulations state that GTCC LLRW is generally not acceptable for near-surface disposal and must be disposed of in a geologic repository unless alternative methods of disposal are proposed to and approved by the NRC. The NRC regulations state that there may be some instances where waste with concentrations greater than permitted for Class C would be acceptable for nearsurface disposal with special processing or design. Unless specifically provided by law, NRC does not have authority to license and regulate facilities operated by or on behalf of DOE. DOE believes the LLRWPAA is best read to require that, if DOE disposes of GTCC LLRW in a non-DOE facility, the facility must be licensed by NRC explicitly for the purpose of GTCC LLRW disposal. DOE does not believe the LLRWPAA limits DOE to using only non-DOE facilities for GTCC LLRW disposal. However, legislation may be needed to clarify whether a GTCC LLRW disposal facility owned or operated by or on behalf of DOE must be licensed by the NRC and, if so, to authorize NRC to license such a facility.

13.4 APPLICABLE EXECUTIVE ORDERS

This section identifies environmental-, health-, and safety-related Executive Orders applicable to the GTCC LLRW and GTCC-like waste disposal alternatives and the No Action Alternative discussed in this EIS.

 Executive Order 11514 (Protection and Enhancement of Environmental Quality, March 5, 1970), as amended by Executive Order 11991 (May 24, 1977). This Order requires federal agencies to continually monitor and control their activities in order to (1) protect and enhance the quality of the environment and (2) develop procedures to ensure the fullest practicable provision of timely public information and understanding of the federal plans and programs that might have potential environmental impacts so that the views of interested parties can be obtained. DOE issued regulations at 10 CFR Part 1021 and DOE Order 451.1B to ensure compliance with this Order.

Executive Order 11593 (Protection and Enhancement of the Cultural Environment, May 13, 1971). This Order directs federal agencies to locate, inventory, and nominate qualified properties under their jurisdiction or control to the NRHP. The federal agencies are also to initiate procedures to provide for the maintenance, rehabilitation, or restoration of sites on the NRHP.

 Executive Order 11988 (Floodplain Management, May 24, 1977). This Order, implemented by DOE in 10 CFR Part 1022, requires federal agencies to establish procedures to ensure that the potential effects of flood hazards and floodplain management are considered for any action undertaken in a floodplain, and that floodplain impacts be avoided to the extent practicable.

Executive Order 11990 (Protection of Wetlands, May 24, 1977). This Order directs federal agencies to avoid new construction in wetlands unless there is no practicable alternative and unless the proposed action includes all practicable measures to minimize harm to wetlands that might result from such use. DOE requirements for complying with procedures for reviewing wetlands activity are in 10 CFR Part 1022.

Executive Order 12088 (Federal Compliance with Pollution Control Standards, October 13, 1978, as amended by Executive Order 12580, Superfund Implementation, January 23, 1987). This Order directs federal agencies to comply with applicable administrative and procedural pollution control standards established by, but not limited to, the CAA, Noise Control Act, CWA, SDWA, TSCA, and RCRA.

Executive Order 12656 (Assignment of Emergency Preparedness Responsibilities, November 18, 1988). This Order assigns emergency preparedness responsibilities to federal departments and agencies.

 Executive Order 12699 (Seismic Safety of Federal and Federally Assisted or Regulated New Building Construction, January 5, 1990). This Order requires federal agencies to reduce risks to occupants of buildings owned, leased, or purchased by the federal government

or buildings constructed with federal assistance and to persons who would be affected by failures of federal buildings in earthquakes; improve the capability of existing federal buildings to function during or after an earthquake; and reduce earthquake losses of public buildings, all in a cost-effective manner. Each federal agency responsible for the design and construction of a federal building shall ensure that the building is designed and constructed in accordance with appropriate seismic design and construction standards.

Executive Order 12898 (Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, February 11, 1994). This Order requires each federal agency to identify and address any disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority and low-income populations.

 Executive Order 13007 (Indian Sacred Sites, May 24, 1996). This Order directs federal agencies that are managing federal lands — to the extent that is practicable, permitted by law, and not clearly inconsistent with essential agency functions — to (1) accommodate access to and ceremonial use of Indian sacred sites by Indian religious practitioners and (2) avoid adversely affecting the physical integrity of such sacred sites.

Executive Order 13045 (Protection of Children from Environmental Health Risks and Safety Risks, April 21, 1997), as amended by Executive Order 13229 (October 9, 2001). This Order requires each federal agency to make it a high priority to identify and assess environmental health risks and safety risks that may disproportionately affect children and to ensure that its policies, programs, activities, and standards address disproportionate risks to children that result from environmental health risks or safety risks.

Executive Order 13112 (Invasive Species, February 3, 1999). This Order requires federal agencies to prevent the introduction of invasive species; to provide for their control; and to minimize their economic, ecological, and human health impacts.

 Executive Order 13175 (Consultation and Coordination with Indian Tribal Governments, November 6, 2000). This Order requires federal agencies to consult, to the greatest extent practicable and to the extent permitted by law, with tribal governments prior to taking actions that affect federally recognized tribal governments. Federal agencies must also assess the impact of federal government plans, projects, programs, and activities on tribal trust resources and assure that tribal government rights and concerns are considered during the development of such plans, projects, programs, and activities.

Executive Order 13186 (Responsibilities of Federal Agencies to Protect Migratory Birds, January 10, 2001). This Order requires each federal agency that takes actions that have,

or are likely to have, a measurable negative effect on migratory bird populations to develop and implement, by 2003, an MOU with the USFWS that shall promote the conservation of migratory bird populations.

Executive Order 13423 (Strengthening Federal Environmental, Energy, and Transportation Management, January 26, 2007). This Order requires federal agencies to lead by example in advancing the nation's energy security and environmental performance by achieving specific goals in the following areas: energy efficiency, greenhouse gas reduction, renewable energy use, reduction in water consumption, acquisition of environmentally preferable products, reduction in the use of toxic and hazardous chemicals and materials, high-performance and sustainable building, reduction in petroleum use, use of alternative fuel, and electronics management. Federal agencies are also required to maintain cost-effective waste prevention and recycling programs at their facilities.

 Executive Order 13514 (Federal Leadership in Environmental, Energy, and Economic Performance, October 5, 2009). This Order builds upon Executive Order 13423 by establishing quantitative goals for water use reduction, waste diversion, and the purchase of environmentally preferable products and services and by requiring that federal agencies develop and achieve agency-specific targets for reducing greenhouse gas emissions.

13.5 APPLICABLE U.S. DEPARTMENT OF ENERGY DIRECTIVES

The AEA authorizes DOE to establish standards to protect health and minimize the dangers to life or property from activities under DOE's jurisdiction. The major DOE directives pertaining to the alternatives in this EIS are described below.

DOE Order 144.1, *American Indian Tribal Government Interactions and Policy* (**January 16, 2009**). This order communicates departmental, programmatic, and field responsibilities for interacting with American Indian governments; transmits DOE's American Indian and Alaska Native Tribal Government Policy, including its guiding principles; and transmits the framework for implementation of the policy.

DOE Order 151.1C, *Comprehensive Emergency Management System* (November 2, 2005). This Order establishes policy and assigns and describes roles and responsibilities for the DOE Emergency Management System. The Emergency Management System provides the framework for development, coordination, control, and direction of all emergency planning, preparedness, readiness assurance, response, and recovery actions.

DOE Order 231.1A, *Environment, Safety, and Health Reporting* (August 19, 2003; Change 1, June 3, 2004). This Order establishes responsibilities and requirements to ensure the

timely collection, reporting, analysis, and dissemination of information on environmental, safety, and health issues as required by law or regulations or as needed to ensure that DOE is kept fully informed on a timely basis about events that could adversely affect the health and safety of the public or the workers, the environment, the intended purpose of DOE facilities, or the credibility of DOE.

DOE Order 413.3A, *Program and Project Management for the Acquisition of Capital Assets* (**July 28, 2006**). This Order provides project management direction for the acquisition of capital assets that are delivered on schedule, within budget, and fully capable of meeting mission performance standards; safeguards and security standards; and environmental, safety, and health standards.

DOE Order 414.1C, *Quality Assurance* (June 17, 2005). The Order establishes principles to ensure that products and services meet or exceed customers' expectations and to achieve quality assurance for all work.

DOE Order 420.1B *Facility Safety* (**December 22, 2005**). This Order establishes facility safety requirements related to nuclear safety design, criticality safety, fire protection, and the mitigation of hazards related to natural phenomena.

DOE Order 425.1C, *Startup and Restart of Nuclear Facilities* (March 13, 2003). This Order establishes requirements for the startup of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. The requirements specify a readiness review process that must demonstrate that it is safe to start (or restart) the subject facility. The facility must be started (or restarted) only after documented independent reviews of readiness have been conducted and after the approvals specified in the Order have been received.

 DOE Order 430.1B, *Real Property Asset Management* (September 24, 2003; Change 1, February 8, 2008). This Order establishes a corporate, holistic, and performance-based approach to real property life-cycle asset management that links real property asset planning, programming, budgeting, and evaluation to program mission projections and performance outcomes. This Order also identifies requirements and establishes reporting mechanisms and responsibilities for real property asset management.

 DOE Order 430.2B, *Departmental Energy, Renewable Energy and Transportation Management* (February 27, 2008). The Order implements Executive Order 13423 and provides the goals, requirements, and responsibilities for managing DOE energy use, buildings, and vehicle fleets.

DOE Order 433.1A, Maintenance Management Program for DOE Nuclear Facilities
(February 13, 2007). This Order defines the safety management program required for the
maintenance and reliable performance of structures, systems, and components that are part of the
safety basis required at DOE Hazard Category 1, 2, and 3 nuclear facilities.

DOE Order 435.1, *Radioactive Waste Management* (July 9, 1999, Change 1, August 28, 2001, Certified, January 1, 2007). This Order and its associated manual and guidance establish responsibilities and requirements for the management of DOE high-level radioactive waste, TRU waste, LLRW, and the radioactive component of mixed waste. These documents provide detailed radioactive waste management requirements, including those related to waste that is incidental to reprocessing determinations; waste characterization, certification, treatment, storage, and disposal; and radioactive waste facility design and closure.

 DOE Order 440.1B, *Worker Protection Program for DOE (Including National Nuclear Security Administration) Federal Employees* (May 17, 2007). This Order establishes the framework for an effective worker protection program that reduces or prevents injuries, illnesses, and accidental losses by providing DOE and NNSA federal employees with safe and healthful workplaces.

DOE Order 450.1A, *Environmental Protection Program* (June 4, 2008). This Order requires implementation of sound stewardship practices that are protective of the air, water, land, and other natural and cultural resources impacted by DOE operations, and by which DOE cost-effectively meets or exceeds compliance with applicable environmental, public health, and resource protection requirements.

DOE Order 451.1B, *National Environmental Policy Act Compliance Program* (October 26, 2000; Change 1, September 28, 2001). This Order establishes internal requirements and responsibilities for implementing NEPA, the CEQ Regulations Implementing the Procedural Provisions of NEPA (40 CFR Parts 1500–1508), and the DOE NEPA Implementing Procedures (10 CFR Part 1021). Establishing these requirements and responsibilities ensures efficient and effective implementation of DOE's NEPA responsibilities through teamwork, controlling the cost and time for the NEPA process, and maintaining quality.

DOE Order 460.1B, *Packaging and Transportation Safety* (April 4, 2003). This Order sets forth DOE policy and assigns responsibilities for the proper packaging and transportation of DOE off-site shipments, on-site transfers of hazardous materials, and modal transport.

 DOE Order 460.2A, *Departmental Materials Transportation and Packaging Management* (December 22, 2004). This Order requires DOE operations to be conducted in compliance with all applicable international, federal, state, local, and tribal laws, rules, and

regulations governing materials transportation that are consistent with federal regulations, unless exemptions or alternatives are approved. This Order also states that it is DOE policy that shipments comply with the DOT regulations at 49 CFR Parts 100 through 185, except those that infringe upon maintenance of classified information.

DOE Order 470.2B, *Independent Oversight and Performance Assurance Program* (October 31, 2002). This Order establishes the Independent Oversight Program that is designed to enhance DOE safeguards and security; cyber security; emergency management; and environment, safety, and health programs by providing DOE and contractor managers, Congress, and other stakeholders with an independent evaluation of the adequacy of DOE policy and the effectiveness of line management performance in these and other critical functions.

DOE Order 470.4A, *Safeguards and Security Program* (May 25, 2007). This Order establishes responsibilities for the DOE Safeguards and Security Program and the managerial framework for implementing DOE policy on integrated safeguards and security management.

DOE Order 5400.5, *Radiation Protection of the Public and the Environment* (**February 8, 1990**; **Change 2, January 7, 1993**). This Order establishes standards and requirements for DOE operations for protection of members of the public and the environment against undue risk from radiation. It is DOE policy to implement legally applicable radiation protection standards and to consider and adopt, as appropriate, recommendations by authoritative organizations, such as NCRP and ICRP. It is also DOE policy to adopt and implement standards generally consistent with those of the NRC for DOE facilities and activities not subject to NRC licensing authority.

DOE Order 5480.20A, Personnel Selection, Qualification, and Training Requirements for DOE Nuclear Facilities (November 15, 1994; Change 1, July 12, 2001). This Order establishes the selection, qualification, and training requirements for DOE contractor personnel involved in the operation, maintenance, and technical support of DOE nuclear reactors and nonreactor nuclear facilities. DOE objectives under this Order are to ensure the development and implementation of contractor-administered training programs that provide consistent and effective training for personnel at DOE nuclear facilities. The Order contains minimum requirements that must be included in training and qualification programs.

13.6 STATE ENVIRONMENTAL LAWS, REGULATIONS, AND AGREEMENTS

Certain environmental requirements have been delegated to state authorities for implementation and enforcement. It is DOE policy to conduct its operations in an environmentally safe manner that complies with all applicable laws, regulations, and standards, including state laws and regulations. A list of state environmental laws, regulations, and

agreements potentially applicable to the GTCC LLRW disposal alternatives and the No Action Alternative discussed in this EIS is provided in Table 13.6-1.

13.7 RADIOACTIVE MATERIAL PACKAGING AND TRANSPORTATION REGULATIONS

DOE has broad authority under the AEA to regulate all aspects of activities involving radioactive materials that are undertaken by DOE or on its behalf, including the transportation of radioactive materials. DOE exercises this authority to regulate certain DOE shipments, such as shipments undertaken by governmental employees or shipments involving special circumstances. In most cases that do not involve national security, DOE utilizes commercial carriers that undertake shipments of DOE material under the same terms and conditions as commercial shipments. These shipments are subject to regulation by DOT and other entities, as appropriate. As a matter of policy, all DOE shipments are undertaken in accordance with the requirements and standards that apply to comparable commercial shipments, except where there is a determination that national security or another critical interest requires different action. In implementing this policy, DOE cooperates with federal, state, local, and tribal entities and utilizes existing expertise and resources to the extent practicable. In all cases, DOE will achieve a level of protection that meets or exceeds the level of protection associated with comparable commercial shipments.

DOT and NRC have the primary responsibility for federal regulations governing commercial radioactive material transportation. The Hazardous Materials Transportation Act of 1975, as amended (49 U.S.C. 5105, et seq.), requires DOT to establish regulations for the safe transportation of hazardous materials in commerce (including radioactive materials). Title 49 of the CFR contains DOT standards and requirements for the packaging, transporting, and handling of radioactive materials for all modes of transportation. DOT's Hazardous Materials Regulations, or HMR, on the transportation of hazardous and radioactive materials can be found in 49 CFR Parts 171 through 180. In addition, the requirements for motor carrier transportation can be found in 49 CFR Parts 350 through 399, and the requirements for transportation by rail can be found in 49 CFR Parts 200 through 268. The NRC sets additional design and performance standards for packages that carry materials with higher levels of radioactivity. The NRC regulations pertaining to radioactive materials transportation are found in 10 CFR Part 71. These regulations include detailed requirements for certification testing of packaging designs. This certification testing involves a variety of conditions such as heating, free dropping onto an unyielding surface, immersing in water, dropping the package onto a vertical steel bar, and checking gas tightness.

 The transportation casks used to transport radioactive material are subject to numerous inspections and tests. These tests are designed to ensure that cask components are properly assembled and meet applicable safety requirements. Tests and inspections are clearly identified in the Safety Analysis Report for Packaging and/or the Certificate of Compliance for each cask. Casks are loaded and inspected by registered users in compliance with approved quality assurance programs. Operations involving the casks are conducted in compliance with 10 CFR 71.91. Reports of defects or accidental mishandling are submitted to the NRC.

TABLE 13.6-1 State Requirements That Might Apply to GTCC LLRW and GTCC-Like Waste Disposal

Law/Regulation/Agreement	Citation	Requirements
Idaho		
Idaho Environmental Protection and Health Act	<i>Idaho Code</i> (IC), Title 39, Health and Safety, Chapter 1, Department of Health and Welfare, Sections 39–105	Provides for development of air pollution control permitting regulations.
Rules for the Control of Air Pollution in Idaho	Idaho Administrative Procedures Act (IDAPA) 58, Department of Environmental Quality, Title 1, Chapter 1 (58.01.01)	Enforces national ambient air quality standards.
Idaho Water Pollution Control Act	IC, Title 39, Chapter 36, Water Quality	Establishes a program to enhance and preserve the quality and value of water resources.
Water Quality Standards and Wastewater Treatment Requirements	IDAPA 58.01.02	Establishes water quality standards and wastewater treatment requirements.
Transportation of Hazardous Waste	IC, Title 18, Crimes and Punishment, Chapter 39, Highways and Bridges, Section 18-3905; IC, Title 49, Motor Vehicles, Chapter 22, Hazardous Materials/Hazardous Waste Transportation Enforcement	Regulates transportation of hazardous materials/hazardous waste on highways.
Idaho Hazardous Waste Management Act	IC, Title 39, Chapter 44, Hazardous Waste Management	Requires permit prior to construction or modification of a hazardous waste disposal facility.
Rules and Standards for Hazardous Waste	IDAPA 58.01.05	Requires permit prior to construction or modification of a hazardous waste disposal facility.
Various Acts Regarding Fish and Game	IC, Title 36, Fish and Game, Chapter 9, Protection of Fish, Chapter 11, Protection of Animals and Birds, and Chapter 24, Species Conservation	Requires consultation with responsible agency.
Endangered Species Act	IC, Title 67, State Government and State Affairs, Chapter 8, Executive and Administrative Officers, Section 67-818	Requires consultation with the Department of Fish and Game.
Rules for Classification and Protection of Wildlife	IDAPA 13, Department of Fish and Game, 13.01.06	Requires consultation with the Department of Fish and Game.

1

Law/Regulation/Agreement	Citation	Requirements
Idaho Historic Preservation Act	IC, Title 67, Chapter 46, Preservation of Historic Sites	Requires consultation with responsible local governing body.
Agreement in Principle between the Shoshone- Bannock Tribes and DOE	December 10, 2002	Establishes understanding and commitment between the tribes and DOE.
Idaho Site Treatment Plan and Consent Order for Federal Facility Compliance Plan	Federal [now INL] and Argonne National Facility Compliance A	
Nevada		
Nevada Revised Statutes: Air Emission Controls	Chapter 445B	Addresses operating permits for the control of gaseous and particulate emissions from construction and operations.
Nevada Revised Statutes: Water Controls	Chapter 445A	Sets conditions for issuance of variances and exemptions, temporary permits, stormwater discharge permits, and NPDES permits.
Nevada Revised Statutes: Adjudication of Vested Water Rights, Appropriation of Public Waters, Underground Water and Wells	Chapter 534	Sets requirements for establishing state water rights for use of public waters of the state, which include underground waters.
Nevada Revised Statutes: State Fire Marshal	Chapter 477	Addresses permits for storage of hazardous materials in quantities above those the Uniform Fire Code specifies.
Nevada Revised Statutes: Hazardous Materials	Chapter 459	Sets requirements for management and disposal of hazardous waste.
Nevada Revised Statutes: Protection and Preservation of Timbered Lands, Trees, and Flora	Chapter 527	Protects the indigenous flora of the State of Nevada.
Nevada Revised Statutes: Hunting, Fishing, and Trapping; Miscellaneous Protective Measures	Chapter 503	Addresses procedures for the classification and protection of wildlife.

Law/Regulation/Agreement	Citation	Requirements	
New Mexico			
New Mexico Air Quality Control Act	New Mexico Statutes Annotated (NMSA), Chapter 74, Environmental Improvement, Article 2, Air Pollution, and Implementing Regulations at New Mexico Administrative Code (NMAC) Title 20, Environmental Protection, Chapter 2, Air Quality	Establishes air quality standards and requires a permit prior to construction or modification of an air contaminant source. Also requires an operating permit for major producers of air pollutants and imposes emission standards for hazardous air pollutants.	
New Mexico Radiation Protection Act	NMSA, Chapter 74, Article 3, Radiation Control	Establishes state requirements for worker protection.	
New Mexico Water Quality Act	NMSA, Chapter 74, Article 6, Water Quality, and Implementing Regulations found in NMAC, Title 20, Chapter 6, Water Quality	Establishes water quality standards and requires a permit prior to the construction or modification of a water discharge source.	
New Mexico Groundwater Protection Act	NMSA, Chapter 74, Article 6B, Groundwater Protection	Establishes state standards for protection of groundwater from leaking underground storage tanks.	
New Mexico Solid Waste Act	NMSA, Chapter 74, Article 9, Solid Waste Act, and Implementing Regulations found in NMAC Title 20, Environmental Protection, Chapter 9, Solid Waste	Requires a permit prior to construction or modification of a solid waste disposal facility.	
New Mexico Hazardous Waste Act	NMSA, Chapter 74, Article 4, Hazardous Waste, and Implementing Regulations found in NMAC Title 20, Environmental Protection, Chapter 4, Hazardous Waste	ementing construction, operation, modification, and closure of a hazardous waste management facility and establishes	
Endangered Plant Species	NMAC, Title 19, Chapter 21, Endangered Plants (Revised December 3, 2001)	Establishes plant species list and rules for collection.	
Environmental Oversight and Monitoring Agreement	Agreement in Principle (AIP) between DOE and the State of New Mexico	Provides DOE support for state activities in environmental oversight, monitoring, access, and emergency response.	

Law/Regulation/Agreement	Citation	Requirements
Environmental Improvement Act	NMSA 1978, Sections 74-1-1 through 74-1-15; NMAC, 20.5.1 through 20.5.17, August 15, 2003	Modifies aboveground tank regulations to include requirements for the registration, installation, modification, repair, closure, or removal of aboveground storage tanks, as well as for detecting releases, recordkeeping, and financial responsibility in the State of New Mexico.
Environmental Oversight and Monitoring Agreement	Agreement in Principle between DOE and the State of New Mexico	Provides DOE support for state activities in environmental oversight, monitoring, access, and emergency response.
New Mexico Cultural Properties Act	NMSA, Chapter 18, Libraries and Museums, Article 6, Cultural Properties	Establishes the State Historic Preservation Office and requirements to prepare an archaeological and historic survey and consult with the State Historic Preservation Office.
New Mexico Hazardous Chemicals Information Act	NMSA, Chapter 74, Article 4E-1, Hazardous Chemicals Information	Implements the hazardous chemical information and toxic release reporting requirements of the Emergency Planning and Community Right-to-Know Act of 1986 (SARA Title III) for covered facilities.
South Carolina		
South Carolina Pollution Control Act	South Carolina (SC) Code Annotated, Section 48-1-10, et seq.	Addresses permits for construction and alteration of wastewater treatment facilities; PSD permits; and Title V Operating Permits for new or existing sources that are major, subject to NESHAP, New Source Performance Standards (NSPS), or affected under the Acid Rain Program.
Safe Drinking Water Act	SC Code, Section 44-55-10	Addresses public Water System Permits for the construction, modification, expansion, and operation of public water systems.
Hazardous Waste Management Act	SC Code, Section 44-56-10	Addresses permits for facilities that will store hazardous wastes beyond the allowed accumulation periods, treat hazardous wastes, or dispose of hazardous wastes.

Law/Regulation/Agreement	Citation	Requirements	
South Carolina Atomic Energy and Radiation Control Act	SC Regulations R.61-63	Addresses license to receive, use, possess, transfer, or dispose of radioactive material.	
Underground Storage Tank Control Regulations	SC RCRA Regulations R.61-92	Addresses underground storage tank installation and operation permits.	
South Carolina Occupational Safety and Health Standards for General Industry and Public Sector Marine Terminals	Chapter 71	Addresses identification, evaluation, and control of the hazards of processes involving a flammable liquid or gas, hydrocarbon fuel, or highly hazardous chemical at or above the specified threshold quantity.	
Washington			
Washington State Hazardous Waste Management Act	Revised Code of Washington (RCW) 70.105	Regulates the disposal of hazardous wastes; implements waste reduction and prevention programs.	
Washington Clean Air Act	RCW 70.94	Authorizes an operating permit program, civil penalties, administrative enforcement provisions; covers toxics and hazardous air pollutants for new sources and modifications to existing sources.	
The Washington State Department of Health regulations, Radiation Protection — Air Emissions	Washington Administrative Code (WAC) 246–247	Provides standards and permit requirements for the emission of radionuclides to the atmosphere from DOE facilities.	
Washington State Environmental Policy Act	RCW 43.21C	Provides for the evaluation of proposals, which may be conditioned or denied through the permit process, on the basis of environmental considerations.	
Model Toxics Control Act	Regulates releases of hazardous substances caused by past activities and potential and ongoing releases of hazardous substances from current activities.		
Water Pollution Control Act	RCW 90.48	Establishes a permit system to license and control the discharge of pollutants into waters of the state.	

Law/Regulation/Agreement	Citation	Requirements
Washington State Department of Health licensing requirements	WAC 246–247	Provides licensing requirements for new sources of radioactive emissions.

13.8 CONSULTATIONS

Certain laws, such as the ESA, Fish and Wildlife Coordination Act, and NHPA, require consultation and coordination by DOE with other governmental entities, including other federal agencies, state and local agencies, and federally recognized American Indian governments. In addition, the DOE American Indian and Alaska Native Government Policy requires DOE to consult with any American Indian or Alaska Native Tribal Government with regard to any property to which the tribe attaches religious or cultural importance that might be affected by a DOE action.

Most of these consultations are related to biotic resources, cultural resources, and American Indian rights. Biotic resource consultations generally pertain to the potential for activities to disturb sensitive species or habitats. Cultural resource consultations relate to the potential for disruption of important cultural resources and archaeological sites. American Indian consultations are concerned with the potential for impacts on any rights and interests, including the disturbance of ancestral American Indian sites, and sacred sites, traditional and religious practices of American Indians, and natural resources of importance to American Indians.

DOE consults with the appropriate SHPOs, as required by NEPA and Section 106 of NHPA; the USFWS, as required by the ESA of 1973, the Bald and Golden Eagle Protection Act, and the Migratory Bird Treaty Act; and the appropriate state regulators, as required by state laws or regulations.

1	14 INDEX
2	
3	${f A}$
4	
5	accidents
6	environmental justice impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP
7	Vicinity (Sections 4.3.7.3, 6.2.7.3, 7.2.7.3, 8.2.7.3, 9.2.7.3, 10.2.7.3, 11.2.7.3)
8	facility accidents (Appendix C.4.2)
9	human health impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP
10	Vicinity (Sections 4.3.4.2, 6.2.4.1, 7.2.4.1, 8.2.4.1, 9.2.4.1, 10.2.4.1, 11.2.4.1)
11	transportation impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP
12	Vicinity (Sections 4.3.9.3, 6.2.9.3, 7.2.9.3, 8.2.9.3, 9.2.9.3, 10.2.9.3, 11.2.9.3)
13	transportation risk (Section 5.2.9.3, Appendix Sections C.9.1.2, C.9.3, C.9.4.3)
14	activated metals
15	consequences for No Action Alternative (Sections 3.5.1, 3.5.4)
16	description (Section 1.4.1.1)
17	inventories (Appendix B)
18	management practices (Sections 3.2.1, 3.3.1)
19	affected environment
20	at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2, 6.1, 7.1,
21	8.1, 9.1, 10.1, 11.1)
22	impact assessment methodologies (Appendix C)
23	air quality, see also pollutant emissions
24	approach, assumptions, methodology (Section 5.2.1, Appendix C.1.1)
25	at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.1, 4.3.1,
26	6.1.1, 6.2.1, 7.1.1, 7.2.1, 8.1.1, 8.2.1, 9.1.1, 9.2.1, 10.1.1, 10.2.1, 11.1.1, 11.2.1)
27	common consequences for Alternatives 3 to 5 (Section 5.3.1)
28	comparison of consequences across alternatives (Section 2.7.1)
29	summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
30	(Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
31	Alternative 1 (No Action) (Chapter 3)
32	comparison of consequences across alternatives (Section 2.7)
33	description (Section 2.1)
34	laws and regulations (Section 13.3.2.3)
35	long-term human health impacts (Appendix Section E.3)
36	Alternative 2 (geologic, WIPP) (Chapter 4)
37	comparison of consequences across alternatives (Section 2.7)
38	description (Section 2.2)
39	disposal facility design (Appendix D, especially Section D.9)
40	laws and regulations (Section 13.3.2.1)
41	waste inventories, packaging, disposal (Appendix B)
42	Alternative 3 (borehole, all land sites but SRS)
43	at Hanford, INL, LANL, NNSS, WIPP Vicinity, generic sites (Chapters 6, 7, 8, 9, 11, 12)
44	common elements (costs, approaches, assumptions, consequences) with Alternatives 4
45	and 5 (Chapter 5)
46	comparison of consequences across alternatives (Section 2.7)

```
description (Sections 2.3, 5.1.1)
 1
            disposal facility design (Appendix D, especially Sections D.3.2, D.4.2)
 2
 3
            long-term human health impacts (Appendix E.2)
            waste inventories, packaging, disposal (Appendix B)
 4
 5
    Alternative 4 (trench, all land sites)
 6
            at Hanford, INL, LANL, NNSS, SRS, WIPP Vicinity, generic sites (Chapters 6, 7, 8, 9,
 7
               10, 11, 12)
 8
            common elements (costs, approaches, assumptions, consequences) with Alternatives 3
 9
               and 5 (Chapter 5)
            comparison of consequences across alternatives (Section 2.7)
10
            description (Sections 2.4, 5.1.2)
11
12
            disposal facility design (Appendix D, especially Sections D.3.1, D.4.1)
13
            long-term human health impacts (Appendix Section E.2)
14
            waste inventories, packaging, disposal (Appendix B)
15
    Alternative 5 (vault, all land sites)
16
            at Hanford, INL, LANL, NNSS, SRS, WIPP Vicinity, generic sites (Chapters 6, 7, 8, 9,
17
               10, 11, 12)
18
            common elements (costs, approaches, assumptions, consequences) with Alternatives 3
19
               and 4 (Chapter 5)
20
            comparison of consequences across alternatives (Section 2.7)
            description (Sections 2.5, 5.1.4)
21
22
            disposal facility design (Appendix D, especially Sections D.3.3, D.4.3)
23
            long-term human health impacts (Appendix Section E.2)
            waste inventories, packaging, disposal (Appendix B)
24
25
    alternatives not evaluated (Section 2.6)
26
    American Indian tribes, see tribal consultations
27
28
    В
29
30
    borehole disposal, see Alternative 3
31
    \mathbf{C}
32
33
34
    climate
35
            approach, assumptions, methodology (Section 5.2.1)
36
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.1, 4.3.1,
37
               6.1.1, 6.2.1, 7.1.1, 7.2.1, 8.1.1, 8.2.1, 9.1.1, 9.2.1, 10.1.1, 10.2.1, 11.1.1, 11.2.1)
            climate change impacts for Alternatives 3 to 5 (Section 5.3.1.2)
38
39
            common consequences for Alternatives 3 to 5 (Section 5.3.1)
40
            comparison of consequences across alternatives (Section 2.7.1)
41
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
42
    commercial disposal sites, see generic disposal sites
43
    community services, see public services
44
45
```

```
construction
 2
            at all DOE sites (Section 5.1.4.1)
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.1.4, 4.3.3.1,
 3
               4.3.4.1, 4.3.7.1, 6.2, 7.2, 8.2, 9.2, 10.2, 11.2)
 4
 5
            at generic sites (Section 12.2)
 6
            estimates (Appendix D, especially Sections D.5.1, D.6.1, D.7.1, D.8.1, D.9.1)
 7
            considerations for preferred alternative (Sections 2.9.2.2, 2.9.2.4)
 8
    contact-handled waste (Appendix B)
 9
            description and inventory (Section 1.4.1)
10
            Alternative 1 (Chapter 3)
11
            transportation and packaging (Appendix Section D.2.1)
12
    contractor disclosure statement (Appendix J)
    consultation correspondence (Appendix F)
13
    costs (Sections 2.9.2.4, 5.1.4.4, Appendix Section D.5)
15
    criteria pollutants, see pollutant emissions
16
    cultural resources
17
            approach, assumptions, methodology (Section 5.2.10, Appendix Section C.10)
18
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.10, 4.3.10,
19
               6.1.10, 6.2.10, 7.1.10, 7.2.10, 8.1.10, 8.2.10, 9.1.10, 9.2.10, 10.1.10, 10.2.10, 11.1.10,
20
               11.2.10)
21
            common consequences for Alternatives 3 to 5 (Section 5.3.10)
22
            comparison of consequences across alternatives (Section 2.7.10)
23
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
24
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
25
    cumulative impacts
26
            approach, assumptions, methodology (Appendix Section C.12)
27
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.5, 6.4, 7.4,
28
               8.4, 9.4, 10.4, 11.4)
29
            common consequences for Alternatives 3 to 5 (Section 5.3.12)
30
            comparison of consequences across alternatives (Section 2.7.12)
31
32
    D
33
34
    designs for disposal facilities, see disposal facility designs
35
    disposal facility designs (Appendix D)
36
            assumptions (Section 2.8.2)
37
            borehole (Section 5.1.1, Appendix Sections D.3.2, D.4.2)
38
            geologic (Section 4.1)
            trench (Section 5.1.2, Appendix Sections D.3.1, D.4.1)
39
40
            vault (Section 5.1.3, Appendix Sections D.3.3, D.4.3)
41
            cross sections (Figures 1.4.2-2, 1.4.2-3, 1.4.2-4, 5.1.4-4, D-1, D-4, D-7)
42
    distribution of Draft EIS (Appendix H)
    disused radioactive sealed sources (Section 1.1 text box; see also sealed sources)
43
    doses (Section 3.5, Appendix E, see also human health)
44
45
            Alternative 1 (Figures 3.5-1 to 3.5-7, Table 3.5-1)
46
            comparison of land disposal methods (Table 5.3.4-3)
```

```
generic regions (Figures 3.5-1 to 3.5-7, 12.3-1 to 12.3-7; Tables 12.3-1, 12.3-2, 12.3-5)
 1
 2
            Hanford (Figures 6.2.4-1 and -2, Tables 6.1.4-1, 6.2.4-2)
 3
            INL (Figures 7.2.4-1 and -2, Tables 7.1.4-1, 7.2.4-2)
 4
            LANL (Figures 8.2.4.1 and -2, Tables 8.1.4-1, 8.2.4-2)
 5
            NNSS (Table 9.1.4-1)
            peak annual doses (Figures E-21 to E-25, E-27, E-28)
 6
 7
            shipments (Table 5.3.9-1)
 8
            SRS (Figures 10.2.4-1, 10.2.4-2, E-3 to E-9; Tables 10.1.4-1,10.2.4-2)
 9
            WIPP (Figure 11.2.4-1)
10
    \mathbf{E}
11
12
13
    ecology
14
            approach, assumptions, methodology (Section 5.2.5, Appendix C.5)
15
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.5, 4.3.5,
16
               6.1.5, 6.2.5, 7.1.5, 7.2.5, 8.1.5, 8.2.5, 9.1.5, 9.2.5, 10.1.5, 10.2.5, 11.1.5, 11.2.5)
17
            common consequences for Alternatives 3 to 5 (Section 5.3.5)
18
            comparison of consequences across alternatives (Section 2.7.5)
19
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
20
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
21
    emissions, see pollutant emissions
    employment
22
23
            approach, assumptions, methodology (Section 5.2.6, Appendix Section C.6.1)
24
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.6.1, 4.3.6,
25
               6.1.6.1, 6.2.6, 7.1.6.1, 7.2.6, 8.1.6.1, 8.2.6, 9.1.6.1, 9.2.6, 10.1.6.1, 10.2.6, 11.1.6,
26
               11.2.6)
27
            common consequences for Alternatives 3 to 5 (Section 5.3.6)
28
            comparison of consequences across alternatives (Section 2.7.6)
29
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
30
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
31
    endangered species, see ecology
32
    environmental consequences (or impacts)
33
            assessment methodologies (Appendix C)
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.3, 6.2, 7.2,
34
35
               8.2, 9.2, 10.2, 11.2)
36
            common for Alternatives 3 to 5 (Section 5.3)
37
            summary for WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
38
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
39
    environmental justice
40
            approach, assumptions, methodology (Section 5.2.7, Appendix Section C.7)
41
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.7, 4.3.7,
               6.1.7, 6.2.7, 7.1.7, 7.2.7, 8.1.7, 8.2.7, 9.1.7, 9.2.7, 10.1.7, 10.2.7, 11.1.7, 11.2.7)
42
43
            common consequences for Alternatives 3 to 5 (Section 5.3.7)
44
            comparison of consequences across alternatives (Section 2.7.7)
45
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
46
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
47
```

```
F
 1
 2
 3
    fiscal conditions
 4
            approach, assumptions, methodology (Section 5.2.6)
 5
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.6.1, 4.3.6,
 6
               6.1.6.6, 6.2.6, 7.1.6.6, 7.2.6, 8.1.6.6, 8.2.6, 9.1.6.6, 9.2.1, 10.1.6.6, 10.2.6, 11.1.6,
 7
               11.2.6)
 8
            common consequences for Alternatives 3 to 5 (Section 5.3.6)
 9
            comparison of consequences across alternatives (Section 2.7.6)
10
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
11
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
12
    future actions, see post-closure
13
14
    G
15
16
    generic disposal sites (Section 1.4.3.8, Chapter 12)
17
    geology
18
            approach, assumptions, methodology (Section 5.2.2, Appendix Section C.2)
19
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.2.1, 4.3.2,
20
               6.1.2.1, 6.2.2, 7.1.2.1, 7.2.2, 8.1.2.1, 8.2.2, 9.1.2.1, 9.2.2, 10.1.2.1, 10.2.2, 11.1.2.1,
21
               11.2.2)
22
            common consequences for Alternatives 3 to 5 (Section 5.3.2)
23
            comparison of consequences across alternatives (Section 2.7.2)
24
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
25
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
26
    geologic disposal, see Alternative 1
27
    glossary (front matter, after Notation)
28
    groundwater
29
            approach, assumptions, methodology (Section 5.2.3, Appendix Section C.3)
30
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.3.2, 4.3.3,
31
               6.1.3.2, 6.2.3, 7.1.3.2, 7.2.3, 8.1.3.2, 8.2.3, 9.1.3.2, 9.2.3, 10.1.3.2, 10.2.3, 11.1.3,
32
               11.2.3)
33
            common consequences for Alternatives 3 to 5 (Section 5.3.3)
34
            comparison of consequences across alternatives (Section 2.7.3)
35
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
36
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
37
    Group 1 and 2 wastes (Sections 1.4.1, 2.8.1, 3.2, Appendix B, Appendix Section E.5;
38
       Figures 4.3.4-2, 4.3.2-3. 4.3.4-4, E-3 to E-9; Tables 1.4.1-2, 4.1.4-1, 5.1-3, 12.3-1 to 12.3-6,
39
        B-1, B-4 to B-7, E-22 to E-25)
40
            at Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Tables 6.2.4-2, 6.2.4-3,
41
               6.2.9-1, 6.2.9-2, 7.2.4-2, 7.2.4-3, 7.2.9-1, 7.2.9-2, 8.2.4-2, 8.2.4-3, 8.2.9-1, 8.2.9-2,
42
               9.2.9-1, 9.2.9-2, 10.2.4.2, 10.2.4-3, 10.2.9-1, 10.2.9-2, 11.2.9-1, 11.2.9-2
43
    GTCC-like waste
            at WIPP (Section 4.1.4)
44
45
            current management (Section 3.3)
46
            inventory (Appendix B)
```

```
Alternative 1 consequences (Sections 3.5.4 to 3.5.6)
 1
 2
            types, quantities, radioactivity (Section 1.4.1; Table 1.4.1-2)
 3
    GTCC LLRW
            at WIPP (Section 4.1.4)
 4
 5
            current management (Section 3.2)
 6
            inventory (Appendix B)
 7
            Alternative 1 (No Action) consequences (Sections 3.5.1, 3.5.2, 3.5.3)
 8
            types, quantities, radioactivity (Section 1.4.1; Table 1.4.1-2)
 9
    GTRI/OSRP (Sections 1.4.1.2, 1.4.3.4, 1.6.1, 2.1, 2.9.1, 3.1, 3.2.2, 3.5.2, Appendix
10
        Section B.3.2)
11
12
    H
13
14
    Hanford Site (Section 1.4.3.2, Chapter 6)
15
    highest-exposed individual
16
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.3.9.2,
17
               6.2.9.2, 7.2.9.2, 8.2.9.2, 9.2.9.2, 10.2.10.2, 11.2.11.2)
18
            common consequences for Alternatives 3 to 5 (Section 5.3.9.2)
19
            methodology (Appendix Section C.9.2.2)
20
    housing
21
            approach, assumptions, methodology (Section 5.2.6, Appendix Section C.6.3)
22
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.6.5, 4.3.6,
23
               6.1.6.5, 6.2.6, 7.1.6.5, 7.2.6, 8.1.6.5, 8.2.6, 9.1.6.5, 9.2.6, 10.1.6.5, 10.2.6, 11.1.6,
24
               11.2.6)
25
            common consequences for Alternatives 3 to 5 (Section 5.3.6)
26
            comparison of consequences across alternatives (Section 2.7.6)
27
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
28
29
    human health
30
            approach, assumptions, methodology (Section 5.2.4, Appendix Section C.1.1)
31
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.4, 4.3.4,
32
               6.1.4, 6.2.4, 7.1.4, 7.2.4, 8.1.4, 8.2.4, 9.1.4, 9.2.4, 10.1.4, 10.2.4, 11.1.4, 11.2.4)
33
            at generic sites (Section 12.2)
34
            common consequences for Alternatives 3 to 5 (Section 5.3.4)
35
            comparison of consequences across alternatives (Section 2.7.4)
36
            post-closure (long-term) impacts (Appendix E, Section 12.4)
37
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
38
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
39
40
    Ι
41
42
    Idaho National Laboratory (INL) (Section 1.4.3.3, Chapter 7)
43
    impact assessment methodologies (Appendix C)
44
    inadvertent human intruder (Sections 2.9.2.1, 5.5)
    institutional controls/control period, see also short-term impacts (Sections 3.5, 5.6)
45
46
```

```
intentional destructive acts (Sections 2.7.4.3, 4.3.4.4, 5.3.4.4)
    irreversible and irretrievable commitment of resources (Sections 4.6, 5.4)
 2
 3
    J, K
 4
 5
 6
    No entries
 7
 8
    L
 9
10
    land use
11
            approach, assumptions, methodology (Section 5.2.8, Appendix Section C.8)
12
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.8, 4.3.8,
13
               6.1.8, 6.2.8, 7.1.8, 7.2.8, 8.1.8, 8.2.8, 9.1.8, 9.2.8, 10.1.8, 10.2.8, 11.1.8, 11.2.8)
14
            common consequences for Alternatives 3 to 5 (Section 5.3.8)
15
            comparison of consequences across alternatives (Section 2.7.8)
16
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
17
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
18
    latent cancer fatality (LCF) risks (Tables 3.5-2, 5.3.4-4, 6.2.4-3, 7.2.4-3, 8.2.4-3, 10.2.4-3,
19
        12.3-2, 12.3.-4, 12.3-6
20
    laws (Section 2.9.3.3, Chapter 14)
21
            institutional controls (Section 5.6)
22
            settlement agreements and consent orders (Sections 6.5, 7.5, 8.5, 9.5, 10.5)
23
            statutory and regulatory provisions (Sections 4.7, 11.6)
24
    leaching (Appendix Sections E.2.2, E.3.2)
25
    long-term impacts (Section 3.5, Appendix E)
26
    Los Alamos National Laboratory (LANL) (Section 1.4.3.4, Chapter 8)
27
    low-income populations
28
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.7, 4.3.7,
29
               6.1.7, 6.2.7, 7.1.7, 7.2.7, 8.1.7, 8.2.7, 9.1.7, 9.2.7, 10.1.7, 10.2.7, 11.1.7, 11.2.7)
30
31
    \mathbf{M}
32
33
    maps of DOE sites (Figures 1.4.3-1 and 2 for WIPP, 1.4.3-4 for Hanford, 1.4.3-5 for INL,
34
               1.4.3-6 for LANL, 1.4.3-7 for NNSS, 1.4.3-8 for SRS, and 1.4.3-9 for WIPP Vicinity)
35
    mineral and energy resources
36
            approach, assumptions, methodology (Section 5.2.2, Appendix Section C.3)
37
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.2.2, 4.3.6,
38
               6.1.2.3, 6.2.3, 7.1.2.3, 7.2.3, 8.1.2.3, 8.2.3, 9.1.2.3, 9.2.3, 10.1.2.3, 10.2.3, 11.1.3,
39
               11.2.3)
40
            common consequences for Alternatives 3 to 5 (Section 5.3.2)
41
            comparison of consequences across alternatives (Section 2.7.2)
42
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
43
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
    minority populations
44
45
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.7, 4.3.7,
46
               6.1.7, 6.2.7, 7.1.7, 7.2.7, 8.1.7, 8.2.7, 9.1.7, 9.2.7, 10.1.7, 10.2.7, 11.1.7, 11.2.7)
47
```

```
N
 1
 2
 3
    NAAQS (National Ambient Air Quality Standards), see air quality
    NEPA (National Environmental Policy) (Sections 1.3 to 1.6, Appendix Section A.1;
 5
        Figures 1.5-1, A-1; Tables 5.2.10-1, A-2)
    Nevada National Security Site (NNSS) (Section 1.4.3.5, Chapter 9)
    Nevada Test Site (NTS), see Nevada National Security Site (NNSS)
    No Action Alternative, see Alternative 1
 9
    noise
10
            Alternative 2 (Sections 4.2.1.3, 4.3.1.2)
11
            approach, assumptions, methodology (Section 5.2.1.2, Appendix Section C.1.2)
12
            comparison of consequences across alternatives (Section 2.7.1)
13
            existing environment at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
14
               (Sections 6.1.1.4, 7.1.1.4, 8.1.1.4, 9.1.1.4, 10.1.1.4, 11.1.1)
15
    nonradiological impacts (Sections 2.7.9, 4.3.4.1.2, 5.2.4.4, 5.2.9, Appendix Section C.4.1)
    Nuclear Regulatory Commission (Sections 1.1, 1.4, 2.9, 12.2, 13, Appendices A, C)
16
17
18
    0
19
20
    operations
21
            at all DOE sites (Section 5.1.4.2)
22
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.1.4, 4.3.3.2,
23
               4.3.4.1, 4.3.7.2, 6.2, 7.2, 8.2, 9.2, 10.2, 11.2)
24
            at generic sites (Section 12.2)
            estimates (Appendix D, especially Sections D.5.2, D.6.2, D.7.2, D.8.2, D.9.2)
25
26
            considerations for preferred alternative (Sections 2.9.2.2, 2.9.2.4)
27
    Other Waste
28
            consequences for No Action Alternative (Sections 3.5.3, 3.5.6)
29
            description (Section 1.4.1.3)
30
            inventories (Appendix B)
31
            management practices (Sections 3.2.3, 3.3.3)
32
33
    P
34
35
    personal income
            approach, assumptions, methodology (Section 5.2.6, Appendix Section C.6.1)
36
37
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.6.3, 4.3.6,
               6.1.6.3, 6.2.6, 7.1.6.3, 7.2.6, 8.1.6.3, 8.2.6, 9.1.6.3, 9.2.6, 10.1.6.3, 10.2.6, 11.1.6,
38
39
               11.2.6)
40
            common consequences for Alternatives 3 to 5 (Section 5.3.6)
41
            comparison of consequences across alternatives (Section 2.7.6)
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
42
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
43
44
```

```
pollutant emissions
 1
 2
            annual at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Tables 4.3.1-1,
 3
               4.3.1-2, 6.1.1-1, 6.1.1-2, 7.1.1-1, 7.1.1-2, 8.1.1-1, 8.1.1-2, 9.1.1-1, 9.1.1-2, 10.1.1-1,
               10.1.2-2, 11.1.1-1, 11.1.1-2
 4
 5
    population
 6
            approach, assumptions, methodology (Section 5.2.6, Appendix Section C.6.2)
 7
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.6.4, 4.3.6,
 8
               6.1.6.4, 6.2.6, 7.1.6.4, 7.2.6, 8.1.6.4, 8.2.6, 9.1.6.4, 9.2.6, 10.1.6.4, 10.2.6, 11.1.6,
 9
               11.2.6)
10
            common consequences for Alternatives 3 to 5 (Section 5.3.6)
11
            comparison of consequences across alternatives (Section 2.7.6)
12
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
13
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
14
    post-closure (Sections 2.9.2.3, 5.3.4.3, 12.3, Appendix E)
15
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.3.4.3,
16
               6.2.4.2, 7.2.4.2, 8.2.4.2, 9.2.4.2, 10.2.4.2, 11.2.4.2)
17
    preferred alternative (Section 2.9)
18
    preparers (Appendix I)
19
    proposed action (Section 1.2)
20
    public scoping process (Section 1.5, Appendix A)
21
    public services
22
            approach, assumptions, methodology (Section 5.2.6, Appendix Section C.6.4)
23
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.6.7, 4.3.6,
24
               6.1.6.7, 6.2.6, 7.1.6.7, 7.2.6, 8.1.6.7, 8.2.6, 9.1.6.7, 9.2.6, 10.1.6.7, 10.2.6, 11.1.6,
25
               11.2.6)
26
            common consequences for Alternatives 3 to 5 (Section 5.3.6)
27
            comparison of consequences across alternatives (Section 2.7.6)
28
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
29
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
30
    purpose and need for agency action (Section 1.1)
31
32
    Q
33
34
    No entries
35
36
    R
37
38
    radiation or radiological doses, see doses
39
    radiological impacts (Section 5.2.4.3, Appendix E)
40
    release rates (Sections 2.8.3, 2.8.4, 5.3.4.3, Appendix Sections E.2.3, E.3.3); see doses
41
    rail transportation, see transportation
42
    regional disposal sites, see generic disposal sites
43
    regulations, see laws
44
```

```
remote-handled waste (Appendix B)
 2
            description and inventory (Section 1.4.1)
 3
            Alternative 1 (Chapter 3)
            transportation and packaging (Appendix D.2.2)
 4
 5
    routine conditions (Sections 2.7.9, 2.9.3.1, 4.2.9.1, 5.3.9)
 6
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.9.1,
               4.3.9.2, 6.2.9.2, 7.2.9.2, 8.2.9.2, 9.2.9.2, 10.2.9.2, 11.2.9.2)
 7
 8
 9
    S
10
11
    Savannah River Site (SRS) (Section 1.4.3.6, Chapter 10)
12
    sealed sources
13
            consequences for No Action Alternative (Sections 3.5.2, 3.5.5)
14
            description (Section 1.4.1.2)
15
            inventories (Appendix B)
16
            management practices (Sections 3.2.2, 3.3.2)
17
    short-term impacts
18
    socioeconomics
19
            approach, assumptions, methodology (Section 5.2.6, Appendix Section C.6.2)
20
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.6, 4.3.6,
21
               6.1.6, 6.2.6, 7.1.6, 7.2.6, 8.1.6, 8.2.6, 9.1.6, 9.2.6, 10.1.6, 10.2.6, 11.1.6, 11.2.6)
22
            common consequences for Alternatives 3 to 5 (Section 5.3.6)
23
            comparison of consequences across alternatives (Section 2.7.6)
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
24
25
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
26
    soils
27
            approach, assumptions, methodology (Section 5.2.2, Appendix Section C.2)
28
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.2, 4.3.2,
29
               6.1.2.2, 6.2.2, 7.1.2.2, 7.2.6, 8.1.2.2, 8.2.2, 9.1.2.2, 9.2.2, 10.1.2.2, 10.2.2, 11.1.2,
30
               11.2.2)
31
            common consequences for Alternatives 3 to 5 (Section 5.3.2)
32
            comparison of consequences across alternatives (Section 2.7.2)
33
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
34
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
35
    soil/water distribution coefficients to do
    special-status species, see ecology
36
37
    surface water
38
            approach, assumptions, methodology (Section 5.2.3, Appendix C.3)
39
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.3.1, 4.3.3,
40
            6.1.3.1, 6.2.3, 7.1.3.1, 7.2.3, 8.1.3.1, 8.2.3, 9.1.3.1, 9.2.3, 10.1.3.1, 10.2.3, 11.1.3, 11.2.3)
41
            common consequences for Alternatives 3 to 5 (Section 5.3.3)
42
            comparison of consequences across alternatives (Section 2.7.3)
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
43
44
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
45
46
```

```
\mathbf{T}
 1
 2
 3
    terrestrial ecology (wildlife and vegetation), see ecology
    threatened species, see ecology
 5
    traffic (Section 5.3, Appendix Section C.6.5)
 6
            counts at WIPP, Hanford, INL, LANL, NNSS, SRS (Tables 4.3.6-1, 6.1.9-1, 7.1..9-1,
 7
               8.1.9-2, 9.1.9-1, 10.1.9-1)
 8
     transportation
 9
            approach, assumptions, methodology, risk analysis (Section 5.2.9, Appendix sections
10
               C.9, D.2, D.8)
11
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.9, 4.3.9,
12
               6.1.9, 6.2.9, 7.1.9, 7.2.9, 8.1.9, 8.2.9, 9.1.9, 9.2.9, 10.1.9, 10.2.9, 11.1.9, 11.2.9)
13
            common consequences for Alternatives 3 to 5 (Section 5.3.9)
14
            comparison of consequences across alternatives (Section 2.7.9)
15
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
16
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
17
     transuranic waste
18
            definition (Section 1.4.1 text box)
19
     trench disposal, see Alternative 4
20
     tribal consultations (Sections 1.8, 2.7.7, 2.9.3.2, 5.2.10, 13.8, Appendix G)
21
            Consolidated Group of Tribes and Organizations (Chapter 9, NNSS)
22
            CTUIR or Umatilla (Chapter 6, Hanford)
23
            Nez Perce (Chapter 6, Hanford)
24
            Pueblo (Chapter 8, LANL)
25
            Wanapum (Chapter 6, Hanford)
26
    truck transportation, see transportation
27
28
    \mathbf{U}
29
30
    uncertainties (Section 2.8, Appendix Section C.9.5)
31
     unemployment
32
            approach, assumptions, methodology (Section 5.2.6, Appendix C.6.2)
33
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.6.2, 4.3.6,
34
               6.1.6.2, 6.2.6, 7.1.6.2, 7.2.6, 8.1.6.2, 8.2.6, 9.1.6.2, 9.2.6, 10.1.6.2, 10.2.6, 11.1.6,
35
            11.2.6)
36
            common consequences for Alternatives 3 to 5 (Section 5.3.6)
37
            comparison of consequences across alternatives (Section 2.7.6)
38
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
39
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
40
     U.S. Nuclear Regulatory Commission (see Nuclear Regulatory Commission)
     utility consumption (Tables %.4-2, D-11, D-12)
41
42
43
    \mathbf{V}
44
45
    vault disposal, see Alternative 5
     vegetation, see ecology
46
47
```

```
W
 1
 2
 3
    Waste Isolation Pilot Plant (WIPP) (Section 1.4.3.1, Chapter 4)
    waste generation times (Section 3.4.2, Appendix Section B.4)
 5
    waste inventories (Appendix B); see GTCC-like waste and GTCC LLRW
    waste management
 6
 7
            approach, assumptions, methodology (Section 5.2.11, Appendix C.11)
 8
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.11, 4.3.11,
 9
               6.1.11, 6.2.11, 7.1.11, 7.2.11, 8.1.11, 8.2.11, 9.1.11, 9.2.11, 10.1.11, 10.2.11, 11.1.11,
10
               11.2.11)
11
            common consequences for Alternatives 3 to 5 (Section 5.3.11)
12
            comparison of consequences across alternatives (Section 2.7.11)
13
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
14
15
    water resources
16
            approach, assumptions, methodology (Section 5.2.3, Appendix C.3)
17
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.3, 4.3.3,
18
               6.1.3, 6.2.3, 7.1.3, 7.2.3, 8.1.3, 8.2.3, 9.1.3, 9.2.3, 10.1.3, 10.2.3, 11.1.3, 11.2.3)
19
            common consequences for Alternatives 3 to 5 (Section 5.3.3)
20
            comparison of consequences across alternatives (Section 2.7.3)
21
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
22
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
23
    water use
24
            approach, assumptions, methodology (Section 5.2.3, Appendix C.3)
25
            at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity (Sections 4.2.3.3, 4.3.3,
26
               6.1.3.3, 6.2.3, 7.1.3, 7.2.3, 8.1.3, 8.2.3, 9.1.3, 9.2.3, 10.1.3.3, 10.2.3, 11.1.3, 11.2.3)
27
            common consequences for Alternatives 3 to 5 (Section 5.3.3)
28
            comparison of consequences across alternatives (Section 2.7.3)
29
            summary of impacts at WIPP, Hanford, INL, LANL, NNSS, SRS, and WIPP Vicinity
30
               (Sections 4.4, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3)
31
    wildlife, see ecology
    wetlands, see ecology
32
33
    WIPP Vicinity (Section 1.4.3.7, Chapter 11)
34
35
    X, Y, Z
36
37
    No entries
38
```

14-12

APPENDIX A:

3 4 5

1 2

SUMMARY OF THE PUBLIC SCOPING PROCESS FOR THE GTCC LLRW AND GTCC-LIKE WASTE ENVIRONMENTAL IMPACT STATEMENT

6 7

A.1 PUBLIC SCOPING

8

10

11

12 13

15

16

17

18

The U.S. Department of Energy (DOE) issued the Advance Notice of Intent (ANOI) to Prepare an Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste on May 11, 2005 (*Federal Register*, Volume 70, page 24775 [70 FR 24775]), and it issued the Notice of Intent (NOI) for the Greater-Than-Class C Low-Level Radioactive Waste Environmental Impact Statement (GTCC EIS) on July 23, 2007 (72 FR 40135). A printing correction was issued on July 31, 2007 (72 FR 41819). The NOI announced nine public scoping meetings and a comment period that would last from July 23 through September 21, 2007.

19 20 21

22

23

2425

26

27

The issuance of the ANOI and NOI marked the start of the National Environmental Policy Act (NEPA) process for the GTCC EIS that included opportunities for public participation. Figure A-1 illustrates the major steps that are being taken by DOE in preparing the GTCC EIS and indicates the public participation steps in this process. The ANOI that DOE had issued on May 11, 2005 (70 FR 24775), invited preliminary comments on the potential scope of the EIS. Those comments are discussed in the NOI.

28 29 30

31

32

33

34

35

DOE conducted scoping meetings to support the GTCC EIS at the locations and on the dates shown in Table A-1. The number of people who attended these meetings is also presented. The scoping meeting locations were selected on the basis of the proposed alternatives identified by DOE in the NOI for the GTCC EIS. Transcripts for all nine meetings have been posted on the GTCC EIS website at http://www.gtcceis.anl.gov.

36 37 38

39

40

41

42

43 44 Public scoping comments for the NOI were received through several means: (1) submittal of the comment form on the GTCC EIS website, (2) e-mail through the website or directly to the document

FIGURE A-1 GTCC EIS NEPA Process

manager, (3) mailed letters and faxes to the document manager, (4) oral comments at the public scoping meetings, and (5) written comments submitted at the public scoping meetings. A total of 249 individual comments were received and can be read on the GTCC EIS website.

Advance Notice of Intent (ANOI) **Public Comment** on ANOI Opportunities for Public Involvement Notice of Intent (NOI) **Public Scoping Process Draft EIS Public Comment** on Draft EIS Final EIS Report to Congress Congressional Action on the Report to Congress Record of Decision (ROD)

TABLE A-1 Public Scoping Meeting Locations, Dates, and Attendance

Location	Date	Attendance
Carlsbad, New Mexico	August 13, 2007	60
Los Alamos, New Mexico	August 14, 2007	42
Oak Ridge, Tennessee	August 22, 2007	23
North Augusta, South Carolina	August 23, 2007	32
Troutdale, Oregon	August 27, 2007	72
Pasco, Washington	August 28, 2007	35
Idaho Falls, Idaho	August 30, 2007	17
Las Vegas, Nevada	September 4, 2007	28
Washington, D.C.	September 10, 2007	25
Total		334

All public scoping comments were reviewed and considered to identify the issues to be addressed in the EIS. These comments are presented in Tables A-2 and A-3. The issues identified in these comments are divided into two categories: those that are within the scope of the EIS and those that are outside the scope. The issues that were determined to be within the scope of the EIS and the rationale for this determination are presented in Table A-2, with additional clarifying information as appropriate. Issues that were considered to be outside the scope of the EIS are presented in Table A-3, along with the rationale for this determination. The issues considered within the scope have been incorporated into the EIS analyses.

TABLE A-2 Public Scoping Issues within the Scope of the EIS

Public Scoping Issue

Rationale

1. Alternatives

1A. Disposal of GTCC low-level radioactive waste (LLRW) and GTCC-like waste at the sites proposed in the NOI should not be considered because these sites are still undergoing cleanup. In addition, these sites either have regulatory conditions or site characteristics (e.g., geology) that make them unsuitable for consideration in the EIS.

The basis for proposing the sites to be considered in the NOI and evaluated in the EIS was their mission compatibility, in the sense that all of these sites have radioactive waste disposal operations as part of their current missions. These sites are thus considered viable for analysis for disposal of this waste in the EIS. The scope of the EIS includes the identification of potential disposal sites and the evaluation of the feasibility and effectiveness of these sites for hosting a safe disposal facility for GTCC LLRW and GTCC-like waste.

1B. The preferred alternative for disposal of GTCC LLRW and GTCC-like waste should be a geologic repository.

Disposal at the Waste Isolation Pilot Plant (WIPP) is one of the alternatives evaluated in this EIS. In addition, DOE is evaluating alternative methods of disposal (i.e., borehole, trench, and vault disposal). NRC regulations governing disposal of GTCC LLRW contemplate that nongeologic disposal alternatives may be approved (see Title 10, Section 61.55, in the *Code of Federal Regulations*; 10 CFR 61.55(a)(2)(iv)).

1C. WIPP should be removed as a potential disposal site for evaluation in the EIS because there are legislative limitations on the types of waste this facility can receive (specifically, it can receive only defense-related transuranic [TRU] waste). At a minimum, the EIS should acknowledge that use of WIPP for this purpose is outside the limits of what can be disposed of at WIPP, and additional legal processes and stakeholder involvement would be necessary before WIPP could be used for disposal of GTCC LLRW and GTCC-like waste.

The EIS covers the full range of reasonable disposal sites, including WIPP. Council on Environmental Quality (CEQ) and DOE guidance requires that EISs evaluate the range of reasonable alternatives, notwithstanding statutory or regulatory requirements. The EIS describes the statutory and regulatory requirements for WIPP and the other disposal alternatives and discusses whether legislation or regulatory modifications might be needed to implement these alternatives.

1D. The proposed Yucca Mountain repository should not be included as one of the alternatives in the EIS. There are many indications suggesting that this repository will not even open.

DOE has not included the Yucca Mountain repository as an alternative in this EIS. The Administration has determined that developing a permanent repository for high-level waste and spent nuclear fuel at Yucca Mountain, Nevada, is not a workable option and that the project should be terminated. No funding has been requested in the fiscal year 2011 budget for the Yucca Mountain project. Therefore, because a repository for high-level waste and spent nuclear fuel at Yucca Mountain has been determined not to be a workable option and will not be developed, co-disposal at a Yucca Mountain repository is not a reasonable alternative.

TABLE A-2 (Cont.)

Public Scoping Issue

Rationale

2. Inventory

2A. What is GTCC-like waste and why is DOE including the GTCC-like waste inventory in the scope of this EIS? The EIS should include a clear definition of GTCC LLRW and GTCC-like waste to ensure the GTCC-like wastes are indeed comparable to GTCC LLRW and that additional wastes are not added to this inventory in the future. How has comparable waste been generated and disposed of in the past?

GTCC-like waste is LLRW and TRU waste owned or generated by DOE that has characteristics similar to GTCC LLRW and may not have a path to disposal. DOE is responsible for disposing of both GTCC LLRW and GTCC-like waste, and DOE considers it to be cost effective to develop a joint solution for both of these similar types of waste. This EIS provides a clear definition of the wastes being addressed in the scope of this assessment. The majority of the DOE LLRW has an identified path to disposal at existing DOE facilities, but some DOE LLRW and TRU waste does not. It is this waste that DOE has included in the EIS. The majority of the GTCC-like waste is TRU waste that may not meet the criteria for disposal at WIPP. DOE's use of the term GTCC-like waste does not have the effect of creating a new classification of radioactive waste. This waste remains classified as LLRW and TRU waste under DOE Order 435.1, and it is subject to all applicable disposal requirements for LLRW and TRU waste under that order and applicable law. Comparable wastes (resulting from reactor decommissioning projects) have historically been disposed of by shallow land burial at DOE sites (LLRW) and at WIPP (TRU waste generated by atomic energy defense activities) in accordance with applicable statutes, regulations, and policies.

2B. More detailed characterization information should be provided on the waste inventory, including the source of the waste, its location (by state), and its specific characteristics. In addition, the errors in Table 1 of the NOI made it difficult to understand the scope of the waste inventory. It is not clear how the volumes and activities for stored and projected waste were developed, and the distinction between what is considered stored versus what is considered projected is not clear either. The sources of information and important assumptions used to develop this information should be provided in the EIS, along with an indication of the accuracy of the estimates.

The GTCC EIS and the supporting technical documents provide sufficient characterization information on the wastes to allow for a comparative analysis of the environmental impacts associated with disposal of these wastes. Details on the approach used to develop the inventory information are provided in this EIS and in supporting documents, including the identification of relevant references. The Draft EIS provides information on the current location of GTCC waste generators (e.g., Table B-2 in Appendix B).

2C. The time frame for developing the inventory should be extended to address nuclear power plants that may be constructed in the future.

The time frame corresponds to wastes currently available for disposal as well as those that are reasonably expected to be generated in the near future, consistent with NEPA requirements. Since the issuance of the July 23, 2007, NOI, DOE has updated the inventory to include potential GTCC LLRW from the proposed construction of 33 new commercial power reactors as identified by the U.S. Nuclear Regulatory Commission (NRC).

Public Scoping Issue Rationale

2D. The EIS should include waste that will be generated by the Global Nuclear Energy Partnership (GNEP) in its scope.

DOE is not evaluating potential GTCC and GTCC-like waste from the GNEP in this EIS. DOE announced via a *Federal Register* notice (74 FR 31017) on June 29, 2009, that it has decided to cancel preparation of the GNEP Programmatic EIS because DOE is no longer pursuing domestic commercial reprocessing, which was the primary focus of the prior Administration's domestic GNEP program.

2E. The EIS should identify the quantity of mixed waste requiring disposal and identify the process for working with the U.S. Environmental Protection Agency (EPA) and respective state agencies to manage these wastes.

The GTCC LLRW and GTCC-like waste inventory includes a very small volume of mixed waste that may require disposal. It is assumed that the generator of the waste will treat it to remove the hazardous waste characteristic or obtain a waiver de-listing it from the appropriate regulatory authority so that the waste is no longer regulated as mixed waste. No mixed GTCC LLRW or GTCC-like waste is assumed to be disposed of in the facilities being evaluated in the EIS. The quantity of potential mixed waste is about 170 m³ (6,000 ft³).

2F. Concentration averaging should not be used to reduce the amount of GTCC LLRW and GTCC-like waste addressed in the EIS.

Generators of LLRW may use concentration averaging as allowed by NRC regulations (10 CFR 61.55(a)(8)) and associated guidance. The waste inventory estimates developed by DOE for the EIS assumed concentration averaging was used for the sealed sources to determine how much of this waste was GTCC LLRW and how much was GTCC-like waste. This approach was taken consistent with NRC guidance, and it eliminated the lower-activity sealed sources from the waste inventory. The sealed sources represent less than 2% of the total activity in the GTCC LLRW and GTCC-like waste. Use of this approach has a very minor impact on the results presented in the EIS.

3. Impacts

3A. The EIS should evaluate cumulative impacts from multiple actions (in addition to the impacts from disposal of GTCC LLRW and GTCC-like waste) occurring at the sites proposed for consideration.

Cumulative impacts associated with nearby actions at the various potential disposal sites are addressed in the EIS, consistent with CEQ and DOE NEPA guidance.

3B. Environmental issues, such as transportation impacts associated with routine (incident-free) activities and accidents, worker risks, public health risks, cultural resources, effects on local economies, environmental justice, irreversible and irretrievable commitments of resources, and other impacts, should be addressed in the EIS on a site-specific basis.

All of these issues are addressed in the EIS.

3C. Conceptual designs, drawings, and site layouts of the disposal technologies should be included in the EIS and used to perform the EIS analyses.

This information is included in the EIS and supporting documents.

Public Scoping Issue Rationale

3D. The time frame for conducting the EIS is not sufficient to allow for an adequate assessment of environmental impacts as required by NEPA, including receipt and evaluation of input from the general public and outside experts. Public involvement is a very important component of the NEPA process.

The amount of time to prepare the EIS is sufficient to perform a credible assessment of environmental impacts as required by NEPA. DOE agrees that public involvement is a very important component of this process and has provided sufficient time for stakeholder input consistent with CEQ and DOE NEPA regulations and policies.

3E. The impacts of sabotage or acts of terrorism on the disposal facility or facilities and the use of the waste materials to make dirty bombs should be evaluated. This evaluation was performed and is included in this EIS in Sections 4.3.4.4 and 5.3.4.4.

3F. What is the scope of the EIS and evaluation endpoints (e.g., period of time with respect to risk of release)? The EIS should identify long-term monitoring requirements for the disposal sites.

The scope of the EIS addresses all aspects associated with disposal of GTCC LLRW and GTCC-like waste. Impacts are evaluated at the various time periods associated with the actions needed to safely dispose of these wastes. The long-term impacts on groundwater are evaluated for 10,000 years or to the point of maximum dose, whichever is longer. The EIS identifies the need for long-term monitoring of disposal sites, as appropriate. However, specific long-term monitoring requirements would be determined as part of the regulatory approval process for a GTCC disposal facility.

3G. The EIS needs to discuss how water quality standards will be met at the point of compliance for the life of the project, especially at sites having shallow groundwater tables.

The EIS addresses potential water quality impacts for the life of the project at all potential waste disposal sites.

3H. The life-cycle costs for each alternative should be provided in the EIS and should address all aspects of the project, including construction, waste disposal operations, and site closure. These estimates need to include long-term surveillance and maintenance costs. A conceptual timeline for these activities should also be included in the EIS.

Estimated annual costs for construction and operations of the conceptual designs being evaluated are included in this EIS. Estimated life-cycle costs are not included, because information on long-term surveillance and maintenance is not currently available, since these aspects of the project should be addressed within the context of a preferred alternative, which has not been identified.

A timeline is not included, since a timeline is not needed to compare the relative merits of the alternatives, and it is much too early in the process to have this type of detailed information. A conceptual timeline will be developed after a record of decision (ROD) that selects a disposal alternative or alternatives to be implemented has been issued.

3I. The EIS should incorporate available site-specific data for the generic commercial facility evaluations. In addition, the evaluation of the disposal of GTCC LLRW and GTCC-like waste in boreholes for all sites being evaluated should be based on actual site data, given the past poor results achieved with boreholes.

Site-specific data were used to identify the important parameters necessary to site and operate a disposal facility for GTCC wastes at arid and humid generic sites. The analyses of the various disposal technologies (including the use of boreholes) in the EIS were based on actual site data to the extent necessary to provide defensible evaluations. A site-specific evaluation would be done in a subsequent NEPA review as appropriate.

Public Scoping Issue

Rationale

3J. The radiological risk analyses should be based on conservative assumptions, since the risks associated with radiation exposure are greater than those estimated years ago. It is possible that the true hazard is still not fully recognized. The most recent scientific information should be used for the EIS analyses, including the information given in Report No. VII on the Biological Effects of Ionizing Radiation (BEIR VII) (see National Research Council, 2006, *Health Risks from Exposure to Low Levels of Ionizing Radiation, BEIR VII Phase 2,* Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, Washington, D.C., published by The National Academies Press, Washington, D.C.).

Conservative assumptions that still allow for a realistic comparison of alternatives were used in the radiological dose calculations presented in the EIS. Recent scientific information (including that given in BEIR VII) was consulted to confirm that the approaches used in the EIS are appropriate.

4. Tribal Concerns

4A. Consultation with tribal nations should be initiated early in the process.

4B. The existence of Native American ancestral lands, particularly at Los Alamos National Laboratory (LANL) and Idaho National Laboratory (INL), need to be honored. These lands have been used by Native Americans for a wide range of cultural activities for many years, and these uses have been guaranteed by treaties with the United States. Use of these sites for disposal of GTCC LLRW and GTCC-like waste could have a negative impact on these uses.

Consultations with the various tribal nations have been initiated and are ongoing, as reflected in this EIS.

The presence of the Native Americans in the vicinity of the potential disposal sites is addressed in the EIS.

5. Other

5A. An EIS does not need to be prepared by DOE because other EIS documents already address this waste.

Under the Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA), Public Law 99-240, the Federal Government is responsible for the disposal of GTCC LLRW. In Section 631 of the Energy Policy Act of 2005, Congress directed DOE to designate an entity within DOE to have responsibility for completing activities needed to provide a facility for GTCC LLRW disposal and to provide an estimate of the cost and schedule to complete an EIS and ROD for a permanent disposal facility for the GTCC LLRW. DOE had not previously prepared an EIS document that evaluates the range of GTCC LLRW disposal alternatives.

Public Scoping Issue Rationale 5B. "GTCC-like waste" should be included in the The title of the EIS reflects this comment. The public comment period for the Draft EIS is 120 days. title of the EIS to make the scope of the document clearer. Also, the comment period on the Draft EIS should be extended to at least 90 days. 5C. All relevant information should be posted on All documents having direct relevance to this EIS have been the project website, including all public scoping included on the project website. However, it is neither comments, the Draft EIS, all reference documents appropriate nor reasonable to include all references used to used to prepare the EIS, and previous NEPA prepare the EIS or other reports addressing radioactive wastes documents on radioactive wastes. on this website. These additional documents can be obtained separately for review. 5D. The NOI is not clear with regard to the purpose The NOI was prepared in a manner consistent with DOE's and scope of the EIS and does not meet NEPA policy for NEPA compliance and contains all relevant requirements. Additional information describing the information on the scope of the EIS. The NOI meets CEQ and waste inventory should have been included in the DOE NEPA requirements. Additional information describing NOI. the waste inventory has been included in the EIS and supporting documents. 5E. Mitigative measures should be identified in the Information on measures to mitigate environmental impacts has NOI and addressed in the EIS. been included in the EIS after the identification and evaluation of these impacts. 5F. Timely identification of a disposal facility for Comment noted. The EIS presents evaluations of the options GTCC LLRW and GTCC-like waste should be described in the NOI. considered important in order to not impede desired nuclear power production. The NOI has sufficiently identified the options for evaluation, and DOE is the appropriate agency to conduct the process described in the NOI. 5G. The EIS should identify all federal and The EPA is a cooperating agency on the EIS because of its nonfederal agencies and any jurisdictional authority expertise in radiation protection. The NRC is a commenting by law and/or special expertise. Also, the EIS agency. Pertinent regulatory issues and standards associated with disposal of GTCC LLRW and GTCC-like waste are should address all pertinent regulatory issues and standards, including NRC regulation of a facility at addressed in the EIS. a DOE site.

TABLE A-3 Public Scoping Issues outside the Scope of the EIS

Public Scoping Issue

Rationale

1. Alternatives

1A. In addition to considering disposal at WIPP in the EIS, efforts should be initiated to site and construct a new geologic repository for GTCC LLRW and GTCC-like waste in case this repository is not acceptable.

The relatively small volume of GTCC LLRW and GTCC-like waste does not support the need to identify a new geologic repository to dispose of these materials.

1B. Hardened on-site storage (HOSS) should be added to the alternatives evaluated in the EIS. In addition, HOSS should be the preferred alternative.

HOSS and other approaches for storing waste beyond the No Action Alternative are considered to be outside the scope of this EIS. Consistent with the LLRWPAA and Section 631 of the Energy Policy Act of 2005, DOE plans to complete an EIS and a ROD for a permanent disposal facility for this waste, not for long-term storage options. In addition, the No Action Alternative evaluates storage of this waste consistent with ongoing practices.

1C. Alternatives for treating the GTCC LLRW and GTCC-like waste should be considered in the EIS, including compaction, vitrification, transmutation, and blending with lower-activity materials.

DOE considers the treatment of GTCC waste to be outside the scope of this EIS. DOE's responsibility is limited to disposal under the LLRWPAA, Public Law 99-240. For some waste streams, the EIS assumes the waste would be grouted to retard leaching of radionuclides.

1D. Recycling of the waste or other beneficial uses should also be considered in the EIS.

Recycling or other beneficial use of this waste is considered to be outside the scope of this EIS, since recycling and the beneficial reuse of the material would have been considered before the material was designated as waste. Under the LLRWPAA, Public Law 99-240, the federal government is responsible for the disposal of GTCC LLRW. Accordingly, the EIS is limited to the consideration of disposal alternatives.

1E. Additional disposal options, including the use of uranium mines, underground nuclear weapons test cavities, and deep sea burial, should be considered in the EIS.

A range of reasonable disposal options that are consistent with the radioactive characteristics of these wastes was developed for consideration in the EIS. DOE does not consider the use of uranium mines, underground nuclear weapons test cavities, and deep sea burial to be reasonable alternatives. The United States and other countries banned disposal of radioactive waste at sea in 1993 in an amendment to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (London Convention 1972). DOE does not believe it is reasonable to dispose of GTCC LLRW and GTCC-like waste in uranium mines or underground nuclear weapons test cavities because of the potential cost and time it would take to develop these alternatives in comparison to the relatively small amount of waste

Public Scoping Issue

Rationale

2. Inventory

2A. The EIS should include disposal options for Class B and Class C LLRW in its scope.

Inclusion of Class B and Class C LLRW is beyond the scope of this EIS. DOE is responsible under the LLRWPAA, Public Law 99-240, for the disposal of GTCC LLRW and DOE wastes. States and Compacts are responsible for the disposal of Class A, B, and C LLRW.

In addition, the GTCC LLRW inventory needs to be expanded to address the disposal and possible consolidation and concentration of Class B and Class C LLRW by commercial nuclear utilities, resulting in additional GTCC LLRW.

The waste inventory is based on the best available information on GTCC LLRW, and it considers utility waste resulting from decommissioning activities. Data on the GTCC LLRW that might be generated by the concentration and consolidation of Class B and Class C LLRW are difficult to ascertain at this time because of the speculative nature of these events. The uncertainty that would be introduced in the EIS process by including this potential volume is not warranted.

2B. Additional radioactive wastes should not continue to be produced until there is a waste disposal solution for these materials.

This issue is outside the scope of the EIS, which is limited to the evaluation of the potential environmental impacts from using various disposal options for GTCC LLRW and GTCClike waste.

3. Impacts

3A. The EIS should address impacts from future climate change on the longevity of the disposal sites.

The EIS provides a comparative analysis of various waste disposal sites, including a geologic repository and several land disposal methods. The EIS analyzes the land disposal sites to help compare the feasibility of implementing the conceptual disposal designs at these sites. For purposes of analysis, the EIS makes simplifying assumptions about disposal site conditions, including the assumption that disposal site parameters sensitive to climate would remain unchanged for long periods of time. This enables a meaningful comparison of the impacts of climate on-site performance (e.g., arid and humid disposal sites). Further considerations of climate change on the longevity of a given disposal site could be addressed in follow-on analyses that would provide site-specific information on the preferred site or disposal location.

3B. The EIS should address the increased sensitivity of children, the elderly, pregnant women, and women in general to radiation exposure. The analysis should not be based on a reference man but on the reference family concept. In addition to radiation doses, estimates of the cancer risks should be provided in the EIS to allow for a comparison to EPA carcinogenic risk standards.

The concerns with regard to the increased sensitivity of various elements of the population are noted. The EIS presents a comparative analysis of the potential radiation doses and latent cancer fatality (LCF) risks to members of the general public from use of the various disposal alternatives presented in the EIS. As such, the level of detail requested here is not necessary for the purposes of this EIS, and the hazards associated with management of these wastes are presented in terms of the annual dose and LCF risk to a potentially exposed adult receptor.

Public Scoping Issue

Rationale

3C. All radiation-related human health effects (including heart disease and hereditary effects) and not just cancer should be addressed in the EIS. In addition, the effects of radiation exposure on plants and animals should be considered in the EIS.

As noted in the response to the previous comment, the results presented in the EIS are given in terms of annual radiation dose and LCF risk to a hypothetically exposed member of the general public. Fatal cancer is the primary health risk of concern. Additional health effects beyond cancer, including cardiovascular disease and hereditary effects, can occur in individuals exposed to radiation, as noted in this comment. However, these additional health effects are not quantified in the EIS. The risk of cardiovascular disease has been shown to increase in persons exposed to high therapeutic doses of radiation and also in atomic bomb survivors exposed to more modest doses (National Research Council 2006). However, there is no direct evidence of increased risk of noncancer diseases at low doses, such as those that could occur to members of the general public under the alternatives evaluated in this EIS. Also, the risk of hereditary effects from radiation exposure is generally attributable to gamma irradiation of the reproductive organs. In contrast, most of the dose to the general public in the long term is a result of long-lived radionuclides having alpha and beta radiations. As noted in BEIR VII (National Research Council 2006), the risk of heritable disease is sufficiently small that it has not been detected in humans, even in thoroughly studied irradiated populations, such as those of Hiroshima and Nagasaki. The risk of cancer fatality was determined to be a reasonable means of comparing alternatives in the EIS.

Radiation health effects are discussed in the EIS, and LCF risks are calculated by using a risk factor of 0.0006 LCF per rem from Federal Guidance Report (FGR) 13 issued by the EPA in 1999 (Cancer Risk Coefficients for Environmental Exposure to Radionuclides, EPA 402-R-99-001). Scientific research has indicated that the protection of human health from radiation also serves to protect plants and animals. Hence, the radiation doses to and resultant health impacts on plants and animals are not quantified in the EIS.

3D. Risk assessment should be used to evaluate impacts and support the decision-making process; site-specific information should be used to the extent it is available. This assessment should be based on the most recent scientific information (including that provided in BEIR VII), and results should be presented in terms most people can understand.

Data on the radiation doses and LCF risks associated with all aspects of managing the GTCC LLRW and GTCC-like wastes are included in the EIS. The data cover the radiological impacts on workers who might come in contact with these wastes as well as on members of the general public, and they cover all aspects of the alternatives, including transportation of the wastes to the potential disposal sites and the long-term risks from radionuclide migration to groundwater.

Public Scoping Issue

Rationale

3E. The EIS needs to address the risks associated with chemical contaminants in the GTCC LLRW and GTCC-like wastes and also with chemical wastes at the potential disposal sites as part of the cumulative impacts assessment.

The analysis in this EIS did not address potential chemical releases from the wastes; it was limited to radioactive constituents only. The radioactive hazards of these wastes are expected to exceed those associated with any chemical that might be present. The impacts presented for the radioactive contaminants are expected to bound those that could occur from any hazardous chemicals in the waste.

4. Tribal Concerns

4A. Tribal nations should be provided with the opportunity to participate in the preparation of the EIS (including writing sections of it).

Tribal perspective narratives provided by various tribal nations have been incorporated into the EIS.

5. Other

5A. A programmatic EIS should be prepared rather than this site-specific EIS, which addresses numerous sites. There are a multitude of broad programmatic issues that need resolution before a specific site and disposal technology can be identified for this waste. This approach would better meet NEPA requirements and allow for better public participation. Site-specific NEPA analyses could be tiered from this programmatic EIS.

This EIS has been scoped to provide adequate environmental information to support the decision-making process to identify an appropriate site(s) and technology(s) to dispose of a limited amount of GTCC LLRW and GTCC-like waste. If appropriate, DOE would conduct further NEPA review, tiered from this EIS, before implementing decisions.

5B. Further research on and/or investigation of other treatment and disposal technologies currently being developed should be considered to ensure that these wastes are managed safely. The hazards posed by GTCC LLRW and GTCC-like waste are comparable to those from high-level radioactive wastes and should be managed in a similar manner.

DOE does not believe further research on treatment and disposal technologies is needed to ensure that these wastes are safely managed and that their disposal complies with the LLRWPAA, Public Law 99-240, which makes the federal government responsible for the disposal of GTCC LLRW.

5C. A screening process should be included in the EIS to identify the preferred alternative on the basis of a preset list of objectives and relevant criteria. This would clearly identify the rationale for selecting a specific site and technology for disposing of GTCC LLRW and GTCC-like waste. It is important to recognize that the two land disposal technologies may not be applicable at all candidate sites.

The screening process proposed here is not typically included in NEPA documents. The NOI (72 FR 40135) identified the basis for identifying alternative disposal locations and disposal methods to analyze in the EIS. DOE provides an evaluation of the use of the three land disposal methods at the various sites to determine their applicability at these locations, and it provides an evaluation of disposal in a geologic repository at WIPP. DOE has summarized factors to be considered in developing a preferred alternative in Section 2.9 of the EIS.

5D. Additional topics, including future uses of nuclear power, the purchase and use of land for other activities, and the provision of funding to local and state governments for independent monitoring, should be addressed in this EIS.

Topics such as these are outside the scope of the EIS, which is limited to the consideration of disposal alternatives for GTCC LLRW and GTCC-like waste.

Public Scoping Issue

Rationale

5E. Disposal fees to be shouldered by the waste generators should be established according to the actual costs of waste management and administration. This program should not be allowed to become another subsidy for the nuclear power industry.

The evaluation of costs or fees associated with the disposal of waste at the future GTCC LLRW disposal facility is outside the scope of this EIS. However, the LLRWPAA, Public Law 99-240, specifies that options should be identified "for ensuring that the beneficiaries of the activities resulting in the generation of waste [GTCC LLRW] bear all reasonable costs of disposing of such wastes...." DOE issued a Report to Congress in 1987 titled *Recommendations for the Management of Greater-Than-Class C Low-Level Radioactive Waste* that discussed funding options. In accordance with Section 631 of EPAct 2005, this information will be updated and included in a report to Congress on disposal alternatives under consideration by DOE.

1 2

1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			

This page is intentionally left blank.

Appendix A: Summary of the Public Scoping Process

Draft GTCC EIS

13 14 15 **APPENDIX B:**

GTCC LLRW AND GTCC-LIKE WASTE INVENTORIES

This appendix provides detailed information on the inventories (volumes and radionuclide activities) of the wastes addressed in this environmental impact statement (EIS) for disposal alternatives for greater-than-Class C (GTCC) low-level radioactive waste (LLRW) and GTCC-like waste. Preliminary inventories were provided in the July 23, 2007, Notice of Intent (NOI) to prepare this EIS, and the bases of these estimates were described in a report prepared by Sandia National Laboratories entitled *Greater-Than-Class C Low-Level Radioactive Waste and DOE Greater-Than-Class C-Like Waste Inventory Estimates* (Sandia 2007). This report was issued in July 2007. Additional details on this inventory are provided in a subsequent report entitled *Basis Inventory for Greater-Than-Class-C Low-Level Radioactive Waste Environmental Impact Statement Evaluations*, Task 3.2 Report, Revision 1, which was issued in May 2008 (Sandia 2008).

These two reports were prepared to update GTCC LLRW estimates previously developed for the U.S. Department of Energy (DOE 1994). The inventory estimates reported in 1994 were limited to GTCC LLRW and did not consider GTCC-like waste. A third report was prepared by Argonne National Laboratory (Argonne) to summarize the information in these two documents and supplement or update information. This report is entitled *Supplement to Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste Inventory Reports* (Argonne 2010). This appendix provides a summary of the waste inventory data needed for this EIS on the basis of information contained in the three inventory reports described above.

As described in Section 1.4.1 of the EIS, wastes are placed in one of two groups for purposes of analysis. Group 1 consists of wastes that were already generated and are in storage or projected to be generated by existing facilities, such as commercial nuclear power plants. Group 2 consists of wastes that might be generated from proposed future activities, including several DOE projects, two planned molybdenum-99 (Mo-99) production projects, and new nuclear power plants that have not yet been licensed by the U.S. Nuclear Regulatory Commission (NRC) or constructed.

 The estimated waste volumes and total radionuclide activities for the wastes in Groups 1 and 2 are shown in Table B-1 and are summarized as follows. The total waste volume in Group 1 is estimated to be $5,300 \, \mathrm{m}^3 \, (190,000 \, \mathrm{ft}^3)$ and contains a total of 110 megacuries (MCi) of radionuclide activity, mainly from the decommissioning of commercial nuclear power reactors currently in operation.

 Group 2 has an estimated waste volume of 6,400 m³ (230,000 ft³) and contains a total activity of 49 MCi. Some of this waste is associated with the West Valley Site. A total of 980 m³ (35,000 ft³) of GTCC-like wastes are associated with decommissioning the West Valley Site (exclusive of the NRC-licensed disposal area [NDA] and state-licensed disposal area [SDA]), and an additional 4,300 m³ (150,000 ft³) of GTCC LLRW could be generated should a decision be made to exhume the NDA and SDA. As for Group 1 GTCC wastes, the radionuclide activity

TABLE B-1 Summary of Group 1 and Group 2 GTCC LLRW and GTCC-Like Waste Packaged Volumes and Radionuclide Activities^a

	In St	orage	Pro	jected	Total Stored	l and Projected
Waste Type	Volume (m ³)	Activity (MCi) ^b	Volume (m ³)	Activity (MCi)	Volume (m ³)	Activity (MCi)
Group 1						
GTCC LLRW						
Activated metals (BWRs) ^c - RH	7.1	0.22	200	30	210	31
Activated metals (PWRs) - RH	51	1.1	620	76	670	77
Sealed sources (Small) ^d - CH	_e,f	_	1,800	0.28	1,800	0.28
Sealed sources (Cs-137 irradiators) - CH	_	_	1,000	1.7	1,000	1.7
Other Waste ^g - CH	42	0.000011	_	_	42	0.000011
Other Waste - RH	33	0.0042	1.0	0.00013	34	0.0043
Total	130	1.4	3,700	110	3,800	110
GTCC-like waste						
Activated metals - RH	6.2	0.23	6.6	0.0049	13	0.24
Sealed sources (Small) - CH	0.21	0.0000060	0.62	0.000071	0.83	0.000077
Other Waste - CH	430	0.016	310	0.0062	740	0.022
Other Waste - RH	520	0.096	200	0.17	720	0.26
Total	960	0.34	510	0.18	1,500	0.52
Total Group 1	1,100	1.7	4,200	110	5,300	110
Group 2						
GTCC LLRW						
Activated metals (BWRs) - RH	_	_	73	11	73	11
Activated metals (PWRs) - RH	_	_	300	37	300	37
Activated metals (Other) - RH	_	_	740	0.14	740	0.14
Sealed sources - CH	_	_	23	0.000020	23	0.000020
Other Waste - CH	_	_	1,600	0.024	1,600	0.024
Other Waste - RH	_	_	2,300	0.51	2,300	0.51
Total	_	_	5,000	49	5,000	49
GTCC-like waste						
Activated metals - RH	_	_	_	_	_	_
Sealed sources - CH	_	_	_	_	_	_
Other Waste - CH	_	_	490	0.012	490	0.012
Other Waste - RH	_	_	870	0.48	870	0.48
Total	_	_	1,400	0.49	1,400	0.49
Total Group 2	_	_	6,400	49	6,400	49

TABLE B-1 (Cont.)

^a All values have been rounded to two significant figures. Some totals may not equal sum of individual components because of independent rounding. BWR = boiling water reactor, CH = contact-handled (waste), PWR = pressurized water reactor, RH = remote-handled (waste).

b MCi means megacurie or 1 million curies.

^c There are two types of commercial nuclear reactors in operation in the United States, BWRs and PWRs. Different factors were used to estimate the volumes and activities of activated metal wastes for these two types of reactors.

d Sealed sources may be physically small but have high concentration of radionuclides.

There are sealed sources currently possessed by NRC licensees that may become GTCC LLRW when no longer needed by the licensee. Due to the lack of information on the current status of the sources (i.e., whether they are in use, waste, etc.), the estimated volume and activity of these sources are included in the projected inventory.

f A dash means that there is no value for that entry.

Other Waste consists of those wastes that are not activated metals or sealed sources; it includes contaminated equipment, debris, scrap metals, filters, resins, soil, solidified sludges, and other materials.

in the Group 2 wastes results mainly from the decommissioning of new commercial nuclear power reactors.

 The GTCC wastes associated with decontamination and decommissioning of the West Valley Site are in both Group 1 and Group 2. Group 1 wastes are all GTCC-like wastes and result from past and ongoing decontamination activities at the site. Some of the wastes are already in storage, and others are being generated by decontamination of the Main Plant Process Building (MPPB) to make it ready for demolition. Group 2 wastes are all projected wastes from potential future decommissioning activities. These wastes include GTCC-like wastes from decommissioning of the MPPB and the Waste Tank Farm (WTF). Group 2 GTCC wastes would also be generated should a decision be made to exhume the wastes from the NDA and SDA as part of future decommissioning activities.

The volume of GTCC-like wastes associated with the West Valley Site from wastes already in storage, ongoing decontamination of the MPPB, and the future decommissioning of the MPPB and WTF is estimated to be about 2,200 m³ (78,000 ft³). Of this total, about 1,300 m³ (46,000 ft³) is in Group 1 and 980 m³ (35,000 ft³) is in Group 2. An additional 4,300 m³ (150,000 ft³) of GTCC LLRW and GTCC-like wastes could be generated by the exhumation of the NDA and SDA at the site as part of future decommissioning activities. Most of the GTCC waste from these disposal areas would be GTCC LLRW, with 31 m³ (1,100 ft³) from the NDA being GTCC-like waste. The 31 m³ (1,100 ft³) of GTCC-like waste is included with the volume of GTCC LLRW from the NDA and SDA for purposes of analysis in the EIS.

The total estimated volume of mixed waste in Group 1 is about 170 m³ (6,000 ft³), which represents less than 4% of the total volume Group 1 waste. About 120 m³ (4,200 ft³) of this total is GTCC-like mixed waste currently in storage at the West Valley Site. Current information is insufficient to allow a reasonable estimate of the amount of Group 2 waste that could be mixed waste. Most of the Group 1 mixed waste is GTCC-like waste; only 4 m³ (140 ft³) is GTCC LLRW (Sandia 2007). Available information indicates that much of this waste is characteristic hazardous waste as regulated under the Resource Conservation and Recovery Act (RCRA); therefore, this EIS assumes that for the land disposal methods, the generators will treat the waste to render it nonhazardous under federal and state laws and requirements. The Waste Isolation Pilot Plant (WIPP), however, can accept mixed waste, as provided in the WIPP Land Withdrawal Act (LWA).

The DOE planned plutonium-238 (Pu-238) production project is estimated to produce 380 m³ (13,000 ft³) of Group 2 GTCC-like wastes with a total activity of 0.094 MCi. Many of the radionuclides in these wastes have short half-lives (three years or less) that will not have an impact on long-term management decisions. For purposes of analysis in the EIS, it is assumed that the Pu-238 production wastes will be stored for three years at the facilities generating these wastes prior to shipment to the disposal site. The total activity in these wastes given here includes radioactive decay for three years.

 Waste associated with the future production of Mo-99 is also included in the GTCC EIS inventory. Two organizations are currently planning to produce Mo-99 for medical uses in the near future: Babcock & Wilcox Company (B&W) and the Missouri University Research Reactor

(MURR). The B&W concept uses a homogenous solution reactor termed the Medical Isotope Production System (MIPS). The MIPS is estimated to produce an annual volume of 5 m³ (180 ft³) of GTCC LLRW containing a total activity of about 3,700 curies (Ci). It is assumed that the GTCC LLRW produced by MIPS would be stored at the generating site for three years prior to shipment to the disposal facility to allow the short-lived radionuclides to decay. An annual activity of 3,700 Ci for MIPS reflects three years of radioactive decay.

Use of the MURR involves irradiating solid targets containing low-enriched uranium in the research reactor and processing the targets to extract Mo-99. This process is estimated to produce an annual volume of 0.46 m³ (16 ft³) of GTCC LLRW containing a total activity of about 3,100 Ci. As was the case for MIPS, it is assumed that these wastes would be stored at the generating site for three years prior to shipment to the disposal facility, and the activity given here reflects that decay. For purposes of analysis in the EIS, these two processes are both assumed to begin operation in the next few years and to operate for 71 years (to 2083). The total volume of GTCC LLRW produced over this time frame for these two Mo-99 production projects is estimated to be about 390 m³ (14,000 ft³) and contain 0.48 MCi of activity.

As discussed in Section 1.4.1, the GTCC LLRW and GTCC-like wastes are considered to be in one of three waste types: activated metals, sealed sources, or Other Waste. The waste inventory includes wastes already generated and in storage (stored inventory), as well as wastes estimated to be generated in the future (projected inventory). All three types of waste (activated metals, sealed sources, and Other Waste) are currently in storage at sites licensed by the NRC or Agreement States and at certain DOE sites.

B.1 SUMMARY OF WASTE VOLUMES

Table B-1 provides a summary of the packaged waste volumes for the Group 1 and 2 wastes being addressed in this EIS. Some of the Group 1 wastes have already been generated and are in storage, and the rest would be generated in the future. All Group 2 wastes would be generated in the future. Table B-2 identifies the locations where GTCC LLRW and GTCC-like wastes are currently being stored or would be generated in the future. Additional information for GTCC-like wastes is presented in Table B-3. This information is described in more detail in Argonne (2010).

The GTCC LLRW is stored at NRC or Agreement State licensee locations, including at commercial storage facilities at a number of sites across the United States. Most of the activated metal GTCC LLRW is stored at commercial nuclear power plants. Figure 3.1-1 shows the locations of the currently operating nuclear power plants, most of which are located east of the Mississippi River. GTCC LLRW sealed sources are stored at medical facilities and hospitals, industrial facilities, universities, and commercial storage and staging locations. Two facilities are currently being used to store GTCC LLRW Other Waste (in Virginia and Texas). All of these facilities are operated in accordance with applicable requirements.

A comparison of the volumes and radionuclide activities of GTCC LLRW and GTCC-like waste with the annual volumes and activity of LLRW generated in the United States and

TABLE B-2 Storage and Generator Locations of the GTCC LLRW and GTCC-Like Wastes Addressed in This EIS^a

Waste Type	GTCC LLRW	GTCC-Like
Crown 1		
Group 1	W	DH (III)
Activated metals - RH	Various states (see Figure 3.1-1)	INL (Idaho)
		ORR (Tennessee)
Sealed sources - CH	Various states	LANL (New Mexico)
Other Waste - CH	Babcock and Wilcox (Virginia)	West Valley Site (New York)
	Waste Control Specialists (Texas)	INL (Idaho)
		Babcock and Wilcox (Virginia)
Other Waste - RH	Virginia and Texas	West Valley Site (New York)
	•	INL (Idaho)
		ORR (Tennessee)
		Babcock and Wilcox (Virginia)
Group 2		
Activated metals - RH	Various states	_
Sealed sources - CH	West Valley Site (New York)	_
Other Waste - CH	West Valley Site (New York)	West Valley Site (New York)
	, , ,	ORR (Tennessee)
Other Waste - RH	West Valley Site (New York)	West Valley Site (New York)
	Missouri University Research Reactor (Missouri)	ORR (Tennessee)
	Babcock and Wilcox (Virginia)	- (

Other waste consists of those wastes that are not activated metals or sealed sources; it includes contaminated equipment, debris, scrap metal, filters, resins, soil, solidified sludges, and other materials. A dash means no volume for that waste type. INL = Idaho National Laboratory, LANL = Los Alamos National Laboratory, ORR = Oak Ridge Reservation.

with high-level waste and spent nuclear fuel is shown in Figure B-1. As can be seen in this figure, GTCC waste represents a very small fraction of the total volume of LLRW generated annually, but it has significantly greater activity.

This information is presented in detail in a number of tables that describe the types of waste packages that were used to evaluate waste handling and transportation impacts. These tables do not mean to imply that these waste packages would actually be used for such purposes once a disposal site was selected. Rather, these packages are representative of those that could be used, and they were chosen herein solely for the purpose of evaluating environmental impacts associated with the various disposal alternatives being addressed in this EIS.

B.2 SUMMARY OF RADIONUCLIDE ACTIVITIES

The radionuclide activities in the wastes were developed by using information provided by the DOE Operations and Field Offices in response to a data call, using information provided in databases, and conducting a review of documents on GTCC LLRW and transuranic (TRU) waste prepared by DOE and NRC. Radionuclide information for the two planned Mo-99 projects

TABLE B-3 Sources of the GTCC-Like Wastes Addressed in This EIS^a

		G. 137.1	D ' . 137.1
Waste Type	Site ^b	Stored Volume (m ³)	Projected Volume (m ³)
71		, ,	
Group 1			
Activated metals - RH	INL	3.3	6.6
	ORR	2.9	_c
Sealed sources - CH	LANL	0.21	0.62
Other Waste - CH	West Valley Sited	400	310
	INL	31	_
	B&W	3.4	_
Other Waste - RH	West Valley Site ^d	480	63
	INL	19	_
	ORR	4.0	130
	B&W	15	0.60
Total		960	510
Group 2 Activated metals - RH	_	-	-
Sealed sources - CH	_	_	-
Other Waste - CH	West Valley Site	_	220
	ORR	-	260
Other Waste - RH	West Valley Site	_	760
	ORR	_	120
Total		_	1,400

All values have been rounded to two significant figures. Some totals may not equal sum of individual components because of independent rounding.
 B&W = Babcock & Wilcox Company (Lynchburg, Va.), CH = contact-handled (waste), INL = Idaho National Laboratory, LANL = Los Alamos National Laboratory, ORR = Oak Ridge Reservation, RH = remote-handled (waste).

b These are the sites where the wastes are currently being stored or would be generated in the future.

^c A dash means that there is no value for that entry.

d These volumes were provided by the DOE Waste Valley Site Office and assumed waste repackaging with volume reduction prior to disposal. These wastes are associated with decontamination activities at the West Valley Site. Because of the assumed volume reduction, the volumes presented in this GTCC EIS are less than those presented in the Final EIS for the West Valley Site (DOE 2010a).

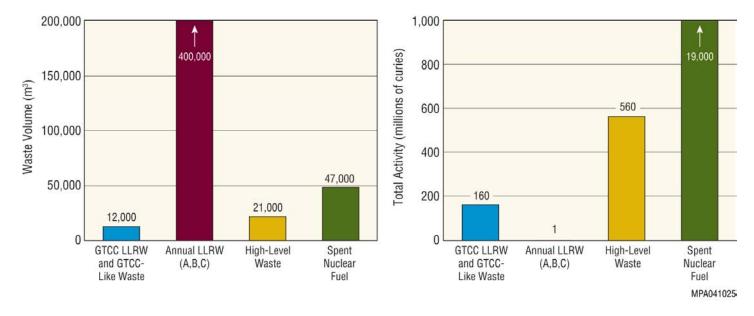


FIGURE B-1 Comparison of GTCC Waste with Other Radioactive Wastes

3

and the DOE Pu-238 production project was provided by the organizations planning to implement these projects in the future.

The radionuclides present in GTCC LLRW and GTCC-like waste can generally be placed in three categories: neutron activation products, radioactive fission products, and actinides (i.e., radionuclides that are higher than actinium in the Chart of the Nuclides). The main source of activity in activated metals is neutron activation products, while fission products and actinides are the main radionuclides present in sealed sources and Other Waste. Fission products and some actinides are also present in relatively low concentrations in activated metals. The actinides include TRU radionuclides, and many of these are present in GTCC-like Other Waste.

Radionuclide profiles were used to develop estimates of the total curies of each radionuclide that would be present in the various waste streams, and then the individual waste streams were summed to obtain estimates of the total activities in the various GTCC LLRW and GTCC-like waste types. The three reports identified on page B-1 (Sandia 2007, 2008; Argonne 2010) can be consulted to evaluate these results in more detail for the individual waste streams. This information was used to address the impacts associated with the handling, transportation, and disposal of these wastes in this EIS.

A summary of the radionuclide activities in the Group 1 and Group 2 GTCC waste is provided in Tables B-4 through B-7. The radionuclides in these tables are those expected to be most prevalent or significant in evaluating the radiological impacts from the various disposal alternatives considered in the EIS. The radionuclide activities given in this appendix for stored wastes account for radioactive decay to 2019, while the activities for projected wastes are those expected to be present when the wastes are generated and available for disposal. In addition, the radionuclide activities for the GTCC wastes in the two disposal areas at the West Valley Site were decay-corrected to 2019 for purposes of analysis in this EIS.

The radionuclide activities for Group 1 GTCC LLRW and GTCC-like waste are summarized in Tables B-4 through B-6. Table B-4 contains the total (stored and projected) activities for GTCC LLRW and GTCC-like waste, which are divided into the stored activities (Table B-5) and projected activities (Table B-6). The Group 2 activities are given separately in the same format in Table B-7. All of the Group 2 wastes would be generated in the future; there are no stored Group 2 wastes.

Most of the radionuclide activity in the wastes being addressed in this EIS is associated with the neutron activation products in commercial nuclear reactors (i.e., GTCC LLRW activated metals). The sealed sources contribute a relatively small amount to the total radionuclide activity, with the exception of cesium-137 (Cs-137), which has a half-life of about 30 years. While the total activity of the Other Waste is significantly lower than that of the activated metal waste, much of this activity is attributable to long-lived TRU radionuclides. These long-lived radionuclides are important in evaluating the viability of various disposal alternatives in this EIS.

 To provide additional perspective on these radionuclide activities, the key properties of the major radionuclides discussed in this appendix are given in Table B-8. This table identifies the major modes of decay for the 44 radionuclides given in Tables B-4 through B-7, along with

TABLE B-4 Radionuclide Activity (in curies) of Group 1 GTCC LLRW and GTCC-Like Waste^a

			GTCC LLRW					GTCC-Like Waste		
	Activated	Sealed	l Sources ^c	Oth	er Waste	Activated	Sealed	l Sources ^c	Other	Waste
Radionuclide	Metals ^b	Actinides	Nonactinides	СН	RH	Metals ^b	Actinides	Nonactinides	СН	RH
Hydrogen-3	6.8×10^{3}	_	_	_	_	2.3×10^{5}	_	_	1.7×10^{-1}	1.6×10^{1}
Carbon-14	2.3×10^{4}	_	_	_	5.8×10^{-3}	6.8×10^{2}	_	_	1.3×10^{1}	1.0×10^{2}
Manganese-54	4.9×10^{4}	_	_	_	9.6×10^{-3}	2.8×10^{-5}	_	_	4.7×10^{-3}	4.8×10^{1}
Iron-55	4.0×10^{7}	_	_	_	6.3×10^{-4}	1.7×10^{2}	_	_	5.7	8.2
Nickel-59	1.3×10^{5}	_	_	_	1.1×10^{-1}	3.1	_	_	7.6×10^{-2}	1.6×10^{2}
Cobalt-60	5.0×10^{7}	_	_	_	8.7	4.7×10^{3}	_	_	4.1×10^{-3}	1.2×10^{3}
Nickel-63	1.8×10^{7}	_	_	_	5.3	8.0×10^{2}	_	_	2.5×10^{-2}	9.4×10^{3}
Strontium-90	1.2×10^{4}	_	_	_	1.5×10^{3}	_	_	_	6.6×10^{1}	3.6×10^{4}
Molybdenum-93	1.1×10^{2}	_	_	_	_	_	_	_	_	_
Niobium-94	6.0×10^{2}	_	_	_	_	1.3×10^{-2}	_	_	5.2×10^{-5}	9.8×10^{-1}
Technetium-99	4.5×10^{3}	_	_	_	7.6×10^{-1}	_	_	_	3.2×10^{-1}	1.7×10^{-1}
Iodine-129	1.9	_	_	_	_	_	_	_	9.7×10^{-5}	2.7
Cesium-137	1.3×10^{4}	_	1.7×10^{6}	5.7	2.0×10^{3}	_	_	_	6.5×10^{1}	$3.9 \times 10^{\circ}$
Promethium-147	_	_	_	_	_	_	_	_	1.4×10^{-3}	5.6
Samarium-151	_	_	_	_	_	_	_	_	2.9×10^{-3}	1.7×10^{-1}
Europium-152	_	_	_	_	_	6.6×10^{2}	_	_	3.1×10^{-3}	6.8×10^{-1}
Europium-154	_	_	_	_	_	6.0	_	_	1.9×10^{-1}	2.2×10^{-1}
Europium-155	_	_	_	_	_	7.1×10^{-1}	_	_	3.1×10^{-4}	9.2×10
Lead-210	_	_	_	_	5.1×10^{-9}	_	_	_	3.6×10^{-6}	2.3×10^{-1}
Radium-226	_	_	_	_	_	_	_	_	4.3	_
Actinium-227	_	_	_	_	_	_	_	_	3.3×10^{-2}	1.6×10^{-1}
Radium-228	_	_	_	_	_	_	_	_	2.3×10^{-1}	_
Thorium-229	_	_	_	_	8.8×10^{-4}	_	_	_	2.2	7.4×10^{-1}
Thorium-230	_	_	_	_	8.9×10^{-6}	_	_	_	4.1×10^{-1}	2.7×10^{-1}
Protactinium-231	_	_	_	_	-	_	_	_	1.1×10^{-5}	1.3×10^{-1}
Thorium-232	_	_	_	_	_	_	_	_	2.8×10^{-1}	6.8×10^{-6}
Uranium-232	_	_	_	_	_	_	_	_	2.3×10^{1}	1.9
Uranium-233	_	_	_	_	6.0×10^{-1}	_	_	_	9.4	$7.9 \times 10^{\circ}$
Uranium-234	_	_	_	_	-	_	_	_	4.4×10^{1}	1.6
Uranium-235	_	_	_	_	5.2×10^{-3}	_	_	_	1.6×10^{-1}	3.5×10^{-1}
Uranium-236	_	_	_	_	-	_	_	_	5.4×10^{-2}	7.9×10^{-1}
Neptunium-237	_	_	_	_	3.2×10^{-3}	_	_	_	1.1	1.5

			GTCC LLRW					GTCC-Like Waste	<u> </u>	
		Sealed	l Sources ^c	Oth	ner Waste		Sealed	Sources ^c	Other	Waste
Radionuclide	Activated Metals ^b	Actinides	Nonactinides	СН	RH	Activated Metals ^b	Actinides	Nonactinides	СН	RH
Uranium-238	_	_	_	_	_	_	_	_	9.1×10^{-2}	1.1×10^{1}
Plutonium-238	8.8×10^{-1}	1.2×10^{5}	_	_	1.8×10^{1}	_	_	_	1.3×10^{3}	1.5×10^{3}
Plutonium-239	4.5×10^{3}	8.4×10^{3}	_	_	2.5×10^{1}	_	_	_	9.0×10^{2}	2.9×10^{3}
Plutonium-240	_	_	_	_	7.5	_	2.2×10^{1}	_	7.1×10^{2}	1.8×10^{3}
Plutonium-241	2.5×10^{1}	_	_	_	6.2×10^{2}	_	_	_	1.4×10^{4}	1.7×10^{4}
Americium-241	6.4×10^{1}	1.5×10^{5}	_	5.0	6.6×10^{1}	_	_	_	4.4×10^{3}	5.3×10^{3}
Plutonium-242	_	_	_	_	2.3×10^{-3}	_	_	_	4.5	3.9
Americium-243	_	_	_	_	4.7×10^{-3}	_	3.5×10^{-1}	_	3.4×10^{1}	8.6×10^{1}
Curium-243	_	_	_	_	_	_	_	_	7.6×10^{-2}	2.2
Curium-244	_	2.2×10^{1}	_	_	5.2	_	5.4×10^{1}	_	1.8	1.1×10^{3}
Curium-245	_	_	_	_	_	_	_	_	2.0×10^{-9}	3.4×10^{2}
Curium-246	_	_		_	<u> </u>		_		1.9×10^{-11}	5.4×10^{1}

The approach used to develop these activities is given in Argonne (2010) and the references cited therein. The activities represent values at the time the wastes are projected to be available for disposal and are given to two significant figures. Separate estimates were developed for GTCC LLRW and GTCC-like waste. A dash means there is no value for that entry. CH = contact-handled (waste), RH = remote-handled (waste).

^b All of the activated metal wastes are expected to be RH waste.

^c All of the sealed source wastes are expected to be CH waste, with the possible exception of two americium-241/beryllium sources.

TABLE B-5 (Cont.)

			GTCC LLRW					GTCC-Like Waste	e	
		Sealed	l Sources ^c	Oth	er Waste		Sealed	Sources ^c	Other	Waste
Radionuclide	Activated Metals ^b	Actinides	Nonactinides	СН	RH	Activated Metals ^b	Actinides	Nonactinides	СН	RH
Neptunium-237			_	_	3.1 × 10 ⁻³				1.0	1.5
Uranium-238	_	_	_	_	5.1 × 10 °	_	_	_	7.0×10^{-2}	1.8
Plutonium-238	4.7×10^{-2}	_	_	_	1.8×10^{1}	_	_	_	1.0×10^{3}	7.5×10^{2}
Plutonium-239	2.8×10^{2}	_	_	_	2.4×10^{1}	_	_	_	7.0×10^{2}	2.7×10^{3}
Plutonium-240	_	_	_	_	7.3	_	_	_	5.6×10^{2}	1.7×10^{3}
Plutonium-241	6.4×10^{-1}	_	_	_	6.0×10^{2}	_	_	_	9.6×10^{3}	1.6×10^{4}
Americium-241	3.8	_	_	5.0	6.4×10^{1}	_	_	_	3.6×10^{3}	5.3×10^{3}
Plutonium-242	_	_	_	_	2.2×10^{-3}	_	_	_	3.5	3.9
Americium-243	_	_	_	_	4.6×10^{-3}	_	_	_	2.7×10^{1}	8.6×10^{1}
Curium-243	_	_	_	_	_	_	_	_	5.3×10^{-2}	1.8
Curium-244	_	_	_	_	5.0	_	6.0	_	1.2	3.8×10^{1}
Curium-245	_	_	_	_	_	_	_	_	2.0×10^{-9}	3.4×10^{2}
Curium-246	_	_	_	_	_	-	_	_	1.9×10^{-11}	5.4×10^{1}

The approach used to develop these activities is given in Argonne (2010) and the references cited therein. The activities represent values at the time the wastes are projected to be available for disposal and are given to two significant figures. Separate estimates were developed for GTCC LLRW and GTCC-like waste. A dash means there are no values for that entry. CH = contact-handled (waste), RH = remote-handled (waste).

^b All of the activated metal wastes are expected to be RH waste.

^c All of the sealed source wastes are expected to be CH waste, with the possible exception of two americium-241/beryllium sources.

			GTCC LLRW					GTCC-Like Wast	e	
	اد مدد: ند ۸	Sealed	l Sources ^c	Oth	ner Waste	A -4:4- J	Sealed	l Sources ^c	Other	Waste
Radionuclide	Activated Metals ^b	Actinides	Nonactinides	СН	RH	Activated Metals ^b	Actinides	Nonactinides	СН	RH
Hydrogen-3	6.7×10^{3}	_	_	_	_	_	_	_	5.7×10^{-2}	_
Carbon-14	2.1×10^{4}	_	_	_	1.7×10^{-4}	4.9×10^{2}	_	_	3.0	1.4×10^{-2}
Manganese-54	4.9×10^{4}	_	_	_	2.9×10^{-4}	_	_	_	4.7×10^{-3}	4.8×10^{1}
Iron-55	4.0×10^{7}	_	_	_	1.9×10^{-5}	_	_	_	4.7	1.1×10^{-5}
Nickel-59	1.2×10^{5}	_	_	_	3.3×10^{-3}	2.5	_	_	1.7×10^{-2}	2.0×10^{-3}
Cobalt-60	5.0×10^{7}	_	_	_	2.6×10^{-1}	3.8×10^{3}	_	_	9.8×10^{-5}	8.8×10^{2}
Nickel-63	1.7×10^{7}	_	_	_	1.6×10^{-1}	6.1×10^{2}	_	_	_	9.5×10^{-2}
Strontium-90	1.1×10^4	_	_	_	4.6×10^{1}		_	_	5.7×10^{1}	7.3×10^3
Molybdenum-93	1.0×10^2	_	_	_	-	_	_	_		-
Niobium-94	5.5×10^2	_	_	_	_	1.1×10^{-2}	_	_	_	_
Technetium-99	4.2×10^3	_	_	_	2.3×10^{-2}	-	_	_	8.7×10^{-2}	2.1
Iodine-129	1.8	_	_	_	2.5 × 10	_	_	_	4.8×10^{-5}	6.6×10^{-5}
Cesium-137	1.3×10^4	_	1.7×10^{6}	_	6.0×10^{1}	_	_	_	6.0×10^{1}	9.5×10^3
Promethium-147	-	_	-	_	0.0 × 10	_	_	_	0.0 × 10	7.5 × 10 -
Samarium-151	_	_	_	_	_	_	_	_	_	_
Europium-152	_	_	_	_	_	_	_	_	_	6.8×10^{2}
Europium-154	_	_	_	_	_	_	_	_	7.5×10^{-2}	2.0×10^{2}
Europium-155	_	_	_	_	_	_	_	_	-	9.1×10^{1}
Lead-210	_	_	_	_	1.5×10^{-10}	_	_	_	_	9.1×10^{-11}
Radium-226	_	_	_	_	-	_	_	_	9.5×10^{-1}	_
Actinium-227	_	_	_	_	_	_	_	_	9.5×10^{-3}	_
Radium-228	_	_	_	_	_	_	_	_	1.2×10^{-1}	_
Thorium-229	_	_	_	_	2.6×10^{-5}	_	_	_	4.9×10^{-1}	1.6×10^{-5}
Thorium-230	_	_	_	_	2.7×10^{-7}	_	_	_	8.8×10^{-2}	1.6×10^{-7}
Protactinium-231	_	_	_	_	2.7 × 10	_	_	_	-	-
Thorium-232	_	_	_	_	_	_	_	_	6.2×10^{-2}	_
Uranium-232	_	_	_	_	_	_	_	_	5.5	5.6×10^{-3}
Uranium-233	_	_	_	_	1.8×10^{-2}	_	_	_	2.1	7.8×10^2
Uranium-234	_	_	_	_	-	_	_	_	9.6	2.4×10^{-3}
Uranium-235	_	_	_	_	1.5×10^{-4}	_	_	_	4.1×10^{-3}	3.1×10^{-4}
Uranium-236	_	_	_	_	1.5 × 10 -	_	_	_	1.2×10^{-2}	5.1 × 10 –

			GTCC LLRW					GTCC-Like Wast	e	
		Sealed	l Sources ^c	Oth	ner Waste		Sealed Sources ^c		Other	Waste
Radionuclide	Activated Metals ^b	Actinides	Nonactinides	СН	RH	Activated Metals ^b	Actinides	Nonactinides	СН	RH
Neptunium-237	_	_	_	_	9.5×10^{-5}	_	_	_	1.1×10^{-2}	3.1×10^{-2}
Uranium-238	_	_	_	_	_	_	_	_	2.2×10^{-2}	8.8
Plutonium-238	8.3×10^{-1}	1.2×10^{5}	_	_	5.4×10^{-1}	_	_	_	2.9×10^{2}	7.5×10^{2}
Plutonium-239	4.2×10^{3}	8.4×10^{3}	_	_	7.4×10^{-1}	_	_	_	2.0×10^{2}	2.0×10^{2}
Plutonium-240	_	_	_	_	2.2×10^{-1}	_	2.2×10^{1}	_	1.6×10^{2}	3.4×10^{1}
Plutonium-241	2.4×10^{1}	_	_	_	1.8×10^{1}	_	_	_	4.6×10^{3}	1.0×10^{2}
Americium-241	6.0×10^{1}	1.5×10^{5}	_	_	2.0	_	_	_	7.1×10^{2}	6.0×10^{1}
Plutonium-242	_	_	_	_	6.8×10^{-5}	_	_	_	9.8×10^{-1}	4.1×10^{-5}
Americium-243	_	_	_	_	1.4×10^{-4}	_	3.5×10^{-1}	_	7.5	8.4×10^{-5}
Curium-243	_	_	_	_	_	_	_	_	2.3×10^{-2}	3.4×10^{-1}
Curium-244	_	2.2×10^{1}	_	_	1.5×10^{-1}	_	4.8×10^{1}	_	5.9×10^{-1}	1.1×10^{3}
Curium-245	_	_	_	_	_	_	_	_	_	_
Curium-246	_	_	_	_	_	_	_	_	_	_

^a The approach used to develop these activities is given in Argonne (2010) and the references cited therein. The activities represent values at the time the wastes are projected to be available for disposal and are given to two significant figures. Separate estimates were developed for GTCC LLRW and GTCC-like waste. A dash means there are not values for that entry. CH = contact-handled (waste), RH = remote-handled (waste).

^b All of the activated metal wastes are expected to be RH waste.

^c All of the sealed source wastes are expected to be CH waste, with the possible exception of two americium-241/beryllium sources.

			GTCC LLRW					GTCC-Like Waste)	
	1	Sealed	l Sources ^c	Other	Waste	A 1	Seale	d Sources	Other	Waste
Radionuclide	Activated Metals ^b	Actinides	Nonactinides	СН	RH	Activated Metals ^b	Actinides	Nonactinides	СН	RH
Hydrogen-3	3.6×10^{3}	_	_	2.0×10^{2}	1.9×10^{2}	_	_	_	1.1×10^{-1}	1.7×10^{-1}
Carbon-14	1.0×10^{4}	_	_	4.4	1.5×10^{2}	_	_	_	5.9	9.0
Manganese-54	2.3×10^{4}	_	_	_	1.8×10^{-7}	_	_	_	9.4×10^{-3}	1.4×10^{-1}
Iron-55	1.8×10^{7}	_	_	3.9×10^{-1}	3.1	_	_	_	9.4	1.4×10^{-1}
Nickel-59	5.4×10^{4}	_	_	3.3×10^{-2}	2.1	_	_	_	3.3×10^{-2}	5.1×10^{-1}
Cobalt-60	2.3×10^{7}	_	_	6.5	4.8×10^{1}	_	_	_	2.0×10^{-4}	3.0×10^{-3}
Nickel-63	7.5×10^{6}	_	_	3.7	1.8×10^{2}	_	_	_	_	_
Strontium-90	1.3×10^{4}	_	_	2.8	1.0×10^{5}	_	_	_	6.1	$5.1 \times 10^{\circ}$
Molybdenum-93	4.7×10^{1}	_	_	_	5.5×10^{-5}	_	_	_	_	_
Niobium-94	2.7×10^{2}	_	_	1.0×10^{-3}	2.8×10^{-2}	_	_	_	_	_
Technetium-99	1.9×10^{3}	_	_	1.0×10^{-3}	1.7×10^{1}	_	_	_	1.3×10^{-1}	3.2
Iodine-129	2.1	_	_	2.9×10^{-3}	5.4×10^{-2}	_	_	_	_	3.8×10^{-3}
Cesium-137	2.3×10^{4}	_	_	2.2×10^{1}	1.1×10^{5}	_	_	_	3.3	3.4×10^{-6}
Promethium-147	1.1×10^{-1}	_	_	_	1.7×10^{5}	_	_	_	_	4.4×10^{-6}
Samarium-151	1.7×10^2	_	_	_	2.4×10^{3}	_	_	_	_	_
Europium-152	3.3×10^{-1}	_	_	_	1.1	_	_	_	_	_
Europium-154	1.8×10^{1}	_	_	_	5.9×10^{1}	_	_	_	1.5×10^{-1}	2.3×10^{-3}
Europium-155	7.0×10^{-1}	_	_	_	2.0×10^{3}	_	_	_	_	_
Lead-210	3.3×10^{-7}	_	_	_	5.1×10^{-7}	_	_	_	_	_
Radium-226	1.5×10^{-6}	_	_	_	2.5×10^{-6}	_	_	_	1.9	2.9
Actinium-227	1.1×10^{-2}	_	_	_	1.8×10^{-2}	_	_	_	1.9×10^{-2}	2.9×10^{-1}
Radium-228	3.2×10^{-4}	_	_	_	5.6×10^{-4}	_	_	_	2.4×10^{-1}	3.6×10^{-1}
Thorium-229	1.2×10^{-2}	_	_	_	2.2×10^{-2}	_	_	_	9.8×10^{-1}	1.5
Thorium-230	1.2×10^{-4} 1.3×10^{-4}	_	_	_	2.4×10^{-4}	_	_	_	1.8×10^{-1}	2.7×10^{-1}
Protactinium-231	3.0×10^{-2}	_	_	_	5.2×10^{-2}	_	_	_	-	2.7 × 10
Thorium-232	3.2×10^{-3}	_	_	_	5.6×10^{-3}	_	_	_	1.2×10^{-1}	1.9 × 10
Uranium-232	1.4	_	_	_	2.9	_	_	_	1.1×10^{1}	1.7×10
Uranium-233	3.8	_	_	_	7.4	_	_	_	4.1	6.4
Uranium-234	2.0×10^{-1}	_	_	9.7×10^{-3}	3.9×10^{-1}	_	_	_	1.9×10^{1}	2.9 × 10
Uranium-235	7.2×10^{-2}	_	_	4.8×10^{-4}	3.7	_	_	_	8.0×10^{-3}	1.4×10^{-1}
Uranium-236	1.1×10^{-1}	_	_	-	4.4×10^{-1}	_	_	_	2.4×10^{-2}	3.6×10^{-10}

			GTCC LLRW					GTCC-Like Waste	e	
		Sealed	l Sources ^c	Other	Waste		Sealed	d Sources	Other	Waste
Radionuclide	Activated Metals ^b	Actinides	Nonactinides	CH ^d	RH	Activated Metals ^b	Actinides	Nonactinides	СН	RH
Neptunium-237	6.7×10^{-2}	_	_	3.4×10^{-9}	9.9×10^{-2}	_	_	_	2.2×10^{-2}	2.3
Uranium-238	8.4×10^{-1}	_	_	1.0×10^{-2}	3.1	_	_	_	3.9×10^{-2}	7.3×10^{-2}
Plutonium-238	1.3×10^{2}	_	_	2.1×10^{4}	2.1×10^{2}	_	_	_	5.7×10^{2}	1.9×10^{3}
Plutonium-239	2.1×10^{3}	_	_	4.9×10^{1}	4.5×10^{2}	_	_	_	4.0×10^{2}	6.4×10^{2}
Plutonium-240	1.6×10^{2}	_	_	4.5×10^{1}	2.4×10^{2}	_	_	_	3.2×10^{2}	5.1×10^{2}
Plutonium-241	2.5×10^{3}	_	_	2.7×10^{3}	3.9×10^{3}	_	_	_	9.3×10^{3}	1.5×10^{4}
Americium-241	7.2×10^{2}	_	_	1.2×10^{-2}	1.0×10^{3}	_	_	_	1.4×10^{3}	2.6×10^{3}
Plutonium-242	1.4×10^{-1}	_	_	4.4×10^{-2}	2.0×10^{-1}	_	_	_	2.0	3.0
Americium-243	1.1	_	_	6.8×10^{-4}	6.8×10^{-1}	_	_	_	1.5×10^{1}	2.3×10^{1}
Curium-243	1.4×10^{-1}	_	_	7.4×10^{-6}	2.4×10^{-1}	_	_	_	3.9×10^{-2}	3.9
Curium-244	8.0	_	_	4.9×10^{-3}	5.3	_	_	_	1.0	9.1×10^{1}
Curium-245	8.0×10^{-4}	_	_	_	1.3×10^{-3}	_	_	_	_	_
Curium-246	6.4×10^{-5}	_	_	_	1.1×10^{-4}	_	_	-	_	_

There is a large degree of uncertainty in the schedules and plans for the projects that will generate these wastes. The approach used to develop these activities is given in Argonne (2010) and the references cited therein. The activities represent values at the time the wastes are projected to be available for disposal and are given to two significant figures. Separate estimates were developed for GTCC LLRW and GTCC-like waste. All of these wastes will be generated in the future, and there are no Group 2 GTCC-like activated metal and sealed source wastes. A dash means there is no value for that entry. CH = contact-handled (waste), RH = remote-handled (waste).

All of the activated metal wastes are expected to be RH waste.

The radionuclide activities for the small volume of sealed sources in the SDA are included with the activities reported for the GTCC LLRW Other Waste - RH category.

TABLE B-8 Key Properties of the Major Radionuclides Addressed in This EISa

				Radiation	Energy per De	ecay (MeV)
Radionuclide	Half-Life	Specific Activity (Ci/g)	Decay Mode	Alpha (α)	Beta (β)	Photon (γ)
Actinium-227 ^b	22 yr	73	α, β	0.068	0.016	< 0.001
Thorium-227 (99%)	19 days	31,000	α , β	5.9	0.053	0.11
Francium-223 (1%)	22 min	39 million	β	-	0.40	0.059
Radium-223 (170)	11 days	52,000	α	5.7	0.076	0.13
Radon-219	4.0 s	13 billion	α	6.8	0.0063	0.056
Polonium-215	0.0018 s	30 trillion	α	7.4	< 0.001	< 0.001
Lead-211	36 min	25 million	β	-	0.46	0.051
Bismuth-211	2.1 min	420 million	α	6.6	0.010	0.047
Thallium-207	4.8 min	190 million	β	-	0.49	0.0022
Americium-241	430 yr	3.5	α	5.5	0.052	0.033
Americium-243	7,400 yr	0.20	α	5.3	0.022	0.056
Neptunium-239	2.4 days	230,000	β	-	0.26	0.17
Carbon-14	5,700 yr	4.5	β	_	0.049	-
Cesium-137	30 yr	88	β	_	0.19	_
Barium-137m (95%) ^c	2.6 min	540 million	ΪΤ	-	0.065	0.60
Cobalt-60	5.3 yr	1,100	β	_	0.097	2.5
Curium-243	29 yr	52	α	5.8	0.14	0.13
Curium-244	18 yr	82	α	5.8	0.086	00017
Curium-245	8,500 yr	0.17	α	5.4	0.065	0.096
Curium-246	4,700 yr	0.31	α	5.4	0.0080	0.0015
Europium-152	13 yr	180	β, EC	-	0.14	1.2
Europium-154	8.8 yr	270	β	-	0.29	1.2
Europium-155	5.0 yr	470	β	-	0.063	0.061
Hydrogen-3	12 yr	9,800	β	-	0.0057	-
Iodine-129	16 million yr	0.00018	β	-	0.064	0.025
Iron-55	2.7 yr	2,400	ÉC	-	0.0042	0.0017
Lead-210	22 yr	77	β	-	0.038	0.0048
Bismuth-210	5.0 days	130,000	β	-	0.39	-
Polonium-210	140 days	4,500	α	5.3	< 0.001	< 0.001
Manganese-54	310 days	7,700	EC	-	0.0042	0.84
Molybdenum-93	3,500 yr	1.1	EC	-	0.0055	0.011
Niobium-93m	14 yr	280	IT	-	0.028	0.0019
Neptunium-237	2.1 million yr	0.00071	α	4.8	0.070	0.035
Protactinium-233	27 days	21,000	β	-	0.20	0.20
Nickel-59	75,000 yr	0.082	EC	-	0.0046	0.0024
Nickel-63	96 yr	60	β	-	0.17	-
Niobium-94	20,000 yr	0.19	β	-	0.17	1.6
Plutonium-238	88 yr	17	α	5.5	0.011	0.0018
Plutonium-239	24,000 yr	0.063	α	5.1	0.0067	< 0.001
Plutonium-240	6,500 yr	0.23	α	5.2	0.011	0.0017
Plutonium-241	14 yr	100	β	< 0.001	0.0052	< 0.001
Plutonium-242	380,000 yr	0.0040	α	4.9	0.0087	0.0014
Promethium-147	2.6 yr	940	β	-	0.062	< 0.001
Samarium-147	110 billion yr	0.000000023	α	2.2	-	-
Protactinium-231	33,000 yr	0.048	α	5.0	0.065	0.048
Radium-226	1600 yr	1.0	α	4.8	0.0036	0.0067
Radon-222	3.8 days	160,000	α	5.5	< 0.001	< 0.001
Polonium-218	3.1 min	290 million	α	6.0	<0.001	<0.001
Lead-214	27 min	33 million	β	-	0.29	0.25
Bismuth-214	20 min	45 million	β	-	0.66	1.5
Polonium-214	0.00016 s	330 trillion	α	7.7	< 0.001	< 0.001

TABLE B-8 (Cont.)

				Radiation Energy per Decay (MeV)			
Radionuclide	Half-Life	Specific Activity (Ci/g)	Decay Mode	Alpha (α)	Beta (β)	Gamma (γ)	
Radium-228	5.8 yr	280	β		0.017	< 0.001	
Actinium-228	6.1 h	2.3 million	β	_	0.48	0.97	
Thorium-228	1.9 yr	830	α	5.4	0.021	0.0033	
Samarium-151	90 yr	27	β	5.7	0.021	< 0.001	
Strontium-90	29 yr	140	β	_	0.020	-	
Yttrium-90	64 h	550,000	β	_	0.24	< 0.001	
Technetium-99	210,000 yr	0.017	β	_	0.10	-	
Thorium-229	7,300 yr	0.22	α	4.9	0.10	0.096	
Radium-225	15 days	40,000	β	-	0.11	0.014	
Actinium-225	10 days	59,000	α	5.8	0.022	0.018	
Francium-221	4.8 min	180 million	α	6.3	0.010	0.031	
Astatine-217	0.032 s	1.6 trillion	α	7.1	< 0.001	< 0.001	
Bismuth-213	46 min	20 million	α, β	0.13	0.44	0.13	
Polonium-213 (98%)	0.0000042 s	13,000 trillion	α	8.4	-	-	
Thallium-209 (2%)	2.2 min	410 million	β	-	0.69	2.0	
Lead-209	3.3 h	4.7 million	β	-	0.20	-	
Thorium-230	77,000 yr	0.020	α	4.7	0.015	0.0016	
Thorium-232	14 billion yr	0.00000011	α	4.0	0.012	0.0013	
Uranium-232	72 h	22	α	5.3	0.017	0.0022	
Uranium-233	160,000 yr	0.0098	α	4.8	0.0061	0.0013	
Uranium-234	240,000 yr	0.0063	α	4.8	0.013	0.0017	
Uranium-235	700 million yr	0.0000022	α	4.4	0.049	0.16	
Thorium-231	26 h	540,000	β	-	0.17	0.026	
Uranium-236	23 million vr	0.000065	α	4.5	0.011	0.0016	
Uranium-238	4.5 billion yr	0.00000034	α	4.2	0.010	0.0014	
Thorium-234	24 days	23,000	β	-	0.060	0.0093	
Protactinium-234m	1.2 min	690 million	β	-	0.82	0.012	

^a This table provides a summary of the key radioactive properties of the major radionuclides addressed in this EIS. Many of these radionuclides have short-lived decay products, which will accompany them in the wastes or be present in the future as a result of ingrowth. These associated radionuclides are indicated in italics following the parent radionuclide. A hyphen means the entry is not applicable. EC = electron capture, IT = isomeric transition, Ci = curie, g = gram, and MeV = million electron volts. Values are given to two significant figures and were obtained from Appendix G of Federal Guidance Report Number 13 issued by the U.S. Environmental Protection Agency (EPA 1999) and Publication 38 of the International Commission on Radiological Protection (ICRP 1983).

b Some radionuclides, such as actinium-227 and bismuth-213, decay by more than one mode. Where this occurs and the resultant decay products are also radioactive, the relative percentages of the decay products are indicated in the table.

An "m" following the isotopic number, such as barium-137m, indicates that this radionuclide is metastable and reaches a more stable energy configuration by isomeric transition, generally accompanied with one or more gamma rays.

the half-lives and radiation energies of the alpha and beta particles and photons (gamma rays and x-rays) emitted by these radionuclides. Also indicated are the short-lived radionuclides that accompany these 44 radionuclides.

The information in Tables B-4 through B-7 is useful in assessing the long-term impacts associated with disposing of these wastes at the various sites evaluated in this EIS. The impacts associated with waste handling and transportation were developed by using radionuclide profiles specific to the various waste streams. As noted previously, the activities given here represent information from available sources, and they were decay-corrected to provide a common basis for the EIS analysis.

B.3 PHYSICAL CHARACTERISTICS OF THE WASTES

Following is a description of the physical characteristics of the three waste types (i.e., activated metals, sealed sources, and Other Waste).

B.3.1 Activated Metals

The activated metal waste consists of steel, stainless-steel, and a number of specialty alloys used in nuclear reactors. Portions of the reactor assembly and other components near the nuclear fuel are activated by high fluxes of neutrons during reactor operations for long periods of time, and high concentrations of some radionuclides are produced. Many of these radionuclides have very short half-lives and decay rapidly, while others have longer half-lives and remain radioactive for an extended period of time. Most of the activated metal waste will be generated in the future from the decommissioning of commercial nuclear power reactors.

 Only a very small fraction of the metallic waste generated from decommissioning commercial nuclear power plants will be GTCC LLRW. Most of the waste will be Class A, B, or C LLRW that can be disposed of at existing commercial radioactive waste disposal sites. For purposes of analysis in the EIS, all of the GTCC LLRW activated metal waste is considered to be remote-handled (RH) waste on the basis of the expected high concentrations of gamma-emitting radionuclides in this material. This waste will need a significant amount of shielding to reduce the levels of radiation to acceptable levels and/or will have to be handled remotely. RH waste is defined to be radioactive waste with contact dose rates greater than 200 millirem per hour (mrem/h). The physical form of this waste is solid metal, which is both physically and chemically inert.

B.3.2 Sealed Sources

 Sealed sources typically consist of concentrated radioactive material encapsulated in relatively small containers made of titanium, stainless-steel, or other metals. These sources are commonly used to sterilize medical products, detect flaws and failures in pipelines and metal welds, determine the moisture content in soil and other materials, and diagnose and treat illnesses

such as cancer. Only a small fraction of the sealed sources are GTCC LLRW, depending upon the quantity (curies) and half-life of the specific radionuclide present in the source. Most sealed sources are Class A, B, or C LLRW and can be disposed of at existing commercial LLRW disposal facilities, subject to facility waste acceptance criteria and state/compact requirements. The sealed sources that are GTCC LLRW are those that represent a long-term hazard to human health and the environment and exceed the radionuclide concentrations for classification as Class C LLRW given in Title 10, Section 61.55, of the *Code of Federal Regulations* (10 CFR 61.55).

Essentially all of the sealed sources being addressed in this EIS are in Group 1. There are two categories of sealed sources considered in this EIS: small sealed sources and large Cs-137 irradiators. For purposes of analysis, it is assumed that the small GTCC LLRW sealed sources will be packaged in 208-L (55-gal) drums by radionuclide on the basis of packaging factor limits developed by the DOE Global Threat Reduction Initiative/Off-Site Source Recovery Project (GTRI/OSRP) at Los Alamos National Laboratory (LANL). About 8,700 drums are estimated to be required to dispose of these packaged sealed sources.

In addition to these small sealed sources, there are 1,435 large Cs-137 irradiators in the waste inventory, each with an assumed volume of 0.71 m³ (25 ft³). These irradiators cannot be packaged in 208-L (55-gal) drums and are assumed to be disposed of individually in their original shielded devices. In these irradiators, the Cs-137 source is contained within a very robust shielded device, which would be expected to retain its integrity for many years following disposal.

Sealed sources can encompass several physical forms, including ceramic oxides, salts, or metals. Cesium chloride salt was generally used in older Cs-137 sources, and newer small sources typically have the radionuclide bonded in a ceramic. Of these two forms, cesium chloride salt is much more water soluble. For this EIS, all of the Cs-137 sources are assumed to be present as cesium chloride salt. For the rest of the sealed sources, the radionuclides are assumed to be in the form of oxides. These oxide sources are likely to be in the form of pellets (Sandia 2008). While there are some sealed sources currently in storage, most of this waste will be generated in the future.

Sealed sources generally have relatively low dose rates when packaged for disposal. As noted in Sandia (2008), all of the packaged sealed sources are expected to be contact-handled (CH) waste, with the exception of two americium-241/beryllium sources. For purposes of analysis in this EIS, CH waste is waste for which the contact dose rates on the surface of the package are less than 200 mrem/h. If RH sealed-source wastes are generated, appropriate precautions will be taken to protect workers during waste handling and disposal operations.

B.3.3 Other Waste

 Other Waste consists of a wide variety of materials, including contaminated equipment, debris, scrap metal, glove boxes, filters, resins, soil, solidified sludges, and other materials. This type of waste includes those GTCC LLRW and GTCC-like wastes that do not fall into one of the

other two types (activated metals or sealed sources). Other Waste can come in a number of physical forms, and a range of radionuclides may be present. About 58% of the Other Waste is RH waste, and 42% is CH waste.

Much of the waste in this category is associated with the West Valley Site. Decontamination and decommissioning activities at the West Valley Site would generate both GTCC LLRW and GTCC-like wastes, with the possible exhumation of the NDA and SDA generating all of the GTCC LLRW at this site. It is expected that most of the GTCC-like Other Waste associated with the West Valley Site would meet the DOE definition of TRU waste. This waste might have originated from non-defense activities and therefore might not be authorized for disposal at WIPP under the WIPP LWA. In addition to the Other Waste associated with the West Valley Site, this waste type includes GTCC LLRW from two commercial Mo-99 production projects and GTCC-like waste from a planned DOE Pu-238 production project.

 It is assumed for purposes of analysis in this EIS that the radionuclides in Other Waste can leach out somewhat readily when exposed to water. Therefore, it is assumed that the Other Waste would be stabilized with grout or another matrix prior to being shipped to the disposal facilities considered in this EIS, as appropriate.

B.4 ASSUMED WASTE GENERATION TIMES

The waste generation times assumed for purposes of analysis in the EIS are shown in Figure 3.4.2-1. As shown in this figure, much of the waste is assumed to be generated and received at the alternative disposal facilities before 2035.

The GTCC waste disposal facility is assumed to be available to receive wastes in 2019, and at that time, the GTCC LLRW and GTCC-like wastes in storage would begin to be transported to the disposal facility. The actual start date for operations is uncertain at this time and dependent upon, among other things, the alternative or alternatives selected, additional NEPA analysis as required, characterization studies, and other actions necessary to initiate and complete construction and operation of a GTCC disposal facility. For purposes of analysis in the Draft EIS, DOE assumed a start date of disposal operations in 2019. However, given these uncertainties, the actual start date could vary. As shown in Table B-1, the current volume of stored GTCC LLRW and GTCC-like waste is about 1,100 m³ (39,000 ft³), and this volume is expected to increase somewhat over the next nine years. While very little additional activated metal from decommissioning commercial nuclear reactors would be generated before 2019, the volumes of sealed sources and Other Waste would increase as sealed sources would continue to become disused and a number of ongoing projects that would generate GTCC-like waste would be completed.

A number of assumptions were made in developing the assumed generation and waste receipt rates. For the Group 1 wastes, future inventory estimates are projected to 2035 for Other Waste, 2062 for activated metals, and 2083 for sealed sources. The time period used for activated metal waste accounts for the decommissioning of all currently NRC-licensed commercial nuclear power plants, which will produce most of the radionuclide activity for Group 1 wastes. Many

nuclear utilities are currently seeking and being granted extensions to their operating licenses from NRC. These extensions are generally for about 20 years. Assuming that all commercial nuclear power reactors receive 20-year license extensions, the last currently operating nuclear power plant will cease operation in 2056. It is assumed that a 6-year cooling period occurs before decommissioning operations commence and these wastes become available for disposal. When one year is allowed for disposal, all such waste will be disposed of by 2062 (Sandia 2008).

The time period for Group 1 Other Waste reflects a reasonable amount of time for addressing the indicated wastes. Many of these wastes are associated with the West Valley Site, and activities that could generate Group 1 wastes at this site are expected to be completed before 2035. The waste volumes and activities for the Other Waste generated by other sources are comparatively small and well defined. The time period for Group 1 sealed sources is consistent with the assumption used to address the future decommissioning of Group 2 commercial nuclear power reactors.

All of the wastes in Group 2 will be generated in the future. Some of these facilities may or may not be constructed and operated as currently envisioned, so these projections have a high degree of uncertainty associated with them. This situation contrasts with that of the Group 1 wastes, some of which are already in storage and the rest of which are expected to be generated from currently operating facilities.

The same approach as that used for the Group 1 activated metal wastes from commercial nuclear reactors was used for comparable Group 2 wastes from proposed new reactors. Although the schedules for new commercial reactors are subject to change, it is projected that activated metal wastes from decommissioning these reactors would be generated to 2083. A total of 33 new reactors was assumed to estimate the volumes and radionuclide activities for these wastes, consistent with information provided by the NRC (NRC 2009). As was the case for the Group 1 activated metal wastes, it is assumed that the new reactors would have a 60-year operational life and that a 6-year cooling period would occur before decommissioning operations would commence and these wastes would become available for disposal.

All other GTCC LLRW and GTCC-like wastes in Group 2 are expected to be disposed of shortly after generation. Most of the Group 2 GTCC LLRW is associated with the assumed exhumation of the NDA and SDA at the West Valley Site. For purposes of analysis in the EIS, it is assumed that a decision to exhume these wastes would be made within 10 years of the *Record of Decision: Final Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center* (DOE 2010b) and that these wastes would be exhumed from 2020 to 2035. This is a conservative approach, because if the wastes were exhumed later, additional radioactive decay would occur prior to generation of this GTCC waste. As noted previously, it is assumed that the interim on-site storage of wastes from the two planned commercial Mo-99 production projects and the planned DOE Pu-238 production project would allow for decay of the short-lived radionuclides in these wastes.

B.5 PACKAGING ASSUMPTIONS

Packaging and shipment configurations vary among Alternatives 2, 3, 4, and 5. Section B.5.1 provides the assumptions used for the land disposal alternatives (3, 4, and 5). The assumptions for disposal at WIPP (Alternative 2) are discussed in Section B.5.2.

B.5.1 Land Disposal

For the purpose of this EIS, GTCC LLRW and GTCC-like waste are assumed to be transported by truck and rail to a disposal facility in Type B shipping packages. There are more truck casks readily available for shipping CH waste than for shipping RH waste, especially RH waste with external radiation dose rates on the order of 1,000 rem/h at the container surface. Rates this high are characteristic of the activated metal waste discussed in Section B.3.1. On the other hand, a number of rail casks can accommodate waste containers and payloads that are larger than those handled by truck casks, and the rail casks also have sufficient shielding for waste with high external radiation dose rates. Table B-9 provides examples of shipping packages that could be used for the transport of GTCC LLRW and GTCC-like waste, some of which are discussed further in Sections B.5.1.1 and B.5.1.2. Note that not all GTCC LLRW or GTCC-like waste would necessarily require shipment in Type B packaging as discussed in Section C.9.4.2. Because the levels of radioactivity of the CH waste (including the sealed sources) in their Type A containers (i.e., 208-L [55-gal] drums and SWBs) are assumed to be near the upper limits specified in 10 CFR Part 71, with multiple drums or SWBs per shipment, Type B shipping packaging is assumed for this analysis. However, at the time of actual shipment, all GTCC LLRW and GTCC-like waste would be packaged in compliance with applicable radioactive material transportation safety regulations, and Type B packaging might not be required, depending on the characteristics of the waste to be transported.

B.5.1.1 Contact-Handled Waste

A common container for the storage and disposal of CH and RH GTCC LLRW and GTCC-like waste is the 208-L (55-gal) drum (referred to as drum(s) in the remainder of this appendix). In addition, some stored and projected CH wastes may be packaged for disposal in standard waste boxes (SWBs). This EIS assumes that the disposal of CH waste, with the exception of Cs-137 irradiators, will be in drums and SWBs. The Transuranic Package Transporter-II (TRUPACT-II) Type B package (DOE 2005) is an example of what can be used to transport the CH waste for disposal. This package is in widespread use for similar types of waste and can be used for both truck and rail transport. Two common shipping configurations of waste used with the TRUPACT-II are two stacked 7-drum packs (seven 208-L [55-gal] drums in a close-packed hexagonal unit) or two stacked SWBs.

 For the purposes of this EIS, the external volume occupied by a drum is assumed to be 0.267 m^3 (9.43 ft³), which assumes a right circular cylinder with an outside diameter of 0.610 m (2.0 ft) and a length of 0.914 m (3.0 ft). This external volume is in the upper range of 0.226 to 0.283 m³ (8 to 10 ft³) (DOE 2006a) that is expected for these types of drums at an LLRW

TABLE B-9 Representative Sample of Type B Shipping Packages with the Potential for Transporting GTCC LLRW and GTCC-Like Waste^a

	Internal	Internal	Maximum	Maximum Gross	Waste Type		Transport Mode	
Package	Diameter in m (in.)	Length in m (in.)	Payload in kg (lb)	Weight in kg (lb)	СН	RH^b	Truck ^c	Rail
			2 \ /	8 7				_
TRUPACT-II	1.85	1.91	3,300	8,700	X		X	
	(73)	(75)	(7,265)	(19,250)				
HalfPACT	1.85	1.14	3,400)	8,200	X		X	
	(73)	(45)	(7,600)	(18,100)				
CNS 10-160B	1.73	1.96	6,600	32,700		X	X	
	(68)	(77)	(14,500)	(72,000)				
RH 72-B	0.79	3.30	3,600	15,200		X	X	
	(31)	(130)	(8,000)	(33,500)				
CNS 3-55 ^d	0.91	2.82	4,200	31,800		X	X	
	(36)	(111)	(9,220)	(70,000)				
3-60Be	0.89	2.82	4,300	36,300		X	X	
	(35)	(111)	(9,500)	(80,000)				
TN-RAM	0.89	2.82	4,300	36,300		X	X	
	(35)	(111)	(9,500)	(80,000)				
NAC STC	1.80	4.19	8,500	118,000		X		X
	(71)	(165)	$(18,700)^{f}$	(260,000)				
NAC UMS	1.73	4.90	9,100	113,000		X		X
	(68)	(193)	$(20,000)^{f}$	(250,000)				
125-B	1.30	4.90	20,000	82,300		X		X
	(51)	(193)	(44,000)	(181,500)				
TS 125	1.70	4.90	38,000	129,000		X		X
	(67)	(193)	(85,000)	(285,000)				

^a The packages' internal dimensions and weight limits were taken from NRC (2006).

1 2 3

disposal site but is not considered to be overly conservative. The internal volume of a 208-L (55-gal) drum is $0.208~\text{m}^3$ ($7.34~\text{ft}^3$). The outside dimensions of an SWB are 1.80~m (71~in.) in length, 1.37~m (54~in.) in width, and 0.94~m (37~in.) in height (DOE 2004). The approximate internal and external volumes of an SWB are $1.88~\text{m}^3$ ($66.4~\text{ft}^3$) and $2.08~\text{m}^3$ ($73.4~\text{ft}^3$), respectively. SWBs are rounded on the ends for use as shipping containers within TRUPACT-II shipping casks, with two SWBs to a cask in a stacked configuration.

8 9 10

11

7

While other shipping configurations (e.g., 321- and 378-L [85- and 100-gal] drums, as well as 10-drum overpacks) might be possible with the TRUPACT-II or other casks, their use is

b Casks designed to handle RH waste may also transport CH waste.

^c Truck casks may also be used for rail transport.

d The certificate of compliance expired in October 2008 and will not be renewed.

Proposed design intended for replacement of the CNS 3-55 cask (Carlson et al. 2006; NRC 2007).

f Listed payload weight is that specified for the transport of GTCC waste.

not considered in this EIS, but the use of other types of containers could be accommodated in the current disposal facility designs discussed in Appendix D. Also, GTCC LLRW and GTCC-like CH waste may be found in storage in containers larger than SWBs at some sites, but there are currently no viable casks available for transport. Packing arrangements in the CH disposal units could be modified accordingly in the future if such packages became available (e.g., the TRUPACT-III [DOE 2007]).

B.5.1.2 Remote-Handled Waste

A number of Type B casks are available for the transport of RH waste. Selection of the proper cask will depend on the external dose rate and the use of the appropriate shipping container or canister for a given cask. Except for activated metal waste (which has a high external dose rate similar to spent nuclear fuel), the majority of the RH wastes being considered for disposal can be packaged in drums and shipped in truck casks, such as the RH 72-B (DOE 2006b) and 10-160B (NRC 2005), or in a rail cask (such as the Nuclear Assurance Corp. [NAC] STC). This EIS assumes that all RH waste, except for activated metal waste, is packaged for disposal in drums. If shipped in the RH 72-B cask, three drums can be packaged in an RH canister (DOE 1995) that is designed for use with this cask. The RH canister has a length of 3.07 m (121 in.), a diameter of 0.66 m (26 in.), a wall that is 0.64-cm (0.25-in.) thick, and an internal volume of 0.89 m³ (31.4 ft³). As an alternative, RH waste can be loaded directly into the canister for disposal (DOE 2006c). The proposed land disposal facility designs in Appendix D can accommodate both drums and RH canisters.

Activated metal is assumed to be packaged in unshielded right circular stainless-steel canisters (activated metal canisters ([AMCs]). To facilitate potential shipment by truck as well as rail and to provide flexibility in the facility design as discussed in Appendix D, the size and weight of these canisters were selected to be compatible with existing containers and weight limitations of truck casks. AMCs are assumed to have an external length of 1.22 m (48 in.), an outside diameter of 0.66 m (26 in.), an external volume of 0.418 m³ (14.8 ft³), and an internal volume of 0.370 m³ (13.1 ft³), with a wall thickness of 1.27 cm (0.5 in.) and an end plate thickness of 2.54 cm (1 in.). The external diameter of 0.66 m (26 in.) was chosen to match that of the RH canister (DOE 1995) and remain close to the 0.61-m (24-in.) diameter of drums used for RH waste disposal. A loaded AMC is estimated to weigh approximately 2,600 kg (5,800 lb). This weight was based on a fill fraction of 75% (Sandia 2007). Additional discussion on the size of the AMCs in relation to RH disposal is presented in Appendix D.

Most Type B casks would need to be recertified to transport activated metals. A recent investigation of appropriate truck and rail casks for the transport of activated metals showed that few options are available, primarily because of the cargo's high external radiation dose rates (Carlson et al. 2006). The certificate of compliance for the heavily shielded CNS 3-55 truck cask is no longer valid (it expired in October 2008). However, Energy Solutions may be in the process of supplying an equivalent replacement, the 3-60B cask (NRC 2007). The TN-RAM is also a candidate truck cask, but only one cask is in existence (Carlson et al. 2006). On the other hand, the TN-RAM and/or the CNS 3-55 design could be used as the basis for another certificate of

compliance submittal. Both the 3-60B and TN-RAM designs have a payload capacity of 4,300 kg (9,500 lb) and internal dimensions that could support a longer AMC.

The present length of the AMC was selected to keep it compatible with the RH 72-B and 10-160B packages. For containers with lower dose rates, an AMC could be shipped with spacers in the RH 72-B, which has a 3,600-kg (8,000-lb) payload. The 10-160B is certified to transport activated metal and has a 6,580-kg (14,500-lb) payload. However, additional shielding would be needed for any AMCs with radiation dose rates on the order of 1,000 rem/h at contact. The payload limit includes any additional shielding and bracing that would be needed, which would likely require recertification of the package.

B.5.2 Waste Isolation Pilot Plant

 The assumptions about the packaging used to dispose of CH waste are the same for disposal at WIPP and for the land disposal options. However, it is assumed that RH waste would be packaged in one of the two shielded containers discussed below, so it could be handled as CH waste in order to optimize disposal space at WIPP (Sandia 2007, 2008). Both truck and rail transport modes are considered for shipment of GTCC LLRW and GTCC-like waste to WIPP.

For activated metal and RH waste with higher external dose rates, packaging in canisters with a diameter of 0.71 m (28 in.), height of 1.4 m (55 in.), and inner cavity dimensions of 0.47 m (18.4 in.) in diameter and 1.15 m (45.4 in.) in length is assumed. The canister is fitted with a 9.71-cm (3.825-in.) lead shield to reduce radiation rates at the surface to less than 200 mrem/h (Sandia 2007). The canister is based on an older AMC design and should not be confused with the AMCs used in this EIS as described in Section B.5.1.2; it is referred to as a half-shielded activated metal canister (h-SAMC) in this EIS. A loaded canister is estimated to weigh 4,190 kg (9,220 lb). For truck transport, only one h-SAMC is assumed per shipment; there is one h-SAMC per truck Type B package. Three h-SAMCs are assumed per rail Type B package.

RH waste with lower external dose rates is assumed to be packaged in lead-shielded containers currently undergoing certification for use at WIPP (DOE undated). These containers are roughly the size of 208-L (55-gal) drums with a 2.54-cm (1-in.) lead liner designed to hold a 113-L (30-gal) drum of RH waste. One HalfPACT type B package can transport one three-pack (DOE undated).

B.6 SITE INVENTORIES AND SHIPMENTS

The number of shipments from a generator site to a disposal facility depends on the type of waste, the amount of waste, the packaging used, and the transport mode. Sections B.6.1 and B.6.2 summarize this information for disposal at land disposal sites and WIPP, respectively. Table B-10 summarizes the shipment loading assumptions used for the alternatives considered.

TABLE B-10 Number of Waste Containers per Shipment

	Number of Containers	
Waste Container	per Vehicle	Comments
Truck shipments		
AMC	1	One AMC per Type B shipping package
h-SAMC	1	One h-SAMC per Type B shipping package
CH drum	42	Two 7-drum packs per TRUPACT-II, three TRUPACT-IIs per truck
SWB	6	Two SWBs per TRUPACT-II, three TRUPACT-IIs per truck
Cs-137 irradiator	6	Two irradiators per TRUPACT-II, three TRUPACT-IIs per truck
RH drum	3	Three drums per one RH canister in an RH 72-B
Lead-shielded container	9	Three containers per HalfPACT, three HalfPACTs per truck
Rail shipments		
AMC	4	The weight of the number of AMCs is limited by the Type B shipping package
h-SAMC	3	The weight of the number of h-SAMCs is limited by the Type B shipping package
CH drum	84	Two 7-drum packs per TRUPACT-II, six TRUPACT-IIs per railcar
SWB	12	Two SWBs per TRUPACT-II, six TRUPACT-IIs per railcar
Cs-137 irradiator	12	Two SWBs per TRUPACT-II, six TRUPACT-IIs per railcar
RH drum	6	Three drums per RH canister, two RH canisters/RH 72-Bs per railcar
Lead-shielded container	18	Three containers per HalfPACT, six HalfPACTs per railcar

B.6.1 Land Disposal

It is assumed that approximately 12,600 truck shipments or 5,000 rail shipments of all GTCC LLRW and GTCC-like waste considered in Groups 1 and 2 would be needed if the land disposal methods were used. For the purposes of this EIS, Table B-11 summarizes waste volumes generated, disposal containers, and number of shipments estimated.

B.6.2 Deep Geologic Disposal at WIPP

 It is assumed that approximately 33,700 truck shipments or 11,800 rail shipments would be needed to dispose of all Group 1 and 2 GTCC LLRW and GTCC-like waste at WIPP, as summarized in Table B-12. The number of shipments is more than double the number estimated for the land disposal sites because of the use of the lead-shielded containers to transport the RH waste. The h-SAMC and lead-shielded containers have less internal volume than the AMCs and 208-L (55-gal) drums, respectively.

TABLE B-11 Estimated Number of Radioactive Material Shipments for Disposal of GTCC LLRW and GTCC-Like Waste at Potential Land Disposal Sites $^{\rm a}$

Shipment Site	Waste Type	Volume (m ³)	Container Type	No. of Containers	No. of Truck Shipments	No. of Railcar Shipments ^b
Group 1						
GTCC LLRW						
Activated metals						
Past/present commercial reactors ^c	RH	882.4	AMC	2,452	2,452	660
Sealed sources ^d						
Small	CH	1,810.0	55-gal drum	8,702	209	105
Cs-137 irradiators	CH	1,018.9	Self-contained	1,435	240	120
Other Waste						
CH	CH	42.1	55-gal drum	203	5	3
RH	RH	33.6	55-gal drum	162	54	27
GTCC-like waste						
Activated metals						
RH	RH	12.8	AMC	38	38	11
Sealed sources ^d						
Small	CH	0.8	55-gal drum	4	1	1
Other Waste			_			
CH drum	CH	33.9	55-gal drum	173	5	3
CH SWB	CH	708.8	SWB	381	64	32
RH	RH	716.3	55-gal drum	3,462	1,155	579
Group 1 total		5,259.5		17,012	4,223	1,541

Shipment Site	Waste Type	Volume (m ³)	Container Type	No. of Containers	No. of Truck Shipments	No. of Railcar Shipments ^b
Group 2						
GTCC LLRW						
Activated metals						
New BWRs	RH	72.6	AMC	202	202	54
New PWRs	RH	303.4	AMC	833	833	227
Additional commercial waste	RH	735.3	AMC	1,990	1,990	498
Other Waste						
СН	CH	1,551.0	SWB	829	139	70
RH	RH	2,361.8	55-gal drum	11,365	3,789	1,896
GTCC-like waste						
Other Waste						
СН	CH	488.3	SWB	261	44	22
RH	RH	874.4	55-gal drum	4,207	1,403	702
Group 2 total		6,386.8		19,687	8,400	3,469
Total Groups 1 and 2		11,646.2		36,699	12,623	5,010

^a AMC = activated metal canister, BWR = boiling water reactor, CH = contact-handled, PWR = pressurized water reactor, RH = remote-handled, SWB = standard waste box.

b Rail shipments are assumed to consist of one railcar as part of a general freight train.

Sum of shipments from the individual commercial reactor site locations. Approximate reactor locations are listed in Table 3.4-1 in Chapter 3.

^d For purposes of this EIS, commercial and DOE sealed sources are assumed to be shipped from the population-weighted center of the United States. These sources are distributed throughout the country and are projected waste.

TABLE B-12 Estimated Number of Radioactive Material Shipments for Disposal of GTCC LLRW and GTCC-Like Waste at WIPP^a

Shipment Site	Waste Type	Volume (m ³)	Container Type	No. of Containers	No. of Truck Shipments	No. of Railcar Shipments ^b
Group 1						
GTCC LLRW						
Activated metals						
Past/present commercial reactors ^c	RH	882.4	h-SAMC	12,595	12,595	4,237
Sealed sources ^d						
Small	CH	1,810.0	55-gal drum	8,702	209	105
Cs-137 irradiators	CH	1,018.9	Self-contained	1,435	240	120
Other Waste						
СН	CH	42.1	55-gal drum	203	5	3
RH	RH	33.6	h-SAMC	172	172	58
GTCC-like						
Activated metals						
RH	RH	12.8	h-SAMC	70	70	24
Sealed sources ^d						
Small	CH	0.8	55-gal drum	4	1	1
Other Waste						
CH drum	CH	33.9	55-gal drum	173	5	3
CH SWB	CH	708.8	SWB	381	64	32
RH	RH	716.3	h-SAMC	3,654	3,654	1,221
Group 1 total		5,259.5		27,389	17,015	5,804

Shipment Site	Waste Type	Volume (m ³)	Container Type	No. of Containers	No. of Truck Shipments	No. of Railcar Shipments ^b
Group 2						
GTCC LLRW						
Activated metals						
New BWRs	RH	72.6	h-SAMC	956	956	320
New PWRs	RH	303.4	h-SAMC	4,789	4,789	1,607
Additional commercial waste	RH	735.3	h-SAMC	3,736	3,736	1,246
Other Waste						
СН	CH	1,551.0	SWB	829	139	70
RH container	RH	2,298.9	Shielded container	20,348	2,262	1,131
RH h-SAMC	RH	62.9	h-SAMC	323	323	109
GTCC-like waste						
Other Waste						
CH	CH	488.3	SWB	261	44	22
RH	RH	874.4	h-SAMC	4,441	4,441	1,481
Group 2 total		6,386.8		35,683	16,690	5,986
Total Groups 1 and 2		11,646.2		63,072	33,705	11,790

^a BWR = boiling water reactor, CH = contact-handled, h-SAMC = half-shielded activated metal canister, PWR = pressurized water reactor, RH = remote-handled, SWB = standard waste box.

b Rail shipments are assumed to consist of one railcar as part of a general freight train.

Sum of shipments from the individual commercial reactor site locations. Approximate reactor locations are listed in Table 3.4-1 in Chapter 3.

d For purposes of this EIS, commercial and DOE sealed sources are assumed to be shipped from the population-weighted center of the United States. These sources are distributed throughout the country and are projected waste.

B.7 REFERENCES

2

- 3 Argonne (Argonne National Laboratory), 2010, Supplement to Greater-Than-Class C (GTCC)
- 4 Low-Level Radioactive Waste and GTCC-Like Waste Inventory Reports, ANL/EVS/R-10/1,
- 5 prepared by Argonne, Argonne, Ill., for U.S. Department of Energy, Office of Environmental
- 6 Management, Oct.

7

- 8 Carlson, T., et al., 2006, Low-Level Waste Disposal Alternatives Analysis Report, Appendix E,
- 9 Activated Metals Cask Search and Selection, INL/EXT-06-11601, Rev. 1, Idaho National
- 10 Laboratory, Idaho Falls, Id., Sept.

11

- 12 DOE (U.S. Department of Energy), 1994, Greater-Than-Class C Low-Level Radioactive Waste
- 13 Characterization: Estimated Volumes, Radionuclides, Activities, and Other Characteristics,
- 14 DOE/LLW-114, prepared by Idaho National Engineering Laboratory, Idaho Falls, Id., for DOE,
- 15 Sept.

16

- 17 DOE, 1995, Remote-Handled Transuranic Waste Study, Appendix A RH-TRU Shield Plug and
- 18 Canister Description, DOE/CAO 95-1095, Carlsbad Area Office, Carlsbad, N.M., Oct.

19

- 20 DOE, 2004, Title 40 CFR Part 191 Subparts B and C Compliance Recertification Application
- 21 2004, Appendix DATA, Attachment H, WIPP Waste Containers and Emplacement, DOE/WIPP
- 22 2004-3231, Carlsbad Area Office, Carlsbad, N.M.

23

- 24 DOE, 2005, TRUPACT-II Safety Analysis Report, Rev. 21, Carlsbad Field Office, Carlsbad,
- 25 N.M., Feb.

26

- 27 DOE, 2006a, Nevada Test Site Waste Acceptance Criteria, DOE/NV-325, Rev. 6-02, National
- 28 Nuclear Security Administration, Nevada Site Office, Waste Management Project, Las Vegas,
- 29 Nev.

30

- 31 DOE, 2006b, RH-TRU 72-B Safety Analysis Report, Rev. 4, Carlsbad Field Office, Carlsbad,
- 32 N.M., June.

33

34 DOE, 2006c, RH-TRAMPAC, Rev. 0, Carlsbad Field Office, Carlsbad, N.M., June.

35

- 36 DOE, 2007, Supplement Analysis for the Transportation of Transuranic Waste in TRUPACT-III
- 37 Containers, DOE/EIS-0026-SA-06, Carlsbad Field Office, Carlsbad, N.M., Sept.

38

- 39 DOE, 2010a, Final Environmental Impact Statement for Decommissioning and/or Long-Term
- 40 Stewardship at the West Valley Demonstration Project at Western New York Nuclear Service
- 41 Center, DOE/EIS-0226, Jan.

42

- 43 DOE, 2010b, Record of Decision: Final Environmental Impact Statement for Decommissioning
- 44 and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York
- 45 Nuclear Service Center, Inés R. Triay, Assistant Secretary for Environmental Management,
- 46 Apr. 14.

- 1 DOE, undated, WIPP Technical Fact Sheet, Planned Change Request for Shielded Containers,
- 2 http://www.epa.gov/radiation/docs/wipp/shieldedcontainerfactsheet.pdf. Accessed Dec. 2008.

- 4 EPA (U.S. Environmental Protection Agency), 1999, Cancer Risk Coefficients for
- 5 Environmental Exposure to Radionuclides, Federal Guidance Report No. 13,
- 6 EPA 402-R-99-001, Office of Radiation and Indoor Air, Washington, D.C., Sept., www.epa.gov/
- 7 rpdweb00/docs/federal/402-r-99-001.pdf.

8

- 9 ICRP (International Commission on Radiological Protection), 1983, Radionuclide
- 10 Transformations, Energy and Intensity of Emissions, ICRP Publication 38, Pergamon Press,
- 11 Oxford, U.K.

12

- 13 NRC (U.S. Nuclear Regulatory Commission), 2005, "Certificate of Compliance for Radioactive
- 14 Material Packages, Model No. 10-160B," Certificate Number 9204, Rev. 11, Licensing Section,
- 15 Spent Fuel Project Office, Office of Nuclear Material Safety and Safeguards, Dec.

16

- 17 NRC, 2006, Directory of Certificates of Compliance for Radioactive Materials Packages,
- 18 NUREG-0383, Vol. 2, Rev. 26, Office of Nuclear Material Safety and Safeguards, Washington,
- 19 D.C., Dec.

20

- 21 NRC, 2007, "Summary of April 18, 2007, Meeting with Energy Solutions on the 3-60B Package
- 22 (Docket No. 71-9334, Tac No. L24068)," interoffice memorandum from M. Rahimi (Licensing
- 23 Branch, Division of Spent Fuel Storage and Transportation, Office of Nuclear Material Safety
- 24 and Safeguards), to W. Ruland (Division of Spent Fuel Storage and Transportation, Office of
- 25 Nuclear Material Safety and Safeguards), Apr. 27.

26

- 27 NRC, 2009, Expected New Nuclear Power Plant Applications, Updated July 2, 2009, Office of
- 28 New Reactors, http://www.nrc.gov/reactors/new-reactors.html. Accessed July 28, 2009.

29

- 30 Sandia (Sandia National Laboratories), 2007, Greater-Than-Class C Low-Level Radioactive
- 31 Waste and DOE Greater-Than-Class C-Like Waste Inventory Estimates, prepared by Sandia,
- 32 Albuquerque, N.M., for U.S. Department of Energy, Office of Environmental Management, July.

- 34 Sandia, 2008, Basis Inventory for Greater-Than-Class-C Low-Level Radioactive Waste
- 35 Environmental Impact Statement Evaluations, Task 3.2 Report, Rev. 1, prepared by Sandia,
- 36 Albuquerque, N.M., for U.S. Department of Energy, Office of Environmental Management,
- 37 May.

APPENDIX C: 1 2 3 IMPACT ASSESSMENT METHODOLOGIES 4 5 6 This appendix summarizes the methodologies used in evaluating the various 7 environmental resource areas discussed in this environmental impact statement (EIS). The 8 environmental resource areas evaluated are as follows: 9 10

- Climate, air quality, and noise;
 - Geology and soils;
 - Water resources;
 - Human health (including accidents and intentional destructive acts);
 - Ecological resources;
 - Socioeconomics;
 - Environmental justice;
 - Land use;
 - Transportation (including accidents);
 - Cultural resources; and
 - Waste management.

20 21 22

23

24

11 12

13

14

15 16

17

18 19

> In addition to the above resource areas, DOE has evaluated cumulative impacts that could result from implementation of the proposed GTCC action at each of the sites evaluated in combination with past, present, and planned activities (including federal and nonfederal activities) at or in the vicinity of each of the sites.

25 26 27

C.1 AIR QUALITY AND NOISE

29 30 31

28

C.1.1 Air Quality

32 33

34

35

36 37

38

39

40

41

42

43

Potential air quality impacts under each alternative were evaluated by estimating potential air pollutant emissions from the activities associated with facility construction and operations. Potential air emission sources were obtained from Appendix D. Air emissions of criteria pollutants, volatile organic compounds (VOCs), and carbon dioxide (CO₂, a primary greenhouse gas) that would result from the activities associated with construction (e.g., engine exhaust and fugitive dust emissions from heavy equipment and vehicles) and operations (e.g., boiler and emergency generator stack emissions) were estimated by using emission factors available in the standard reference (EPA 2004) and by using activity-level data obtained from Appendix D. Information previously developed for other similar projects was also obtained and used to the extent possible. The significance of project-related emissions to overall air quality was determined by comparing the estimated project-related emissions with the sitewide/countywide emissions or statewide/worldwide emissions of CO₂.

44 45

C.1.2 Noise

2 3

5

9

10 11

12

13

14

15

16

17

18 19

Potential noise impacts under each alternative were assessed by estimating the noise levels from noise-emitting sources associated with facility construction and operations, then performing noise propagation modeling. First, all potential noise-emitting sources were identified, as described in Appendix D. Examples of noise-emitting sources include heavy equipment used in earth-moving activities during construction, process equipment, emergency generators used during operations, and both the on-site and off-site vehicles used throughout the project. Sound power or sound pressure levels of individual noise sources were obtained from the literature (e.g., Hanson et al. 2006; Menge et al. 1998; Wood and Barnes 2006). Potential noise impacts at the nearest sensitive receptors (e.g., residences) were estimated by using a simple noise propagation formula (e.g., considering geometric spreading of sound energy and ground effects only) (Hanson et al. 2006). Estimated potential noise levels were assessed by comparing them to the U.S. Environmental Protection Agency (EPA) noise guideline (EPA 1974), which is more stringent than the state or local guidelines. In addition, a groundborne vibration impact analysis was performed in the same way as was the noise impact analysis. Common groundborne vibration sources include construction and operational activities (e.g., use of heavy equipment). The distances at which vibration levels are below the threshold of perception for humans and interference with vibration-sensitive activities were estimated (Hanson et al. 2006).

21 22

20

C.2 GEOLOGY AND SOILS

232425

26

27

28

29

30

31

32

The main elements considered when assessing impacts on geologic and soil resources were the location and extent of land disturbed during construction and operations. Activities that could result in land disturbance include excavating for the trench and vault facilities, drilling for boreholes, and staging of equipment in designated areas. Geologic and soil conditions within each of the greater-than-Class C (GTCC) reference locations and at the Waste Isolation Pilot Plant (WIPP) are described in the affected environment section. Surveys in the vicinity of the candidate sites, including soil surveys, topographic surveys, and geologic and seismic hazard maps, were reviewed as an initial step in the assessment. Well log data from on-site (or near-site) wells and boreholes were also reviewed.

33 34 35

36 37

38

39

The impact analysis for geologic resources evaluated effects on critical geologic attributes, including access to mineral or energy resources, destruction of unique geologic features, and mass movement induced by construction. The impact analysis also evaluated regional geologic conditions, such as earthquake potential. The impact analysis for soil resources evaluated effects on specific soil attributes, including the potential for soil erosion and compaction by construction activities.

40 41 42

43

44

The determination of the relative magnitude of an impact for each evaluated site was based on an analysis of both the context of the action and the intensity of the impact on a particular resource.

C.3 WATER RESOURCES

2 3

Water resources that could be affected by the GTCC waste disposal facility include rivers, streams, and groundwater. Hydrologic conditions (including hydrologic parameters, such as flow volumes [surface water] and hydraulic conductivity [groundwater]) in the vicinity of each site evaluated in this GTCC EIS and are described in the affected environment sections.

Impacts on surface water were evaluated in terms of runoff and water quality. Changes in runoff were assessed by comparing runoff conditions with and without the GTCC waste disposal facility. The potential for impacts on surface water quality was assessed on the basis of the site's location relative to rivers and streams, local runoff rates, and groundwater discharge.

The impact analysis for groundwater resources evaluated effects on underlying aquifers in terms of changes in groundwater depth, direction of groundwater flow, groundwater velocity, groundwater quality, and recharge rates. Impacts on groundwater depth and direction of flow were assessed by comparing existing water use with water demand under the proposed action. For the land disposal alternatives (borehole, trench, and vault), the RESRAD-OFFSITE (Yu et al. 2007) model was used to estimate the concentrations and migration rates of contaminants from source areas to groundwater (i.e., changes in groundwater quality over time). Changes in recharge rates were assessed by estimating the impermeable area that would result from GTCC waste disposal facility construction and operations and comparing it to the recharge area currently available at each of the sites evaluated (see Appendix E).

C.4 HUMAN HEALTH RISK

This section describes the approach used for assessing the human health impacts from disposal of GTCC low-level radioactive waste (LLRW) and GTCC-like waste under normal and accident conditions. For normal operations (Section C.4.1), potential impacts are evaluated for the short term (during construction and disposal operations) and long term (post-closure of the facility). Facility accidents are considered in Section C.4.2.

C.4.1 Operations

The GTCC wastes would arrive at the disposal facility prepackaged in accordance with appropriate packaging and transportation regulations, and it is expected that the containers would retain their integrity throughout the disposal operations. Leakage of the waste containers is not expected to occur under routine operations; hence, airborne emissions or wastewater discharges are likewise not expected. As a result, human health impacts during the operational phase would be limited to external radiation exposure, which could occur without direct contact with the waste. The release of contaminants from the waste material could occur after the closure of the disposal facility, as a result of the degradation of the waste containers in the environment over time. Only after the release of the contaminants could human health risks result from direct contact with the contaminants as a result of inhalation and ingestion through potentially available pathways and subsequent transport in the environment.

C.4.1.1 Receptors and Exposure Pathways

Human health impacts are estimated for three categories of receptors in this EIS: involved workers, noninvolved workers, and the off-site general public. Both involved workers and noninvolved workers would be employed by the waste disposal facility. Involved workers are those workers who conduct waste disposal activities, such as loading and unloading the waste containers and placing them into the disposal cells. Noninvolved workers work at the disposal facility but do not perform hands-on activities. For example, they would be employees who work in the administration building or outside the immediate area of the disposal facility but within the boundary of the disposal facility footprint. The general public consists of residents who live outside the boundary of the disposal facility but within 80 km (50 mi) of the facility boundary.

As noted previously, the release of waste material through airborne emissions or wastewater discharges is not expected during the operation of the disposal facility except as a result of accidents, which are discussed in Section C.4.2. Potential impacts are thus estimated only for the involved workers who, because of their close proximity to the waste material, could incur radiation doses through external exposure. Radiation exposures of the noninvolved workers and the off-site general public would be low because they would be farther away from the waste materials. More details are provided in Sections 5.3.4.1.1 and 5.3.4.1.2.

After the closure of the land disposal facility (i.e., borehole, trench, or vault), exposures could occur from waste material released by airborne emissions (should the cover system fail) and from leaching of radionuclides to the groundwater (which is used for drinking and household activities). Such releases could occur over a long time period, usually following closure of the disposal facility. The potential radiation doses and latent cancer fatality (LCF) risks from the airborne pathway would be low; the pathway of most concern is leaching to groundwater (see Section 5.3.4.3). To assess the potential impact associated with using contaminated groundwater in the future, a well located 100 m (330 ft) from the edge of the disposal facility was assumed to be installed by a hypothetical member of the general public. The potential dose from using the contaminated water was analyzed to provide an indication of the post-closure impact associated with waste disposal. Post-closure analysis for Alternative 2 (disposal at WIPP) is discussed in Chapter 4 (Section 4.3.4.3).

 Another scenario that could be used to assess the potential impacts from the closure of a waste disposal facility involves a hypothetical intruder who has no knowledge of the waste disposal history and establishes a residence above the waste disposal area after the institutional control period. While digging soil to build the house, the intruder could exhume radioactive material and place it around the house for fill. This exposure scenario is considered to be very unlikely because there would be an engineered barrier (reinforced concrete slab) and a thick layer of cover material placed above the waste material for Alternatives 3 to 5. This scenario is not relevant for Alternative 2 (disposal at WIPP, a geologic repository). The potential exposure of such an individual would be limited and result from the slow release mechanism of gas diffusion. The radionuclides of concern include carbon-14 (C-14), hydrogen-3 (H-3), and radon isotopes and their progeny. It is assumed that the C-14 and H-3 in the waste material would be converted to CO₂ and tritiated water vapor (HTO) in the environment prior to their diffusion process in soil. Radon gas would be generated in the disposal area through radiological decay of

radon precursors (radium-226 and radium-228). It is assumed that because the intruder would live above the waste disposal area, he or she would incur radiation exposure by inhaling the gaseous radionuclides (including radon isotopes and their progeny) that would be released as the waste containers gradually degraded. The intruder scenario was not assessed quantitatively in the EIS because of its low probability of occurrence. Disposal procedures would be conducted in a manner to make this scenario implausible.

C.4.1.2 Radiation Dose and Health Effects

 The primary human health impact of concern would be radiation exposure that would occur as a result of the radionuclides contained in the waste material. All radiological exposures are presented in terms of committed dose and associated health effects. The calculated dose is the total effective dose equivalent (TEDE), which is the sum of the effective dose equivalent (EDE) from exposure to external radiation and the 50-year committed effective dose equivalent (CEDE) from exposures to internal radiation. For this EIS, the radiation doses were calculated by using the dose conversion factors (DCFs) for adults developed by the International Commission on Radiological Protection (ICRP) as given in ICRP 72 (ICRP 1996). (See Section 5.2.4 for more discussion on these DCFs). The results are generally given in terms of rem or mrem (0.001 rem) for individuals and in terms of person-rem for collective populations.

The primary adverse health effect from the potential radiation doses resulting from disposal operations would be the potential for the induction of LCFs. The health risk conversion factor (expected LCFs per dose) used to convert radiation doses to LCFs (i.e., 0.0006 per rem or person-rem) is a value identified by the Interagency Steering Committee on Radiation Standards (ISCORS) as a reasonable factor to use in the calculation of potential LCFs associated with radiation doses as given in DOE guidance and recommendations (DOE 2003, 2004). Adverse health effects for individuals are presented in terms of the probability of developing an excess LCF, whereas adverse health effects for collective populations are presented as the number of excess LCFs among the population.

C.4.1.3 Sources of Data and Application of Software

The external exposures incurred by the involved workers for the three land disposal alternatives are estimated on the basis of information on worker activities, the estimated number of workers required to implement each alternative, and an average estimated annual dose of 0.2 rem per full-time equivalent (FTE) employee. This value is higher than but generally consistent with doses incurred by workers performing comparable activities at DOE sites (see Section 5.3.4.1.1) and those associated with storage of activated metal wastes at commercial nuclear reactors (see Section 3.5.1.1). Actual worker dose information was used for waste disposal activities at WIPP. This approach was used because there is considerable uncertainty about the procedures workers would use to dispose of these wastes. The exact approach workers would use to dispose of these wastes would be determined after the disposal site and detailed facility design had been approved. This approach for addressing involved worker impacts is considered reasonable for this EIS and is described in more detail in Section 5.3.4.1.1.

The radiological impacts from inhaling gaseous radionuclides are estimated by using the RESRAD-OFFSITE computer code (Yu et al. 2007). The inhalation rate of the individual is assumed to be 20 m³/d, with an exposure duration of 24 hours per day for 365 days per year. The outdoor air concentrations are used for these calculations, and the time spent indoors, where concentrations would be less than they are outdoors, is not accounted for. Site-specific wind speed and contamination source data are used in these calculations; the data are based on information contained in the post-closure performance analysis report for the waste disposal facility (Argonne 2010). This approach ensures consistency with the assumptions used for the groundwater impact analysis.

The assessment of the potential impacts from groundwater contamination for the land disposal alternatives was conducted by using the same computer code (RESRAD-OFFSITE), as summarized in the post-closure performance analysis report (Argonne 2010). The maximum radiation doses associated with using the contaminated groundwater as the source of drinking water are analyzed for a resident farmer scenario for time frames of 10,000 years and 100,000 years. The ingestion rate of drinking water for the groundwater receptor is assumed to be 730 L/yr (190 gal/yr), which is the ingestion rate for adults recommended by the EPA (EPA 1997). See Appendix E for more details on this evaluation.

The nonradiological impacts on workers are calculated as the number of lost workdays that could occur from occupational accidents and illnesses. Data from the National Safety Council are used to develop these estimates, as described in Section 5.3.4.2.2.

C.4.2 Facility Accidents

The methodology for analyzing the range of potential accidents that could result in a release of radioactive material to the environment and that could occur at the land disposal facilities is discussed in this section. The accident analysis considers potential events involving the different GTCC LLRW and GTCC-like waste types considered in the EIS. Accidents could be initiated during facility operations, such as those that result from equipment or operator failure, or they could be caused by external events, including natural phenomena (earthquake, flood, wind, or tornado). Reasonably foreseeable accidents were screened to identify the accidents that would have the greatest consequences on workers and the public. These "bounding" accidents provide an envelope for the consequences of the other potential accidents that would have less impact on workers and the public.

Because the disposal options involve similar operations and the same waste packages, the accidents evaluated are applicable to all three land disposal options. Because of the differences in the local weather patterns and the location of the potential receptors, the radiological impacts for Alternatives 3 to 5 are site-dependent and are discussed in Chapters 6 through 11 for the Hanford Site, Idaho National Laboratory (INL), Los Alamos National Laboratory (LANL), Nevada National Security Site (NNSS), Savannah River Site (SRS), and the Waste Isolation Pilot Plant (WIPP) Vicinity, respectively.

2 a 3 (4 f 5 r

The output from the disposal facility accident analyses consists of (1) identification of the accidents potentially important with regard to human health risk for each waste type, (2) assessment of the frequencies of these accidents, (3) evaluation of the source terms resulting from these accidents, and (4) identification of the human health impacts associated with the release and atmospheric dispersion of the source term.

C.4.2.1 Accidents Evaluated

An accident is an event or series of unexpected or undesirable events leading to a loss of waste containment or shielding that could result in radiological exposure to workers or members of the general public. The accidents considered fall under two broad categories (operational events and natural phenomena) that had been previously evaluated for similar types of waste and packaging (DOE 1997a, 2006, 2007). Table C-1 summarizes the accident scenarios analyzed. Table C-2 provides more details for each potential accident considered.

C.4.2.1.1 Operational Events. It is not expected that any waste would be repackaged at the disposal facility; therefore, the only way an operational event could release radioactive material to the environment would be if a disposal container ruptured during handling or temporary storage operations. Handling operations would include (1) transfer of the disposal containers from their Type B shipping packages as received at the Waste Handling Building (WHB) to temporary storage, (2) transfer from temporary storage to an on-site transport cask (if waste is remote-handled [RH]) or to a vehicle, and (3) transfer from the transport vehicle into the disposal unit. All such operations are expected to involve the use of forklifts and/or cranes.

 Physical damage to waste containers could result from low-speed vehicle collisions, being dropped, or being crushed by falling objects. Only minor releases would be likely should such accidents happen. High-speed impacts are not anticipated at the disposal facility because of the operational procedures that are followed (e.g., the on-site maximum speed limits are low, waste disposal operations are separated from worker vehicular transport, and access to disposal operations is limited).

 Accidents involving contact-handled (CH) waste containers (208-L [55-gal] drums and standard waste boxes [SWBs]) are expected to result in higher impacts because these Type A containers, although fairly robust, are not as sturdy as the cesium irradiators and the RH canisters or activated metal canisters (AMCs) and their shielding casks. As a consequence, the CH waste containers would be more prone to release a portion of their contents. CH drum and SWB radionuclide inventories that had the highest impacts were used in this facility accident analysis for Accidents 1–9, 11, and 12. Accident 10 was also evaluated to provide that perspective should an RH canister fail during an accident. A preliminary screening analysis, in which equivalent release fractions were assumed both for GTCC Other Waste - CH and for GTCC Other Waste - RH released from their containers, showed greater impacts for the CH waste. In addition, if an AMC somehow became breached, the airborne radioactive contamination from material such as activated metal waste would be minimal compared to that from Other Waste, because of the relatively immobile nature of the contamination. Before sealed sources are packaged in

Appendix C: Impact Assessment Methodologies

TABLE C-1 Accidents Evaluated for the Land Disposal Facilities

				Frequen	cy Range	
Accident Number	Accident Scenario	Accident Description	>10 ⁻² /yr	10 ⁻⁴ to 10 ⁻² /yr	10 ⁻⁶ to 10 ⁻⁴ /yr	<10 ⁻⁶ /yr
1	Single drum drops, lid failure in Waste Handing Building	A single CH drum is damaged by a forklift and spills its contents onto the ground inside the Waste Handling Building.		X		
2	Single SWB drops, lid failure in Waste Handing Building	A single CH SWB is damaged by a forklift and spills its contents onto the ground inside the Waste Handling Building.		X		
3	Three drums drop, puncture, lid failure in Waste Handling Building	Three CH drums are damaged by a forklift and spill their contents onto the ground inside the Waste Handling Building.		X		
4	Two SWBs drop, puncture, lid failure in Waste Handling Building	Two CH SWBs are damaged by a forklift and spill their contents onto the ground inside the Waste Handling Building.		X		
5	Single drum drops, lid failure outside	A single CH drum is damaged by a forklift and spills its contents outside.		X		
6	Single SWB drops, lid failure outside	A single CH SWB is damaged by a forklift and spills its contents outside.		X		
7	Three drums drop, puncture, lid failure outside	Three CH drums are damaged by a forklift and spill their contents outside.		X		
8	Two SWBs drop, puncture, lid failure outside	Two CH SWBs are damaged by a forklift and spill their contents outside.		X		

				Frequenc	y Range	
Accident Number	Accident Scenario	Accident Description	>10 ⁻² /yr	10 ⁻⁴ to 10 ⁻² /yr	10 ⁻⁶ to 10 ⁻⁴ /yr	<10 ⁻⁶ /yr
9	Fire inside the Waste Handling Building, one SWB assumed to be affected	A fire within the Waste Handling Building affects the contents of a single CH SWB.			X	
10	Single RH waste canister breach	A single RH waste canister is breached during a fall in the Waste Handling Building.			X	
11	Earthquake affects 18 pallets, each with four CH drums	The Waste Handling Building is damaged during a design basis earthquake, and the structure and confinement systems fail.			X	
12	Tornado, missile hits one SWB, contents released	A major tornado and associated tornado missiles result in failure of the Waste Handling Building structure and its confinement systems.			X	
13	Flood	The facility would be sited in a location that would preclude severe flooding.				X

TABLE C-2 Hypothetical Facility Accident Descriptions

Accident Number Accident Scenario Description

- A package (either a 7-drum pack or 4-drum pallet of CH transuranic [TRU] waste) is dropped from a forklift or crane while being handled in the Waste Handling Building. Because the waste containers are Type A packages, per U.S. Nuclear Regulatory Commission (NRC) requirements, they are designed to withstand a 1-m (3.3-ft) drop onto an unyielding surface without damage. However, because the vertical lift can exceed this design rating, it is assumed that the container drop and subsequent crushing cause the lid of a single container to be knocked off. No inner plastic liner is assumed to be present. A fraction of the respirable-sized particulates in the drum are assumed to be suspended inside the drum during the fall and to be released when a lid fails. Spilled contents are released, and the respirable particles are resuspended from this material. Facility high-efficiency particulate air (HEPA) filtration is considered for releases to the atmosphere.
- Same as Accident 1, except that a single, direct-loaded SWB with CH waste is involved in a drop from a forklift or crane.
- An error made by the Waste Handling Building forklift operator causes a forklift to strike and puncture two drums. An additional drum is knocked off, and the lid fails. Because the waste containers are Type A packages, per NRC requirements, they are designed to withstand a 1-m (3.3-ft) drop onto an unyielding surface without damage. However, because the vertical lift can exceed this design rating, it is assumed that the container drop and subsequent crushing cause the lid of a single container to be knocked off. No inner plastic liner is assumed to be present. A fraction of the respirable-sized particulates in the drum are assumed to be suspended inside the drum during the fall. A fraction of these are released when the lid fails, or the contents may be released and the respirable particles may be resuspended from this material. Facility HEPA filtration is considered for releases to the atmosphere.
- An error made by the Waste Handling Building forklift operator causes a forklift to strike and puncture a single, direct-loaded SWB. An additional SWB is knocked off, and the lid fails. Because the waste containers are Type A packages, per NRC requirements, they are designed to withstand a 1-m (3.3-ft) drop onto an unyielding surface without damage. However, because the vertical lift can exceed this design rating, it is assumed that the container drop and subsequent crushing cause the lid of a single container to be knocked off. No inner plastic liner is assumed to be present. A fraction of the respirable-sized particulates in the SWB are assumed to be suspended inside the SWB during the fall. A fraction of these are released when the lid fails, or the contents may be released and the respirable particles may be resuspended from this material. Facility HEPA filtration is considered for releases to the atmosphere.
- 5 Same as Accident 1, except that it occurs outdoors during disposal operations.
- 6 Same as Accident 2, except that it occurs outdoors during disposal operations.
- 7 Same as Accident 3, except that it occurs outdoors during disposal operations.
- 8 Same as Accident 4, except that it occurs outdoors during disposal operations.
- A fire in the WHB is caused by the malfunction or overheating of electrical equipment. This fire subsequently ignites nearby combustibles and is assumed to involve one SWB with CH waste.

TABLE C-2 (Cont.)

Accident Number	Accident Scenario Description
10	During the unloading of an RH shipping cask or the loading of an on-site transfer cask, the crane, grapples, or lift fixtures fail, and an RH canister is dropped, resulting in the canister being crushed or punctured.
11	The Waste Handling Building is assumed to be damaged during a design basis earthquake, and the structure and confinement systems fail. The roof is assumed to collapse onto 18 4-drum pallets of CH waste that are in the storage area awaiting final internment. Although four 4-drum pallets are assumed for disposal in trenches, the same number of drums could be involved as 7-drum packs for disposal in 40-m (130-ft) boreholes or above-grade vaults. In either case, the number of drums involved (72) is less than two full truck shipments of CH waste (84 drums).
12	A major design basis tornado is assumed to damage the Waste Handling Building to the extent that a wind-driven missile is able to hit a single SWB containing CH waste. Missiles might be produced from nearby trees, poles, cranes, parts of the facility structure, or various pieces of equipment or material (e.g., pallets).
13	The facility would be sited in a location that would preclude severe flooding.

1 2

drums for disposal, they are relatively immune to collisions and physical impacts because it is assumed that sealed sources are already encased in their own sealed cases or shields; thus, releases from sealed sources are expected to be less than those from the Other Waste - CH.

Fire from internal or external causes is another potential reason for radioactive contamination. Internal causes would be minimized by properly treating the waste before it was packaged and received at the facility. External causes, which are primarily linked to vehicle or equipment fires, would be minimized through proper maintenance and use. Accident 9 considers the impacts from a short-term fire in the WHB.

C.4.2.1.2 Natural Hazards. Potential releases of radioactive material could also occur as a result of natural hazards. Such releases are anticipated only before emplacement (i.e., while the waste is at the WHB). However, it is assumed that the disposal facility would be sited in an area that is not prone to flooding, and depending on the area of the country in which it would be situated, the facility would be built to meet local standards for earthquakes. Other natural hazards (such as tornadoes) in certain areas of the country could cause releases. Accidents 11 and 12 look at potential scenarios involving earthquakes and tornadoes, respectively.

A flood is not considered to be a credible hazard because it is assumed that the facility would be sited to preclude severe flooding. It is assumed that the location and design of the disposal facility would bring the frequency below 1×10^{-6} /yr. For example, the U.S. Nuclear Regulatory Commission's (NRC's) regulations in Title 10, Section 61.50 of the *Code of Federal Regulations* (10 CFR 61.50) require, in part, that waste disposal shall not take place in a

100-year floodplain. U.S. Department of Energy (DOE) guidance (DOE M 435.1-1) also indicates that floodplains should be avoided.

 High winds and tornadoes could cause extensive damage, including collapse of a structure. For this accident analysis, it is assumed that the WHB could be damaged if a major tornado, with associated tornado debris missiles, would sweep through the area. Missiles could be produced from nearby trees, poles, cranes, parts of the facility structure, or various pieces of equipment or material (e.g., pallets). The radiological dose would be much lower for a tornado than a high wind because the tornado's higher wind would disperse releases more widely, but credit is not taken in the dispersion analysis for this effect. It is assumed that a missile driven by the wind from a tornado would hit and break an SWB, causing it to release some of its radioactive contents.

The major earthquake assumed would be severe enough to cause the WHB roof to collapse. The earthquake analysis assumes that 18 4-drum pallets of CH waste in the storage area awaiting final internment would be affected. While it is assumed that 4-drum pallets would be disposed of in trenches, the same number of drums could be involved as 7-drum packs for disposal in 40-m (130-ft) boreholes or above-grade vaults. In either case, the number of drums involved (72) is less than two full truck shipments of CH waste (84 drums).

C.4.2.1.3 Accident Frequency. The annual frequency of occurrence for waste handling accidents is the product of the number of drums received per year, number of operations per drum, and probability that a mishandling accident would damage a drum so it would release radioactive material to the surrounding environment. Table C-3 summarizes the development of the accident frequencies.

Seismic design guidelines for DOE facilities are based on facility usage categories. For each category, an earthquake hazard level is specified by using site-specific seismic hazard data. This process ensures that facilities are designed on a uniform basis to address the effects of seismic events, regardless of their locations (DOE 1997b). A beyond-design-basis earthquake, regardless of accident frequency, must be assumed to defeat all building confinement functions. Buildings are typically constructed to withstand earthquakes. Therefore, the frequency of the beyond-design-basis earthquake scenario is assumed to be equal at all of the disposal sites considered. A similar process applies to the hardening of facilities to the potential impacts from high winds and tornados.

C.4.2.1.4 Source Terms. In analyzing the potential consequences of postulated facility accidents, the source term, which is the amount of radioactive material released, is evaluated. The source term is the product of five factors (DOE 1994):

Q = MAR * DR * ARF * RF * LPF

TABLE C-3 Determination of Frequencies of Occurrence of Hypothetical Facility Accidents

Accident Number	Accident Scenario	Number of Containers per Year ^a	Number of Operations per Container	Frequency per Operation	Accident Frequency ^b (1/yr)
1	Single drum drops, lid failure in Waste Handing Building	330	2	1.1E-05 ^c	7.3E-03
2	Single SWB drops, lid failure in Waste Handing Building	83	2	1.1E-05	1.8E-03
3	Three drums drop, puncture, lid failure in Waste Handling Building	330	2	$0.25 \times 1.1E-05$	1.8E-03
4	Two SWBs drop, puncture, lid failure in Waste Handling Building	83	2	0.25×1.1 E-05	4.6E-04
5	Single drum drops, lid failure outside	330	2	1.1E-05	7.3E-03
6	Single SWB drops, lid failure outside	83	2	1.1E-05	1.8E-03
7	Three drums drop, puncture, lid failure outside	330	2	0.25×1.1 E-05	1.8E-03
8	Two SWBs drop, puncture, lid failure outside	83	2	0.25×1.1 E-05	4.6E-04
9	Fire inside the Waste Handling Building, one SWB assumed to be affected ^d	NAe	NA	NA	1.0E-05
10	Single RH waste canister breach	1,150	NA	NA	1.0E-05
11	Earthquake affects 18 pallets, each with four CH drums ^f	NA	NA	NA	1.0E-05
12	Tornado, missile hits one SWB, contents released ^f	NA	NA	NA	1.0E-05
13	Flood	NA	NA	NA	< 1e-6

^a Based on postulated receipt rates, with the majority of the waste being disposed of by 2035.

b Calculated as the product of the number of containers times the number of handling events per container times the accident frequency per handling event.

^c Drop frequency of 1.1×10^{-5} per operation taken from page 6.13-7-5 of Dubrin et al. (1997).

d Annual frequency of 1×10^{-5} per year taken from page G-69 of DOE (1997b).

e NA = not applicable, since the number of affected containers is defined in the accident scenario.

Natural phenomena frequency of 1×10^{-5} per year assuming disposal facilities would be constructed as DOE Hazard Category 2 facilities, as per pages G-6 and G-10 of DOE (1997b).

where: Q =source term (Ci); MAR = material at risk, the maximum amount and type of material present that may be acted upon by the potentially dispersive energy source (Ci); DR = damage ratio, the fraction of the MAR actually affected by the accident condition; ARF = airborne release fraction, the fraction of radioactive material actually affected by the accident condition that is suspended in air; RF = respirable fraction, the fraction of the airborne radioactive particles that are in the respirable size range (i.e., less than 10 µm); and LPF = leak path factor, the cumulative fraction of airborne material that escapes to the atmosphere from the postulated accident.

Table C-4 summarizes the values used in the EIS facility accident analysis.

The source term should represent a reasonable maximum for a given waste stream. A screening analysis identified the CH waste stream that is the most hazardous to human health. For CH waste assumed to be packaged in 208-L (55-gal) drums, waste from INL is expected to pose the highest risk. For CH waste packaged in SWBs, DOE waste from the West Valley Site is expected to pose the highest risk. For RH packaged in 208-L (55-gal) drums, DOE waste from the West Valley Site is expected to pose the highest risk. Note that three RH drums are contained within the RH canister evaluated in Accident 10.

Because of the uncertainties involved in waste type characterization at the present time, container activity inventories were averaged by taking the total activity for a given waste type from a specific generator and dividing that by the number of containers necessary to hold the waste (discussed further in Appendix B). This information was developed from the waste inventory database established for this EIS. Table C-5 lists the estimated inventories for a CH drum (Accidents 1, 3, 5, 7, and 11), CH SWB (Accidents 2, 4, 6, 8, 9, and 12), and RH drum (Accident 10) as used in this analysis. The actual respirable amount (Ci) released to the environment, the source term, is obtained by multiplying the value in the "Release Factor" column in Table C-4 by the activity from the appropriate container (Table C-4) for a given accident.

Values for the damage ratio, airborne release fraction, and respirable fraction as given in Table C-4 were identified through a review of similar past analyses (DOE 1997b, 2006) and current recommendations (DOE 2007). A leak path factor of 0.001 represents containment by the WHB and assumes continuous operation of the building's heating, ventilation, and airconditioning (HVAC) system, with high-efficiency particulate air (HEPA) filters removing

TABLE C-4 Estimated Release Fractions for Hypothetical Facility Accidents^a

Accident Number	Container Type	Number of Containers	DR	ARF ^b	RF ^b	LPF ^c	Release Factor ^d
1	CH drum	1	0.25 ^e	0.001	0.1	0.001	2.5E-08
2	CH SWB	1	0.25	0.001	0.1	0.001	2.5E-08
3	CH drum	3	$(2 \times 0.1 + 1 \times 0.25)/3^{f}$	0.001	0.1	0.001	4.5E-08
4	CH SWB	2	$(1 \times 0.1 + 1 \times 0.25)/2^g$	0.001	0.1	0.001	3.5E-08
5	CH drum	1	0.25	0.001	0.1	1	0.000025
6	CH SWB	1	0.25	0.001	0.1	1	0.000025
7	CH drum	3	$(2 \times 0.1 + 1 \times 0.25)/3$	0.001	0.1	1	0.000045
8	CH SWB	2	$(1 \times 0.1 + 1 \times 0.25)/2$	0.001	0.1	1	0.000035
9	CH SWB	1	1	0.0005^{h}	1	1	0.0005
10	RH canister	1	0.01 ^e	0.001	0.1	0.001	1E-09
11	CH drum	72	0.1^{i}	0.001	0.1	1	0.00072
12	CH SWB	1	1	0.001^{j}	0.1^{j}	1	0.0001
13	Sited to precl	ude severe flo	ooding, no release assumed				

^a DR = damage ratio, ARF = airborne release fraction, RF = respirable fraction, LPF = leakpath factor; CH = contact-handled, SWB = standard waste box, RH = remote-handled.

b For direct loaded containers (DOE 2006).

^c The values for LPF are explained on page C-17.

 $[^]d$ The release factor is the product of the number of containers \times DR \times ARF \times RF \times LPF. Multiplication of this factor by the appropriate container inventory in Table C-5 provides the source term for each accident.

e Source: DOE (1997b).

Damage ratio of 0.1 for each punctured drum and 0.25 for dropped drum with lid failure (DOE 1997b).

Damage ratio of 0.1 for the punctured SWB and 0.25 for the dropped SWB with lid failure (DOE 1997b).

h Based conservatively on packaged cellulosic or plastic materials (DOE 2007).

ⁱ Assumed to behave similarly to a postulated collapse of the Waste Handling Building at WIPP (DOE 2006).

Release fractions associated with tornado missiles are assumed to resemble the fractions associated with mechanical spills (DOE 2007).

TABLE C-5 Waste Container Inventories (Ci) for Use in the Facility Accident Analysis^a

		Container Type	:
Element	CH Drum	CH SWB	RH Drum
Ac-227	1.0E-08	1.0E-04	4.6E-06
Am-241	7.5E+00	9.1E+00	1.2E+00
Am-242m	6.3E-10	_	-
Am-243	2.9E-08	9.9E-02	1.7E-02
Bi-212		5.9E-03	4.7E-04
C-14	8.4E-09	3.8E-02	1.8E-02
Cd-113m	2.0E-07	_	-
Ce-144	5.9E-12	5.9E-04	4.7E-05
Cm-242		3.3E-03	2.7E-04
Cm-243	9.7E-10	2.3E-04	9.6E-04
Cm-244	9.5E-07	5.7E-03	2.1E-02
Cm-245	1.3E-11	_	5.4E-02
Cm-246	1.2E-13	_	8.6E-03
Co-57	2.3E-13	_	_
Co-60	2.5E-05	7.5E-07	4.9E-02
Cs-134	4.9E-08	3.2E-05	4.2E-06
Cs-135	4.0E-08	_	_
Cs-137	2.3E-03	1.3E-01	5.6E+01
Eu-152	2.0E-05	_	_
Eu-154	5.4E-06	6.8E-04	2.7E-03
Eu-155	1.9E-06	_	1.2E-04
Fe-55	2.2E-06	3.0E-02	3.6E-03
H-3	1.0E-06	5.6E-04	2.6E-03
I-129	3.1E-07	9.5E-08	4.3E-04
K-40	_	2.2E-03	8.1E-05
Mn-54	9.7E-15	2.8E-05	2.3E-06
Ni-59	_	2.2E-04	_
Nb-94	3.3E-07	_	1.6E-05
Ni-59	1.7E-06	_	2.5E-02
Ni-63	1.6E-04	_	1.5E+00
Np-237	6.4E-03	1.4E-04	3.4E-04
Pa-231	6.8E-08	_	_
Pb-210	2.3E-08	_	_
Pb-212	_	4.1E-03	3.3E-04
Pd-107	7.5E-10	_	_
Pm-146	7.0E-10	_	_
Pm-147	_	_	8.9E-04
Pu-236	7.0E-11	1.6E-04	1.2E-05
Pu-238	5.3E-01	3.5E+00	2.8E-01
Pu-239	7.0E-03	2.6E+00	5.3E-01
Pu-240	5.6E-05	2.0E+00	3.6E-01
Pu-241	2.7E-02	4.7E+01	5.0E+00
Pu-242	1.4E-08	1.3E-02	1.1E-03
Ra-226	1.6E-07	1.2E-02	4.6E-04
Ra-228		9.2E-04	5.7E-05

TABLE C-5 (Cont.)

	Container Type					
Element	CH Drum	CH SWB	RH Drum			
Ru-106	6.1E-11	2.9E-04	2.4E-05			
Sb-125	3.6E-07	_	_			
Se-79	2.0E-08	-	_			
Sm-147	3.2E-14	_	_			
Sm-151	1.8E-05	_	_			
Sn-121m	2.8E-09	_	_			
Sn-126	1.9E-12	_	_			
Sr-90	2.1E-03	1.4E-01	1.2E+01			
Tc-99	5.5E-07	9.1E-04	2.7E-02			
Th-228	2.3E-10	1.3E-02	1.0E-03			
Th-229	2.6E-07	6.4E-03	2.5E-04			
Th-230	2.8E-05	1.2E-03	4.7E-05			
Th-232	5.2E-09	8.1E-04	3.3E-05			
U-232	7.0E-07	6.8E-02	3.0E-03			
U-233	2.5E-07	2.7E-02	1.8E-03			
U-234	1.5E-05	1.3E-01	4.9E-03			
U-235	8.9E-04	5.3E-05	5.3E-05			
U-236	5.0E-08	1.5E-04	1.3E-04			
U-238	5.7E-08	2.6E-04	3.0E-04			
Zr-93	1.0E-07	_	_			

a CH = contact-handled, RH = remote-handled,
 SWB = standard waste box. A dash means not applicable, since this radionuclide was not identified as being present for the waste packaged in this type of container.

1 2

99.9% of the airborne particulates. A leak path factor of 1 represents an accident that occurs outdoors or an accident whose conditions have negated the WHB containment.

C.4.2.2 Human Health Impacts

The consequences to the collective off-site general public and individuals receiving the highest impacts are estimated by using an air dispersion model to predict the downwind air concentrations following a release. A number of factors are considered, including the amount of the material released (as discussed in Section C.4.2.1), location of the release, and meteorological conditions. The air concentrations are used to estimate the radiation doses and the potential LCFs associated with these doses. The consequences are estimated on the basis of the assumption that the wind is blowing in the direction that would yield the greatest impacts. For accidents involving releases of radioactive material, the consequences are expressed in the same way as are the consequences from routine operations (i.e., as radiation doses and LCFs for the

exposed population and individual receiving the highest dose for all important exposure pathways).

C.4.2.2.1 General Public. The general public consists of the population living within 80 km (50 mi) of the GTCC reference location. The radiation exposure estimates include potential doses from inhalation, groundshine, cloudshine, and ingestion of contaminated crops for 1 year following a hypothetical accidental release of radioactive material, as discussed above.

The GENII computer code (Napier et al. 1988) was used to assess the radiological impacts to the collective off-site population (members of the public) for each accident considered. The off-site population distributions used for the accident analysis were determined by using the latest geographic information (2007 population estimates) available for the land disposal reference locations (ESRI 2008). Future population projections were not used because they are considered too speculative for the time frame covered in the EIS.

The meteorological data used in GENII are joint frequencies of wind speed, wind direction, and atmospheric stability class. The joint-frequency weather data for the Hanford Site (Duncan 2007), LANL (Fuehne 2008), NNSS (DOE 2002a), SRS (NRC 2005), and the WIPP Vicinity (DOE 1997b) were obtained from published reports. Weather data for INL were based on the weather file data (for Idaho Falls, Idaho) originally provided with CAP88-PC (Clean Air Act Assessment Package 1988-Personal Computer) (EPA 1992).

A ground-level release (1-m [3.3-ft] release height) is assumed for all accidents. To provide a conservative estimate for the impacts, the sector with the highest exposure (highest population dose, which is dependent on the number and location of people as well as the weather conditions) was selected, but 50% meteorology (weather conditions that produce impacts that are not exceeded 50% of the time) is used so as not to be overly conservative. For the 1-year exposure period, the length of time of external exposure to contaminated soil is 0.5 year (NRC 1977b), and no credit is given for shielding for inhalation exposure and external exposure to the passing airborne plume. The highest potential ingestion doses, from the autumn period, are incorporated in the reported exposures.

The radiological impacts on the general public for Alternatives 3 to 5 are discussed in Chapters 6 through 11 for the Hanford Site, INL, LANL, NNSS, SRS, and the WIPP Vicinity, respectively.

 C.4.2.2.2 Highest-Exposed Individuals. The risk to involved workers would be very sensitive to the specific circumstances of the accident and depend on how rapidly the accident developed, the exact location and response of the workers, the direction and amount of the release, the physical and thermal forces causing or caused by the accident, meteorological conditions, and the characteristics of the building if the accident occurred indoors. Impacts on involved workers under accident conditions would likely be dominated by physical forces from the accident itself, so the radiological impacts (radiation doses and LCFs) on such workers would not be meaningful and are not quantified in the EIS. However, it is recognized that injuries and

fatalities among involved workers would be possible as a result of the radiological and physical forces if an accident did occur.

Accident impacts to the individual receiving the highest potential dose were determined by using the GENII code. The same release height and meteorological conditions as those used for the population accident impacts were used for this analysis. The accident analysis evaluated the potential exposure of a hypothetical individual located 100 m (330 ft) downwind of an accident (radiation doses and LCFs). The exposure estimates are reported for the sector (wind direction) with the highest impacts that include potential doses from inhalation, groundshine, and cloudshine for 2 hours following a hypothetical accidental release of radioactive material. The 2-hour exposure accounts for plume passage and potential delays in relocation, if necessary. No mitigative actions are assumed. The individual receiving the highest dose is expected to be a noninvolved worker at the disposal facility. The radiological impacts for Alternatives 3 to 5 are discussed in Chapters 6 through 11 for the Hanford Site, INL, LANL, NNSS, SRS, and the WIPP Vicinity, respectively.

C.5 ECOLOGICAL RESOURCES

Impacts on ecological resources consider the effects of facility construction, operations, and post-closure on terrestrial, wetland, aquatic, and special-status species and their habitats at and in the vicinity of each GTCC reference location or disposal facility site. Special attention was paid to resources protected by regulations (e.g., federally listed species, migratory birds, bald and golden eagles, and wetlands). Section 5.3.5 presents a discussion of the methodology used to determine the potential impacts of the GTCC disposal options on ecological resources. Direct and indirect impacts on ecological resources are evaluated on the basis of the:

 Nature and quality of habitats within and adjacent to the construction footprint,

• Potential magnitude of changes to habitat quality and quantity,

Temporal characteristics of when impacts could occur,

Rarity and importance of affected resources, and

• Expected duration of impacts,

migratory birds).

 Sensitivity of biological resources that could be affected by changes in habitat quality or quantity,

Regulatory requirements (wetlands, threatened and endangered species,

Factors considered in evaluating impacts from the GTCC disposal facility include:

• Habitat loss, modification, and fragmentation;

• Changes in hydrology and water quality;

• Erosion and sedimentation;

Barriers to movement;

• Air quality and fugitive dust;

• Introduction of invasive species;

• Exposure to contaminants (including radionuclides);

Mortality and injury; and

• Noise and disturbance.

A quantitative assessment of the impacts on the large number of species found at each alternative site was not practical. The approach used for this EIS consisted of gathering land use and land cover data to identify areas of potential habitat and how it would be affected. Thus, impacts on plants and wildlife primarily addressed the effects of facility construction on habitat loss and fragmentation. The potential impacts on wetlands were based on the direct impacts that could result from construction (e.g., filling) or indirect impacts (e.g., changes in water quality, hydrologic regime, or soil compaction and runoff). Impacts on threatened and endangered species were investigated by using a species-specific approach. Consultations with regulatory agencies (e.g., U.S. Fish and Wildlife Service [USFWS] and state fish and game departments) were undertaken to assist with the identification of threatened, endangered, and other special-status species to be considered at each site (see Appendix F for consultation letters).

An overview of the potential impacts that could occur on ecological resources regardless of the GTCC reference location or method is presented in Section 5.3.5. The implementation of mitigation measures to minimize the impacts described in Section 5.3.5 would help to limit the potential impacts on ecological resources.

C.6 SOCIOECONOMICS

 The analysis of socioeconomic impacts from the construction of additional rooms and waste disposal operations at WIPP and the construction and waste disposal operations at the land disposal facilities assesses impacts in a region of influence (ROI) at each of the sites evaluated in this EIS. The ROI includes the counties in which the majority (up to 90%) of employees reside at each of the sites. The ROI includes county governments, city governments, and school districts. Within the ROI at each site, there are also various jurisdictions that could be affected by GTCC

waste disposal facility construction and operations. The assessment of the impacts from GTCC waste disposal facilities covers impacts on employment, income, population, housing, community services, and traffic.

C.6.1 Impacts on Regional Employment and Income

The assessment of impacts from a GTCC waste disposal facility on regional employment and income is based on the use of regional economic multipliers in association with project expenditure data for the construction and operational phases. Multipliers capture the indirect (off-site) effects of on-site activities associated with the construction and operational activities or events. Expenditure data associated with the construction and operations of a GTCC waste disposal facility are derived from numerous sources. These sources provide the relevant data on construction and operating costs for labor and materials, in various general cost categories.

Cost data for each cost category are then mapped into the relevant North American Industry Classification System (NAICS) codes for use with multipliers from an IMPLAN model specified for each state (MIG, Inc. 2008). IMPLAN input-output economic accounts show the flow of commodities to industries from producers and institutional consumers. The accounts also show consumption activities by workers, owners of capital, and imports from outside the region. The IMPLAN model contains 528 sectors representing industries in agriculture, mining, construction, manufacturing, the wholesale and retail trade, utilities, finance, insurance and real estate, and consumer and business services. The model also includes information for each sector on employee compensation; proprietary and property income; personal consumption expenditures; federal, state, and local expenditures; inventory and capital formation; and imports and exports.

Impacts on employment are described in terms of the total number of jobs created in the region in the peak year of construction and in the first year of operations. The relative impact of the increase in employment in the ROI is calculated by comparing total GTCC waste facility construction employment over the period in which construction occurs with baseline ROI employment forecasts over the same period. Impacts are expressed in terms of the percentage point difference in the average annual employment growth rate with and without GTCC project construction. Forecasts are based on data provided by the U.S. Department of Commerce.

C.6.2 Impacts on Population

An important consideration in the assessment of the impacts from a GTCC waste disposal facility is the number of workers, families, and children who would migrate into the ROI, either temporarily or permanently, to construct and operate the facility. The capacity of regional labor markets to supply workers in the occupations required for facility construction and operations in sufficient numbers is closely related to the occupational profile of the ROI and occupational unemployment rates. To estimate the in-migration that would occur to satisfy direct labor requirements, the analysis develops estimates of the available labor in each direct labor category based on ROI unemployment rates applied to each occupational category. In-migration

associated with indirect labor requirements are derived from estimates of the available labor supply in the ROI economy as a whole that is able to satisfy the demand for labor by industry sectors in which GTCC waste disposal facility spending initially occurs. The national average household size is used to calculate the number of additional family members who would accompany direct and indirect in-migrating workers.

Impacts on population are described in terms of the total number of in-migrants arriving in the region in the peak year of construction and in the first year of operations. The relative impact of the increase in population in the ROI is calculated by comparing total GTCC waste disposal facility construction in-migration over the period in which construction occurs with baseline ROI population forecasts over the same period. Impacts are expressed in terms of the percentage point difference in the average annual population growth rate with and without project construction. Forecasts are based on data provided by the U.S. Bureau of the Census.

C.6.3 Impacts on Housing

The in-migration of workers during construction and operations has the potential to substantially affect the housing market in the ROI. The analysis considers these impacts by estimating the increase in demand for rental housing units in the peak year of construction and for owner-occupied housing in the first year of operations, resulting from the in-migration of both direct and indirect workers into the ROI. The impacts on housing are described in terms of the number of rental units required in the peak year of construction and the number of owner-occupied units required in the first year of operations. The relative impact on the existing housing in the ROI is estimated by calculating the impact of GTCC-related housing demand on the forecasted number of vacant rental housing units in the peak year of construction and the forecasted number of vacant owner-occupied units in the first year of operations. Forecasts are based on data provided by the U.S. Bureau of the Census.

C.6.4 Impacts on Community Services

In-migration associated with the construction and operations of a GTCC facility could translate into increased demand for educational services and public services (police, fire protection, health services, etc.) in the ROI. Estimates of the total number of in-migrating workers and their families are used to calculate the impact of GTCC waste disposal facility construction and operations for the ROI counties in which the majority of new workers would locate. Impacts of the facility on county, city, and school district revenues and expenditures are calculated by using baseline data provided in the relevant jurisdictions' annual comprehensive financial reports forecasted for the peak year of construction and first year of operations, based on per-capita revenues and expenditures for each jurisdiction. Population forecasts are based on data provided by the U.S. Bureau of the Census.

Impacts of GTCC waste disposal facility in-migration on community service employment are also calculated for the ROI counties in which the majority of new workers would locate. By using estimates of the number of in-migrating workers and families, the analysis calculates the

number of new sworn police officers, firefighters, and general government employees required to maintain the existing levels of service for each community service. Calculations are based on the existing number of employees per 1,000 population for each community service. The analysis of the impact on educational employment estimates the number of teachers in each school district who would be required to maintain the existing teacher-student ratios across all student age groups. Information on existing employment and levels of service is collected from the individual jurisdictions providing each service.

C.6.5 Impacts on Traffic

Impacts on traffic in the ROI are described in terms of the impact of the increase in traffic caused by the GTCC waste disposal facility on the major road segments used to commute to and from the site by existing site employees. The analysis allocates trips made by construction workers to individual road segments on the basis of the residential distribution of existing site workers. The impact on the existing annual average number of daily trips is then calculated, and the impact on the level of service provided by each individual segment is estimated. Traffic information is collected from state and county transportation departments.

C.7 ENVIRONMENTAL JUSTICE

Executive Order 12898 (February 16, 1994) formally requires federal agencies to incorporate environmental justice as part of their missions. Specifically, it directs them to address, as appropriate, any disproportionately high and adverse human health or environmental effects of their actions, programs, or policies on minority and low-income populations.

 The analysis of the impacts of a GTCC waste disposal (i.e., construction of additional rooms and waste operations at WIPP, and construction and operation of a new borehole, trench, or vault disposal facility at the GTCC reference location evaluated) on environmental justice issues follows Council on Environmental Quality (CEQ) guidelines described in *Environmental Justice Guidance under the National Environmental Policy Act* (CEQ 1997). The analysis method (1) describes the geographic distribution of low-income and minority populations in the affected area; (2) assesses whether the impacts of construction and operations would be high and adverse; and (3) if impacts are high and adverse, determines whether these impacts would disproportionately affect minority and low-income populations.

 Construction and operations associated with GTCC waste disposal could affect environmental justice if any adverse health and environmental impacts resulting from either phase of development were significantly high and if these impacts disproportionately affected minority and low-income populations. If an analysis that accounted for any unique exposure pathways (such as subsistence fish, vegetation or wildlife consumption, or well-water consumption) determined that health and environmental impacts would not be significant, there could be no high and adverse impacts on minority and low-income populations. If impacts were found to be significant, disproportionality would be determined by comparing the proximity of high and adverse impacts to the location of low-income and minority populations. Information

needed to conduct the analysis would be collected and developed to support future evaluations that would be included in follow-on documents for the selected alternative(s).

The analysis of environmental justice issues considers impacts in an 80-km (50-mi) buffer around the site in order to include any potential adverse human health or socioeconomic impacts related to the GTCC waste disposal (i.e., construction of additional rooms and waste disposal operations at WIPP, and construction and operation of a new borehole, trench, or vault disposal facility). Accidental radiological releases, for example, could affect minority and low-income population groups located some distance from the site, depending on the size and nature of potential releases and on the meteorological conditions. Any accidental release to the environment could also affect fish and other natural resources that might be used for subsistence by low-income and minority population groups some distance from the site, the extent of which also would depend on the size and nature of any potential release at the site.

The description of the geographic distribution of minority and low-income groups is based on demographic data from the 2000 Census (U.S. Bureau of the Census 2008). Definitions of minority and low-income population groups are as follows:

Minority. Persons are included in the minority category if they identify themselves as belonging to any of the following racial groups: (1) Hispanic,
(2) Black (not of Hispanic origin) or African American, (3) American Indian or Alaska Native, (4) Asian, or (5) Native Hawaiian or other Pacific Islander.

Beginning with the 2000 Census, where appropriate, the census form allows individuals to designate multiple population group categories to reflect their ethnic or racial origin. In addition, persons who classify themselves as being of multiple racial origins may choose up to six racial groups. The term minority includes all persons, including those classifying themselves in multiple racial categories, except those who classify themselves as "White" (U.S. Bureau of the Census 2008).

The CEQ guidance proposes that minority populations should be identified in locations where either (1) the minority population of the affected area exceeds 50% or (2) the minority population percentage of the affected area is meaningfully greater than the minority population percentage in the general population or other appropriate unit of geographic analysis.

The EIS applies both criteria in using the Census Bureau data for census block groups, in that consideration is given to the minority population that is both more than 50% and 20 percentage points higher in the relevant location than it is in the state (the reference geographic unit).

• Low-income. These are individuals who fall below the poverty line. The poverty line takes into account the family size and the age of individuals in the family. In 1999, for example, the poverty line for a family of five with three children below the age of 18 was \$19,882. For any given family below the

poverty line, all family members are considered as being below the poverty line for the purposes of analysis in this EIS.

C.8 LAND USE

Land use impacts are identified changes in land use categories and alternative or conflicting uses caused by a proposed action. Potential impacts on land use were evaluated for each alternative site by examining the characteristics and size of the land required for GTCC waste disposal and the compatibility of current land use designations with the GTCC waste disposal facility. The analyses considered potential land use impacts that could be incurred during the construction, operations, and post-closure phases of the project at each alternative site. An impact on land use would occur if the facility would change land use in the area in which the facility was located (i.e., the facility would not conform to existing DOE land use plans and policies) or in surrounding areas. Therefore, the GTCC waste disposal facility was considered to have a potential impact on land use only if it would:

• Conflict with existing land use plans;

• Conflict with existing recreational, educational, scientific, or other uses of the area:

• Conflict with existing conservation goals for the area; or

• Require a conversion from existing commercial land use of the area (e.g., timber harvest, mineral extraction, livestock grazing).

C.9 TRANSPORTATION RISK ANALYSIS

This section provides the methodology and key input parameters used for the transportation risk analysis performed in support of the GTCC EIS. The methodology follows the common approach identified in DOE (2002b). The analysis evaluated the transportation of the waste from its assumed or known location of generation or storage to each of the proposed disposal facility locations. Transportation impacts were estimated for shipment by both truck and rail modes for the three GTCC LLRW and GTCC-like waste types.

C.9.1 Overview

 The transportation risk assessment considered human health risks both from routine (normal, incident-free) transport of radiological materials and from potential accidents. In both cases, risks associated with the nature of the cargo itself ("cargo-related" impacts) were considered. Risks related to the transportation vehicle regardless of type of cargo ("vehicle-related" impacts) were considered for potential accidents. Transportation of hazardous chemicals was not part of this analysis because no hazardous chemicals have been identified as being part of the waste disposal operations. Figure C-1 depicts the overall approach.

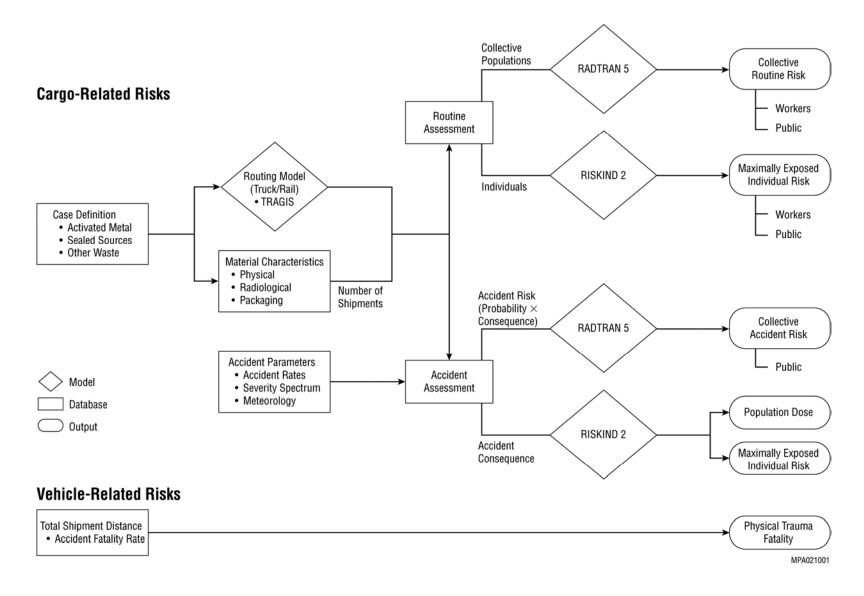


FIGURE C-1 Technical Approach for the Transportation Risk Assessment

C.9.1.1 Routine Transportation Risk

The radiological risk associated with routine transportation would be cargo-related and result from the potential exposure of people to low levels of external radiation near a loaded shipment. No direct physical exposure to radioactive material would occur during routine transport because these materials would be in packages designed and maintained to ensure that their contents were contained and shielded during normal transport. Any leakage or unintended release would be considered under accident risks.

C.9.1.2 Accident Transportation Risk

The cargo-related radiological risk from transportation-related accidents would come from the potential release and dispersal of radioactive material into the environment during an accident and the subsequent exposure of people through multiple exposure pathways (e.g., exposure to contaminated soil, inhalation, or the ingestion of contaminated food).

Vehicle-related accident risks refer to the potential for transportation-related accidents that would result in fatalities caused by physical trauma unrelated to the cargo.

C.9.2 Routine Risk Assessment Methodology

The RADTRAN 5 computer code (Neuhauser and Kanipe 2003; Weiner et al. 2006) was used in the routine and accident cargo-related risk assessments to estimate the radiological impacts on collective populations. RADTRAN 5 was developed by Sandia National Laboratories to calculate population risks associated with the transportation of radioactive materials by truck, rail, air, ship, or barge. The code has been used extensively for transportation risk assessments since it was originally issued in the late 1970s as RADTRAN (RADTRAN 1) and has been reviewed and updated periodically. RADTRAN 1 was originally developed to facilitate the calculations presented in NUREG-0170 (NRC 1977a).

C.9.2.1 Collective Population Risk

The radiological risk associated with routine transportation would result from the potential exposure of people to low-level external radiation in the vicinity of loaded shipments. Even under routine transportation, some radiological exposure could occur. Because the radiological consequences (dose) would occur as a direct result of normal operations, the probability of routine consequences is taken to be 1 in the RADTRAN 5 code. Therefore, the dose risk is equivalent to the estimated dose.

For routine transportation, the RADTRAN 5 computer code considers major groups of potentially exposed persons. The RADTRAN 5 calculations of risk for routine highway and rail transportation include exposures of the following population groups:

C.9.2.2 Highest-Exposed Individual Risk

(Neuhauser and Kanipe 2003).

In addition to assessing the routine collective population risk, the risks to individuals receiving the highest impacts were estimated for a number of hypothetical exposure scenarios by using the RISKIND model (Yuan et al. 1995; Biwer et al. 1997). Receptors included transportation crew members, departure inspectors, and members of the public exposed during traffic delays, while working at a service station, or while living near a facility, as summarized in Table C-6.

44 s

RISKIND was used to calculate the dose to each individual considered for an exposure scenario defined by an exposure distance, duration, and frequency specific to that receptor. The distances and durations of exposure were similar to those given in previous transportation risk

• Persons along the route (off-link population). Collective doses were calculated for all persons living or working within 0.8 km (0.5 mi) of each side of a transportation route. The total number of persons within the 1.6-km (1-mi) corridor was calculated separately for each route considered in the assessment.

- *Persons sharing the route (on-link population)*. Collective doses were calculated for persons in all vehicles sharing the transportation route. This group includes persons traveling in the same or opposite directions as the shipment, as well as persons in vehicles passing the shipment.
- Persons at stops. Collective doses were calculated for people who might be
 exposed while a shipment was stopped en route. For truck transportation,
 these stops would include those for refueling, food, and rest. For rail
 transportation, it was assumed that stops would occur for purposes of
 classification.
- Crew members. Collective doses were calculated for truck transportation crew members involved in the actual shipment of material. Workers involved in loading or unloading were not considered. The doses calculated for the first three population groups were added together to yield the collective dose to the public. The dose calculated for the fourth group represents the collective dose to workers.

The RADTRAN 5 calculations for routine dose generically compute the dose rate as a function of distance from a point or line source (Neuhauser and Kanipe 2003). Associated with

the calculation of routine doses for each exposed population group are parameters such as the radiation field strength, source-receptor distance, duration of exposure, vehicular speed, stopping

time, traffic density, and route characteristics (such as population density). The RADTRAN manual contains derivations of the equations used and descriptions of these parameters

TABLE C-6 Individual Exposure Scenarios

Receptor	Exposure Event	Source
Workers		
Inspector (truck and rail)	1 m for 1 hour	DOE 2008
Railyard crew member	10 m for 2 hours	DOE 2008 DOE 1997a, 2008
Ranyard crew member	10 m for 2 hours	DOE 1997a, 2006
Public		
Resident near route	18 m (rail), 30 m (truck)	DOE 2008 (rail),
		DOE 1997a (truck)
Person in traffic jam	1.2 m for 1 hour	DOE 2008
Person at service station	16 m for 49 minutes	DOE 2008
Resident near railyard	200 m for 20 hours	DOE 1997a

assessments (DOE 1990, 1995, 1996, 1997a, 1999). The scenarios were not meant to be exhaustive but were selected to provide a range of potential exposure situations.

 The RISKIND external dose model considers direct external exposure and exposure from radiation scattered from the ground and air. RISKIND was used to calculate the dose as a function of distance from a shipment on the basis of the dimensions of the shipment (millirem per hour for stationary exposures and millirem per event for moving shipments). The code approximates the shipment as a cylindrical volume source, and the calculated dose includes contributions from secondary radiation scattering from buildup (scattering by the material contents), cloudshine (scattering by the air), and groundshine (scattering by the ground). As a conservative measure, credit for potential shielding between the shipment and the receptor was not considered.

C.9.3 Accident Assessment Methodology

The radiological transportation accident risk assessment used the RADTRAN 5 code for estimating collective population risks and the RISKIND code for estimating individual and population consequences. The collective accident risk for each type of shipment was determined in a manner similar to that described for routine collective population risks.

C.9.3.1 Radiological Accident Risk Assessment

The risk analysis for potential accidents differs fundamentally from the risk analysis for routine transportation because occurrences of accidents are statistical in nature. The accident risk assessment is treated probabilistically in RADTRAN 5 for radiological risk. Accident risk is defined as the product of the accident consequence (dose or exposure) and the probability of the accident occurring. In this respect, RADTRAN 5 estimates the collective accident risk to populations by considering a spectrum of transportation-related accidents. The spectrum of accidents was designed to encompass a range of possible accidents, including low-probability

accidents that have high consequences and high-probability accidents that have low consequences (such as "fender benders"). For radiological risk, the results for collective accident risk can be directly compared with the results for routine collective risk because the latter results implicitly incorporate a probability of occurrence of 1 if the shipment takes place.

The RADTRAN 5 calculation of collective accident risk uses models that quantify the range of potential accident severities and the responses of transported packages to accidents. The spectrum of accident severity is divided into several categories, each of which is assigned a conditional probability of occurrence (i.e., the probability that if an accident does occur, it will be of a particular severity). Release fractions, defined as the fraction of the material in a package that could be released in an accident, are assigned to each accident severity category on the basis of the physical and chemical form of the material. The model takes into account the mode of transportation and the type of packaging by selecting the appropriate accident probabilities and release fractions, respectively. The accident rates, the definitions of accident severity categories, and the release fractions used in this analysis are discussed further in Section C.9.4.4.

For accidents involving the release of radioactive material, RADTRAN 5 assumes that the material is dispersed in the environment according to standard Gaussian diffusion models. For the risk assessment, default data for atmospheric dispersion were used, representing an instantaneous ground-level release and a small-diameter source cloud (Neuhauser and Kanipe 2003). The calculation of the collective population dose following the release and dispersal of radioactive material includes the following exposure pathways:

• External exposure to the passing radioactive cloud,

External exposure to contaminated ground,

• Internal exposure from inhalation of airborne contaminants, and

• Internal exposure from the ingestion of contaminated food.

For the ingestion pathway, state-average food transfer factors, which relate the amount of radioactive material ingested to the amount deposited on the ground, were calculated in accordance with the methods described by NRC Regulatory Guide 1.109 (NRC 1977b) and were used as input to the RADTRAN code. Doses of radiation from the ingestion or inhalation of radionuclides were calculated by applying standard dose conversion factors (DCFs) (EPA 1999; ICRP 1996).

C.9.3.2 Vehicle-Related Accident Risk Assessment

 The vehicle-related accident risk refers to the potential for transportation accidents that could result directly in fatalities not related to the nature of the cargo in the shipment. This risk represents fatalities from physical trauma. State-average rates for transportation fatalities are used in the assessment, as discussed in Section C.9.4.1.3. Vehicle-related accident risks were calculated by multiplying the total distance traveled by the rates for transportation fatalities. In

all cases, the vehicle-related accident risks were calculated on the basis of distances for round-trip shipment, since the presence or absence of cargo would not be a factor in accident frequency.

C.9.3.3 Accident Consequence Assessment

The RISKIND code is used to provide a scenario-specific assessment of radiological consequences from severe transportation-related accidents for each waste type. The RADTRAN accident risk assessment considers the entire range of accident severities and their related probabilities, whereas the RISKIND accident consequence assessment focuses on accidents that result in the largest releases of radioactive material to the environment.

For each waste type, accident consequences are presented for a shipment of waste that represents the highest potential radiological risk if an accident was to occur. This "maximum reasonably foreseeable accident" is identified for each waste type by screening the site-specific radiological waste characteristics (that is, activity concentrations) developed for this EIS, taking into account the physical forms of waste and the relative hazards of individual radionuclides. For most waste shipments, the consequences of severe accidents would be less than those presented for the maximum reasonably foreseeable case. The accident consequence assessment is intended to provide an estimate of the maximum potential impacts posed by a severe transportation-related accident involving a particular waste type.

The severe accidents considered in the consequence assessment are characterized by extreme mechanical and thermal forces. In all cases, these accidents result in a release of radioactive material to the environment. The accidents correspond to those within the highest accident severity category, as described previously. These accidents represent low-probability, high-consequence events. Therefore, accidents of this severity are expected to be extremely rare. However, the overall probability that such an accident could occur depends on the potential accident rates for this severity category and the shipping distance for each case.

 For each waste type, RISKIND is used to calculate the accident consequences for local populations and for the highest-exposed individual. The population dose includes the population within 80 km (50 mi) of the accident site. The exposure pathways considered are similar to those discussed previously for the accident risk assessment. Although remedial activities after the accident (for example, evacuation or ground cleanup) would reduce the consequences, these activities are not considered in the consequence assessment.

Because predicting the exact location of a severe transportation-related accident is impossible when estimating population impacts, separate accident consequences are calculated for accidents occurring in three population density zones: rural, suburban, and urban. Moreover, to address the effects of the atmospheric conditions existing at the time of an accident, two atmospheric conditions are considered: neutral and stable.

 The highest-exposed individual for severe transportation accidents would be located at the point that would have the highest concentration of hazardous material that would be accessible to the general public. This location is assumed to be 30 m (100 ft) or farther from the

release point at the location of highest air concentration. Only the shipment accident that would result in the highest contaminant concentration is evaluated for individual exposures.

C.9.4 Input Parameters and Assumptions

The principal input parameters and assumptions used in the transportation risk assessment are discussed in this section. DOE has broad authority under the Atomic Energy Act to regulate all aspects of activities involving radioactive materials that are undertaken by DOE or on its behalf, including the transportation of radioactive materials. DOE exercises this authority to regulate certain DOE shipments, such as shipments undertaken by governmental employees or shipments involving special circumstances. In most cases that do not involve national security, DOE utilizes commercial carriers that undertake shipments of DOE material under the same terms and conditions as those of commercial shipments. These shipments are subject to regulation by the U.S. Department of Transportation (DOT) and other entities, as appropriate. As a matter of policy, all DOE shipments are undertaken in accordance with the requirements and standards that apply to comparable commercial shipments, except where there is a determination that national security or another critical interest requires different action. In implementing this policy, DOE cooperates with federal, state, local, and tribal entities and utilizes existing expertise and resources to the extent practicable. In all cases, DOE will achieve a level of protection that meets or exceeds the level of protection associated with comparable commercial shipments.

DOT and the NRC have the primary responsibility for federal regulations governing commercial radioactive material transportation. The Hazardous Materials Transportation Act of 1975, as amended (49 United States Code [U.S.C.] 5105, et seq.), requires DOT to establish regulations for the safe transportation of hazardous materials in commerce (including radioactive materials). Title 49 of the Code of Federal Regulations (CFR) contains DOT standards and requirements for the packaging, transporting, and handling of radioactive materials for all modes of transportation. DOT's Hazardous Materials Regulations, or HMRs, on the transportation of hazardous and radioactive materials can be found in 49 CFR Parts 171 through 180. In addition, the requirements for motor carrier transportation can be found in 49 CFR Parts 350 through 399, and the requirements for transportation by rail can be found in 49 CFR Parts 200 through 268. The NRC sets additional design and performance standards for packages that carry materials with higher levels of radioactivity. The NRC regulations pertaining to transportation of radioactive materials are found in 10 CFR Part 71. These regulations include detailed requirements for certification testing of packaging designs. This certification testing involves a variety of conditions, such as heating, free dropping onto an unyielding surface, immersing in water, dropping the package onto a vertical steel bar, and checking gas tightness.

C.9.4.1 Route Characteristics

The transportation route selected for a shipment determines the total population of potentially exposed individuals and the expected frequency of transportation-related accidents. For truck and rail transportation, the route characteristics most important for a risk assessment

include the total shipping distance between each origin site and destination site and the population density along the route.

C.9.4.1.1 Route Selection. The DOT routing regulations concerning radioactive materials on public highways are prescribed in 49 CFR 397.101 (Requirements for Motor Carriers and Drivers). The objectives of the regulations are to reduce the impacts from transporting radioactive materials, establish consistent and uniform requirements for route selection, and identify the role of state and local governments in routing radioactive materials. The regulations attempt to reduce potential hazards by prescribing that populous areas be avoided and that travel times be minimized. In addition, the regulations require the carrier of radioactive materials to ensure (1) that the vehicle is operated on routes that minimize radiological risks and (2) that accident rates, transit times, population density and activity, time of day, and day of week are considered in determining risk. The final determination of the route is left to the discretion of the carrier unless the shipment contains a "highway route controlled quantity" (HRCQ) of radioactive material, as defined in 49 CFR 173.403 (Definitions). Many potential shipments evaluated for this EIS, such as shipments of activated metal from commercial reactors, fall under this category.

A vehicle transporting an HRCQ of radioactive materials is required to use the interstate highway system except when moving from the point of origin to the interstate or from the interstate to a destination point, when making a necessary repair or rest stop, or when emergency conditions make continued use of the interstate unsafe or impossible. Carriers are required to use interstate circumferential or bypass routes, if available, to avoid populous areas. Any state or Native American tribe may designate other "preferred highways" to replace or supplement the interstate system. Under its authority to regulate interstate transportation safety, DOT can prohibit state and local bans and restrictions as "undue restraint of interstate commerce." State or local bans can be preempted if inconsistent with the HRCQ regulations.

DOT has no railroad routing regulations specific to the transportation of radioactive materials. Routes are generally fixed by the location of rail lines, and urban areas cannot be readily bypassed.

For this analysis, representative shipment routes were identified by using the Transportation Routing Analysis Information System (TRAGIS) (Version 1.5.4) routing model (Johnson and Michelhaugh 2003) for truck and rail shipments. The routes were selected to be reasonable and consistent with routing regulations and general practice, but they are representative routes only because the actual routes will be chosen in the future. At the time of shipment, the route would be selected on the bases of current road or railroad track conditions, including repairs and traffic congestion.

The highway data network in TRAGIS is a computerized road atlas that includes a complete description of the interstate highway system and of all U.S. highways. In addition, most principal state highways and many local and community highways are identified. The code is periodically updated to reflect current road conditions and has been compared with reported

mileages and observations of commercial trucking firms. The TRAGIS highway database version used was Highway Data Network 4.0.

Truck routes are calculated within the model by minimizing the total impedance between origin and destination. The impedance is basically defined as a function of distance and driving time along a particular segment of highway. The HRCQ option in the model was used to select routes for all shipments. The population densities along a route are derived from 2000 Census data.

 The rail network used in TRAGIS consists of numerous subnetworks and represents various competing rail companies in the United States. The network was originally based on data from the Federal Railroad Administration and reflected the U.S. railroad system in 1974. The database has been expanded and modified over the past three decades. The code is updated periodically to reflect current track conditions and has been compared with reported mileages and observations of commercial rail firms. A 1:100,000-scale rail network is now incorporated into TRAGIS. The TRAGIS rail database version used was Railroad Data Network 3.2.

Rail routes are calculated by using a "shortest-route" algorithm that finds the path of minimum impedance within an individual subnetwork. A separate method is used to find paths along the subnetworks. The routes chosen for this study were selected by using the standard assumptions in the model, which simulate the process of selection that railroads would use to direct shipments of radioactive waste. The population densities along a route are derived from 2000 Census data.

C.9.4.1.2 Population Density. Three population density zones — rural, suburban, and urban — were used for the population risk assessment. The fractions of travel and average population density in each zone were determined with the TRAGIS routing model. Rural, suburban, and urban areas are characterized according to the following breakdown: Rural population densities range from 0 to 54 persons/km² (0 to 139 persons/mi²); suburban densities range from 55 to 1,284 persons/km² (140 to 3,326 persons/mi²); and urban densities cover all population densities greater than 1,284 persons/km² (3,326 persons/mi²). Use of these three population density zones is based on an aggregation of the 11 population density zones provided in the TRAGIS model output. For calculation purposes, information about population density was generated at the state level and used as RADTRAN input for all routes.

C.9.4.1.3 Accident and Fatality Rates. For calculating accident risks, vehicle accident involvement and fatality rates were taken from data provided in Saricks and Tompkins (1999). For each transport mode, accident rates are generically defined as the number of accident involvements (or fatalities) in a given year per unit of travel by that mode in the same year. Therefore, the rate is a fractional value: The accident-involvement count is the numerator, and vehicular activity (total traveled distance) is the denominator. Accident rates are derived from multiple-year averages that automatically account for such factors as heavy traffic and adverse weather conditions. For assessment purposes, the total number of expected accidents or fatalities is calculated by multiplying the total shipping distance for a specific case by the appropriate accident or fatality rate.

For truck transportation, the rates presented in Saricks and Tompkins (1999) are specifically for heavy combination trucks involved in interstate commerce. Heavy combination trucks are rigs composed of a separable tractor unit containing the engine and one to three freight trailers connected to each other and the tractor. Heavy combination trucks are typically used for shipping radioactive wastes. Truck accident rates are computed for each state on the basis of statistics for 1994 to 1996 compiled by the DOT Office of Motor Carriers. Saricks and Tompkins (1999) present accident involvement and fatality counts, estimated kilometers of travel by state, and the corresponding average accident involvement and fatality rates for the three years investigated. Fatalities (including of crew members) are deaths that are attributable to the accident and that occurred within 30 days of the accident.

The truck accident assessment presented in this EIS uses state-specific accident and fatality rates for travel on interstate highways. The total accident risk for a case depends on the total distance traveled in various states and does not rely on national average accident statistics. For comparative purposes, the national average truck accident rate on interstate highways presented in Saricks and Tompkins (1999) is 3.15×10^{-7} accidents/truck-km (5.07 × 10⁻⁷ accidents/mi). Likewise, the national average truck fatality rate was reported as 8.9×10^{-9} fatalities/truck-km (1.4 × 10⁻⁸ fatalities/mi).

Rail accidents rates are computed and presented in a manner similar to truck accident rates in Saricks and Tompkins (1999). However, for rail transport, the unit of haulage is the railcar. State-specific rail accident involvements and fatality rates are based on statistics for 1994 to 1996 compiled by the Federal Railroad Administration. Rail accidents include both mainline accidents and those occurring in rail yards.

The rail accident assessment presented in this EIS uses accident and fatality rates for travel on mainline (Class 1 and 2) railroads. The total accident risk for a case depends on the total distance traveled in various states and does not rely on national average accident statistics. For comparative purposes, the national rail accident rate on mainline railroads presented in Saricks and Tompkins (1999) is 2.74×10^{-7} accidents/railcar-km (4.41 × 10⁻⁷ accidents/mi). Likewise, the national average rail fatality rate was reported as 7.82×10^{-8} fatalities/railcar-km (1.26 × 10⁻⁷ fatalities/km).

Note that the accident rates used in this assessment were computed by considering all interstate shipments, regardless of the cargo. Saricks and Kvitek (1994) points out that shippers and carriers of radioactive material generally have a higher-than-average awareness of transportation risk and prepare cargoes and drivers for such shipments accordingly. This preparation should have the twofold effect of reducing component and equipment failure and mitigating the contribution of human error to accident causation. However, these mitigating effects are not considered in the accident assessment.

C.9.4.2 Packaging

The packaging used for shipping radioactive materials must be designed, constructed, and maintained to ensure that it will contain and shield the contents during normal transportation. For

more highly radioactive material, the packaging must contain and shield the contents in severe accidents. The type of packaging used is determined by the radioactive hazard associated with the packaged material. The basic types of packaging required by the applicable regulations are designated as Type A, Type B, or industrial packaging (generally for low-specific-activity material). All shipments evaluated in this analysis are assumed to use Type B packaging for transportation.

The 208-L (55-gal) drums and SWBs that are assumed to contain the CH waste (as discussed in Appendix B, Section B.4) are Type A packaging. This type of packaging must withstand the conditions of normal transportation without the loss or dispersal of the radioactive contents, as specified in 49 CFR 173.413 (Additional Design Requirements for Type A Packages). "Normal" transportation refers to all transportation conditions except those resulting from accidents or sabotage. Approval of Type A packaging is obtained by demonstrating that the packaging can withstand specified testing conditions intended to simulate normal transportation. Type A packaging usually does not require special handling, packaging, or transportation equipment. Because the levels of radioactivity in many of these Type A containers containing CH GTCC LLRW or GTCC-like waste would be near the upper limits specified in 10 CFR Part 71, with multiple drums or SWBs per shipment, the use of Type B packaging is assumed for CH waste shipments. At the time of actual shipment, all GTCC LLRW and GTCC-like waste would be packaged in compliance with radioactive material transportation safety regulations, and Type B packaging might not be required, depending on the characteristics of the waste to be transported.

In addition to meeting all the Type A standards, Type B packaging must also provide a high degree of assurance that the package integrity will be maintained even during severe accidents, with essentially no loss of the radioactive contents or serious impairment of the shielding capability. Type B packaging is required for shipping large quantities of radioactive material and must satisfy stringent testing criteria (as specified in 10 CFR Part 71). The testing criteria were developed to simulate conditions of severe hypothetical accidents, including impact, puncture, fire, and immersion in water. The most widely recognized Type B packaging is the massive casks used to transport highly radioactive spent nuclear fuel (SNF) from nuclear power stations. Large-capacity cranes and mechanical lifting equipment are usually necessary for handling Type B packaging. Many Type B packages are transported on trailers specifically designed for that purpose.

 The CH waste considered in this EIS, while it is placed in Type A packaging, is assumed to be transported in Type B containers referred to as the Transuranic Package Transporter-II (TRUPACT-II). TRUPACT-IIs are being used for the shipment of similar types of waste to WIPP. One TRUPACT-II can accommodate either 14 208-L (55-gal) drums (two stacked 7-drum packs [hexagonal arrays with one in the middle]) or two stacked SWBs. For the purposes of this EIS, four cesium irradiators are assumed to be shipped in one TRUPACT-II.

 A discussion of the RH waste packaging assumed for this EIS is provided in Section B.4.1.2 in Appendix B. Section B.5 in Appendix B summarizes the shipment configurations and number of shipments used in the transportation analysis.

C.9.4.3 Accident Characteristics

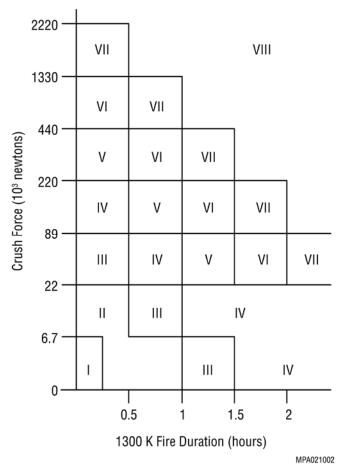
The assessment of transportation accident risk takes into account the fraction of material in a package that would be released or spilled to the environment during an accident, commonly referred to as the release fraction. The release fraction is a function of the severity of the accident and the material packaging. For instance, a low-impact accident, such as a fender-bender, is not expected to cause any release of material. Conversely, a very severe accident is expected to release nearly all of the material in the shipment into the environment. The method used to characterize accident severities and the corresponding release fractions for estimating radioactive risks are described below.

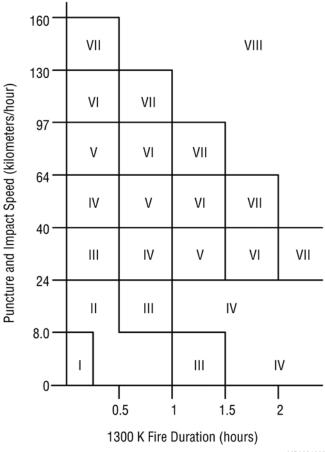
C.9.4.3.1 Accident Severity Categories. A method to characterize the potential severity of transportation-related accidents is described in NUREG-0170 (NRC 1977a). The NRC method divides the spectrum of transportation accident severities into eight categories. Other studies have divided the same accident spectrum into six categories (Wilmot 1981), 20 categories (Fischer et al. 1987), or more (Sprung et al. 2000); however, these latter studies focused primarily on accidents involving shipments of SNF. In this analysis, the NUREG-0170 scheme is used for all shipments.

The NUREG-0170 scheme for accident classification is shown in Figures C-2 and C-3 for truck and rail transportation, respectively. Severity is described as a function of the magnitudes of the mechanical forces (impact) and thermal forces (fire) to which a package might be subjected during an accident. Because all accidents can be described in these terms, severity is independent of the specific accident sequence. In other words, any sequence of events that results in an accident in which a package is subjected to forces within a certain range of values is assigned to the accident severity category associated with that range. The scheme for accident severity is designed to take into account all credible transportation-related accidents, including those accidents with a low probability but high consequences and those with a high probability but low consequences.

Each severity category represents a set of accident scenarios defined by a combination of mechanical and thermal forces. A conditional probability of occurrence (i.e., the probability that if an accident occurs, it is of a particular severity) is assigned to each category. The fractional occurrences for accidents by accident severity category and population density zone are shown in Table C-7 and are used for estimating the radioactive risks.

Category I accidents are the least severe but the most frequent. Category VIII accidents are very severe but very infrequent. To determine the expected frequency of an accident of a given severity, the conditional probability in the category is multiplied by the baseline accident rate. Each population density zone has a distinct distribution of accident severities related to differences in average vehicular velocity, traffic density, location (rural, suburban, or urban), and other factors.




FIGURE C-2 Scheme for NUREG-0170

Classification by Accident Severity Category for

Truck Accidents (Source: NRC 1977a)

C.9.4.3.2 Package Release Fractions. In NUREG-0170, radiological and chemical consequences are calculated by assigning package release fractions to each accident severity category. The release fraction is defined as the fraction of the material in a package that could be released from the package as the result of an accident of a given severity. Release fractions take into account all the mechanisms necessary to release material from a damaged package into the environment. Release fractions vary according to the type of package and the physical form of the material.

 Representative release fractions for accidents involving activated metal shipments were taken from NUREG-0170 (NRC 1977b). The recommendations in NUREG-0170 are based on best engineering judgments and have been shown to provide conservative estimates of material releases following accidents. Release fractions for accidents of each severity category are given in Table C-8. As shown in that table, the amount of material released from the package ranges from zero for minor accidents to 100% for the most severe accidents. Important for the purposes of risk assessment are the fraction of the released material that can be entrained in an aerosol

1 MPA021003

FIGURE C-3 Scheme for NUREG-0170 Classification by Accident Severity Category for Rail Accidents (Source: NRC 1977a)

(part of an airborne contaminant plume) and the fraction of the aerosolized material that is also respirable (of a size that can be inhaled into the lungs). These fractions depend on the physical form of the material. Most solid materials are difficult to release in particulate form and are therefore relatively nondispersible. Conversely, liquid or gaseous materials are relatively easy to release if the container is breached in an accident.

The aerosolized fraction and the respirable fraction were taken to be 1×10^{-6} and 0.05, respectively, for the activated metal that is expected to behave as immobile material (Neuhauser and Kanipe 1992). The release fractions used for the CH and other RH waste shipments with the TRUPACT-II and RH-72B Type B packages, respectively, are also provided in Table C-8.

TABLE C-7 Fractional Occurrences for Truck and Rail Accidents by Severity Category and Population Density Zone

Accident		Fractional Occurrence by Population Density Zone		
Severity	Fractional		-	
Category	Occurrence	Rural	Suburban	Urban
Truck				
I	5.5E-01	1.0E-01	1.0E-01	8.0E-01
II	3.6E-01	1.0E-01	1.0E-01	8.0E-01
III	7.0E-02	3.0E-01	4.0E-01	3.0E-01
IV	1.6E-02	3.0E-01	4.0E-01	3.0E-01
V	2.8E-03	5.0E-01	3.0E-01	2.0E-01
VI	1.1E-3	7.0E-01	2.0E-01	1.0E-01
VII	8.5E-05	8.0E-01	1.0E-01	1.0E-01
VIII	1.5E-05	9.0E-01	5.0E-02	5.0E-02
Rail				
I	5.0E-01	1.0E-01	1.0E-01	8.0E-01
II	3.0E-01	1.0E-01	1.0E-01	8.0E-01
III	1.8E-01	3.0E-01	4.0E-01	3.0E-01
IV	1.8E-02	3.0E-01	4.0E-01	3.0E-01
V	1.8E-03	5.0E-01	3.0E-01	2.0E-01
VI	1.3E-04	7.0E-01	2.0E-01	1.0E-01
VII	6.0E-05	8.0E-01	1.0E-01	1.0E-01
VIII	1.0E-05	9.0E-01	5.0E-02	5.0E-02

Source: NRC (1977a)

 C.9.4.3.3 Atmospheric Conditions during Accidents. Hazardous material released to the atmosphere is transported by the wind. The amount of dispersion, or dilution, of the contaminant material in the air depends on the meteorological conditions at the time of the accident. Because predicting the specific location of an off-site transportation-related accident and the exact meteorological conditions at the time of an accident is impossible, generic atmospheric conditions were selected for the accident risk assessment. National average weather conditions (Weiner et al. 2006) were used in the analysis.

C.9.4.4 Radiological Risk Assessment Input Parameters and Assumptions

The dose (and, correspondingly, the risk) to populations during routine transportation of radioactive materials is directly proportional to the assumed external dose rate from the shipment. The actual dose rate from the shipment is a complex function of the composition and configuration of shielding and containment materials used in the packaging, the geometry of the loaded shipment, and the characteristics of the radioactive material itself.

Accident		TRUPACT-II ^b		RH-	RH-72B ^c	
Severity	Release					
Category	Fraction ^a	Truck	Rail	Truck	Rail	
I	0	0	0	0	0	
II	0	0	0	0	0	
III	0.01	8×10^{-9}	2×10^{-8}	6×10^{-9}	2×10^{-8}	
IV	0.1	2×10^{-7}	7×10^{-7}	2×10^{-7}	7×10^{-7}	
V	1	8×10^{-5}	8×10^{-5}	1×10^{-4}	1×10^{-4}	
VI	1	2×10^{-4}	2×10^{-4}	1×10^{-4}	1×10^{-4}	
VII	1	2×10^{-4}	2×10^{-4}	2×10^{-4}	2×10^{-4}	
VIII	1	2×10^{-4}	2×10^{-4}	2×10^{-4}	2×10^{-4}	

TABLE C-8 Estimated Release Fractions for Type B Packages under Various Accident Severity Categories

5

7

10 11

12

13

15

16 17

18

19

20

Table C-9 lists the external dose rates developed for this transportation analysis. The dose rates are presented in terms of the transport index, which is the dose rate at 1 m (3.3 ft) from the lateral sides of the transport vehicle. These values are well below the regulatory limit established in 49 CFR 173.441 (Radiation Level Limitations) and 10 CFR 71.47 (External Radiation Standards for All Packages) to protect the public. The regulatory limit is set at is 0.1 mSv/h (10 mrem/h) at 2 m (6 ft) from the outer lateral sides of the transport vehicle. This dose rate corresponds to approximately 14 mrem/h at 1 m (3 ft) from the shipment. Previous estimates of external dose rates at 1 m from CH and RH wastes similar to GTCC LLRW and GTCC-like waste have ranged up to 3.3 mrem/h for CH waste and up to 9.2 mrem/h for RH waste (DOE 1997b). By using a DOE-complex-wide average radionuclide profile of similar waste, a more recent transport index estimate of 0.5 mrem/h for CH waste truck shipments and 2.5 mrem/h for RH waste truck shipments was calculated (Sandia 2008). Because of the high activities associated with the GTCC LLRW and GTCC-like waste, especially for the activated metals, these estimates could be lower than the actual values for some specific shipments in the future, but they represent a more realistic overall average external dose rate than the use of an excessive bounding estimate, and they are consistent across alternatives. Once an alternative is selected for disposal of specific waste, further analysis may be required to optimize waste packaging and shipment configurations to minimize impacts on the basis of the characteristics of the actual waste to be transported.

^a Source: NRC (1977b), used for all activated metal shipments. Aerosolized and respirable fractions for activated waste in Type B packages for all accident severity categories are assumed to equal 1×10^{-6} and 0.05, respectively.

b Source: DOE (1997b), used for CH waste shipments. Both aerosolized and respirable fractions are assumed to equal 1.0.

c Source: DOE (1990), used for RH waste shipments. Both aerosolized and respirable fractions are assumed to equal 1.0.

TABLE C-9 External Dose Rates, Package Sizes, and Distances Used in RADTRAN

	Dose Rate at 1 m (3.3 ft) from Source	Package	Crew Distance	Crew
Shipment	(mrem/h)	Size (m)	(m)	View (m)
Activated metal and RH waste Truck	2.5 ^a	3.6 ^b	3.2	0.66
Rail	5.0	7.2 ^c	NA^d	NA
CH waste				
Truck	0.5	7.4 ^e	10	1.85
Rail	1.0	14.8 ^f	NA	NA

- a Source: Sandia (2008).
- b One RH-72B package.
- Two RH-72B packages.
- d NA = not applicable.
- e Three TRUPACT-II packages.
- f Six TRUPACT-II packages.

In addition to the specific parameters discussed previously, values for a number of general parameters must be specified within the RADTRAN code to calculate radiological risks. Standard values were used in most cases. These general parameters define basic characteristics of the shipment and traffic and are specific to the mode of transportation. The user's manual for the RADTRAN code (Neuhauser and Kanipe 2003; Weiner et al. 2006) contains derivations and descriptions of these parameters. The general RADTRAN input parameters used in the radiological transportation risk assessment are summarized in Table C-10.

C.9.5 Uncertainties and Conservatism in Estimated Impacts

The sequence of analyses performed to generate estimates of risk from transporting radioactive waste is as follows: (1) determine the waste inventory and characteristics at each site, (2) estimate the shipment requirements, (3) determine the route characteristics, (4) calculate the radiation doses to exposed individuals (including estimating environmental transport and uptake of radionuclides), and (5) estimate health effects. Uncertainties are associated with each step. Uncertainties exist in the (1) way that the physical systems being analyzed are represented by the computational models; (2) data required to apply the models (because of measurement errors, sampling errors, natural variability, or unknown factors caused simply because the actions being analyzed will occur in the future; and (3) calculations themselves (e.g., the approximation algorithms used in the computer programs).

TABLE C-10 General RADTRAN Input Parameters^a

-		
Parameter	Truck	Rail
Number of crew members	2	5
Average vehicular speed (km/h) ^b		
Rural	88.49	64.37
Suburban	40.25	40.25
Urban	24.16	24.16
Stop time (h/km)	0.0015	0.033
Number of people exposed while stopped	25	Route-specific suburban
		population average density
Distance for exposure while stopped (m)	20	10 to 400
Number of people per vehicle sharing route	2	3
Population density (persons/km ²) ^c	Route specific	Route specific
One-way traffic count (vehicles/h) ^d	-	-
Rural	530	1
Suburban	760	1
Urban	2,400	5
Fraction of farmlande	Route specific	Route specific

- ^a Accident conditional probabilities are listed by severity category in Table C-7. Accident release fractions are given in Table C-8. External dose rates are given in Table C-9.
- b Fraction of rural and suburban travel on freeways is assumed to be 1. Thus, the rural speed is used for both urban and suburban zones in RADTRAN for truck transport.
- ^c Route-specific population densities are from the TRAGIS route outputs.
- d Source: DOE (2002b).
- e State-specific fraction of farmland was taken from Table 8, pp. 291–299, in USDA (2004).

In principle, one could estimate the uncertainty associated with each input or computational source and predict the resultant uncertainty in each subsequent set of calculations. Thus, one could propagate the uncertainties from one set of calculations to the next and estimate the uncertainty in the final, or absolute, result. However, conducting such a full-scale quantitative uncertainty analysis is often impractical and sometimes impossible, especially for actions that would be initiated at an unspecified time in the future. Instead, the risk analysis is designed to ensure — through uniform and judicious selection of scenarios, models, and input parameters — that relative comparisons of risk among the various alternatives are meaningful. In the transportation risk assessment, this objective is accomplished by uniformly applying input parameters and assumptions to all alternatives for each waste type. Therefore, although considerable uncertainty is inherent in the absolute magnitude of the transportation risk for each alternative, much less uncertainty is associated with the relative differences among the alternatives in a given measure of risk.

In the following sections, areas of uncertainty are discussed for each assessment step enumerated previously, with the exception of health effects. Special emphasis is placed on

identifying whether the uncertainties affect relative or absolute measures of risk. Where practical, the parameters that most significantly affect the risk assessment results are identified, and quantitative estimates of uncertainty are provided.

C.9.5.1 Uncertainties in the Waste Inventory and Characterization

The site-specific waste inventories and the physical and radiological waste characteristics are important input parameters for the transportation risk assessment. The potential amount of transportation required for any alternative is determined primarily by the projected waste inventory at each site and assumptions about shipment configurations (packaging and shipment capacities). The physical and radiological characteristics of the waste are important in determining the amount of waste that would be released during an accident and the subsequent doses to exposed individuals through multiple environmental exposure pathways.

In general, the uncertainties in the data specific to the site and waste type could affect the relative and absolute measures of transportation risk, and they are difficult to quantify. For example, there is a large amount of uncertainty associated with the amount of GTCC activated metal waste that would come from commercial reactors, in terms of reactor availability (when a given reactor would shut down) and in terms of the time decommissioning would actually occur (e.g., if there were years between shutdown and decommissioning, it is possible that little or no activated metal waste would be classified as GTCC waste). Precisely defining the impact of these uncertainties on the transportation risk is difficult, given the large number of sites.

 The uncertainties in the waste characterization data are reflected to some degree in the transportation risk results. If the waste inventories are consistently overestimated (or underestimated), the resulting transportation risk estimates are also overestimated (or underestimated) by roughly the same factor. In terms of relative risk comparisons, such uncertainties have little effect, since the majority of the waste would require shipment under all disposal alternatives (i.e., none of the sites being considered for disposal are also large generators of GTCC LLRW or GTCC-like waste).

C.9.5.2 Uncertainties in Defining the Shipment Configurations

As stated previously, the amount of transportation required for each disposal alternative is partly based on assumptions about the packaging and shipment configurations for each waste type. Representative shipment configurations have been defined for each waste type on the basis of either historical or potential future shipment capacities. (For example, all truck shipments of activated metal could be made in RH-72B or similar Type B packages because of the hypothetical design used for the activated metal canisters). In reality, the actual shipment capacities might differ from the predicted capacities, so the projected number of shipments and consequently the total transportation risk would change. (For example, some GTCC activated metal is already stored in large transportation, storage, and disposal canisters that are suitable only for rail transport). However, although the predicted transportation risks would increase or

decrease accordingly (decrease in this case), the relative differences in risks among alternatives would generally remain unchanged.

C.9.5.3 Uncertainties in Determining the Route

Representative routes between all origin sites and destination sites considered for the disposal alternatives have been determined. The routes chosen were consistent with current guidelines, regulations, and practices but may not be the actual routes that will be used in the future. In reality, the actual routes may differ from the representative ones in terms of the lengths of the routes and total populations along them. Moreover, because the assessment considers wastes generated over the next 50 to 70 years, the highway and rail infrastructures and the demographics along the routes could also change over time. Although these effects are not accounted for in the transportation assessment, it is anticipated that any changes would not significantly affect the comparisons of risk among the disposal alternatives considered in the EIS.

C.9.5.4 Uncertainties in Calculating Radiation Doses

The models used to calculate radiation doses from transportation activities introduce additional uncertainty into the risk assessment process. Estimating the accuracy, or absolute uncertainty, of the risk assessment results is generally difficult. The accuracy of the calculated results is closely related to the limitations of the computational models and to the uncertainties in each of the input parameters that the model requires. The single greatest limitation facing users of RADTRAN, RISKIND, or any computer code of this type is the scarcity of data for certain input parameters.

Uncertainties associated with the computational models are minimized by using state-of-the-art computer codes that have been extensively reviewed. However, because numerous uncertainties are recognized but are difficult to quantify, assumptions are made at each step of the risk assessment process. These assumptions are intended to produce conservative results (that is, overestimate the calculated dose and radiological risk). Because parameters and assumptions are applied equally to all disposal alternatives for a waste type, this model bias is not expected to affect the meaningfulness of the risk comparisons; however, the results may not represent risks in an absolute sense.

Incident-free transportation risks are the dominant component of the total transportation risk for both truck and rail modes. The most important parameter in calculating incident-free doses is the shipment external dose rate (i.e., incident-free doses are directly proportional to the shipment external dose rate). For calculation purposes, average dose rates were applied to each waste type because information is not available to predict shipment dose rates accurately on a site-by-site and waste-stream basis. In practice, the external dose rates will vary not only from one site to another and one waste type to another but also from one shipment to another for a given site; the rates are expected to range near the levels assumed for this assessment.

C.9.5.5 Uncertainties in Comparing Truck and Rail Transportation Modes

The transportation risk assessment results presented in this EIS indicate that rail transportation would pose a lower overall risk to workers and the public than would truck transportation of the same quantity of waste. However, it is important to recognize that although rail shipments were found to result in no expected fatalities, the risks from transportation operations for both modes are, in general, small. Moreover, comparisons between truck and rail shipment risks need to consider the uncertainties inherent in the risk assessment process. As discussed above, in most cases, the calculational uncertainties are difficult to quantify and may, in fact, not be the same for truck transport as they are for rail transport. Some important issues that should be considered while comparing truck and rail shipment risks are discussed below.

In this EIS, transportation risks are estimated for the shipment of all waste by 100% truck or by 100% rail mode for each disposal alternative and waste type. The intent of this approach is to bound the transportation impacts for any possible mix of truck and rail shipments, recognizing that both modes would likely take place in the future. Therefore, all facilities were assumed to have rail access. However, a number of the generator sites and some disposal sites do not have direct rail access. For those sites lacking direct rail access, the risks associated with shipping waste by truck to a rail siding are not considered in detail; however, preliminary evaluations indicate that these activities generally contribute only a small amount to the overall transportation risk (DOE 1997a).

Although subject to calculational uncertainties, a number of factors that contribute to the assessment results indicate that rail shipments have lower impacts than truck shipments for the same alternative. These factors include the following:

Rail shipments are larger than truck shipments; thus, fewer total rail shipments
are needed. Consequently, impacts from rail shipment tend to be lower
because overall transportation impacts tend to be proportional to shipment
mileage.

On a per-shipment basis, rail shipments have lower radiological impacts than do truck shipments. The radiological impacts from rail shipments tend to be lower because fewer members of the public are exposed during rail transport (primarily because there are fewer people at railroad stops and because fewer people share the routes). In addition, rail crew members tend to be much farther from the radioactive material packages than are truckers. However, the differences in radiological risk between the two transport modes for all disposal alternatives lie within the uncertainty of the estimates on the number and location of exposed persons.

 Although rail impacts were found to be less than truck impacts, a number of considerations were not specifically addressed in the representative assessment conducted for the purposes of the EIS. First, rail shipments may require additional handling and preparation, especially for sites lacking rail access, and this handling would contribute to the overall rail shipment risk. Second, to be cost effective, rail shipments generally require a large inventory of

waste. Rail may thus not be a cost-effective option at smaller generating sites. Finally, rail operations in general are not as flexible and responsive to individual site needs and capabilities as are truck operations.

C.10 CULTURAL RESOURCES

 Cultural resources are the physical remains of past human activity or natural features that have significant historical or cultural meaning. These resources include archaeological sites, historic structures, cultural landscapes, and traditional cultural properties.

The analysis of impacts on cultural resources relied on similar types of information for each site and alternative. The area potentially affected was determined for each site and included the areas needed for both construction and operations. To the extent possible, these areas included some buffer to allow for any minor changes during implementation. Information on the presence of cultural resources within the area that might be affected was compiled. This task relied on cultural and historical background data that provided an overarching context for the types of cultural resources that could be present in each region. Previous cultural resource studies were reviewed to determine if specific resources exist within the area potentially affected. A records search was done to determine if any of the cultural resources that are present are eligible for listing on the *National Register of Historic Places* (NRHP).

DOE initiated consultation and communication activities on the GTCC EIS with 14 participating American Indian tribal governments that have cultural or historical ties to the DOE sites being analyzed in this EIS. The consultation activities are being conducted in accordance with President Obama's Memorandum on Tribal Consultation (dated November 5, 2009); Executive Order 13175 (dated November 6, 2000) entitled "Consultation and Coordination with American Indian Tribal Governments"; Executive Memorandum (dated September 23, 2004) entitled "Government-to-Government Relationship with Tribal Governments" (White House 2004); and DOE Order 144.1, "American Indian Tribal Government Interaction and Policy" (dated January 2009). The consultation activities include technical briefings, the development of the written tribal narrative included in this EIS related to the specific site affiliated with the tribe, and/or discussions with elected tribal officials, based on individual tribal preferences and mutually agreed-upon protocols.

Once the baseline for the types of cultural resources present was established, the assessment considered the activities that would be required for the proposed action and their potential for affecting cultural resources. Of greatest concern were activities that would require ground disturbance because these activities would have the greatest impact on cultural resources. If archeological surveys had not been completed for the project area, the analysis assumed that the distribution of resources was the same as the distribution known for the surrounding region. Once the potential for impacts from each alternative was determined, the effects of each alternative were compared. Tribal perspectives, comments, and concerns identified during the consultation process will be considered by DOE in the decision-making process for selecting and implementing (a) disposal alternatives(s) for GTCC waste.

C.11 WASTE MANAGEMENT

2 3

Potential impacts on waste management programs at the various sites considered in this EIS were evaluated. Wastes that could be generated from the construction of the land disposal options evaluated in this EIS include small quantities of hazardous solids, nonhazardous solids (concrete and steel spoilage, excavated materials), hazardous liquids, and nonhazardous (sanitary waste) liquids. Wastes that could be generated from the operation of the land disposal methods include small quantities of solid LLRW, such as spent HEPA filters, and nonhazardous solid waste (including recyclable wastes). Some liquid LLRW would also be generated from truck washdown water. A compilation of the waste volumes that could be generated from the construction and operations of the land disposal facilities is presented in Appendix D and in Table 5.3.11-1. For the assessment of waste management impacts in this EIS, annualized construction waste data were derived from the information presented in Appendix D. An initial construction period of 3.4 years was assumed in the derivation.

At all the sites evaluated for the land disposal options, the waste management programs for the waste categories generated were reviewed to determine potential impacts from the additional waste that could be generated. All the waste categories are routinely handled at all the DOE sites evaluated. Waste generated at the WIPP Vicinity could be sent off-site for disposal; commercial disposal options are available for the waste categories that would be generated.

Disposal operations would generate types of waste similar to those currently generated (i.e., liquid nonhazardous, solid nonhazardous, and hazardous waste); it is expected that existing handling procedures and capacities would accommodate the additional waste.

C.12 CUMULATIVE IMPACTS

Cumulative effects or impacts result from the incremental impact of the action alternatives when added to other past, present, and reasonably foreseeable future actions, regardless of what government agency or private entity undertakes such actions. Cumulative effects may result from impacts that are minor individually but that, when viewed collectively over space and time, can produce significant impacts. The approach used for cumulative impacts analysis in this EIS was based on the principles outlined in CEQ (1997) and on the guidance developed by the EPA in EPA (1999) for independent reviewers of EISs.

The cumulative impact analysis for this EIS was not meant to be a review of all potential environmental impacts at and near a site, nor was it meant to be a sitewide impact analysis. For this EIS, past and present impacts at a given site are generally addressed in the affected environment discussion for each resource area. Reasonably foreseeable future actions at a given site were gleaned primarily from a review of various National Environmental Policy Act (NEPA) documents available for the site. In addition, the latest EIS (draft or final, as appropriate) available for the site was reviewed to identify total cumulative impact values reported for the site (with the reasonably foreseeable future actions considered). The potential impacts from this EIS were then compared to those reported values in order to gain perspective on the potential contribution from the GTCC EIS alternatives to overall cumulative impacts at the sites.

C.13 REFERENCES

2

- 3 Argonne (Argonne National Laboratory), 2010, Post-Closure Performance Analysis of the
- Conceptual Disposal Facility Designs at the Sites Considered for the Greater-Than-Class C
- Environmental Impact Statement, ANL/EVS/R-10/8, prepared by Argonne, Argonne, Ill., for the 5
- U.S. Department of Energy, Office of Environmental Management, Oct.

7

- 8 Biwer, B.M., et al., 1997, RISKIND Verification and Benchmark Comparisons,
- 9 ANL/EAD/TM-74, Argonne National Laboratory, Argonne, Ill., Aug.

10

- 11 CEQ (Council on Environmental Quality), 1997, Environmental Justice Guidance under the
- National Environmental Policy Act, Executive Office of the President, Washington, D.C., 12
- http://www.whitehouse.gov/CEQ/December. 13

14

- 15 DOE (U.S. Department of Energy), 1990, Supplemental Environmental Impact Statement, Waste
- Isolation Pilot Plant, DOE/EIS-0026-FS, Washington, D.C., Jan. 16

17

- 18 DOE, 1994, DOE Handbook: Airborne Release Fractions/Rates and Respirable Fractions for
- 19 Nonreactor Nuclear Facilities, DOE-HDBK-3010-94, Washington, D.C., Dec.

20

- 21 DOE, 1995, Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho
- 22 National Engineering Laboratory Environmental Restoration and Waste Management Programs
- 23 Final Environmental Impact Statement, DOE/EIS-0203-F, Office of Environmental
- 24 Management, Idaho Operations Office, Idaho Falls, Id., Apr.

25

- 26 DOE, 1996, Final Environmental Impact Statement on a Proposed Nuclear Weapons
- Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel, Appendix E: 27
- 28 Evaluation of Human Health Effects of Overland Transportation, DOE/EIS-0218F, Vol. 2,
- 29 Assistant Secretary for Environmental Management, Washington, D.C., Feb.

30

- 31 DOE, 1997a, Final Waste Management Programmatic Environmental Impact Statement for
- 32 Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste,
- 33 DOE/EIS-0200-F, Office of Environmental Management, Washington, D.C.

34

- 35 DOE, 1997b, Waste Isolation Pilot Plant Disposal Phase Final Supplemental Environmental
- 36 Impact Statement, Vol. II, Appendices, DOE/EIS-0026-S-2, Carlsbad, N.M., Sept.

37

- 38 DOE, 1999, Final Programmatic Environmental Impact Statement for Alternative Strategies for
- 39 the Long-Term Management and Use of Depleted Uranium Hexafluoride, DOE/EIS-0269, Office
- of Nuclear Energy, Science and Technology, Germantown, Md., Apr. 40

41

- 1 DOE, 2002a, Final Environmental Impact Statement for a Geologic Repository for the Disposal
- 2 of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County,
- 3 Nevada, DOE/EIS-0250F, Office of Civilian Radioactive Waste Management, North Las Vegas,
- 4 Nev., Feb.

- 6 DOE, 2002b, A Resource Handbook on DOE Transportation Risk Assessment,
- 7 DOE/EM/NTP/HB-01, prepared by Transportation Risk Assessment Working Group Technical
- 8 Subcommittee for DOE, Office of Environmental Management, National Transportation
- 9 Program, Albuquerque, N.M., July.

10

- 11 DOE 2003, Estimating Radiation Risk from Total Effective Dose Equivalent (TEDE), ISCORS,
- 12 Technical Report No. 1, DOE/EH-412/0015/0802, Rev. 1, Air, Water and Radiation Information
- 13 Brief, Office of Environmental Policy and Guidance, Washington, D.C., Jan.

14

- 15 DOE, 2004, Recommendations for the Preparation of Environmental Assessments and
- 16 Environmental Impact Statements, Second Edition, Environmental, Safety, and Health,
- 17 Office of NEPA Policy and Compliance, Washington, D.C., Dec.

18

- 19 DOE, 2006, Waste Isolation Pilot Plant Contact-Handled (CH) Waste Documented Safety
- 20 *Analysis*, DOE/WIPP-95-2065, Rev. 10, Nov.

21

- 22 DOE, 2007, DOE Standard: Preparation of Safety Basis Documents for Transuranic (TRU)
- 23 Waste Facilities, DOE-STD-5506-2007, Washington, D.C., Apr.

24

- 25 DOE, 2008, Final Supplemental Environmental Impact Statement for a Geologic Repository for
- 26 the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye
- 27 County, Nevada, DOE/EIS-0250F-S1, Office of Civilian Radioactive Waste Management, North
- 28 Las Vegas, Nev., June.

29

- 30 Dubrin, J.W., et al., 1997, The Engineering Analysis Report for the Long-Term Management of
- 31 Depleted Uranium Hexafluoride, UCRL-AR-124080 Rev. 2, Lawrence Livermore National
- 32 Laboratory, Livermore, Calif., May.

33

- 34 Duncan, J.P., (editor), 2007, Hanford Site National Environmental Policy Act (NEPA)
- 35 Characterization, PNNL-6415, Rev. 18, prepared by Pacific Northwest National Laboratory,
- 36 Richland, Wash., for U.S. Department of Energy, Sept.

37

- 38 EPA (U.S. Environmental Protection Agency), 1974, Information on Levels of Environmental
- 39 Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety,
- 40 prepared by the Office of Noise Abatement and Control, Washington, D.C., http://www.nonoise.
- 41 org/library/levels74/levels74.htm. Accessed Nov. 2007.

42

- 43 EPA, 1992, User's Guide for CAP88-PC, Version 1.0, EPA-402-B-92-001, Office of Radiation
- 44 Programs, Las Vegas, Nev., Mar.

- 1 EPA, 1997, Exposure Factors Handbook, Update to Exposure Factors Handbook,
- 2 EPA/600/8-89/043-May 1989, EPA/600/P-95/002Fa,b&c, National Center for Environmental
- 3 Assessment, Office of Research and Development, Washington, D.C., Aug.

- 5 EPA, 1999, Cancer Risk Coefficients for Environmental Exposure to Radionuclides, Federal
- 6 Guidance Report No. 13, EPA 402-R-99-001, Office of Radiation and Indoor Air, Washington,
- 7 D.C., Sept., www.epa.gov/rpdweb00/docs/federal/402-r-99-001.pdf.

8

- 9 EPA, 2004, Compilation of Air Pollutant Emission Factors, Vol. 1, Stationary Point and Area
- 10 Sources, Report AP-42, Fifth Edition through Supplement F and updates through 2004, Office of
- 11 Air Quality Planning and Standards, Research Triangle Park, N.C., Sept., http://www.epa.gov/
- 12 ttn/chief/ap42/index.html. Accessed Nov. 2007.

13

- 14 ESRI, 2008, "Data & Maps and Street Map North America," ESRI Data & Maps 9.3, DVD
- 15 showing U.S. Census block group coverage, Redlands, Calif.

16

- 17 Fischer, L.E., et al., 1987, Shipping Container Response to Severe Highway and Railway
- 18 Accident Conditions, NUREG/CR-4829, UCID-20733, prepared by Lawrence Livermore
- 19 National Laboratory for U.S. Nuclear Regulatory Commission, Division of Reactor System
- 20 Safety, Office of Nuclear Regulatory Research, Washington, D.C.

21

- 22 Fuehne, D.P., 2008, 2007 LANL Radionuclide Air Emissions Report, LA-14365, Los Alamos
- 23 National Laboratory, Los Alamos, N.M., June.

24

- 25 Hanson, C.E., et al., 2006, Transit Noise and Vibration Impact Assessment,
- 26 FTA-VA-90-1003-06, prepared by Harris Miller Miller & Hanson, Inc., Burlington, Mass., for
- 27 Office of Planning, Federal Transit Administration, U.S. Department of Transportation,
- 28 Washington, D.C., May, http://www.hmmh.com/rail manuals01fta.html. Accessed July 2007.

29

- 30 ICRP (International Commission on Radiological Protection), 1996, Age-Dependent Doses to the
- 31 Members of the Public from Intake of Radionuclides, Part 5, Compilation of Ingestion and
- 32 Inhalation Coefficients, Publication 72, Stockholm, Sweden.

33

- 34 Johnson, P.E., and R.D. Michelhaugh, 2003, Transportation Routing Analysis Geographic
- 35 Information System (TRAGIS) User's Manual, ORNL/NTRC-006, prepared by Oak Ridge
- 36 National Laboratory, Oak Ridge, Tenn., for U.S. Department of Energy, National Transportation
- 37 Program, Albuquerque, N.M., June.

38

- 39 Menge, C.W., et al., 1998, FHWA Traffic Noise Model® Technical Manual, FHWA-PD-96-010,
- 40 prepared by U.S. Department of Transportation (DOT), Research and Special Programs
- 41 Administration, John A. Volpe National Transportation Systems Center, Cambridge, Mass., for
- 42 DOT, Federal Highway Administration, Washington, D.C, Feb.

43

44 MIG, Inc., 2008, IMPLAN Data Files, Stillwater, Minn.

- Napier, B.A., et al., 1988, GENII The Hanford Environmental Radiation Dosimetry Software
- 2 System, PNL-6584, prepared by Pacific Northwest Laboratory, Richland, Wash., for
- 3 U.S. Department of Energy, Washington, D.C., Dec.

- 5 Neuhauser, K.S., and Kanipe, F.L., 1992, RADTRAN 4: Volume 3, User Guide, SAND89-2370,
- 6 Sandia National Laboratories, Albuquerque, N.M., Jan.

7

- 8 Neuhauser, K.S., and Kanipe, F.L., 2003, RADTRAN 5 User Guide, SAND2003-2354, Sandia
- 9 National Laboratories, Albuquerque, N.M., July.

10

- 11 NRC (U.S. Nuclear Regulatory Commission), 1977a, Final Environmental Statement on the
- 12 Transportation of Radioactive Material by Air and Other Modes, NUREG-0170,
- 13 Washington, D.C.

14

- 15 NRC, 1977b, Calculation of Annual Dose to Man from Routine Releases of Reactor Effluents
- 16 for the Purpose of Evaluating Compliance with 10 CFR Part 50, Regulatory Guide 1.109,
- 17 Appendix I, Rev. 1, Washington, D.C.

18

- 19 NRC, 2005, Environmental Impact Statement on the Construction and Operation of a Proposed
- 20 Mixed Oxide Fuel Fabrication Facility at the Savannah River Site, South Carolina,
- 21 NUREG-1767, Office of Nuclear Material Safety and Safeguards, Washington, D.C., Jan.

22

- 23 Sandia (Sandia National Laboratories), 2008, Summary Report for Update to Disposal Phase
- 24 Supplemental Environmental Impact Statement Transportation Analysis of the Waste Isolation
- 25 Pilot Plant, AP-141, Dec.

26

- 27 Saricks C., and T. Kvitek, 1994, Longitudinal Review of State-Level Accident Statistics for
- 28 Carriers of Interstate Freight, ANL/ESD/TM-68, Argonne National Laboratory, Argonne, Ill.,
- 29 July.

30

- 31 Saricks, C., and M. Tompkins, 1999, State-Level Accident Rates of Surface Freight
- 32 Transportation: A Re-Examination, ANL/ESD/TM-150, Argonne National Laboratory,
- 33 Argonne, Ill.

34

- 35 Sprung, J.L., et al., 2000, Reexamination of Spent Fuel Shipment Risk Estimates,
- 36 NUREG/CR-6672, SAND2000-0234, prepared by Sandia National Laboratories for the
- 37 U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards,
- 38 Washington, D.C.

39

- 40 U.S. Bureau of the Census, 2008, American Fact Finder, Washington, D.C.,
- 41 http://factfinder.census/gov/.

42

- 43 USDA (U.S. Department of Agriculture), 2004, 2002 Census of Agriculture, United States
- 44 Summary and State Data, Vol. 1, Geographic Area Series, Part 51, June.

- 1 Weiner, R.F., et al., 2006, RadCat 2.3 User Guide, SAND2006-6315, Sandia National
- 2 Laboratories, Albuquerque, N.M, Oct.

- 4 White House, 2004, "Government-to-Government Relationship with Tribal Governments,"
- 5 Memorandum for the Heads of Executive Departments and Agencies, press release, Sept. 23,
- 6 www.epa.gov/tribal/pdf/president-bush-2004/pdf. Accessed Mar. 30, 2010.

7

- 8 Wilmot, E.L., 1981, Transportation Accident Scenarios for Commercial Spent Fuel,
- 9 SAND80-2124, Sandia National Laboratories, Albuquerque, N.M.

10

- Wood, E.W., and J.D. Barnes, 2006, "Prediction of Machinery Noise," in *Noise and Vibration*
- 12 Control Engineering: Principles and Applications, second edition, I.L. Vér and L.L. Beranek
- 13 (editors), John Wiley & Sons, Inc., Hoboken, N.J.

14

- 15 Yuan, Y.C., et al., 1995, RISKIND A Computer Program for Calculating Radiological
- 16 Consequences and Health Risks from Transportation of Spent Nuclear Fuel, ANL/EAD-1,
- 17 Argonne National Laboratory, Argonne, Ill., Nov.

18

- 19 Yu, C., et al., 2007, User's Manual for RESRAD-OFFSITE Version 2, ANL/EVS/TM-07-1,
- 20 DOE/HS-0005, NUREG/CR-6937, prepared by Argonne National Laboratory, Argonne, Ill., for
- 21 U.S. Department of Energy and U.S. Nuclear Regulatory Commission, June.

1 2 3 4 5 6 7 8 9 10 11 12 13 This page is intentionally left blank. 14

APPENDIX D:

CONCEPTUAL DISPOSAL FACILITY DESIGNS

This appendix presents information on the conceptual facility designs and layouts, modes of transportation, waste packaging, facility resource requirements, and facility emissions associated with the three land disposal methods that the U.S. Department of Energy (DOE) is considering for disposal of greater-than-Class C (GTCC) low-level radioactive waste (LLRW) and GTCC-like waste: (1) borehole disposal, (2) trench disposal, and (3) vault disposal. Each conceptual facility is designed to provide the disposal capacity needed for the entire inventory described in Appendix B. In addition, this appendix provides supporting information for estimating incremental air emissions from waste to be disposed of at the Waste Isolation Pilot Plant (WIPP).

D.1 SCOPE

Two enhanced near-surface methods for disposing of GTCC LLRW and GTCC-like waste were evaluated: a trench and an above-grade vault. One intermediate-depth method — the borehole disposal method — was also evaluated. The level of detail of the proposed designs that is presented in this appendix is sufficient for use in this environmental impact statement (EIS). Further studies, including a site-specific safety analysis report, would be necessary to support further decision-making with regard to implementing any of the three methods.

The disposal facility designs are sized to accommodate the disposal of approximately 12,000 m³ (420,000 ft³) of GTCC LLRW and GTCC-like wastes that are expected to be generated through the year 2083. Information on the waste types and their radionuclide activities, volumes, and packaging is provided in Appendix B. The disposal facilities are designed as standalone operations. Depending on the final location of such a facility, certain components, such as buildings, equipment, or personnel, could be shared with or obtained from existing facilities, thus lowering anticipated costs.

Section D.2 presents a summary of the assumed disposal packages. Section D.3 provides descriptions of the three land disposal methods considered. Conceptual designs of the proposed facilities are presented in Section D.4. Section D.5 discusses the number of and the cost associated with the personnel required for the construction of and operations at each facility. Estimates of the resource materials and utilities needed to construct and operate the facility are provided in Section D.6. Estimated construction and operation emissions and wastes are discussed in Section D.7, and data on emissions from material deliveries and worker vehicles are provided in Section D.8. Section D.9 provides additional estimates of air emissions related to the expansion and operation of the WIPP facility to accommodate the GTCC LLRW and GTCC-like waste considered in this EIS.

The number of construction workers required at any one time during site preparation and facility construction will vary because of the temporary nature of the work and because certain

tasks can be accomplished concurrently while others must occur consecutively. A minimum number of workers are necessary to operate the facility, and that number depends on the waste receipt rate, as discussed further in Section D.5.2. Thus, the estimated resources and emissions from facility operations presented in Sections D.6, D.7, and D.8 are based on the personnel estimates given in Section D.5.2.

D.2 TRANSPORTATION AND PACKAGING

This section provides information on the assumptions about waste transportation and packaging for the borehole, trench, and vault disposal alternatives. Information on the transportation and packaging assumptions for the deep geologic disposal alternative (WIPP) is found in Appendix B. It is assumed that GTCC LLRW and GTCC-like waste would be shipped to the disposal facility in their final disposal containers. Thus, the disposal facilities would be designed to most efficiently accommodate the types of containers that would most likely be used to transport and dispose of this waste. It is assumed that GTCC LLRW and GTCC-like waste would be transported by truck and rail to the disposal facility in Type B shipping packages, as discussed in Section 5. The waste to be disposed of would include sealed sources, contact-handled (CH) Other Waste (Other Waste - CH), remote-handled (RH) Other Waste (Other Waste - RH), and activated metals, as discussed in Appendix B.

D.2.1 Contact-Handled Waste

A common container for the storage of CH and RH GTCC LLRW and GTCC-like waste is the 208-L (55-gal) drum (referred to as drum(s) in the remainder of this appendix). In addition, it is assumed that some stored and projected CH wastes would be packaged for disposal in standard waste boxes (SWBs). As discussed in Appendix B, this EIS explicitly assumes that the disposal of CH waste, except for cesium (Cs) irradiator sources, would be in drums and SWBs. The Cs irradiators are self-contained and would be disposed of in their original shielded container. The size of these irradiators is assumed to be $150 \times 65 \times 67$ cm ($59 \times 26 \times 27$ in.) (Sandia 2008a).

Although the use of other shipping and disposal configurations (e.g., 320-L and 380-L [85-gal and 100-gal] drums) might be possible, their use is not explicitly considered; however, the use of other container types could be accommodated in the current disposal facility designs. Also, GTCC LLRW and GTCC-like CH waste might be found in storage in containers larger than SWBs at some sites, but there are currently no viable casks available for transport. Stacking arrangements in the CH disposal cells could be modified accordingly in the future if such packages became available.

D.2.2 Remote-Handled Waste

It is assumed that all RH waste, except for the activated metal waste types, would be packaged for disposal in drums. As discussed in Appendix B, three drums could be packaged in an RH canister (DOE 1995) that is designed for use with the RH-72B shipping cask. As an

alternative, RH waste could be loaded directly into the canister for disposal (DOE 2006). The proposed facility designs can accommodate both drums and RH canisters, as discussed further in Sections D.3.1.2.2, D.3.2.2.2, and D.3.3.2.2.

It is assumed that activated metals would be packaged in right circular stainless-steel canisters (activated metal canisters [AMCs]). To facilitate potential shipment by truck as well as rail and to provide flexibility in the facility design, the size and weight of these canisters were selected to be compatible with existing containers and weight limitations of truck casks. Additional discussion on the size of the AMCs is presented in Section B.4.1.2.

D.3 LAND DISPOSAL METHODS

D.3.1 Trench Disposal

D.3.1.1 Conceptual Trench Design

The basic design for the trench disposal facility utilizes trenches that are 3-m (10-ft) wide, 11-m (36-ft) deep, and 100-m (330-ft) long. The trench width and depth were selected to optimize disposal capacity per trench within the limits of excavation equipment that is readily available and shoring equipment that is commercially available. The conceptual drawing of a cross section of the basic trench design (Figure D-1) illustrates the trench design features and dimensions. In addition, the conceptual design for a trench facility is deeper and narrower than it is for conventional near-surface LLRW disposal facilities in order to minimize the potential for inadvertent human intrusion during the post-closure period.

The side walls of the trench would be vertically constructed. A well-compacted material would be placed on top of the native material in the floor of the trench. A layer of sand or gravel (0.3 m [1 ft]) would be placed on top of the compacted material to improve stability. The nature of the compacted material would be selected to be compatible with the surrounding geologic material. The trench sidewalls would be constructed with temporary metal shoring. The metal shoring would be removed when the trench was closed.

The waste packages would be placed into the trench about 5 to 10 m (15 to 30 ft) bgs, and a fine-grained cohesionless fill (sand) would be used to backfill around the waste containers to fill voids. After the trench was filled with the waste containers and backfilled, a reinforced concrete layer would be placed over the waste packages to help mitigate any future inadvertent intrusion. Use of 6-in. (15-cm) on-center steel reinforcement (rebar), in two perpendicular layers, would strengthen the concrete. In addition to adding strength to the concrete layer, the spacing of the rebar would provide protection against inadvertent drilling straight down into the trenches. For this reason, the concrete would have two sets of perpendicular steel reinforcement, one near the top face and the other near the bottom face of the barrier. With a spacing of 6 in. (15 cm), most drill bits would not pass into the trench without encountering the steel reinforcement first (discouraging further penetration), if they had not initially been stopped by the concrete itself.

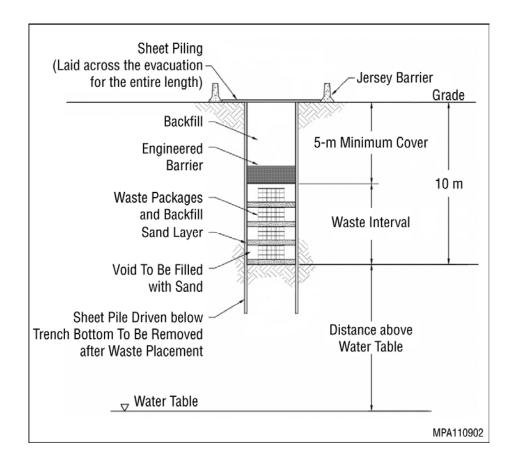
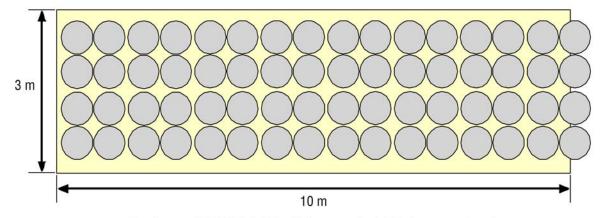
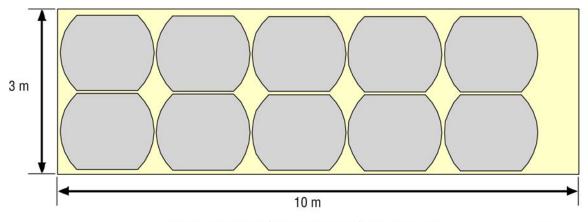



FIGURE D-1 Cross Section of a Conceptual Trench Disposal Unit


It is anticipated that clean fill from construction would be used to backfill the trench above the concrete layer. Each trench could be capped with a cover system consisting of a geotextile membrane overlain by gravel, sand, and topsoil layers (similar to that shown for the vault design final cover system depicted later in Figure D-8). In the case of the trench, the top of the cover system would be flush with or slightly elevated above the surrounding ground surface, depending on the final design.

D.3.1.2 Disposal Package Configurations

D.3.1.2.1 Contact-Handled Waste. The assumed packing arrangement for 208-L (55-gal) drums and SWBs in a 10-m (33-ft) section of trench is shown in Figure D-2. Up to five layers of drums or SWBs could be accommodated with approximately 0.3 m (1 ft) of fill above and below each layer, for a total of 3,000 drums or 500 SWBs per trench. For the larger cesium sources, it is assumed that there would be 560 units per layer (four across the trench width) and three layers, for a total of 1,680 cesium sources per trench. During disposal operations for CH waste, one end of a trench would have a ramp to the surface for entry by a forklift carrying CH waste packages (a pallet of four drums, four cesium sources, or one SWB) for emplacement.

Five layers of 600 208-L (55-gal) drums each; 3,000 drums per trench

Five layers of 100 SWBs each; 500 SWBs per trench

MPA011002

FIGURE D-2 Top View of a 10-m (33-ft) Section of a Trench Packed with Contact-Handled Waste

D.3.1.2.2 Remote-Handled Waste. Additional features are needed in the trenches where RH waste would be buried to provide shielding for the workers once the waste was in place. The RH waste packages (AMCs, drums, and RH canisters) would be disposed of in vertical reinforced concrete cylinders with concrete shield plugs (1.2-m [4-ft] thick) on the top of each cylinder. This design is similar to that proposed for activated metal disposal (Harvego 2007). A mating flange would enable coupling of the bottom-loading transfer cask to a given cylinder for transfer of the waste package into the disposal unit. The transfer cask would be moved off an on-site transport truck into position by an overhead crane. Figure D-3 shows a top view of a 10-m (33-ft) section of an RH waste disposal trench. Each cylinder would be capable of holding up to three AMCs, four individual 208-L (55-gal) drums, or one RH canister. With 302 cylinders per trench, as many as 906 AMCs, 1,208 drums, or 302 RH canisters could be emplaced in one trench.

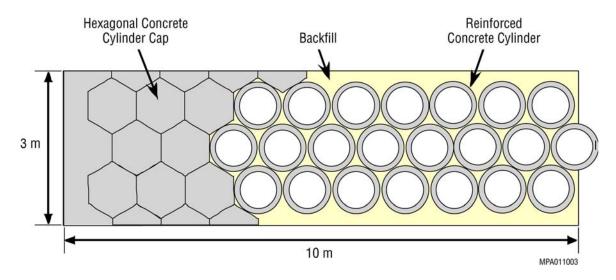


FIGURE D-3 Top View of a 10-m (33-ft) Section of a Trench for Disposal of Remote-Handled Waste

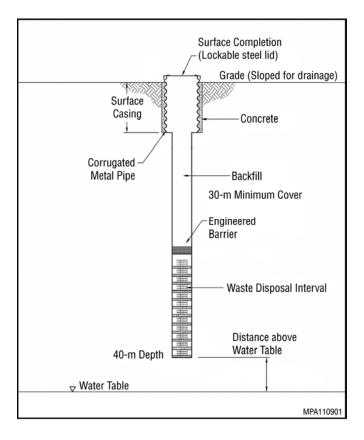
D.3.2 Borehole Disposal

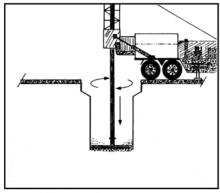
D.3.2.1 Conceptual Borehole Design

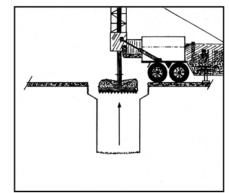
Borehole disposal would entail the emplacement of waste in boreholes at depths below 30 m (100 ft) but above 300 m (1,000 ft). Boreholes can vary widely in diameter (from 0.3 to 3.7 m [1 to 12 ft]), and the proximity of one borehole to another can vary depending on the design of the facility. The technology for drilling larger-diameter boreholes is simple and widely available. The current conceptual design employs boreholes that are 2.4 m (8 ft) in diameter and 40-m (130-ft) deep in unconsolidated to semiconsolidated soils, as shown in Figure D-4, with GTCC waste emplacement assumed to be about 30 to 40 m (100 to 130 ft) bgs.

A bucket auger would be used to drill the large-diameter borehole (see Figure D-5), and a smooth steel casing would be advanced to the depth of the borehole during the drilling and construction of the borehole. The casing would provide stability to the borehole walls and ensure that waste packages would not snag and plug the borehole as they were lowered and would not sit in an upright position when they reached the bottom. The upper 30 m (100 ft) of smooth steel casing would be removed upon closure of the borehole. In some cases where consolidated materials might be encountered, a more robust drilling technology would be required. A casing would also be used in this latter case as an aid in placing waste packages.

The waste packages would be placed into the borehole, and a fine-grained cohesionless fill (sand) would be used to backfill around the waste containers to fill voids. After the borehole was filled with the waste containers and backfill, a reinforced concrete layer would be placed over the waste packages to help mitigate any future inadvertent intrusion. Use of 6-in. (15-cm) on-center steel reinforcement (rebar), in two perpendicular layers, would strengthen the concrete. In addition to adding strength to the concrete layer, the spacing of the rebar would provide

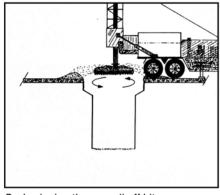


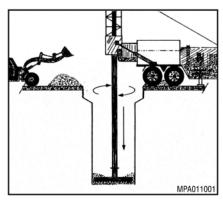

FIGURE D-4 Cross Section of a Conceptual 40-m (130-ft) Borehole


protection against inadvertent drilling straight down into a borehole. For this reason, the concrete would have two sets of perpendicular steel reinforcement, one near the top face and the other near the bottom face of the barrier. With a spacing of 6 in. (15 cm), most drill bits would not pass into the borehole without encountering the steel reinforcement first (discouraging further penetration), if they had not initially been stopped by the concrete itself.

 It is anticipated that clean fill from the construction of the facility would be used to backfill the borehole above the concrete layer. Each borehole could be capped with a cover system consisting of a geotextile membrane overlain by gravel, sand, and topsoil layers, similar to that discussed for trench disposal in Section D.3.1.1 and shown for the vault design final cover system depicted later in Figure D-8. In the case of the borehole, the top of the cover system would be flush with or slightly elevated above the surrounding ground surface, depending on the final design.

D.3.2.2 Disposal Package Configurations


D.3.2.2.1 Contact-Handled Waste. CH waste would be taken off the on-site transport vehicle and lowered by crane into a borehole for emplacement. For a borehole, assumed packing



Auger drills into soil

Backspinning throws soil off bit

Front-end loader removes soil

FIGURE D-5 Process Schematic for Drilling a Large-Diameter Borehole by Using a Bucket Auger (Source: Sandia 2007b)

> 6 7

> 8

9

1

2

arrangements for CH waste are eight intervals (levels) of 208-L (55-gal) drum 7-packs (56 drums), five intervals of cesium-source 4-packs (20 cesium sources), or eight intervals of one SWB (eight SWBs). Approximately 0.3 m (1 ft) of fill would be used between intervals. Single-interval packing arrangements are shown in Figure D-6.

11 12

13

14

15

16

17 18

10

D.3.2.2.2 Remote-Handled Waste. For RH waste, three intervals of two 3-packs of RH canisters or six intervals of two 3-packs of AMCs are assumed. Thus, 18 RH canisters or 36 AMCs could be emplaced in a borehole. Boreholes for disposal of RH waste would have a shielded cover once the RH waste was emplaced, prior to being full and backfilled. On-site transport of RH waste would occur in shielded bottom-loading transfer casks (e.g., smaller versions of the type used at independent spent fuel storage installations for the movement of spent nuclear fuel [SNF]) that would mate with ports on a borehole cover. Once the transfer cask was mated to the borehole cover, the RH waste would be lowered into place.

20 21

19

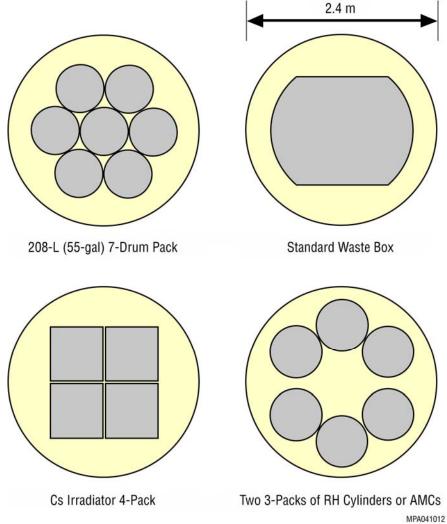


FIGURE D-6 Top View of Single-Interval Packing Arrangements in

2.4-m-Diameter (8-ft-Diameter) Boreholes for Different Container Types

D.3.3 Vault Disposal

D.3.3.1 Conceptual Vault Design

The conceptual design for the vault disposal of GTCC LLRW is a reinforced concrete vault constructed near grade level, with the footings and floors of the vault situated in a slight excavation just below grade. The design is a modification of one disposal concept proposed by Henry (1993) for GTCC LLRW and is similar to a belowground (Denson et al. 1987) vault LLRW disposal method previously investigated by the U.S. Army Corps of Engineers. A similar below-grade concrete vault structure is currently in use for disposal of higher-activity LLRW at the Savannah River Site (SRS) (MMES et al. 1994).

D.3.3.1.1 Vault System. Each vault would be 11-m (35-ft) wide, 94-m (310-ft) long, and 7.9-m (26-ft) tall, with 11 disposal cells situated in a linear array. Interior cell dimensions would be 8.2-m (27-ft) wide, 7.5-m (25-ft) long, and 5.5-m (18-ft) high, with an internal volume of 340 m³ (12,000 ft³) per cell. Double interior walls with an expansion joint would be included after every second cell. GTCC waste disposal placement is assumed to be about 4.3 to 5.5 m (14 to 18 ft) above ground surface. Figure D-7 shows a schematic cross section of a vault cell.

The exterior walls and roof would be composed of 1.1-m (3.8-ft)-thick reinforced concrete. In addition to adding strength and durability to the vault, the thick concrete would attenuate the radiation emanating from the RH waste component of the material destined for disposal. The most hazardous of the wastes in this respect would be the activated metals from reactor decommissioning; their external radiation rates, primarily from cobalt-60 (Co-60), could be a few thousand roentgens per hour at the waste package surface (Sandia 2007a). With an attenuation of Co-60 gamma rays of one-half for about every 6.2 cm (2.4 in.) of concrete (Shleien 1992), a reduction in radiation (by a factor of more than 260,000) to near background levels is expected.

Use of 6-in. (15-cm) on-center steel reinforcement (rebar), in two perpendicular layers, would strengthen the concrete in the floor, walls, and vault cap (ceiling). In addition to adding strength to the vault construction, the spacing of the rebar would provide protection against inadvertent drilling into the disposal cells. For this reason, the vault cap would have two sets of perpendicular steel reinforcement, one near the exterior face and the other near the interior face of the cap. With a spacing of 6 in. (15 cm), most drill bits would not pass into the vault without encountering the steel reinforcement first (discouraging further penetration), if they had not initially been stopped by the concrete itself. Steel reinforcement in the walls was included because of the increased prevalence of using directional drilling at deeper depths for utility work, which can expose the walls as well as the top of the vault to drilling.

D.3.3.1.2 Engineered Cover Systems. An engineered cover would be used to aid in the isolation of the waste from the environment over the long term. In addition to the protection afforded by the vault and its internal backfill, the thickness of the cover would assure that external exposure rates remained at background levels. The design would direct surface water away from the waste and help deter intrusion by humans, plants, and animals. Minimum and maximum slope requirements would be incorporated to ensure adequate drainage and to reduce erosion/maintain slope stability, respectively.

 Two engineered cover systems are included in the design for the vaults, as shown in Figure D-8. The first would be put in place after a vault was filled with waste and permanently closed, or it could be implemented incrementally as the vault was filled (the interim cover with a rise-to-run of 1:3 from the vault edge to ground level). The second cover system would partially replace the interim cover prior to closure of the disposal facility (the final cover with a rise-to-run of 1:5 from the vault edge to ground level). A graded slope of 3% would be used over the combined cover of all of the vaults. Both covers would have a minimum depth of 5.0 m (17 ft) over any portion of a vault, with a 15-cm (0.5-ft) layer of gravelly sand over a vault followed by a layer of clay 0.9-m (3-ft) thick, as shown in Figure D-8. The next layer in the interim cover would consist of 3.7 m (12.0 ft) of native soil followed by 0.3 m (1 ft) of topsoil. In the final

Gravelly Sand 0.15 m (0.5 ft)

MPA011007

2 3 4

5

1

FIGURE D-7 Cross Section of a Conceptual Above-Grade Vault Design (drawn to scale)

Interim Final Cover System Cover System Top Soil 0.30 m (1.0 ft) Sand 0.15 m (0.5 ft) Pea Gravel 0.15 m (0.5 ft) Gravel/Cobble 0.60 m (2.0 ft) Geotextile Layer Native Soil 3.66 m (12.0 ft) 5.0 m (16.5 ft) Native Soil 2.75 m (9.0 ft) Clay 0.90 m (3.0 ft)

6

7

8

FIGURE D-8 Conceptual Cover Systems for a Vault Disposal Facility (Source: Modified from Henry 1993)

cover, the next layer over the clay layer would have 2.8 m (9.0 ft) of native soil, followed by a geotextile layer, 0.6 m (2 ft) of gravel, 15 cm (0.5 ft) of pea gravel, 15 cm (0.5 ft) of sand, and 0.3 m (1 ft) of topsoil (Henry 1993). If needed, rock armor could also be incorporated into the final cover to further protect against erosion.

D.3.3.2 Disposal Package Configurations

D.3.3.2.1 Contact-Handled Waste. The packing arrangement of CH 208-L (55-gal) drums in a cell assumes placement of 7-drum packs as received at the facility in a Transuranic Package Transporter-II (TRUPACT-II) Type B transportation package. Figure D-9 shows the arrangement for the CH drums, with 18 7-packs used per layer. With five layers, 630 drums could be accommodated in each cell. For SWBs, 20 could be arranged in one layer (see Figure D-10), with five layers for 100 SWBs in one vault cell. In addition, it is estimated that about 300 cesium irradiators (three layers of 10 × 10) would fit in one cell. A layer of fill would be used between layers of disposal containers to minimize void spaces. SWBs, 7-drum packs, and 4-packs of irradiators would be taken off an on-site transport truck and loaded into the vault cell by an overhead crane.

D.3.3.2.2 Remote-Handled Waste. Vault cells for disposal of RH waste would be similar in design to the trench approach as discussed in Section D.3.1.2.2. RH AMCs, 208-L (55-gal) drums, or canisters would be loaded from a bottom-loading transfer cask into vertical reinforced concrete cylinders with thick concrete shield plugs within each cell. Figure D-11 provides a view from the top of a vault cell. The cylinder loading would be the same as that for the trench approach — three AMCs, four 208-L (55-gal) drums, or one RH canister per cylinder. With 72 cylinders per cell, 216 AMCs, 288 drums, or 72 RH canisters could be emplaced in each vault cell.

D.4 CONCEPTUAL FACILITY LAYOUTS

For all methods, an outside fence would maintain a minimum 30-m (100-ft) buffer around the site, with a larger buffer where the stormwater retention pond and site support facilities could be located. A guard house would restrict access to the site. An administration building would provide the base for site operations, with waiting areas, offices, record storage, and personnel support facilities (e.g., meeting rooms, locker rooms). A receipt and storage (waste handling) building would provide space for inspecting newly received waste for disposal, offloading the waste, and temporarily storing the waste before its emplacement in the disposal units. Vehicles, equipment, and supplies necessary to site operations would be maintained, repaired, and stored in a maintenance and storage building. A laboratory building would provide space for analysis of sample monitoring swipes taken from the exterior of waste packages and equipment. A utilities building would house a boiler and refrigeration system, as well as pump equipment for maintaining proper water levels for an on-site water tank to support potable and sanitary water systems, fire protection systems, and dust suppression. A washdown pad would provide an area for cleaning vehicles and equipment.

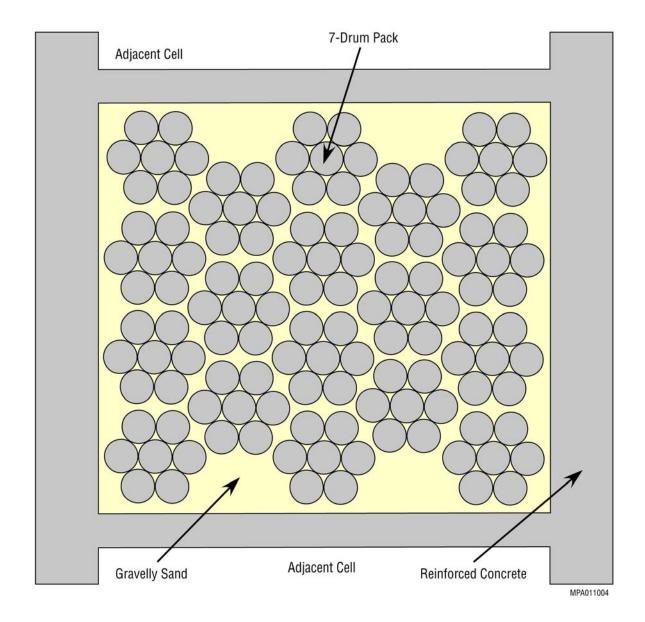


FIGURE D-9 Top View of a Single-Layer Packing Arrangement of Contact-Handled Waste in 208-L (55-gal) 7-Drum Packs in Vault Cells

D.4.1 Trench Disposal

 Figure D-12 shows the layout of a conceptual enhanced near-surface trench waste disposal facility. It is estimated that approximately 29 trenches would be required for the disposal of the 12,000 m³ (420,000 ft³) of waste currently under consideration. Trenches would be spaced 30 m (100 ft) apart within a facility footprint of about 50 ac (20 ha) with dimensions of 550×330 m (1,800 × 1,100 ft) at the fence line.

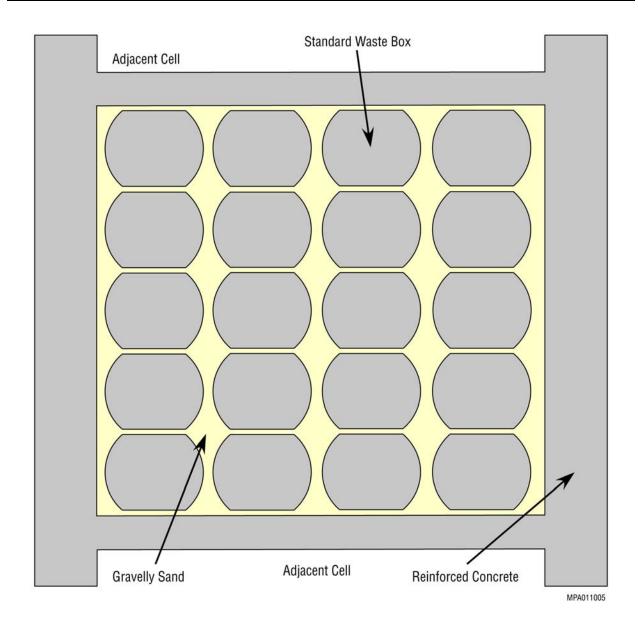


FIGURE D-10 Top View of a Single-Layer Packing Arrangement of Contact-Handled Waste in Standard Waste Boxes in Vault Cells

D.4.2 Borehole Disposal

 Figure D-13 shows the layout of a conceptual intermediate-depth borehole waste disposal facility that covers about 110 acres (44 ha). It is estimated that approximately 930 40-m (130-ft) boreholes would be required for the disposal of the 12,000 m³ (420,000 ft³) of waste currently under consideration. Boreholes would be spaced 10 m (33 ft) apart on-center with a 30-m (98-ft) space between rows. The facility footprint dimensions would be about 510×870 m $(1,700 \times 2,800 \text{ ft})$ at the fence line.

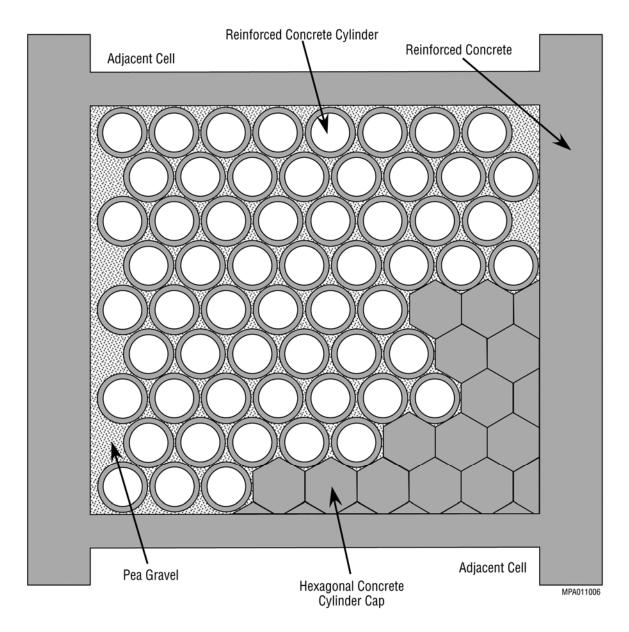


FIGURE D-11 Top View of a Vault Cell for Disposal of Remote-Handled Waste

D.4.3 Vault Disposal

The conceptual above-grade vault system design incorporates 12 vaults with a total land use requirement of about 60 ac (25 ha) within the outer perimeter fence, as shown by the layout of a conceptual facility presented in Figure D-14. Approximately 40 ac (16 ha) would be required for the 12 disposal vaults and their final cover system. The vaults would be spaced to (1) provide adequate room for the interim cover systems (2.1 ac or 0.8 ha each) to be emplaced as each vault was completely filled, (2) protect site workers, and (3) isolate the waste before decommissioning and emplacement of the final cover system prior to facility closure. The facility footprint dimensions would be about 420×610 m $(1,400 \times 2,000$ ft) at the fence line.

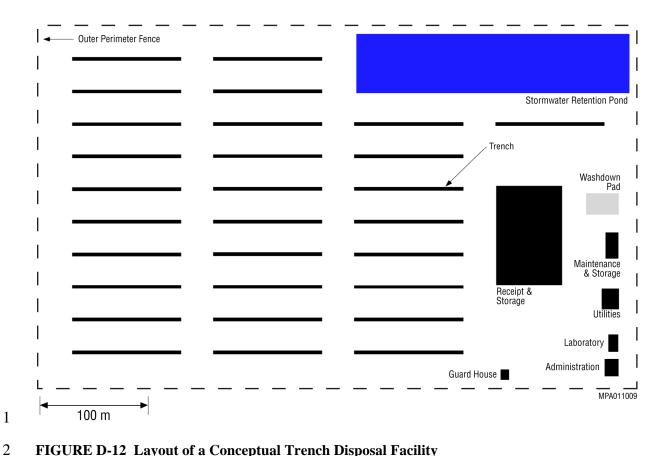


FIGURE D-12 Layout of a Conceptual Trench Disposal Facility

3 4

> Ditches would separate the vaults with their interim cover systems to minimize standing water and provide site drainage. The conceptual design incorporates a retention pond that is $180 \times 110 \times 0.30$ m ($580 \times 350 \times 1$ ft) to manage stormwater runoff. The proposed size of the pond might need to be modified on the basis of site-specific conditions, including precipitation.

10 11 12

9

D.5 STAFFING AND COST ESTIMATES

14 15 16

13

D.5.1 Construction

17 18 The construction labor force could be organized into five groups:

19 20 21

1. *Management, engineering, design, permitting (Home Office).* This group includes management, planning, engineering, and permitting personnel. Permitting includes licensing activities and National Environmental Policy Act (NEPA) documentation. This group is typically located at the contractors' home or regional office rather than in the field.

23 24



FIGURE D-13 Layout of a Conceptual Borehole Disposal Facility

group represents overall field management and supervision during actual construction and excavation. Personnel would be stationed in trailers initially. They would relocate to finished buildings (e.g., administration building) upon their completion. This group would remain at one relatively constant level for initial construction of the disposal facility and the initial disposal units. Other levels would be used for intermittent construction of the other disposal units and installation of the final cover system.

2. Management and supervision at the construction site (Field Office). This

3. *Site preparation*. This group includes the surveyors, operating engineers, truck drivers, and laborers who would provide the initial construction entrance, temporary (gravel) roads, stormwater management, initial grubbing, installation of utility services, and associated activities. The level of effort for this group would be greatest during site preparation leading up to construction of the first disposal unit.

4. *Construction*. This group includes those who would be involved in building the trenches, boreholes, or vaults and constructing the support buildings.

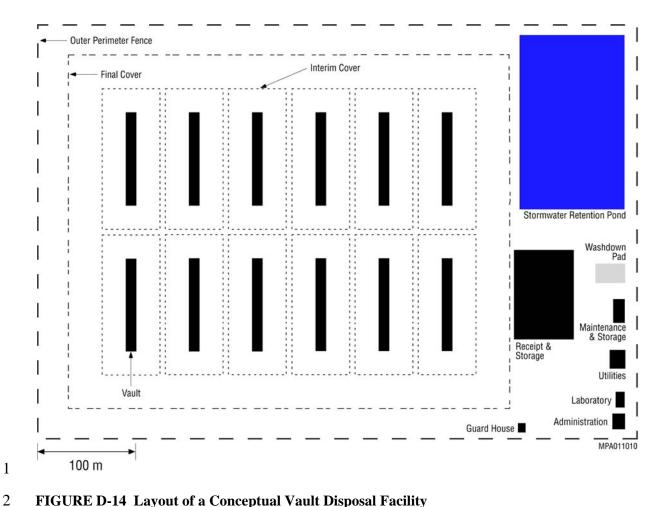


FIGURE D-14 Layout of a Conceptual Vault Disposal Facility

5. Checkout and startup. This group includes those involved in readiness assessments, final licensing and permitting activities, and training and certification of the operating staff.

11 12 13

10

3 4 5

6 7

8 9

Summaries of labor and cost estimates are provided in Tables D-1 through D-4 for construction of the disposal facility. All cost estimates are based on R.S. Means construction data (R.S. Means 2004, 2006).

14 15

D.5.2 Operations

17

16

D.5.2.1 Staffing-Level Methodology

18 19

20

21 22

To assure that trained personnel would be available at a stand-alone facility, the estimates presented here assume that a disposal facility would remain open on a continuous basis; that is, the facility would not open periodically to receive a short shipping campaign and then close again until a sufficient amount of waste required disposal. This continuous operation would

TABLE D-1 Estimated Person-Hours and Direct Costs Associated with the Construction of the Conceptual Disposal Facilities

	_	Material			
	Person-	Cost	Labor Cost	S/Ca Cost	Total Cost
Activity	Hours	(\$)	(\$)	(\$)	(\$)
m 1					
Trench	256	1 6 700	11.600	0	20.200
Geotechnical investigation	256	16,700	11,600	0	28,300
Shoring placement	1,790	264,000	80,400	0	345,000
Drilling deflector	1,070,000	9,400,000	33,100,000	0	42,500,000
Site prep	44,500	1,020,000	1,210,000	3,360,000	5,600,000
Earthwork grading	1,470	88,800	58,600	0	147,000
RH trenches	155,000	7,680,000	5,730,000	0	13,400,000
Trench closure	20,600	869,000	586,000	0	1,460,000
Support facilities	75,400	4,260,000	2,210,000	1,040,000	7,500,000
Total direct costs	1,370,000	23,600,000	43,000,000	4,400,000	71,000,000
Borehole					
Geotechnical investigation	256	16,700	11,600	0	28,300
Borehole	168,000	103,000,000	13,500,000	0	116,000,000
Drilling deflector	92,000	33,100,000	2,100,000	0	35,200,000
Site prep	81,500	1,620,000	2,220,000	1,320,000	5,170,000
Earthwork grading	3,650	220,000	146,000	0	366,000
Support facilities	88,700	5,120,000	2,530,000	1,090,000	8,740,000
Total direct costs	434,000	143,000,000	20,500,000	2,410,000	166,000,000
Vault					
Vault site preparation	69,800	13,700,000	1,910,000	1,660,000	17,300,000
Vault construction	3,570,000	60,800,000	180,000,000	800,000	241,000,000
Vault cap	307,000	12,700,000	8,650,000	0	21,400,000
Support facilities	114,000	4,870,000	3,330,000	1,480,000	9,690,000
Total direct costs	4,060,000	92,100,000	194,000,000	3,950,000	290,000,000
Total direct costs	7,000,000	72,100,000	174,000,000	3,330,000	270,000,000

a S/C = subcontract.

TABLE D-2 Estimated Total Construction Full-Time Equivalents

	Staff (FTE-yr)		
Construction Phase	Trench	Borehole	Vault
Direct construction Indirect construction (20% of above)	686 137	217 43	2,029 406
Total construction	824	260	2,434

TABLE D-3 Project Management Labor Staffing

	Staff (FTE-yr)			
Project Management	T 1.	D11-	37 14	
Labor	Trench	Borehole	Vault	
Program manager	1.5	0.5	5.6	
Project manager	7.2	2.3	21.1	
Program QA/QC manager	0.5	0.1	1.2	
Construction manager	43.3	13.7	127.6	
Project QA inspector	15.1	4.8	44.6	
Health and safety officer	43.3	13.7	127.6	
Administrative assistant	22.7	7.2	67.0	
Accounting clerk	3.8	1.2	11.1	

TABLE D-4 Total Estimated Construction Costs

		Cost (\$)	
Cost Summary	Trench	Borehole	Vault
Subcontractor costs	71,000,000	166,000,000	290,000,000
Engineering and design fees	2,840,000	6,630,000	11,600,000
Other direct costs (ODC)	533,000	1,240,000	2,170,000
Subtotal ODC, design, and subcontracts	74,400,000	174,000,000	303,000,000
Markup (15%)	11,200,000	26,000,000	45,500,000
Project management labor costs	1,120,000	2,600,000	4,550,000
Estimated construction costs	86,700,000	202,000,000	354,000,000
Professional services contingency	989,000	2,310,000	4,040,000
Total cost ^a	88,000,000	210,000,000	360,000,000

^a Total cost is rounded off to two significant figures.

6

8

1 2

ensure that the same trained personnel would be available to operate the facility and that institutional knowledge would not be lost. In addition, a minimum number of personnel would be necessary for proper operation of the facility, but that number would not scale linearly as the receipt rate increased. Thus, single-value cost estimates or full-time equivalent (FTE) values per shipment or unit volume of waste received are not used.

9 10 11

12

13 14 Coupled with the assumptions on waste receipt rates at the facility, the assumption that the disposal facility would operate on a continuous basis provides for conservative estimates of staffing levels and associated impacts. As discussed below, the number of staff members required to operate the facility is based on potential waste receipt rates in the years following the

opening of the facility, which is the time when the majority of the waste would be emplaced. The remaining years of operation would likely require lower staffing levels. Depending on the actual schedules of when the waste could be delivered, the facility could operate on an interim-type basis. In such a case, a pool of trained workers would need to be available when required.

The number of personnel and their functions were estimated on the basis of the functions of the facility, waste volume receipt rates at the facility, and on-site movements of waste packages for final disposal. Details of the time-motion information (unit operations) used to determine the average number of workers required for operations are presented in Argonne (2010). The time period through 2035 was used to estimate the size of the workforce because the majority of the waste under consideration (approximately 75%) would be available for disposal by that time. The annual average receipt rate between 2019 and 2035 is estimated to be 570 truck shipments. As a conservative measure, this receipt rate was used to estimate impacts from operations for the entire period a disposal facility would be open, from 2019 to 2083.

D.5.2.2 Operational Data

Table D-5 provides information on the number and function of personnel required to operate the facility. Annual costs for labor, consumables, and equipment are provided in Tables D-6 through D-8 for trench, borehole, and vault disposal, respectively. More detailed supporting information on operating equipment costs can be found in Argonne (2010).

TABLE D-5 Detailed Worker Breakdown for Disposal Facility Operations^a

	Number of FTEs			
Labor Category	Trench	Borehole	Vault	
Officials and managemen	1	1	1	
Officials and managers Professionals	1.1	0.6	1.1	
Technicians	8	5	8	
Security	11	11	11	
Craft workers (maintenance)	2	3	2	
Office and clerical	6	6	6	
Line supervisors	4	4	4	
Operators	15	8	18	
Total personnel	48	38	51	

a Values are rounded to appropriate significant figure.

TABLE D-6 Annual Operating and Maintenance Costs for a Conceptual Trench Disposal Facility

Description	Quantity	Unit	Unit Cost (\$)	Total Cost (\$)
C 11				
Consumables	210,000	1/	2.40	522,000
Diesel fuel	210,000	gal/yr	2.49	522,900
Electricity	1,160	MWh/yr	89.00	103,240
Water	1,100,000	gal/yr	0.002	2,498
Natural gas	11,200	Mcf/yr	12.00	134,400
Total consumables cost				763,038
Equipment				
Tractor trailers	3	Each	7,500.00	22,500
Emplacement cranes	1	Each	11,000.00	11,000
Forklift trucks	3	Each	1,500.00	4,500
Vibratory compactor	1	Each	8,500.00	8,500
End-loaders	1	Each	7,950.00	7,950
Pickup trucks	5	Each	1,100.00	5,500
Miscellaneous tools	1	Year	8,805.87	8,806
Maintenance allowance	1	Year	19,000.00	19,000
Total equipment cost			,	87,756
Labor				
Officials and managers	1.0	FTE	160,000.00	160,000
Professionals	1.0	FTE	130,000.00	142,544
Technicians	7.7	FTE	100,000.00	774,351
Security	10.7	FTE	100,000.00	1,066,611
Craft workers (maintenance)	2.4	FTE	100,000.00	237,500
Office and clerical	6.0	FTE	80,000.00	480,000
	4.0	FTE	100,000.00	400,014
Line supervisors Operators	4.0 15.2	FTE	100,000.00	1,523,673
Indirect costs (at 12%)	13.2	Γ 1 $\mathbf E$	100,000.00	574,163
Total labor cost				5,358,856
Total labor cost				3,330,030

Summary	Subtotal (\$)	(%)	(\$)	Total (\$)
Consumables	763,038	40	305,215	1,068,254
Equipment	87,756	30	26,327	114,083
Labor	5,358,856	25	1,339,714	6,698,570
Total	6,209,651		1,671,256	7,880,907a

^a Value rounded to \$8 million as annual operating cost. Assuming 20 years of operation, the total cost to operate a trench disposal facility is assumed to be about \$160 million.

TABLE D-7 Annual Operating and Maintenance Costs for a Conceptual Borehole Disposal Facility

			Unit Cost	Total Cost
Description	Quantity	Unit	(\$)	(\$)
Description	Quantity	Oilit	(Ψ)	(Ψ)
Consumables				
Diesel fuel	80,000	gal/yr	2.49	199,200
Electricity	970	MWh/yr	89.00	86,330
Water	410,000	gal/yr	0.002	931
Natural gas	11,200	Mcf/yr	12.00	134,400
Total consumables cost		•		420,861
Equipment				
Tractor trailers	3	Each	7,500.00	22,500
Emplacement cranes	1	Each	11,000.00	11,000
Fork lift trucks	3	Each	1,500.00	4,500
Vibratory compactor	1	Each	8,500.00	8,500
End-loaders	1	Each	7,950.00	7,950
Pick up trucks	4	Each	1,100.00	4,400
Miscellaneous tools	1	Year	5,133.60	5,134
Maintenance allowance	1	Year	19,000.00	19,000
Total equipment cost				82,984
Labor				
Officials and managers	1.0	FTE	160,000.00	160,000
Professionals	0.6	FTE	,	· · · · · · · · · · · · · · · · · · ·
Technicians	5.5	FTE	130,000.00	78,419
			100,000.00	545,135
Security	10.7	FTE	100,000.00	1,066,611
Craft workers (maintenance)	2.7	FTE	100,000.00	265,000
Office and clerical	6.0	FTE	80,000.00	480,000
Line supervisors	4.0	FTE	100,000.00	400,078
Operators	7.6	FTE	100,000.00	761,721
Indirect costs (at 12%)				450,836
Total labor cost				4,207,799

	_	Con		
Summary	Subtotal (\$)	(%)	(\$)	Total (\$)
Consumables	420,861	40	168,344	589,206
Equipment	82,984	30	24,895	107,879
Labor	4,207,799	25	1,051,950	5,259,748
Total	4,711,644		1,245,189	5,956,833a

^a Value rounded to \$6 million as annual operating cost. Assuming 20 years of operation, the total cost to operate a borehole disposal facility is assumed to be about \$120 million.

TABLE D-8 Annual Operating and Maintenance Costs for a Conceptual Above-Grade Vault Facility

5		** *	Unit Cost	Total Cost
Description	Quantity	Unit	(\$)	(\$)
Consumables				
Diesel fuel	210,000	gal/yr	2.49	522,900
Electricity	1,150	MWh/yr	89.00	102,350
Water	1,090,000	gal/yr	0.002	2,476
Natural gas	11,200	Mcf/yr	12.00	134,400
Total consumables cost	,			762,126
Equipment				
Tractor trailers	3	Each	7,500.00	22,500
Emplacement cranes	1	Each	11,000.00	11,000
Fork lift trucks	3	Each	1,500.00	4,500
Vibratory compactor	1	Each	8,500.00	8,500
End-loaders	1	Each	7,950.00	7,950
Pick up trucks	6	Each	1,100.00	6,600
Miscellaneous tools	1	Year	10,009.12	10,009
Maintenance allowance	1	Year	19,000.00	19,000
Total equipment cost				90,059
Labor				
Officials and managers	1.0	FTE	160,000.00	160,000
Professionals	1.1	FTE	130,000.00	141,606
Technicians	7.7	FTE	100,000.00	770,803
Security	10.7	FTE	100,000.00	1,066,611
Craft workers (maintenance)	2.3	FTE	100,000.00	225,000
Office and Clerical	6.0	FTE	80,000.00	480,000
Line supervisors	4.0	FTE	100,000.00	400,015
Operators	17.8	FTE	100,000.00	1,776,823
Indirect costs (at 12%)				602,503
Total labor cost				5,623,360

	Contingency			
Summary	Subtotal (\$)	(%)	(\$)	Total (\$)
Consumables	762,126	40	304,850	1,006,976
Equipment	90,059	30	27,018	117,077
Labor	5,623,360	25	1,405,840	7,029,201
Total	6,475,545		1,737,708	8,213,253a

^a Value rounded to \$8 million as annual operating cost. Assuming 20 years of operation, the total cost to operate a vault disposal facility is assumed to be about \$160 million.

D.6 RESOURCE ESTIMATES

Resources needed for the construction and operations of a GTCC waste disposal facility can be divided into two classes: materials and utilities. Materials are the substances used to construct the disposal trenches, boreholes, or vaults and support buildings, such as sand, clay, gravel, and concrete. This category also includes the excavated materials. Utilities include electricity, natural gas or propane, water, and diesel fuel. Materials would be consumed primarily during construction activities. Utilities would be consumed during both construction and operations.

D.6.1 Construction

 Table D-9 summarizes materials and resources consumed during construction of a GTCC waste disposal facility. The large amount of soil required for vault disposal is necessary for the final 5-m (16-ft) cover depth. More detailed supporting information on resources required for construction can be found in Argonne (2010).

D.6.2 Operations

Operational activities would include receiving the packages of waste, inspecting them, possibly storing them temporarily, possibly reconfiguring them for disposal (e.g., bundling RH canisters into 3-packs for borehole disposal), transporting the waste containers to the disposal cells, and emplacing them. To some extent, construction activities and operational activities would be concurrent. For example, one or more trenches, boreholes, or vaults would be being filled while others were being constructed. Once all the GTCC LLRW and GTCC-like waste had been emplaced and the facility had undergone closure, a period of institutional control would follow. An institutional control program would include physical control of access to the site, an environmental monitoring program, periodic surveillance, and custodial care. The use of utilities would be much greater during the operational period than the institutional control period, so utility use during the institutional control period is not considered here.

D.6.2.1 Materials

The only major consumable materials used during operations would be pallets for potential bundling operations, sand for backfill, and chemicals used to treat the water used on-site, as shown in Table D-10.

D.6.2.2 Utilities

 The utilities required for operations are summarized in Table D-11 and D-12. Water and sewage usage are based on the staffing requirements discussed in Section D.5.2.1. Gas, oil, and electricity would be consumed primarily to keep the facility buildings operational, with minor

TABLE D-9 Estimates of the Materials and Resources Consumed during Construction of the Conceptual Disposal Facilities

	Total Consumption			
Construction Materials			_	
and Resources	Trench	Borehole	Vault	
			_	
Utilities				
Water (gal) ^a	5,300,000	2,800,000	17,100,000	
Electricity (MWh) ^{b,c}	34,200	10,800	101,000	
Solids ^c				
Concrete (yd ³)	25,600	18,600	88,200	
Steel (tons)	2,000	1,400	7,960	
Gravel (yd ³)	36,100	25,300	156,400	
Sand (yd ³)	3,600	27,900	198,300	
Clay (yd ³)	12,900	5,180	56,000	
Soil (off-site) (yd ³)	_d	_	254,000	
Liquids				
Diesel fuel (gal) ^b	750,000	2,030,000	3,380,000	
Oil and grease (gal)	18,000	48,000	86,000	
Gases				
Industrial gases (propane) (gal) ^b	5,400	4,300	13,600	

Water requirement estimates are based on DOE (1997), in which each FTE requires 20 gal/d, and cementation requires 26.1 lb of water per 100 lb of cement.

1 2

3

amounts of electricity required to operate the overhead cranes during unloading. More information on utility demand can be found in Argonne (2010).

6 7

D.7 FACILITY EMISSIONS AND WASTES

8 9 10

D.7.1 Construction

11 12

13

14 15 Wastes generated during construction of the disposal facility would be typical of large construction projects. Wastes would consist primarily of construction debris, including concrete fragments, and sanitary wastes generated by the labor force. Emissions would result primarily from the use of fuels in constructing the facility, removing construction debris, and disturbing the

^b Scaling methodology is based on LLNL (1997).

Peak demand is 1.71, 0.54, or 5.05 MWh for the trench, borehole, and vault disposal facilities, respectively.

d Dash means not applicable.

TABLE D-10 Materials Consumed Annually during Operations^a

	Quantity (lb/yr)		
Material and Chemical ^b	Trench	Borehole	Vault
Sand	2.59E+05	5.20E+04	9.80E+03
Standard pallet (trench = 48 -in. \times 48 -in. \times 7.5 -in. tall, borehole = steel pallet)	140	5.84E+05	_
Hydrochloric acid (37% HCl)	277	103	275
Sodium hydroxide (50% NaOH)	227	85	225
Sodium hypochlorite	107	40	106
Copolymers	150	56	149
Phosphates	17	6	17
Phosphonates	16	6	15

^a See Kemmer (1988) for water treatment.

TABLE D-11 Average-Day Utility Consumption during Disposal Operations

	Average-Day Consumption			
Utility ^a	Trench	Borehole	Vault	
Potable water (USG/d)	1,300	1,000	1,300	
Raw water (USG/d) ^b	4,600	1,700	4,500	
Sanitary sewer (USG/d)	1,300	1,000	1,300	
Natural gas (Mcf/d)	47	47	47	
Diesel fuel (USG/d)	900	300	900	
Electricity (MWh) ^c	4.8	4.0	4.8	

 $^{^{}a}$ USG/d = U.S. gallons per day, Mcf = million cubic feet

b The chemicals are used to treat the raw water used during waste operations.

^c Dash means not applicable.

b Includes potable water and water used in truck washdown. Estimate assumes that on average, 605 gal are used to wash down the truck that transports the GTCC waste. The estimate is based on Table 6-1 in EPA (2001).

Peak-day demand is 0.5, 0.5, and 0.5 MWh for the trench, borehole, and vault disposal facilities, respectively.

	Annual Consumption ^b			
Utility ^a	Trench	Borehole	Vault	
Potable water (USG/yr)	310,000	240,000	310,000	
Raw water (USG/yr) ^{b,c}	1,100,000	410,000	1,090,000	
Sanitary sewer (USG/yr)	310,000	240,000	320,000	
Natural gas (Mcf/yr)	11,200	11,200	11,200	
Diesel fuel (USG/yr)	210,000	80,000	210,000	
Electricity (MWh)	1,160	970	1,150	

TABLE D-12 Annual Utility Consumption during Disposal Operations

4

5

8

9

land (fugitive dust). The amount of concrete waste was estimated on the basis of the assumption that 0.65% of the concrete usage would be spoilage. The other solid wastes, which would include construction debris and rock cuttings, were taken to be eight times the volume of the concrete spoilage. Steel waste was taken to be 0.5% of the steel requirements. These solid nonhazardous wastes would be disposed of in a municipal solid waste landfill. The amount of sanitary waste was estimated on the basis of the total construction workforce. Liquid (sanitary) nonhazardous wastes would be treated in a portable system or hauled off-site for treatment and disposal. Table D-13 summarizes the amount of waste that would be generated during construction.

10 11 12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

Estimates of criteria pollutant emissions generated during construction were based on the estimated amounts of fuel used by the trucks, cranes, and other heavy equipment during construction. Standard U.S. Environmental Protection Agency (EPA) emission factors from the WebFire database (http://cfpub.epa.gov/oarweb/index.cfm?action=fire.main) were used in these calculations. Emissions were calculated from the total quantity of diesel fuel consumed. Dust was estimated from the amount of disturbed land area and the length of time that the disturbed area would be under construction. National Ambient Air Quality Standards (NAAQS) for criteria air pollutants are given in Table D-14. Estimates of construction emissions are given in Table D-15 for the disposal facilities. The initial construction period was assumed to be 3.4 years (824 days for site preparation and construction of support facilities at 240 working days per year). Although disposal unit construction might span more than 60 years because it is assumed that the disposal units would be constructed as the waste became available for disposal, a total of 20 years of actual time for construction operations was assumed, which corresponds to the period when most of the GTCC waste is expected to be received for disposal. Emissions of the following criteria air pollutants were estimated: sulfur oxides (SO_x) as sulfur dioxide (SO₂), nitrogen oxides (NO_x) as nitrogen dioxide (NO₂), carbon monoxide (CO), particulate matter with

^a USG/yr = U.S. gallons per year, Mcf = million cubic feet.

b Based on 240 operations-days per year.

Includes potable water and water used in truck washdown. Estimate assumes that, on average, 605 gal (2,300 L) are used to wash down the truck that transports the GTCC waste. The estimate is based on Table 6-1 in EPA (2001).

TABLE D-13 Total Wastes Generated during Construction

Waste Generation by Category	Trench	Borehole	Vault
Hazardous solids (yd³)	57	18	168
Hazardous liquids (gal)	23,000	7,300	68,000
Nonhazardous solids (yd³)a	62,000	300,000	5,200
Nonhazardous liquids (gal) ^b	4,800,000	1,500,000	14,000,000

a Includes concrete and other excavated materials. Excavated materials (if clean) could be used as backfill during operations and would reduce the volume that could be considered as waste.

TABLE D-14 National Ambient Air Quality Standards (NAAQS) for Criteria Air Pollutants

Criteria Air Pollutant	Averaging Time	Primary Standard
СО	1 hour 8 hours	40 mg/m ³ 10 mg/m ³
Hydrocarbons	3 hours	$160~\mu\text{g/m}^3$
NO _x (as NO ₂)	Annual	$100~\mu\text{g/m}^3$
SO _x (as SO ₂)	24-hours ^a Annual	$365 \ \mu g/m^3$ $80 \ \mu g/m^3$
PM_{10}	24 hours	$150 \ \mu g/m^3$
PM _{2.5}	24 hours Annual	35 μg/m ³ 15 μg/m ³

a Not to be exceeded more than once a year.

Source: 40 CFR Part 50.0 et seq.

b Includes sanitary and other nonhazardous liquids.

TABLE D-15 Estimated Air Emissions during Construction^a

_	Total Emissions (tons)		Peak-Y	ear Emissions (tons/yr)	
Criteria Pollutant ^b	Trench	Borehole	Vault	Trench	Borehole	Vault
VOCsb	13	31	62	0.9	2.7	3.6
NO_x	110	270	540	8.1	26	31
SO_2	12	32	53	0.9	3.0	3.2
CO	39	110	190	3.3	11	11
PM_{10}^{c}	25	60	65	5.0	13	8.6
$PM_{2.5}^{d}$	12	30	44	1.5	4.1	3.6
CO_2	8,400	29,000	38,000	670	2,200	2,300

^a Excludes delivery and commuter vehicles.

a diameter of less than or equal to 10 micrometers (PM_{10}), and particulate matter with a diameter of less than or equal to 2.5 micrometers ($PM_{2.5}$). The construction equipment fuel use, emission factors, and other supporting information can be found in Argonne (2010).

D.7.2 Operations

 Data on annual facility wastes are provided in Table D-16. Data on emissions from fixed facility sources and from mobile sources are provided in Tables D-17 and D-18, respectively. A fixed facility source would be the process steam boiler used for space and water heating and periodic testing of backup diesel generators for electrical power. Mobile emission sources would include tractor trailers, end-loaders, cranes, and forklifts.

D.8 TRANSPORTATION

D.8.1 Construction

Local transportation of workers and materials could lead to significant amounts of vehicle emissions that could affect the local air quality. Large volumes of materials, especially sand and backfill, would be required for the construction of the GTCC waste disposal facility. Approximately 9,200, 36,600, or 74,200 truck shipments for trench, borehole, or vault disposal,

b VOCs = volatile organic compounds.

c Assumes construction emission factor for fugitive dust PM₁₀ of 0.22 tons/acre-month (average conditions) (URBEMIS2007 2007).

d Assumes 21% of fugitive dust PM₁₀ is PM_{2.5} and that 89% of combustion PM₁₀ is PM_{2.5} (www.aqmd.gov/CEQA/handbook/PM2_5/handout1.doc).

TABLE D-16 Annual Wastes during Operations

		Average Annual Generation Rate		
Waste Category	Treatability Category	Trench	Borehole	Vault
Radioactive waste				
Liquid LLRW (water from truck washdown ^a) (gal)	Liquid LLRW	790,000	170,000	780,000
Solid LLRW (including HEPA filters ^b) (yd ³)	Combustible and noncombustible solid LLRW	16	10	16
Nonradioactive waste				
Liquid nonhazardous (sanitary) wastes (gal)	NA ^c	310,100	240,000	320,000
Solid nonhazardous wastes ^d (yd ³)	NA	120	95	120

The water used to wash down the truck after it delivered the GTCC waste to the disposal facility could be contaminated (but that is not likely). This analysis conservatively assumes that the washdown water would be considered liquid LLRW until determined otherwise.

TABLE D-17 Estimated Annual Emissions of Criteria Pollutants from Fixed Facility Emission Sources

	Mission-Critical Equipment Emissions (tons/yr)			Process Steam Boiler Emissions (tons/yr)		
Criteria Pollutant	Trench	Borehole	Vault	Trench	Borehole	Vault
SO_2	3.57E-02	3.57E-02	3.57E-02	3.4E-03	3.4E-03	3.4E-03
NO_x	5.44E-01	5.44E-01	5.44E-01	2.8E-01	2.8E-01	2.8E-01
CO	1.17E-01	1.17E-01	1.17E-01	4.7E-01	4.7E-01	4.7E-01
PM_{10}	1.26E-02	1.26E-02	1.26E-02	4.3E-02	4.3E-02	4.3E-02
$PM_{2.5}$	1.26E-02	1.26E-02	1.26E-02	4.3E-02	4.3E-02	4.3E-02
CO_2	2.03E+01	2.03E+01	2.03E+01	6.7E + 02	6.7E + 02	6.7E + 02

b HEPA = high-efficiency particulate air.

 $^{^{}c}$ NA = not applicable.

d Solid nonhazardous wastes include domestic trash and office waste.

Mobile Equipment Emissions (tons/yr) Criteria Pollutant Trench Borehole Vault SO_2 3.23E+001.20E+00 3.27E+00 NO_{x} 2.58E+01 9.06E+00 2.59E+01 CO 1.25E+014.63E+00 1.26E+01 PM_{10} 2.38E+00 8.46E-01 2.39E+00 $PM_{2.5}$

TABLE D-18 Estimated Annual Emissions of Criteria Pollutants from Mobile Sourcesa

7.53E-01

8.73E+02

2.12E+00

2.37E+03

2.12E+00

2.34E+03

CO₂

2 4

5

1

respectively, would be required, as summarized in Table D-19. Estimated emissions from these shipments are provided in Table D-20. The emission factors used in the calculations are given in Table D-21. Additional vehicles required for worker intrasite transportation would also result in some emissions during construction, as shown in Table D-20, which also provides estimates for emissions as a result of worker commuter trips.

8 9

7

D.8.2 Operations

10 11 12

Estimated emissions for local transportation of disposal site workers (i.e., daily commutes) are provided in Table D-22.

14 15

13

D.9 WASTE ISOLATION PILOT PLANT

16 17 18

19 20

21

22

The primary source of information for estimating the impacts of disposing of the GTCC LLRW and the GTCC-like waste at the Waste Isolation Pilot Plan (WIPP) (Alternative 2) is Sandia (2008b). The following text provides supplemental information for estimating the incremental air emissions during construction of the additional underground rooms required to emplace the waste and during disposal operations.

23 24

D.9.1 Construction

25 26 27

28

29

Emissions from construction of the underground rooms would result from underground haul trucks taking the mined salt to the waste hoist and surface haul trucks taking the mined salt from the waste hoist to the Salt Storage Area. The miner itself is powered by electricity and thus

Mobile emission sources include forklifts and mobile cranes.

TABLE D-19 Rough Order-of-Magnitude Estimate of the Number of Truck Shipments of Construction Materials^a

		То	tal Consump	tion	No. o	f Truck Ship	ments
Resource	Truck Capacity	Trench	Borehole	Vault	Trench	Borehole	Vault
Portland cement (yd ³) ^b	10	2,816	2,046	9,702	282	205	971
Gravel (yd ³) ^b	10	46,596	32,926	192,562	4,660	3,293	19,257
Sand $(yd^3)^b$	10	10,256	32,736	221,232	1,026	3,274	22,124
Clay (yd ³)	10	12,900	5,180	56,000	1,290	518	5,600
Steel (tons) ^c	21	2,000	1,400	7,960	96	67	380
Asphalt paving (tons) ^d	20	600	900	700	30	45	35
Backfill (yd ³) ^e	10	_	_	254,000	_	_	25,400
Diesel fuel (gal) ^f	9,000	7.5E+05	2.0E+06	3.4E+06	84	226	376
Excavated materials	10	62,000	294,400	_	6,200	29,440	-
Total (rounded up)					13,700	37,100	74,200

^a Calculation neglects truck deliveries of process equipment and related items (which should be low in comparison with other shipments). A dash means not applicable.

b Assumes that concrete is composed of 11% Portland cement, 41% gravel, and 26% sand and is shipped to the site in a standard 10-yd³ (7.6-m³) end-dump truck.

^c Assumes that the net payload for steel transport to site is 42,000 lb (19,000 kg).

d Assumes hot mix asphalt is loaded into the 20-ton-capacity tri-axle trucks for transport to the paving site.

e Assumes that shipment uses standard 10-yd³ (7.6-m³) end-dump trucks.

f Assumes that shipment uses a U.S. Department of Transportation (DOT) 406/MC-306 atmospheric-pressure tank truck with a 9,000-gal (34,000-L) capacity.

TABLE D-20 Estimated Annual Emissions from Construction Vehicles^a

	Delive	ery Vehicle Em (tons) ^b	issions	Suppo	ort Vehicle Em	issions	Worker Con	mmuter Vehicl (tons) ^d	e Emissions
Criteria Pollutant	Trench	Borehole	Vault	Trench	Borehole	Vault	Trench	Borehole	Vault
SO_x	1.09E-04	2.96E-04	5.92E-04	1.66E-04	5.35E-05	4.87E-04	2.62E-03	8.26E-04	7.73E-03
NO_{x}	6.85E-03	1.86E-02	3.71E-02	1.04E-02	3.36E-03	3.06E-02	6.15E-02	1.94E-02	1.82E-01
CO	2.62E-02	7.09E-02	1.42E-01	3.99E-02	1.28E-02	1.17E-01	1.63E+00	5.16E-01	4.82E+00
PM_{10}	1.43E-03	3.88E-03	7.77E-03	2.19E-03	7.02E-04	6.40E-03	1.26E-02	3.99E-03	3.74E-02
$PM_{2.5}$	7.63E-04	2.07E-03	4.13E-03	1.16E-03	3.74E-04	3.41E-03	6.10E-03	1.93E-03	1.80E-02
VOCs	4.28E-03	1.16E-02	2.32E-02	6.52E-03	2.10E-03	1.91E-02	7.85E-02	2.48E-02	2.32E-01
CO_2	1.59E+01	4.29E+01	8.59E+01	2.42E+01	7.77E+00	7.08E+01	1.66E+02	5.23E+01	4.89E+02

a Assumes a construction period of 20 years.

b Estimates of 13,700, 37,100, and 74,200 auto one-way trips to the construction site are based on the total number of deliveries for trench, borehole, or vault construction, respectively. One-way trip distance of 20 mi (32 km) is based on DOE (1997). Emissions are based on round-trip distances.

Assumes one support vehicle per 30 construction workers (824, 260, or 2,434 FTEs assumed for trench, borehole, or vault construction, respectively), as taken from LLNL (1997) and NRC (1994). Assumes that 10 mi (16 km) are travelled per day per vehicle, as taken from Table 4.5 on page 4-15 of NRC (1994).

d Estimates of 9,885, 3,123, and 29,212 auto one-way trips to the construction site are based on the total construction personpower for trench, borehole, or vault facility construction, respectively. Assumes 240 workdays per year. One-way trip distance of 20 mi (32 km) is based on DOE (1997). Emissions are based on round-trip distance.

TABLE D-21 Criteria Pollutant Vehicle Emission Factors

	Emission Factor (g/mi) ^a				
Criteria Pollutant	Delivery Vehicle	Support Vehicle	Commuter Vehicle		
Tonatant	Venicie	Venicie	vemere		
SO_x	0.00225	0.00225	0.006		
NO_x	0.141	0.141	0.141		
CO	0.539	0.539	3.745		
PM_{10}	0.0295	0.0295	0.029		
PM _{2.5}	0.0157	0.0157	0.014		
VOCs	0.0880	0.0880	0.18		
CO_2	326	326	380		

^a Emission factors were determined by using Argonne GREET 2.8a Version (version date: August 30, 2007) available at http://www.transportation.anl.gov/ software/GREET/greet_2-8a_beta.html.

TABLE D-22 Estimated Annual Emissions from Commuter Vehicles

	Commuter \	Vehicle Emission	ns (tons/yr) ^a
Criteria			
Pollutant	Trench	Borehole	Vault
SO_x	3.1E-03	2.4E-03	3.2E-03
NO_x	7.2E-02	5.7E-02	7.5E-02
CO	1.9E+00	1.5E+00	2.0E+00
PM_{10}	1.5E-02	1.2E-02	1.5E-02
$PM_{2.5}$	7.1E-03	5.6E-03	7.5E-03
VOCs	9.2E-02	7.2E-02	9.6E-02
CO_2	1.9E+02	1.5E+02	2.0E+02

a Estimates of 11,548, 9,117, and 12,116 one-way auto trips to the disposal facility are based on the total operational personpower for trench, borehole, or vault facility construction, respectively. Assumes 240 workdays per year. One-way trip distance of 20 mi (32 km) is based on DOE (1997). Emissions are based on round-trip distance.

would not produce any direct emissions. The assumed
construction period for the additional 26 rooms is 20 years.
The estimated annual emissions, based on 23,700 tons of
salt mined per room (Sandia 2008b), are shown in
Table D-23 for the criteria pollutants. Estimates are based
on the fuel consumption of the haul trucks given in
Table D-24 and the vehicle emission factors provided in

9 10

8

D.9.2 Operations

Table D-25.

12 13

15

16

17

18

19

20

21 22

23

2425

26

27

28

11

The estimated emissions from operations at WIPP to dispose of the GTCC LLRW and GTCC-like waste would result from the equipment that moves disposal packages underground. For CH waste, a waste transporter moves the package from the waste hoist to a disposal room, where a 20-ton forklift subsequently moves the waste to its emplacement location. For RH waste, it is assumed that a 41-ton forklift would move the disposal package from the hoist to its emplacement location (Sandia 2008b). Table D-26 summarizes the effort involved on an annual basis.

TABLE D-23 Air Emissions during Construction at WIPP

Criteria Pollutant	Total Emissions (tons)	Annual Emissions (tons/yr)
VOCs	2.9	0.14
NO_x	28.7	1.4
SO_2	4.7	0.23
CO	19.4	0.97
PM_{10}^{b}	36.5	1.8
$PM_{2.5}^{c}$	28.1	1.4
CO_2	3,734	186.7

- a Calculated by using EPA methodology for coal mining (http://www.epa.gov/ttn/chief/ap42/ ch11/final/c11s09.pdf).
- b Assumes 89% of combustion PM₁₀ is PM_{2.5} (www.aqmd.gov/CEQA/handbook/PM2_5/handout1.doc).

From Table D-26, the average annual hours of operation for each piece of equipment were estimated: 539, 941, and 1,432 hours, respectively, for the 20-ton forklift, the waste transporter, and the 41-ton forklift. The annual average emissions were then estimated by using the emission factors given in Table D-27, as shown in Table D-28.

29 30

TABLE D-24 Annual Diesel Fuel Use for Construction of the Additional Disposal Rooms at WIPP

Type of Haul Truck	Diesel Fuel Use per Room (gal) ^a	Duration per Room (h) ^a	No. of Rooms per Year ^b	Duration per Year (h)	Diesel Fuel Use per Year (gal)
185-hp underground	11,440	1,082.2	1.3	1,407	14,872
Surface	3,160	105.3	1.3	137	4,108

a Source: Sandia (2008).

b Assumes 20-year period to construct the 26 additional rooms required for GTCC LLRW and GTCC-like waste.

TABLE D-25 Construction Equipment Fuel Consumption and Emission Factors

		ımables al/h)						
				Em	ission Fa	ctor (lb/1,	000 gal)	
	Diesel	Oil and						
Type of Haul Truck	Fuel	Grease	VOCs	NO_x	SO_2	CO	PM_{10}^{a}	CO_2
185-hp underground	10.6	0.2	17.1	171.7	31.2	123.5	16.8	22,600.0
Surface	30.0	0.2	0.2	2.3	0.0	0.8	0.1	272.3

 $^{^{\}rm a}$ These emission factors are for combustion-derived PM $_{10}$ emissions and do not include the fugitive dust component.

TABLE D-26 Annual Equipment Usage for Disposal of Waste at WIPP

Equipment	Horsepower Rating ^a	Time per Disposal Package (min) ^a	Estimated Diesel Usage (gal) ^a	Average No. of Disposal Packages/yr ^b	Average Diesel Usage (gal/yr)
20-ton forklift (diesel) Waste transporter (diesel) 41-ton forklift (diesel) – RH Total	94 138 231	10 20 60	0.9 2.6 13.2	3,230 2,820 1,430	2,910 7,340 18,900 29,200

a Source: Sandia (2008b).

b Average estimated for operations is based on the assumption that the majority of the waste disposed of annually at WIPP is composed of GTCC LLRW and GTCC-like waste.

TABLE D-27 Equipment Emission Factors

	Emission Factor (lb/horsepower per hour)			
Criteria Air Pollutant	20-ton Forklift	41-ton Forklift	Waste Transporter	
SO_2	1.87E-03	1.87E-03	1.87E-03	
NO_{x}	1.15E-02	9.92E-03	9.92E-03	
CO	2.20E-03	2.20E-03	2.20E-03	
PM_{10}	1.59E-03	8.82E-04	8.82E-04	
$PM_{2.5}$	1.41E-03	7.85E-04	7.85E-04	
VOCs	8.82E-04	8.82E-04	8.82E-04	
CO_2	1.15E+00	1.15E+00	1.15E+00	

 $Source: www.aqmd.gov/CEQA/documents/2005/\\ nonaqmd/chevron/appB.xls.$

TABLE D-28 Estimated Average Annual Emissions of Criteria Pollutants from GTCC LLRW and GTCC-Like Waste Emplacement at WIPP

	A
	Annual
	Average
Criteria Air	Emissions
Pollutant	(tons/yr)
SO_2	4.8E-01
NO_x	2.6E+00
CO	5.6E-01
PM_{10}	2.4E-01
$PM_{2.5}$	2.2E-01
VOCs	2.3E-01
CO ₂	2.9E+02

D.10 REFERENCES

2

- 3 Argonne (Argonne National Laboratory), 2010, Conceptual Designs for Greater-Than-Class C
- 4 Low-Level Radioactive Waste Land Disposal Facilities, ANL/EVS/R-10/9, prepared by
- 5 Argonne, Argonne, Ill., for U.S. Department of Energy, Office of Environmental Management,
- 6 Oct.

7

- 8 Denson, R.H., et al., 1987, Recommendations to the NRC for Review Criteria for Alternative
- 9 Methods of Low-Level Radioactive Waste Disposal, Task 2a: Below-Ground Vaults, Vol. 1,
- 10 NUREG/CR-5041, prepared by U.S. Army Engineer Waterways Experiment Station, Vicksburg,
- 11 Miss., for the Office of Nuclear Material Safety and Safeguards, U.S. Nuclear Regulatory
- 12 Commission, Washington, D.C.

13

- 14 DOE (U.S. Department of Energy), 1995, Remote-Handled Transuranic Waste Study,
- 15 Appendix A RH-TRU Shield Plug and Canister Description, DOE/CAO 95-1095, Carlsbad
- 16 Area Office, Carlsbad, N.M, Oct.

17

- 18 DOE, 1997, Final Waste Management Programmatic Environmental Impact Statement for
- 19 Managing, Treatment, Storage, and Disposal of Radioactive and Hazardous Waste,
- 20 DOE/EIS-0200-F, Office of Environmental Management, Washington, D.C., May.

21

22 DOE, 2006, RH-TRAMPAC, Rev. 0, Carlsbad Field Office, Carlsbad, N.M., June.

23

- 24 EPA (U.S. Environmental Protection Agency), 2001, Permit Guidance Document,
- 25 Transportation Equipment Cleaning Point Source Category (40 CFR § 442),
- 26 EPA-821-R-01-021, Office of Water, Washington, D.C., Mar.

27

- 28 Harvego, L., 2007, Conceptual Design Report for the Remote-Handled Low-Level Waste
- 29 Disposal Facility, Draft, INL/EXT-07-12901, Idaho National Laboratory and North Wind, Inc.,
- 30 Idaho Falls, Id., Aug.

31

- 32 Henry, K., 1993, Technically Feasible Systems for the Disposal of Greater-Than-Class C Low-
- 33 Level Radioactive Waste, Final Draft, DOE/LLW-176, prepared by Rogers & Associates
- 34 Engineering Corporation and ERM-Program Management Company for U.S. Department of
- 35 Energy, Office of Environmental Restoration and Waste Management, DOE Idaho Field Office,
- 36 Idaho Falls, Id.

37

38 Kemmer, F.N., 1988, *NALCO Water Handbook*, second edition, McGraw-Hill.

39

- 40 LLNL (Lawrence Livermore National Laboratory), 1997, Depleted Uranium Hexafluoride
- 41 Management Program; the Engineering Analysis Report for the Long-Term Management of
- 42 Depleted Uranium Hexafluoride, UCRL-AR-124080, Vols. I and II, Rev. 2, prepared by
- 43 Lawrence Livermore National Laboratory, Science Applications International Corporation,
- 44 Bechtel, and Lockheed Martin Energy Systems for U.S. Department of Energy, May.

- 1 MMES (Martin Marietta Energy Systems, Inc.) et al., 1994, Radiological Performance
- 2 Assessment for the E-Area Vaults Disposal Facility, WSRC-RP-94-218, prepared by MMES,
- 3 EG&G Idaho, Inc., and Westinghouse Savannah River Company, Aiken, S.C.

- 5 NRC (U.S. Nuclear Regulatory Commission), 1994, Final Environmental Impact Statement for
- 6 the Construction and Operation of Claiborne Enrichment Center, Homer, Louisiana, Docket
- 7 No. 70-3070, NUREG-1484, Vols. 1 and 2, Office of Nuclear Material Safety and Safeguards,
- 8 Washington, D.C.

9

- 10 R.S. Means, 2004, Environmental Remediation Cost Data Unit Price, 10th annual edition,
- 11 Kingston, Mass.

12

13 R.S. Means, 2006, Mechanical Cost Data, 29th annual edition, Kingston, Mass.

14

- 15 Sandia (Sandia National Laboratories), 2007a, Basic Inventory for Greater-Than-Class C
- 16 Low-Level Radioactive Waste Environmental Impact Statement Evaluations, prepared for
- 17 U.S. Department of Energy, Washington, D.C., Nov.

18

- 19 Sandia, 2007b, Two Technology Conceptual Designs for Disposal of GTCC LLW, prepared for
- 20 U.S. Department of Energy, Nov.

21

- 22 Sandia, 2008a, Basis Inventory for Greater-Than-Class-C Low-Level Radioactive Waste
- 23 Environmental Impact Statement Evaluations, Task 3.2 Report, Rev. 1, prepared by Sandia,
- 24 Albuquerque, N.M., for U.S. Department of Energy, Office of Environmental Management,
- 25 May.

26

- 27 Sandia, 2008b, GTCC LLW Environmental Impact Statement: Pre-Closure Assessment Data
- 28 Package, Waste Isolation Pilot Plant, prepared for U.S. Department of Energy, Washington,
- 29 D.C., Oct.

30

- 31 Shleien, B. (editor), 1992, The Health Physics and Radiological Health Handbook, Revised
- 32 Edition, Scinta, Inc., Silver Spring, Md.

33

- 34 URBEMIS2007, 2007, "Appendix A Construction Emissions," in *URBEMIS2007 for*
- 35 Windows, Users' Guide, http://www.urbemis.com/software/URBEMIS9%20Users%20Manual
- 36 %20Appendices.pdf.

APPENDIX E:

EVALUATION OF LONG-TERM HUMAN HEALTH IMPACTS FOR THE NO ACTION ALTERNATIVE AND THE LAND DISPOSAL ALTERNATIVES

This appendix presents the approach used to evaluate the long-term impacts on human health that could result from the No Action Alternative in Chapter 3 and the land disposal alternatives (via the borehole, trench, or vault disposal methods) in Chapters 6 through 12 considered in the Greater-Than-Class C (GTCC) Environmental Impact Statement (EIS). The approach used to evaluate long-term impacts on human health from use of the Waste Isolation Pilot Plant (WIPP) deep geologic repository is presented in Chapter 4. The RESRAD-OFFSITE computer code (Yu et al. 2007), with site-specific parameters to the extent that this information was available, was used to perform the analyses for the three land disposal methods at the six federal and four generic commercial sites. This computer code was also used to evaluate the long-term human health impacts for the No Action Alternative. The information given in this appendix summarizes the approach and results described in Argonne (2010). A number of simplifying assumptions are made for the purposes of the comparative analysis in this EIS, especially in terms of the long-term performance of engineered materials assumed for the borehole, trench, and vault disposal facilities. It is expected that detailed, site-specific assessments that would include more specific calculations on the physical and chemical performance of different engineered materials would be made before implementation of any alternative.

For the No Action Alternative, it is assumed that the long-term human health impacts would be limited to members of the general public who might be exposed to GTCC wastes stored in facilities located within the four NRC regions. For the land disposal alternatives, it is assumed that the long-term human health impacts would be limited to members of the general public who might be exposed to radioactive contaminants released from the waste packages after the engineering barriers (including the cover) and waste containers failed. Direct intrusion into the waste disposal units is considered to be a very unlikely event and is not addressed in this appendix; this issue is addressed in Section 5.5. A number of markers and barriers would be placed on, in, and near the closed disposal facility to prevent intrusion into the buried wastes. The impacts from direct intrusion into the disposal facility are therefore addressed qualitatively in the EIS.

 There are three release mechanisms considered in RESRAD-OFFSITE that can lead to contamination at off-site locations: airborne releases, surface runoff, and leaching (see Section E.1). However, only two of these mechanisms are considered significant and applicable to storage or disposal of GTCC wastes in the long term: (1) airborne releases and (2) leaching of radioactive contaminants from the waste containers or packages, with transport to groundwater and migration to an accessible location, such as a groundwater well. These two mechanisms are addressed in this EIS to determine the impacts on off-site members of the general public following closure of the storage or disposal facility. Surface runoff is not considered to be a viable pathway, given the depth of the disposal facility cover and use of good engineering practices during closure of the disposal facility, which would include measures to minimize erosion by surface water.

Airborne releases could include gases (e.g., radon, carbon dioxide [CO₂], and water vapor containing tritium [H-3]) and particulates if the disposal facility cover was completely lost through erosion. Particulate radionuclide emissions are not expected to be significant, because it is very unlikely that the thick disposal facility cover would be completely lost through erosion. In addition, any material removed from the facility surface cover by erosion or weathering could be replaced to some extent by nearby soil similarly removed. Potential radiation doses to individuals from gaseous releases are expected to be small because the gases would have to diffuse through the thick covers placed on top of the waste disposal units.

Standard engineering practices and measures would be taken in designing and constructing the disposal facility to ensure long-term stability and to minimize the likelihood of contaminant migration from the wastes to the surrounding environment. The facility would be sited in a location consistent with applicable requirements, which would include the consideration of geologic characteristics, to minimize events that could compromise the containment characteristics of the disposal facilities in the long term. It is expected that the use of engineering controls in concert with the natural features of the selected site would ensure the long-term viability of this facility.

The groundwater pathway is generally the pathway of most concern with regard to addressing the post-closure impacts on the general public from a disposal facility for GTCC LLRW and GTCC-like wastes, and this pathway is the focus of this appendix. Releases to surface water would only occur once the entire engineered cover over the disposed wastes had eroded away. Because of the thick cover layer and the use of very robust engineering techniques to construct it, it was assumed for the analyses in the EIS that the buried GTCC wastes would always be overlain by some cover material through 10,000 years, eliminating surface water runoff as a potential exposure mechanism for the action alternatives.

Even if releases to surface water were to occur, it is not expected that these releases would be significant or result in higher peak annual doses or latent cancer facility (LCF) risks than would releases to groundwater. The disposal facility and waste containers are assumed to maintain their integrity for at least 500 years, and this factor would allow many of the shorter-lived radionuclides to decay to innocuous levels prior to any releases to the environment. In addition, it is expected that releases to surface water would be much more diluted in the environment (such as in a river or lake) before being ingested by the hypothetical receptor than would comparable releases to groundwater (in which case the hypothetical receptor would extract water for use from a well). Because of this smaller amount of dilution, the groundwater pathway would likely be much more significant than the surface water pathway.

Since the travel time to a hypothetical receptor would likely be shorter for any releases to surface water than for releases to groundwater, the time at which the peak annual dose and LCF risk would occur could be sooner for the surface water pathway than the groundwater pathway. However, this is not expected to have a significant impact on the peak annual dose or LCF risk, because the radionuclides that would cause most of the dose have very long half-lives. That is, the additional time to reach a hypothetical receptor through groundwater would not result in any appreciable additional reduction in the radionuclide concentrations causing most of the impacts

due to radioactive decay. For these reasons, the groundwater pathway is considered to be the most significant pathway in the long term in this EIS.

An analysis similar to that done for the land disposal alternatives was done for the No Action Alternative (see Chapter 3). Under this alternative, no credit is taken for maintenance of the stored GTCC wastes beyond 100 years. That is, it is assumed for analysis purposes in this EIS that after 100 years, water could contact the radioactive contaminants in the waste packages and leach radionuclides from the wastes, and that these radionuclides could then move toward the underlying groundwater system. While airborne releases from degraded containers could occur, it is expected that the dispersion of any released radionuclides by the wind would greatly decrease the air concentrations. In addition, it is expected that surface runoff would not be a major concern with regard to this alternative in the long term, because the storage sites would probably have berms or other engineered features to minimize water runoff from the site.

 The highest doses associated with the No Action Alternative would therefore probably be those associated with the migration of radionuclides to groundwater that would subsequently be used by members of the general public. Focusing on the groundwater pathway for this alternative also allows for a more direct comparison of the long-term impacts from the No Action Alternative with the post-closure impacts given for the action alternatives.

E.1 RESRAD-OFFSITE COMPUTER CODE

The RESRAD-OFFSITE computer code (Yu et al. 2007) is an extension of the original RESRAD code (Yu et al. 2001) developed by Argonne National Laboratory for the U.S. Department of Energy (DOE). The original (on-site) RESRAD code was developed to address exposure pathways relevant to an individual exposed to residual radioactive soil contamination. This focus allowed for the development of soil cleanup criteria for various exposure scenarios, and RESRAD was largely used to develop cleanup criteria for radioactively contaminated soil in support of DOE remedial action projects.

 This code was expanded in RESRAD-OFFSITE to address the radiological consequences to a receptor located either on-site or outside the area of primary contamination. The expanded code can be used to calculate the radiological dose and excess lifetime cancer risk to various receptors by using dose coefficients and radionuclide slope factors from the U.S. Environmental Protection Agency (EPA) and International Commission on Radiological Protection (ICRP). Although this code, too, was developed largely to address soil cleanup guidelines corresponding to a specified dose limit, it has a number of features that make it a good choice for use in the analyses done for this EIS.

The following discussion on the use of RESRAD-OFFSITE focuses on the use of this code for the action alternatives. The same general approach that was used for the action alternatives was used for the No Action Alternative. The simulation approach for the action alternatives is described in Section E.2, and the approach used for the No Action Alternative is described in Section E.3.

The RESRAD-OFFSITE computer code allows for the initial radiological contamination to be in environmental settings ranging from those involving surficial contamination to situations in which a clean cover layer overlies a zone of radioactive contamination. This latter situation simulates the closed land disposal facilities for GTCC wastes addressed in this EIS, in which there is an overlying soil cover over the disposed-of wastes (the zone of radioactive contamination). The RESRAD-OFFSITE computer code can incorporate the presence of up to five partially saturated layers below the contaminated zone, a feature that is advantageous for delineating the various sites addressed in this EIS. The RESRAD-OFFSITE code is more flexible than the original RESRAD code in that it has the capability to not only model the radiation exposure of an individual who spends time directly above the primary zone of radioactive contamination (on-site) but also one who spends time away from the primary contamination (off-site), which is the application that is most useful for this EIS.

As noted previously, there are three types of releases that can lead to contamination at off-site locations (Figure E-1) that are addressed by RESRAD-OFFSITE: airborne releases, surface runoff, and leaching. Airborne releases can lead to the off-site releases of either particulates or gases (such as radon). Particulate releases are limited to sites having surficial soil contamination, while gases can be released from buried materials following their upward movement from the radioactive contamination source through any overlying cover materials. For this EIS, particulate releases are expected to be very unlikely given the thick covers overlying the disposed-of wastes. In addition, any such releases would be greatly diluted in the atmosphere, such that potential doses to members of the general public would be very low. The only radionuclides that would be subject to airborne releases are gases, because the surface soil cover

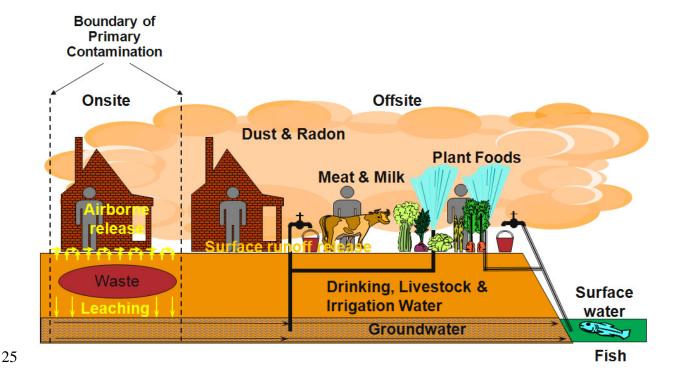


FIGURE E-1 Environmental Release Mechanisms and Exposure Pathways Considered in RESRAD-OFFSITE

is assumed to remain sufficiently intact so as to not expose the buried wastes to the atmosphere. That is, it is assumed in the EIS analyses that the soil cover is not completely removed with regard to all of the sites and disposal methods.

The second release mechanism (surface runoff) is also considered to not be relevant to the analysis conducted for this EIS. This mechanism addresses the loss of surficial contamination by precipitation that flows along the slope of the ground surface to the surrounding area. In the RESRAD-OFFSITE code, any radioactively contaminated material removed by surface runoff is modeled as a release to a nearby surface water body. This exposure pathway is not relevant to this assessment because it is assumed that the disposed-of wastes would always be overlain by some clean soil cover.

 The third release mechanism considered by RESRAD-OFFSITE is the leaching of radionuclides by precipitation that percolates through the contaminated waste zone. This is the pathway of most concern in the post-closure assessment of potential human health impacts. For this EIS, it is assumed that once contamination reaches the groundwater, it is removed by a hypothetical individual using a well. Radionuclides in groundwater can also be discharged to a surface water body, but this would result in much lower concentrations of radionuclides due to dilution. For conservatism, groundwater was assumed to be the sole source of potable water for the hypothetical individual for assessing the post-closure impacts.

Since RESRAD-OFFSITE does not contain features to simulate the movement of percolating water over the various layers of an engineered cover or the degradation of waste containers over time, simplifying assumptions were made in this analysis. For example, the engineered barriers and waste containers were assumed to begin to degrade and fail 500 years after closure of the disposal facility. This is a conservative assumption that was used because RESRAD-OFFSITE does not have the capability to calculate a container failure distribution. This adds conservatism to the results presented in this EIS.

However, RESRAD-OFFSITE does have features that allow a reasonable estimate to be made of the release of radioactive contaminants from the GTCC wastes. Specifically, the code uses a rate-controlled release to model the quantity of contaminants that can be removed by leaching from the wastes as water flows down through the primary zone of contamination. The release rate can be specified to vary as a function of time and is used by RESRAD-OFFSITE to simulate the entry of radionuclides into the percolating water with subsequent transport in the unsaturated zone(s) and groundwater aquifer. This is a very useful feature of this code for use in the EIS analyses, because it allows the source term (GTCC waste) to have any physical or chemical form. What needs to be specified is the release rate of the radionuclides from the source.

 The RESRAD-OFFSITE groundwater transport model simulates the convection and dispersion of radionuclides in the liquid phase during transport in soils. Some sites have very uniform settings, and parameters can be selected to represent soil properties on the basis of the measurements taken in site soils. Other sites have much more complicated geological settings, and they can include fracture flow. In these cases, it is important to select the parameter values that best represent flow conditions in the local environment so that these conditions can be

adequately modeled with the RESRAD-OFFSITE computer code. For example, in the analyses for disposal of GTCC LLRW and GTCC-like waste at Idaho National Laboratory (INL), a distribution coefficient (K_d) value of zero was specified for all radionuclides for the thick-flow basalt layers. This selection was made to simulate the fracture flow condition in which water flows through the basalt layers quickly, leaving little contact time for dissolved radionuclides to be adsorbed to the solid phase.

In evaluating the movement of radionuclides through the environment, the RESRAD-OFFSITE computer code addresses radioactive decay and ingrowth of progeny radionuclide(s). This capability is one of the major reasons RESRAD-OFFSITE was selected for use in this EIS. Many of the radionuclides in the GTCC wastes (in particular, the actinide elements) are present in long decay chains, and it is necessary to accurately account for the decay and ingrowth of all radionuclides that could affect a potential receptor in the long-term future. The RESRAD code has been used in a number of situations addressing radionuclide decay and ingrowth during groundwater transport, and it has been shown to provide good estimates of this effect.

In addition to simply accounting for decay and ingrowth of radioactive progeny as the primary radionuclides move through the environment, RESRAD-OFFSITE uses radionuclide-specific retardation factors to address the effects of sorption and desorption on the transport speed through soil. This feature allows the code to simulate the different rates at which radionuclides in the same decay chain move in the environment. Numerical methods are employed in RESRAD-OFFSITE to evaluate the analytical solutions to the differential equations that characterize the behavior of radionuclides being transported in the unsaturated and saturated zones. To increase the precision of the calculation results in this EIS, the saturated zone was further divided to smaller sublayers.

While other computer models have features that could be used to support this analysis, use of these codes would not significantly improve the results presented in the EIS. The results of most interest were the estimated peak annual dose and peak annual LCF risk in the first 10,000 years. If the peak annual impacts did not occur within 10,000 years, the analysis was extended out to 100,000 years. The radionuclides that would cause most of the dose have long half-lives (C-14, Tc-99, I-129, and isotopes of uranium and plutonium), and the peak annual dose, in many cases, would occur in the distant future. Because of this, it was not necessary to know in great detail the exact mechanisms by which the radionuclides from the site would be released in order to perform this comparative assessment.

A number of the computer codes considered for this analysis require detailed information on the engineering design and the specific materials used to construct the facility, which are generally lacking at this point in the process. Also, although these codes might improve the estimates for the first few hundred years, or even a thousand years, they provide no information to address the conditions of the engineered barriers and waste containers and their performances over the very long time frame necessary for this EIS. After radionuclides would be released from the disposal unit, they would travel through the various layers of soils underneath the disposal facility to reach the groundwater table and then travel in the groundwater aquifer to arrive at the receptor location. The time that the radionuclides would spend traveling in soils could be thousands of years or even longer, and the potential radioactive ingrowth and decay and the

different transport speeds between parent and progeny radionuclides could significantly affect the groundwater concentrations.

The RESRAD-OFFSITE code has the ability to simulate the transport of radionuclides in the vadose zone and saturated zone, and this capability has been demonstrated in the past. Although the code does not have the ability to estimate distributed container failure over time, it has provisions that allow users to bypass the release rate calculations and accept the input release rates of radionuclides as a function of time.

 There are other computer codes with functions similar to those of RESRAD-OFFSITE. Some neglect the ingrowth of progeny nuclides during transport; some consider ingrowth by assuming progeny nuclides are transported at the same speed as are parent nuclides. Others consider both ingrowth of progeny and different transport speeds of parents and progeny but employ numerical analysis methods that would take very long (unrealistic) computation times for simulations that are run over 10,000 or 100,000 years. The precision of results from a numerical analysis can be greatly affected when the analysis is extended to such a long period of time as that required by this EIS.

Given the complexity of the facility design, the various physical and chemical compositions of waste, the complexity of the actual geologic nature and hydrogeologic nature of the candidate sites, and the unknown behavior of the engineered barriers and waste containers over a very long period of time, estimates of the peak annual radiation doses and LCF risks to human health are very difficult to predict over the time periods considered in the EIS. Assumptions were made to simplify the impact analysis, and these were applied in a uniform manner across the different sites. This allows a comparison to be made of the relative merits of the various disposal alternatives and sites considered in the EIS. These results would not be significantly affected if other computer codes were utilized in the analysis.

 RESRAD-OFFSITE also accounts for the accumulation of radionuclides at off-site locations through dust deposition and water irrigation. Water irrigation can lead to the accumulation of radionuclides in soil, which is significant for the hypothetical off-site receptor considered in the EIS (i.e., a resident farmer).

 The RESRAD-OFFSITE methodology has been used in two model validation studies: the Biospheric Model Validation Study II (BIOMOV II) program and the Environmental Modeling for Radiation Safety (EMRAS) program (BIOMOVS II 1996; IAEA 1996). Both programs were organized by the International Atomic Energy Agency (IAEA). Currently, the EMRAS Naturally Occurring Radioactive Material Working Group is using RESRAD-OFFSITE for a model comparison study with area source scenarios. This level of validation supports the use of this code in performing the comparative evaluation in this EIS.

E.2 SIMULATION APPROACH FOR THE LAND DISPOSAL ALTERNATIVES

Potential long-term impacts on human health that could result from the disposal of GTCC LLRW and GTCC-like wastes were analyzed in this EIS by using the RESRAD-OFFSITE

computer code, as summarized above. Additional details on this computer code are presented in its user manual, which can be reviewed for more information (Yu et al. 2001). This section discusses the exposure scenario and source term assumptions used for the analyses.

E.2.1 Exposure Scenario and Pathways

The assessment of long-term impacts on human health from the closed disposal facility requires the identification of an appropriate exposure scenario. Proper site selection and proper design, closure, and post-closure monitoring and maintenance of the facility would reduce the likelihood, to the extent possible, that anyone would actually be exposed to the radioactive contaminants in the wastes. A hypothetical resident farmer exposure scenario was selected for performing a comparative analysis in this EIS as a conservative approach. This scenario is unlikely to occur at the federal sites evaluated in this EIS, since current land use designations for the reference locations do not include residential use. The results presented here should not be used for regulatory compliance purposes in the future, and they should not be compared with site-specific performance assessments that have been conducted for existing waste disposal facilities. Such assessments are based on site-specific exposure scenarios and conditions. However, the assessment in this EIS does provide useful information to guide the decision-making process for identifying the most appropriate method to manage these GTCC wastes.

For the analysis of long-term impacts on human health after closure of the disposal facility, a hypothetical resident farmer is assumed to move near the site and reside in a house located 100 m (330 ft) from the edge of the disposal facility boundary. This location was selected because it is consistent with the minimum buffer zone distance surrounding a DOE LLRW disposal site identified in DOE Manual 435.1-1 (DOE 1999). This DOE *Radioactive Waste Management Manual* notes that a larger or smaller buffer zone for a DOE LLRW disposal facility may be used if adequate justification is provided. No additional distance beyond this minimum buffer zone of 100 m (330 ft) from the edge of the disposal facility is assumed in this analysis. This assumption is conservative since the federal sites considered in this EIS are very large, and a significant buffer zone of greater than 100 m (330 ft) would likely be employed for this disposal facility. An evaluation of the reduction in the potential radiation dose to this hypothetical receptor at greater distances is given in Section E.6.

For this analysis, a hypothetical individual is assumed to move to this location and develop a farm. This resident farmer is then assumed to develop a groundwater well as the sole source of water (for drinking, household use, irrigation, and feeding livestock) and to obtain much of his/her food (fruits, vegetables, meat, and milk) from the farm. A hypothetical resident farmer was selected for this evaluation because this scenario would involve the most intensive use of the land, and this receptor would thus incur the highest dose of any potential receptor in the future. As mentioned previously, the assumption of a resident farmer presents a potentially conservative bias against sites where such a scenario is less likely. However, the use of the same exposure scenario at all sites provides a common basis for comparison of the results for the sites considered in this EIS. DOE will consider the result of the hypothetical resident farmer scenario and other factors in developing the preferred alternative as discussed in Section 2.9.

The hypothetical resident farmer could be exposed to airborne contaminants, including particulates, radon gas and its short-lived decay products, and gaseous radionuclides such as C-14 (in the form of CO_2) and H-3 (in the form of water vapor). These gases could diffuse out of the waste containers and move through the disposal facility cover and then be transported by the wind to the off-site location where the farmer resides. As noted previously, airborne particulates are not expected to be generated, given the presence of the engineered cover over the GTCC wastes. This individual could also incur a radiation dose through the use of groundwater contaminated as the result of leaching of radionuclides in the waste containers and their transport to the underlying groundwater table.

Secondary soil contamination at off-site locations would be possible if contaminated groundwater was used for irrigation and if this practice was continued for an extended period of time. Potential exposure pathways related to the use of contaminated groundwater include (1) external irradiation; (2) inhalation of dust particulates from irrigated fields, radon gas (and its short-lived decay products), H-3, and C-14; and (3) ingestion of water, soil, plant foods, meat, and milk. Plant foods (fruits and vegetables) could become contaminated through foliar deposition as well as root uptake. Meat and milk could become contaminated if livestock ingested contaminated water (obtained from the well) and fodder contaminated by use of this groundwater. Figure E-2 illustrates the exposure pathways associated with use of contaminated groundwater.

E.2.2 Assumptions Related to Leaching from the Wastes

It is assumed that the only way the hypothetical receptor would be exposed to radiation in the future would be if the radionuclides were released from the waste containers and disposal

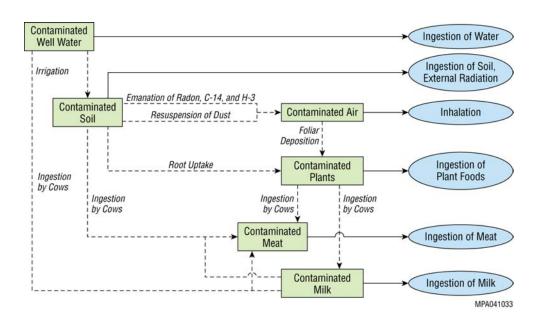


FIGURE E-2 Exposure Pathways Associated with the Use of Contaminated Groundwater

- 1 facility. The most likely mechanism for this to occur would be contact with infiltrating water.
- 2 Precipitation could infiltrate into the disposal area and contact the waste containers. It is assumed
- 3 that no releases would occur while the waste containers and engineering barriers (including the
- 4 cover) remained intact. However, it is expected that over time, the waste packages and
- 5 engineering barriers would lose their integrity. When this condition occurred, water could
- 6 contact the waste materials within the packages and move downward to the groundwater table.
- Although water could also enter the contaminated waste zone as a result of the rising

groundwater, this scenario is not considered likely because the disposal facility would be sited in

accordance with NRC regulations that should preclude this from occurring.

Data on the performance of waste packages and engineering barriers over an extended time period are limited. Even when data are available, using the data to predict the release rates of radionuclides over a very long time period can be difficult to defend. The potential impacts on groundwater are evaluated over a very long time period in this EIS (10,000 years and longer to obtain peak annual doses and LCF risks). Determining how and when the waste packages and engineering barriers would begin to degrade and how this degradation would progress over time is one of the more challenging and site- and design-specific aspects of the analysis. Thus, for a comparative analysis such as this, simplifying assumptions are made regarding the performance of engineering barriers and waste packages.

The radiation doses presented in the post-closure assessment in this EIS are intended to be used for comparing the performance of each land disposal method at each site evaluated. The results indicate that the use of robust engineering designs and redundant measures in the disposal facility could delay the potential release of radionuclides and could reduce the release to very low levels, thereby minimizing the potential groundwater contamination and associated human health impacts in the future.

For purposes of analysis in this EIS, it is assumed that the engineered barriers would begin to degrade and fail 500 years after the closure of the disposal facility. This assumption is considered to be conservative (i.e., yield greater impacts) since the integrity of the engineered barriers is expected to last longer than 500 years. It is assumed that the radionuclides in the disposed-of wastes (listed in Appendix B) would not be available for leaching until the engineering barriers started to degrade. Many of the radionuclides in the GTCC LLRW and GTCC-like wastes have very long half-lives, so this 500-year time period would not result in an appreciable reduction in the total hazard associated with these wastes as a result of radioactive decay. This assumption is more conservative for some sites than others where conditions are more favorable to the long-term performance of waste packages.

 In performing these evaluations, the protection provided by a number of engineering measures included in the conceptual facility designs, such as a cover designed to minimize water infiltration, was considered in the analyses. It is assumed that these engineering measures would completely eliminate water infiltration into the waste units for the first 500 years. It is assumed that after that time, the integrity of these engineering measures would begin to degrade and fail, reducing their effectiveness in keeping percolating water out of the waste disposal units. A study at the Savannah River Site (SRS) indicated that after 10,000 years, the closure cap at the F-Area would still shed about 80% of the cumulative precipitation falling on it, with a higher degree of

effectiveness occurring before 10,000 years (Phifer et al. 2007). The cover effectiveness would continue to decrease very slowly after 10,000 years. This information was used to estimate the amount of water that could infiltrate into the disposed-of wastes as described in the following text. The assumed effectiveness of a cover system can be a critical factor for distinguishing between facility performance at a humid site and at an arid site.

It is assumed that the water infiltration rate into the top of waste disposal facility would be zero for the first 500 years following closure, and then it would be 20% of the natural rate. This approach is meant to account for the reduction in the integrity of the cover and other engineering barriers as they begin to degrade and fail. This value was used for all future times extending to 10,000 years and longer (to obtain peak annual doses). This reduced water infiltration rate (from the natural rate for the area) is limited to the waste disposal area; at the perimeter of the waste disposal facility, the natural background infiltration rate is used in the EIS analyses.

This is a simplified approach to address the reduction in cover effectiveness over time. The amount of water infiltrating into the disposal facility would increase as the cover effectiveness decreased. It is difficult to model the gradual degradation of the engineered cover; hence, the long-term average effectiveness was simulated in the calculations. A sensitivity analysis was conducted to examine the potential change in off-site doses by using varied values to simulate varying degrees of effectiveness that would yield different water infiltration rates. The results of this sensitivity analysis are given in Section E.6.

This approach of using a reduced water infiltration rate only for the waste disposal area is assumed to be conservative, because with a higher water infiltration rate outside the waste disposal area, the transport time needed for radionuclides to reach the underlying groundwater table after they have been released from the waste disposal area would be shortened. This approach provides less time for radioactive decay to occur during transport, which results in higher groundwater concentrations being estimated at the receptor location.

E.2.3 Assumptions Related to Radionuclide Release Rates

As described in Appendix B, the GTCC LLRW and GTCC-like wastes encompass three waste types for purposes of analysis in this EIS: activated metals, sealed sources, and Other Waste. For activated metal wastes, the release of radionuclides was correlated with the corrosion of metals. The radionuclide release fraction for activated metals was taken to be 1.19×10^{-5} /yr in this analysis. This value is assumed to be reasonable for stainless-steel waste forms for the purpose of this comparative analysis on the basis of rates observed in corrosion experiments on stainless-steel coupons conducted at INL (INL 2006; Adler Flitton et al. 2004). However, if the environmental conditions surrounding a specific waste were not controlled and were more conducive to causing corrosion, or if the metal making up a specific waste was more conducive to corrosion, the release fractions could be higher than those used here.

The release rates of radionuclides in sealed sources were simulated on the basis of the assumption that radionuclides would partition between water and the sealed source matrix when

coming in contact with water. It is assumed that the partitioning factor of each radionuclide has the same value as the K_d associated with the surface soil at the various sites. Because there would be backfill soil surrounding the waste containers in the disposal units, radionuclides released from the sealed sources would have to travel through the surrounding soils before leaving the disposal area. By using the soil K_d values to calculate the radionuclide release rates, the binding of radionuclides to the sealed source matrix is assumed to be the same as that in the surrounding soil. This approach is conservative, because it tends to overestimate the release rates of radionuclides from sealed sources.

While activated metals and sealed sources are structurally sound and generally resistant to leaching with water, many of the wastes in the Other Waste type are not. For this analysis, it is assumed that the Other Waste would be solidified (e.g., with grout or another similar material) before being placed in the disposal units. This assumption is reasonable and consistent with current disposal practices for such wastes, which include a wide variety of materials that could compact or quickly degrade without such measures. Use of such a stabilizing agent is not assumed for activated metal and sealed source wastes.

The solidification provided by mixing the Other Waste with a stabilizing agent would also reduce the leaching of radionuclides. However, the reduction in leaching might not last over a long period of time, when the nature of the stabilizing agent would change in the environment or the integrity of the stabilizing agent would deteriorate. In this analysis, the effectiveness of solidification in terms of leaching reduction is assumed to last for 500 years following facility closure; after that, the retention of radionuclides by the stabilizing agent is assumed to be the same as that of the surrounding backfill soils. Hence, the release rates of radionuclides from the Other Waste were simulated with soil K_d values after the effective period of the stabilizing agent. The release rates of radionuclides were simulated with the K_d values for a cementitious system during the effective period, assuming cement would be used as the stabilizing agent.

Cement that contains slag has been shown to reduce the leaching of nickel, technetium, and uranium more effectively than cement that does not contain slag. The presence of slag results in an environment that is more reducing and not oxidizing, as opposed to cement alone. Since technetium and uranium are major radionuclides of concern with respect to the GTCC LLRW and GTCC-like wastes, it is assumed that slag-containing cement would be used to solidify the Other Waste for purposes of analysis in this EIS. Although the cementitious material could eventually convert to an oxidized form over long periods of time, this effect would be offset by the corrosion of the metal drums in the disposal environment, which would consume oxygen and lead to chemically reducing conditions.

Information on the K_d values in cementitious systems is given in Table E-1 for a number of elements from different sources. (All tables appear before the references at the end of this appendix.) Only one set of values was given in Krupka et al. (2004), which was taken to represent a non-slag-containing cementitious system. Kaplan is a co-author of this 2004 report, as well as the author of a separate study published in 2006 (Kaplan 2006). It is assumed that the second report contains additional information that was not available when the first report was published in 2004. Therefore, when selecting the K_d values for cementitious systems, only data from the second report were used for comparison with data from the other sources.

The last two columns of Table E-1 provide the selected K_d values for oxidizing and reducing cement. These values are generally the lowest (or most conservative in that they allow for the most potential leaching into the groundwater) of the reported values, unless multiple sources provided the same higher value. In addition to the reported values, chemical similarity was also considered in determining the values to use in this analysis. The use of the smallest K_d values would result in more conservative (higher) dose estimates.

The K_d values for reducing cement are used in this analysis to estimate the release rates of radionuclides when water infiltrates into the waste disposal units while the effectiveness of the stabilizing agent still holds. As indicated in Table E-1, the selected values for oxidizing and reducing cement are the same except for nickel, technetium, and uranium. Note that these values are based on specific assumptions regarding the type of cement used and would need to be reconsidered on the basis of the actual cements that could be used in a specific situation. Maintaining local reducing conditions can be an important consideration in designing the final system for specific wastes containing significant amounts of nickel, technetium, and uranium isotopes.

For the analyses in this EIS, the grout is assumed to retain its effectiveness for 500 years following facility closure. After this time period, the leachability of the Other Waste would increase as the grout degraded, which would result in higher off-site doses. The amount of the increase would depend on the rate at which the grout failed. While it is difficult to model the gradual degradation of the grout system, a sensitivity analysis was conducted to examine the potential change in off-site doses that would result from a different effective period for the grout stabilization system. The results of this sensitivity analysis are given in Section E.6.

E.3 SIMULATION APPROACH FOR THE NO ACTION ALTERNATIVE

An analysis of the long-term human health impacts associated with the No Action Alternative (in which the wastes are stored indefinitely) was conducted to provide information for comparison of the post-closure human health impacts associated with the action alternatives. As noted previously, the pathway of most concern in the long term is expected to be radionuclide migration to groundwater underlying the storage facilities. The analysis of the No Action Alternative was also done by using the RESRAD-OFFSITE computer code.

Under the No Action Alternative, it is assumed that a generic site located within each of the four NRC regions would be the storage location for all of the GTCC LLRW and DOE GTCC-like wastes within that region. It is assumed that the activated metals and Other Waste would remain within the NRC region in which the facility that generated the wastes was located, and the sealed sources would be divided among the four NRC regions in proportion to the number of NRC-licensed facilities within each region. That is, the potential long-term impacts from the groundwater pathway were analyzed for four different sites with different waste inventories (Table E-2). The characteristics of the generic storage site within each region are assumed to be the same as those of the generic commercial site within the same region for the action alternatives.

It is assumed that the GTCC LLRW and GTCC-like wastes would be placed on the ground surface without any protective covers. They would be stacked randomly and would take up more space than they would in the disposal cells for the action alternatives. Monitoring and surveillance of the waste containers are assumed to last for 100 years but would be discontinued after that period. The waste packages are assumed to be left unattended in this manner for the indefinite future (10,000 years and beyond).

W

This analysis of the No Action Alternative was performed to provide a baseline against which the action alternatives could be compared. This alternative is not a viable long-term management option for the GTCC wastes, and at some point in the future, a decision would have to be made to dispose of these wastes.

E.3.1 Exposure Scenario and Pathways

The exposure scenario and pathways considered for the No Action Alternative are the same as those considered for the action alternatives described above. That is, a hypothetical resident farmer is assumed to inhabit a site located 100 m (330 ft) from the edge of the storage facility and to obtain water for use at the farm from a groundwater well. The storage area is assumed to cover an area of $90,000 \text{ m}^2$ ($970,000 \text{ ft}^2$); that is, $300 \times 300 \text{ m}$ ($1,000 \times 1,000 \text{ ft}$).

E.3.2 Assumptions Related to Leaching from the Wastes

The potential long-term human health impacts (peak annual doses and LCF risks) for the No Action Alternative were calculated for each waste type separately. Because there would be no protection against weathering of the waste containers after the monitoring and surveillance period ended (at 100 years), it is assumed that the containers would breach and fail at this time. This would allow precipitation water to enter the containers and contact the waste materials. The precipitation rates assumed for the generic storage sites are 1.07, 1.34, 0.82, and 0.27 m/yr for Regions I, II, III, and IV, respectively (Poe 1998; Toblin 1999). The other assumptions related to leaching of contaminants from the waste packages are generally the same as those given for the action alternatives.

E.3.3 Assumptions Related to Radionuclide Release Rates

The release rates of radionuclides contained in activated metal waste were calculated with an assumed release fraction of $1.19 \times 10^{-5}/\text{yr}$, which was the same as that assumed for the action alternatives. This release fraction reflects the corrosion rate of metal and was obtained from actual measurements conducted at INL ((INL 2006). For the sealed source and Other Waste types, the release rates of radionuclides were calculated by assuming the partitioning of radionuclides between the waste matrix and the precipitation water would be the same as the partitioning of radionuclides between soil particles and water. This assumption was made because the wastes would not be solidified, and the use of soil K_ds for calculating radionuclide release rates is consistent with the approach used for evaluating the action alternatives.

After radionuclides were released from the waste containers, they would accumulate in the surface soil underneath the containers. This contamination could be released from the storage site by runoff water or be carried to deeper soils by infiltration water. The fraction of released radionuclides removed by runoff water would depend on the amount of runoff water, the slope of the ground surface, the adsorption of radionuclides to the surface soil, and engineered site features such as berms. Unlike the design of a disposal facility that would incorporate engineering measures to facilitate surface water runoff away from the disposal area to prevent water from infiltrating to deeper soils, a preferred feature for a storage area would be the capability to reduce surface water runoff to reduce the spread of contamination to the surrounding area.

For this analysis of the No Action Alternative, it is assumed that all released radionuclides accumulating in the surface soil would be carried by infiltration water to deeper soils. The infiltration rate of water is assumed to be the same as that for the generic commercial disposal facility located in the same region. As shown in Table E-19, the water infiltration rates for the generic disposal facilities in Regions I, II, III, and IV are 0.074, 0.18, 0.05, and 0.001 m/yr, respectively. These values are listed as precipitation rates in the table. Because the irrigation rates, runoff coefficients, and evapotranspiration coefficients are all zero, the infiltration rates would be equivalent to the precipitation rates.

E.4 INPUT PARAMETERS FOR RESRAD-OFFSITE EVALUATIONS

As described previously, the RESRAD-OFFSITE computer code (Yu et al. 2007) was used to calculate the potential impacts on a hypothetical resident farmer located 100 m (330 ft) from the edge of the disposal facility. Two potential release mechanisms (associated with airborne emissions and leaching to groundwater) were considered in the assessment for the action alternatives. For the potential radiation doses resulting from airborne releases coming directly from the disposal area, a Gaussian plume dispersion model (which is incorporated into the RESRAD-OFFSITE code along with the default wind speed and stability class frequency data from the weather station that is nearest the site) was used in this evaluation. The doses from this release mechanism were largely from gaseous emissions (principally radon gas and its short-lived decay products). The results of these analyses are provided in the appropriate sections of the EIS and are not repeated in this appendix.

 For the groundwater pathway, site-specific input parameters were used to simulate the movement of contaminants from the wastes contained in the disposal unit to the hypothetical resident farmer located 100 m (330 ft) from the edge of the disposal facility in the downgradient direction. These parameters were obtained from published information given in performance assessments, risk assessments, and environmental modeling studies for the various sites. The input parameters relevant to the groundwater pathway are provided in Tables E-3 through E-14 for the six federal sites. Two tables are provided for each of the six sites. The first table provides the values for all of the input parameters except the $K_{\rm d}$ values; the $K_{\rm d}$ values for each of the radionuclides addressed for each site are given in the second table.

For example, Table E-3 provides the values used for the RESRAD-OFFSITE parameters for the evaluation at INL except for the K_d values, which are provided in Table E-4. The same is done for the Hanford Site (Tables E-5 and E-6), Los Alamos National Laboratory (LANL, Tables E-7 and E-8), Nevada National Security Site (NNSS, Tables E-9 and E-10), SRS (Tables E-11 and E-12), and the WIPP Vicinity (Tables E-13 and E-14). Additional details on these values (including the selection rationale and sources used in determining these values) are also provided in the tables.

The input parameters most significant in an evaluation of the groundwater migration pathway are given in a comparative manner for these six sites in Tables E-16 through E-18, in order that differences in site characteristics can be more easily compared. These parameters include the water infiltration rates (Table E-15), characteristics of the unsaturated and saturated zones (Tables E-16 and E-17), and K_d values (Table E-18).

Data for the generic commercial sites located in the four regions were obtained from the same sources (NRC 1981; Poe 1998; Toblin 1999). These values are shown in Tables E-19 and E-20 for comparison. Table E-19 provides the values for all input parameters except the K_d values, and Table E-20 provides the K_d values. These same values were also used for the No Action Alternative.

The calculated concentrations of the various radionuclides in groundwater were used to calculate the radiation dose to the hypothetical resident farmer for the relevant exposure pathways. This individual is assumed to be an adult who spends 75% of his/her time at the site in the vicinity of his/her house (50% indoors and 25% outdoors) and 25% of his/her time away from the area. The farmer is assumed to cultivate an agricultural field encompassing 1,000 m² (0.25 ac) for growing fruits and vegetables and a grazing area of 10,000 m² (2.5 ac) for raising livestock. It is assumed that the yields of fruits, vegetables, meat, and milk would be sufficient to provide 50% of the needs of the farmer and his family. The remainder of the food would be obtained from sources removed from the farm and be free of any radioactive contamination. These assumptions are taken directly from the RESRAD-OFFSITE code for the default residential farmer scenario.

It is assumed that the farmer would drill a well close to his/her house to supply the potable water needs for drinking, household activities, watering livestock, and irrigating the farm fields. The farmer would draw approximately 2,500 m³ (660,000 gal) of water from the well each year. For the fruit and vegetable fields, an irrigation rate of 0.1 m/yr (0.33 ft/yr) of water applied to the field is used for SRS and the two generic sites located in Regions I and II; a higher value of 0.2 m/yr (0.66 ft/yr) is used for the other federal sites and the two generic sites located in Regions II and IV. Because SRS and the generic sites located in Regions I and II have higher precipitation rates, less irrigation water would be needed to sustain the growth of crops and vegetables. An irrigation rate of 0.1 m/yr (0.33 ft/yr) is used for the livestock grazing field for all sites. Although irrigation water may not actually be needed at all of these sites (or lesser amounts than those indicated here), this assumption has the effect of increasing the cumulative amount of contamination in the agricultural field that could end up in the resident farmer's food supply.

It is assumed that the resident farmer would ingest 730 L (200 gal) of water; 14 kg (31 lb) of leafy vegetables; 160 kg (350 lb) of fruit, grain, and nonleafy vegetables; 63 kg (140 lb) of meat; and 92 L (24 gal) of milk every year. While working in the fields, the farmer would ingest 36.5 g (0.080 lb) of soil every year (or an average of 0.1 g per day for each day of the year). The inhalation rate of the farmer was taken to be 8,400 m³/yr (297,000 ft³/yr). Except for the water ingestion rate, which is about the 90th percentile value for the general public (EPA 2000), these values for the consumption and exposure parameters are the same as the RESRAD-OFFSITE default values.

As noted previously, this assessment is meant to provide a comparative evaluation of the relative merits of each of the disposal sites. While the assumption used (that there would be a complete loss of institutional memory and that residential use of the area in the immediate vicinity of a GTCC waste disposal facility would occur) provides a uniform basis for evaluating potential impacts, its use does not imply that such a situation is expected to occur. Use of standardized assumptions and input parameters (as was done in this analysis) should help to ensure that the best alternative site is selected for disposal of GTCC LLRW and GTCC-like wastes.

While the health effects addressed in this EIS are limited to LCF risks, additional health effects beyond cancer can occur in individuals exposed to radiation, including cardiovascular disease and hereditary effects. However, these additional health effects are not quantified in this EIS. The risk of cardiovascular disease has been shown to increase in persons exposed to high therapeutic doses and also in atomic bomb survivors exposed to more modest doses (NAS 2006). However, there is no direct evidence of increased risk of noncancer diseases at low doses, such as the doses that could potentially occur to members of the general public under the alternatives evaluated in this EIS.

Also, the risk of hereditary effects from radiation exposure is generally attributable to gamma irradiation of the reproductive organs. In contrast, most of the dose to the hypothetical resident farmer in the long term would be a result of long-lived radionuclides having alpha and beta radiation. As noted in NAS (2006), the risk of heritable disease is sufficiently small that it has not been detected in humans, even in thoroughly studied irradiated populations, such as those of Hiroshima and Nagasaki. The risk of cancer fatality was determined to be a reasonable means of comparing alternatives in the EIS.

The assessment of potential human health impacts resulting from groundwater contamination was conducted for a time period of 10,000 years following facility closure. If the maximum impacts (peak annual doses and LCF risks) were not observed in this time period, the assessment time was extended to 100,000 years, which is the maximum time limit for the RESRAD-OFFSITE code. The results of this assessment are provided in Section E.5. A detailed discussion of this evaluation is provided in Argonne (2010).

E.5 RESULTS

2 3

The results of the RESRAD-OFFSITE simulations are summarized in Table E-21 for the No Action Alternative. This table presents the estimated peak annual doses when the storage of each individual waste type in each NRC region is considered. As indicated by the results, storage of the GTCC LLRW and GTCC-like wastes in Region I would result in very high radiation exposure to a hypothetical farmer residing 100 m (330 ft) from the edge of the storage facility. The peak annual dose could reach 270,000 mrem/yr for the GTCC-like Other Waste - RH in this region. The peak annual dose for Region II during the first 10,000 years would be much lower, with a maximum value of about 850 mrem/yr for GTCC LLRW Other Waste - RH. However, after 10,000 years, the peak annual dose would increase and could reach as high as 16,000 mrem/yr for GTCC LLRW sealed sources.

A similar tendency was found in the estimated annual doses for Region III. The lowest impacts would occur in Region IV. Within 100,000 years, the estimated peak annual dose would be less than 10 mrem/yr. While the estimated results can largely be explained on the basis of precipitation and infiltration rates as well as the depth to the groundwater table assumed for the storage site at each region, they are also in part due to the different waste inventories assumed to be stored in the different regions.

The results for the action alternatives are summarized in Tables E-22 through E-25. Table E-22 presents the estimated peak annual doses to the hypothetical resident farmer from each individual waste type in the Group 1 stored inventory, and Table E-23 presents the results from each individual waste type in the Group 1 projected inventory. These results are based on the dose conversion factors for an adult in ICRP 72 (ICRP 1996), as discussed in Appendix C. The peak annual doses from each individual waste type in the entire Group 1 waste inventory are given in Table E-24. Table E-25 gives the peak annual doses for the Group 2 inventory (all of which is projected waste). These two groups of wastes are defined in Section 1.4.1 of the EIS. The dose calculations were performed over two time periods — 10,000 years and 100,000 years — following closure of the disposal facility.

The results are provided separately for GTCC LLRW and GTCC-like wastes and address the three separate waste types (activated metals, sealed sources, and Other Waste). The estimated peak annual doses are associated with the disposal of each type of waste material, respectively; therefore, they may occur at different times in the future. The results are provided in this format to allow for an evaluation of the post-closure human health impacts associated with disposing of certain types of wastes at specific locations with specific disposal approaches. For example, it is possible to compare the peak annual projected doses for the stored activated metal GTCC LLRW that could result from using the three disposal methods at the different alternate sites by looking at the appropriate column in Table E-22. As noted previously, these results are intended to be viewed in a comparative manner given the uncertainties associated with this analysis.

The results given in these four tables differ from those given in the site-specific chapters of the EIS. The values given in this appendix are the peak annual doses associated with the disposal of each individual waste type in the Group 1 stored inventory (Table E-22), Group 1

projected inventory (Table E-23), Group 1 total inventory (Table E-24), and Group 2 total inventory (Table E-25). The values given in the main body of the EIS represent the peak annual doses to the hypothetical resident farmer at the time of peak annual dose for the entire GTCC waste inventory. Because of the different radionuclide mixes and activities contained in the different waste types, the maximum doses that could result from each waste type individually generally occur at different times than the peak annual dose from the entire inventory. The results given in the main body of the EIS could be used to support the decision-making process when disposal of the entire inventory at a single separate location is considered, while those in this appendix would support decision-making for the disposal of individual waste types.

The peak annual doses range from zero (meaning that the radioactive contaminants from that particular waste type do not reach the off-site receptor) up to 2,200 mrem/yr for vault disposal of Group 1 GTCC-like Other Waste at INL in 10,000 years. All annual doses calculated as being less than 0.001 mrem/yr are reported as being "<0.001 mrem/yr," since these doses are much too low to be measured or detected. The highest doses calculated for the federal sites are those from disposing of wastes at INL. For the INL site, the high doses are due to the low K_d values for several radionuclides, particularly for iodine-129 (I-129) and uranium isotopes (a value of 0 cm³/g was used for I-129, and for uranium isotopes, a value of 0 cm³/g was used for part of the basalt layers and a value of 0.66 cm³/g was use for the saturated zone in this analysis). A low K_d indicates that the radionuclide has a high potential for partitioning to the liquid phase while moving through soil.

The highest dose for the generic commercial facilities located in the four regions ranges from zero up to 10,000 mrem/yr in 10,000 years. On the basis of the results of the RESRAD-OFFSITE modeling, it is estimated that there would be no groundwater dose within 10,000 years for a generic commercial facility located in Region IV because the radioactive contamination would not reach the groundwater table in 10,000 years as a result of the arid conditions at this location. The highest dose estimated is for a commercial facility located in Region I because of the higher water infiltration rate there, in combination with a shallow depth to groundwater table and low K_d values for C-14 and I-129 (a value of $0 \text{ cm}^3/g$ was used in the analysis).

The sites with the lowest estimated annual doses are those located in the arid regions of the country. The analyses indicate that the radionuclides are not expected to reach groundwater for any waste type and disposal method at NNSS in 100,000 years, and generally lower doses are projected to occur at the other sites located in the Western United States (except for INL). No radionuclides are expected to reach groundwater at the WIPP Vicinity in 10,000 years, and the maximum annual doses in 100,000 years at this site are low.

The arid sites result in lower doses because of lower water infiltration rates there (due to lower precipitation) and the longer distance to the groundwater table. Of these two factors, the water infiltration rate appears to be more significant than the depth to the groundwater table. The time period of this analysis is very long (longer than 10,000 years), and many of the radionuclides have very long half-lives. Radionuclides released from the disposed-of wastes would eventually reach the groundwater table within this time period, even if the depth to the groundwater table was increased. Reducing the water infiltration rate would not only reduce the

radionuclide release rate but would also increase the transport time to reach the hypothetical exposure location.

E.6 SENSITIVITY ANALYSIS

The peak annual doses and LCF risks to a hypothetical resident farmer located 100 m (330 ft) downgradient of the edge of a disposal facility from using contaminated groundwater are presented in Section E.5. The following assumptions were used in the EIS to perform this evaluation:

1. The engineering barriers incorporated in the disposal facility would keep percolating water out of the waste units for 500 years following closure of the disposal facility.

2. After 500 years, the integrity of the barriers and waste containers would begin to degrade, allowing for water infiltration into the top of the disposal units at 20% of the natural infiltration rate for the area.

3. The water infiltration rate around and beneath the disposal facility would remain at 100% of the natural rate for the area at all times.

4. Once water would begin to affect the disposed-of wastes, radionuclides would be leached out at a rate that would depend on the waste type.

5. A stabilizing agent (grout) would be used to solidify the Other Waste type, and this grout would maintain its effectiveness for 500 years.

6. After 500 years, the effectiveness of the grout would be compromised, allowing for more leaching to occur.

7. The activated metal and sealed source wastes would be disposed of without the use of any additional stabilizing material.

These assumptions were applied across various alternate sites so that the peak annual doses and LCF risks for the different sites could be compared on a uniform basis.

 The parameters used in these analyses were generally selected to provide conservative estimates (i.e., to overestimate the peak annual doses and LCF risks that would likely occur in the future should one of these alternatives be implemented). Uncertainties are inherent with these types of analyses, especially given the long periods analyzed in this EIS (10,000 years and longer to obtain peak annual doses and LCF risks). To evaluate the uncertainties associated with key assumptions used for the analysis of the long-term human health impacts, a sensitivity analysis was performed to provide information on the effects that key assumptions have on the results. In this sensitivity analysis, the RESRAD-OFFSITE calculations were repeated while the value of only one parameter was varied and the values of the other parameters were kept at their base

values. This approach excluded the influence of the other parameters and provides results that can be analyzed to determine which assumptions have the most impact on these estimates.

Two sites were considered in this sensitivity analysis: SRS and WIPP Vicinity. The first site is representative of sites in the Eastern United States (a humid site), and the second site is representative of sites in the Western United States (an arid site). The analysis was limited to trench disposal of the GTCC-like stored Group 1 Other Waste - CH, and it was conducted for a time period of 10,000 years. It is assumed that this waste would be stabilized with grout, and this waste type has a radionuclide mix that is representative of many of the GTCC wastes. The results of the sensitivity analysis for this waste type and disposal method at these two sites can be used to infer conclusions about different waste streams disposed of at other alternate sites by using the three land disposal methods. This analysis also gives some indication of the level of conservatism in the results, which is useful information for the decision-making process.

Three parameters were addressed in this sensitivity analysis: (1) the water infiltration rate through the disposal facility cover after 500 years following closure of the facility, (2) the effectiveness of the stabilizing agent (grout) used for Other Waste, and (3) the distance to the assumed hypothetical receptor. These three parameters address issues related to disposal facility design, waste form stability, and site selection.

To address the influence of the water infiltration rate on the estimated radiation doses to the hypothetical future farmer, two additional infiltration rates (corresponding to 50% and 100% of the natural infiltration rate for the area) were considered along with the base value of 20%.

The effective period for the stabilizing agent (grout) used for Other Waste is assumed to be 500 years in this EIS. This assumption is considered to be reasonable, but it is likely that the grout could be effective for a longer period of time. To address the significance of this time period assumed for grout, two additional effective periods were addressed for both the SRS and WIPP Vicinity: 2,000 years and 5,000 years.

The exposure distance to the resident farmer is assumed to be 100 m (330 ft) from the edge of the disposal facility. This distance was based on the minimum buffer zone identified for DOE LLRW disposal facilities. This distance would likely be much longer, especially for the federal sites considered in this EIS. To address the significance of the distance to a future hypothetical receptor (which may have a bearing on-site selection and development of a buffer zone), this distance was increased to 300 m (980 ft) and 500 m (1,600 ft).

In addition to the Base Case, two additional values were considered for each of the three parameters at the two sites as discussed above. A total of 10 additional cases were constructed and analyzed by using RESRAD-OFFSITE at SRS and WIPP Vicinity. Table E-26 lists the different cases and the parameter values assumed for those cases.

 Tables E-27 and E-28 provide the peak annual doses and the times at which they would occur for the Base Case and the 10 sensitivity analysis cases analyzed for the WIPP Vicinity and SRS, respectively. A time period of 10,000 years was used to perform these analyses with the RESRAD-OFFSITE computer code. Note that the results given here for the Base Case differ

from those given in the site-specific chapters in the main body of the EIS. The peak annual doses in this appendix for the Base Case are the peak values when disposal of only the Group 1 stored GTCC-like Other Waste - CH is considered, whereas the values in the main body of the EIS are the peak annual doses when disposal of the entire inventory of GTCC wastes is considered.

For the WIPP Vicinity, groundwater contamination would not occur within 10,000 years for any of the three water infiltration rates used in this analysis (20%, 50%, or 100% of the natural background rate for this area) after failure of the engineering barriers (including the cover) and waste containers. A higher rate than is naturally present at that site is needed for groundwater contamination to occur. A higher infiltration rate to the disposal units would result in higher release rates of radionuclides, yielding higher peak doses. However, the transport time required for radionuclides to move to the groundwater table after leaving the disposal units would be the same, regardless of the water infiltration rate to the disposal units. The times would be the same because in the analysis, it is assumed that the water infiltration rate to areas outside the waste disposal units would be equivalent to the natural background rate. (This assumption was selected to provide more conservative estimates of the potential doses.) Since groundwater contamination would not occur within 10,000 years in the Base Case, the contamination would not be observed in Cases I or II either.

For Cases III to VIII, the effectiveness of grouting was extended from 500 years to either 2,000 years or 5,000 years, which would reduce the leaching of radionuclides for a longer time when compared with the time for the Base Case. Consequently, at the WIPP Vicinity, no groundwater contamination was observed within 10,000 years for these cases. Increasing the exposure distance of the receptor from 100 m (330 ft) to 300 m (980 ft) in Case IX and to 500 m (1,600 ft) in Case X would postpone the onset of radiation exposure. In addition, because of the extra dilution by clean water coming down from the ground surface, the potential radiation dose would also be lower than that in the Base Case. The maximum dose of 0 mrem/yr within 10,000 years as calculated for Cases IX and X at the WIPP Vicinity is consistent with this expectation.

The results for the Base Case and Cases I and II as calculated for SRS (Table E-28) demonstrate the influence of the water infiltration rate on the GTCC wastes in the disposal unit. The results provide information on the influence that the performance of the disposal facility cover has on long-term radiation doses through the groundwater pathway. The peak annual dose would increase as the water infiltration rate increased, because when more water would enter the waste packages, more radionuclides would be leached and released from the disposal area. The increase in the peak annual dose would be roughly proportional to the increase in the water infiltration rate. Similar conclusions can be drawn about the results for Cases III, IV, and V or the results for Cases VI, VII, and VIII. Figure E-3 compares the radiation doses as a function of time among the Base Case, Case I, and Case II. Figure E-4 compares the radiation doses among Cases III, IV, and V. Figure E-5 compares the radiation doses among Cases VI, VII, and VIII.

In Figure E-3, for all the three cases (Base Case, Case I, and Case II), the sharp peak close to time 0 is caused by C-14, which was assumed to be highly soluble in water (a K_d value

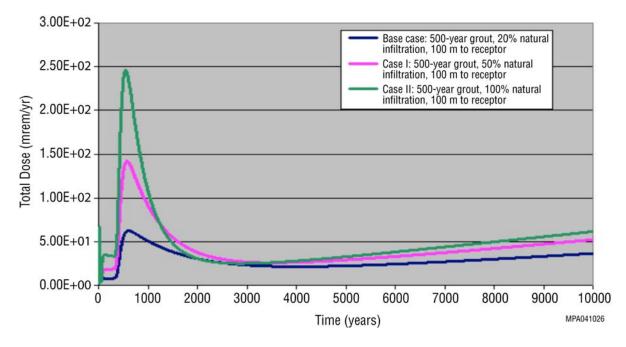
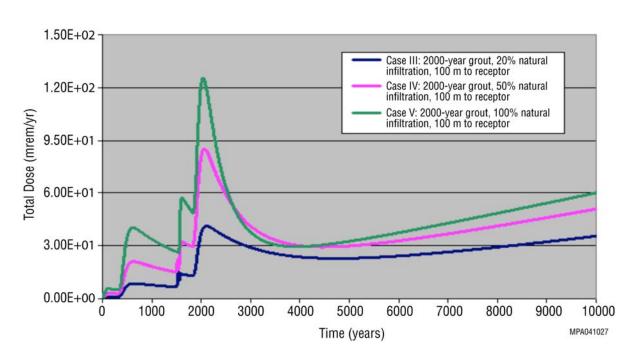



FIGURE E-3 Comparison of Annual Doses for the Base Case and Cases I and II for Trench Disposal of Stored Group 1 GTCC-Like Other Waste - CH at SRS

 $FIGURE\ E-4\ Comparison\ of\ Annual\ Doses\ for\ Cases\ III,\ IV,\ and\ V\ for\ Trench\ Disposal\ of\ Stored\ Group\ 1\ GTCC-Like\ Other\ Waste\ -\ CH\ at\ SRS$

E-23

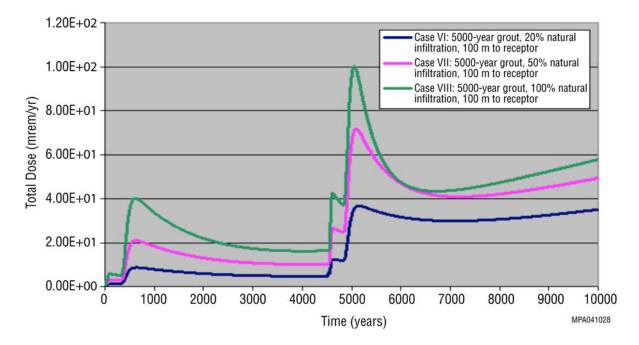


FIGURE E-5 Comparison of Annual Doses for Cases VI, VII, and VIII for Trench Disposal of Stored Group 1 GTCC-Like Other Waste - CH at SRS

of 0 cm³/g was used in the analyses). After C-14, Np-237 and then Ra-226 would reach the groundwater table. The radiation dose between 100 and 350 years is mainly contributed by Np-237. After 350 years, Ra-226 plays a dominant role in determining the radiation dose. Because of more adsorption to the soil particles during transport to the receptor location, the peaks created by Np-237 and Ra-226 are not as sharp as the peak created by C-14. In addition to the initial inventory in the Group 1 GTCC-like stored Other Waste - CH, Np-237 could be generated by the decay of Am-241, while Ra-226 could be generated by the decay of U-234 and Th-230. The ingrowth of Np-237 and Ra-226 explains the gradual rise of the radiation dose, which continues all the way to 10,000 years after the peak at around 500–600 years. Note that for the RESRAD-OFFSITE analyses, time 0 corresponds to the onset of leaching of radionuclides, which is assumed to occur 500 years after the closure of the disposal facility when the integrity of the barrier materials and waste containers begins to degrade. Therefore, if the reported time is 600 years, it means 1,100 years after the closure of the disposal facility.

 The influence of the effectiveness of the stabilizing agent (grout) on the potential radiation doses is demonstrated by comparing the results of the Base Case and Cases III and VI (see Figure E-6). During the effective period, the release rates of radionuclides from the waste disposal area would be reduced, thereby reducing the radiation dose associated with groundwater contamination for the corresponding period. The retention of more radionuclides in the waste containers would allow for more radioactive decay to occur before the release. Hence, the peak annual dose after the effective period would be lower than when there was no waste stabilizing or when the effective period of the stabilizing agent was shorter. The longer the effective period, the more evident the delay and reduction of the peak dose (compare the dose results for Cases I, IV, and VII in Figure E-7 or the results for Cases II, V, and VIII in Figure E-8).

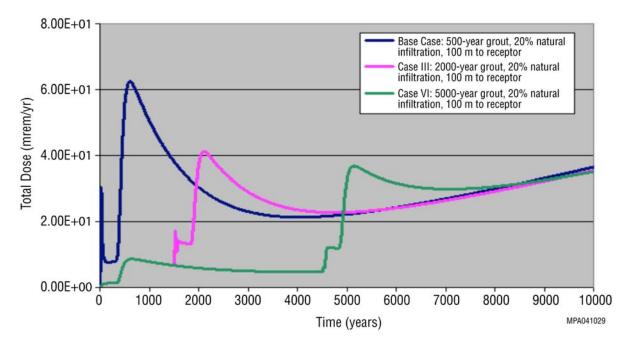


FIGURE E-6 Comparison of Annual Doses for the Base Case and Cases III and VI for Trench Disposal of Stored Group 1 GTCC-Like Other Waste - CH at SRS

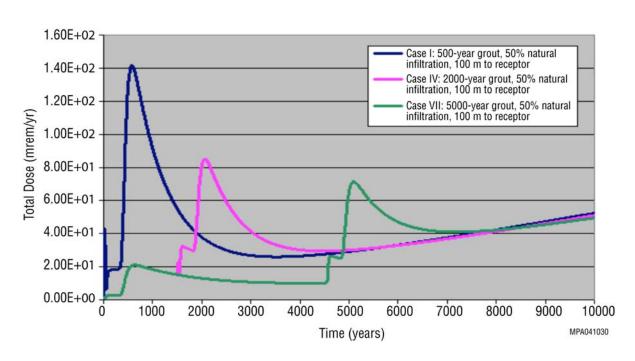


FIGURE E-7 Comparison of Annual Doses for Cases I, IV, and VII for Trench Disposal of Stored Group 1 GTCC-Like Other Waste - CH at SRS

2

3

4 5 6

10

11 12

13

14

15 16

17 18

19

2021

22

23

2425

26

2728

29

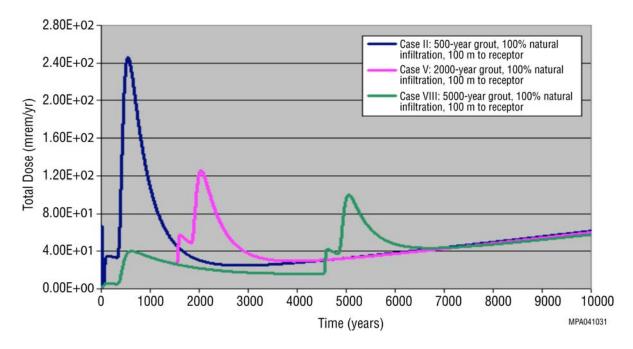


FIGURE E-8 Comparison of Annual Doses for Cases II, V, and VIII for Trench Disposal of Stored Group 1 GTCC-Like Other Waste - CH at SRS

For Case III in Figure E-6 (the first part of the curve overlaps with the curve for Case VI), the dose results were obtained by assuming the effectiveness of grouting would last for 2,000 years (i.e., the grouting would be effective for 1,500 years after water started to infiltrate into the waste containers). The grouting would reduce the releases of radionuclides and allow for more radioactive decay to take place in the containers. By the time the grout was no longer effective, the partitioning of radionuclides to the water phase would increase simultaneously, resulting in a sudden increase of the release rates, and the corresponding increase in radiation dose would be observed at a later time depending on the travel time required for the radionuclides to reach the receptor location. Because the grouting would have more influence on Np-237 than on Ra-226 (K_ds used for Np-237 and Ra-226 were 300 and 100 cm³/g, respectively, in the analyses), the radiation dose within the effective period (the first 1,500 years in the RESRAD-OFFSITE analyses) would be largely contributed by Ra-226. After the effective period, the release rates of both Np-237 and Ra-226 would increase. However, because Np-237 (with a K_d of 0.6 cm³/g) would travel faster than Ra-226 (with a K_d of 5 cm³/g) in the soil column and groundwater aquifer, its influence on the radiation dose would be observed earlier (the first peak after 1,500 years in the dose profile) than that from Ra-226 (the second peak after 1,500 years in the dose profile). The grouting would also reduce the release rate of C-14 (a K_d of 10 cm³/g was assumed for the grouting system); therefore, a sharp peak before 1,500 years would no longer be observed. The sharp peak (close to 1,500 years in the dose profiles) would occur after the effective period of the grout; however, the radioactivity of C-14 would have decayed some by then, so the sharp peak would become less obvious.

For Case VI in Figure E-6, the dose results were obtained by assuming that the effectiveness of grouting would last for 5,000 years. The dose profiles are similar to that for

Case III and can be explained by the same reasons provided in the previous paragraph, except that more decay and ingrowth of radioactivity would occur in the waste containers prior to the loss of grout effectiveness. The increased radioactive decay explains why magnitudes of the peaks after 4,500 years for Case VI are smaller than magnitudes of the peaks after 1,500 years for Case III. The increased ingrowth of progeny radionuclides explains why the difference in the maximum dose between Cases III and VI is less than the difference in the maximum dose between the Base Case and Case III.

The radiation dose incurred by the hypothetical resident farmer considered for post-closure impact analyses would decrease with increasing exposure distance, as demonstrated by the results for the Base Case and Cases IX and X (see also Figure E-9). As mentioned before, this result would occur because additional dilution of radionuclide concentrations in groundwater would result from the additional transport distance toward the location of the off-site well. As the distance would increase from 100 m (330 ft) to 500 m (1,600 ft), the maximum annual radiation dose would decrease by more than 70%.

Although the sensitivity analysis was not conducted with the entire inventory of GTCC LLRW and DOE GTCC-like waste, the results in this appendix provide a good indication of the dose reduction that would occur with the entire inventory under more favorable conditions than those assumed for the Base Case (i.e., a lower water infiltration rate with better engineering of the cover, a longer effective time for the stabilizing agent [grout], and a longer distance to a hypothetical receptor). It is expected that with more robust designs of engineering barriers and waste containment procedures, the actual human health impacts would be much lower than those presented in this EIS.

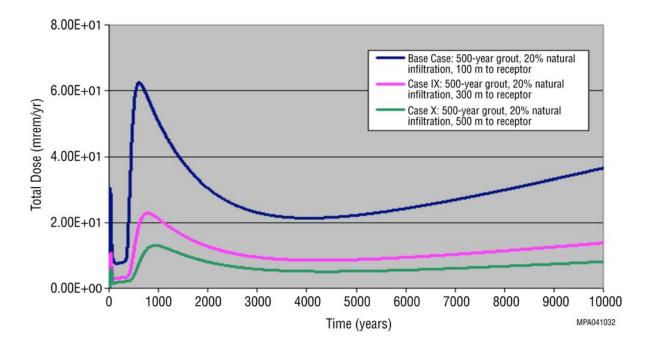


FIGURE E-9 Comparison of Annual Doses for the Base Case and Cases IX and X for Trench Disposal of Stored Group 1 GTCC-Like Other Waste - CH at SRS

TABLE E-1 Distribution Coefficients (cm³/g) for Cementitious Systems (moderately aged concrete)^a

	PNNL-13037 Rev. 2	WSRC-TR Rev. 0 (Ka	-2006-0004 aplan 2006)	SRNL-RI 00006 (Ka		Mattigod e	et al. 2002 ^b	Mattigod et al. 2002	Selected	l Value
Element	(Krupka et al. 2004)	Oxidizing	Reducing	Oxidizing	Reducing	Oxidizing	Reducing	Haddam Neck Samples	Oxidizing	Reducing
Ac	5,000	5,000	5,000	_c	_	_	_	_	1,000	1,000
Am	5,000	5,000	5,000	_	_	1.000-5.000	1,000-5,000	>230 ->1.750	1,000	1,000
C	10	10	10	_	_	100	100	- -	10	10
Cm	5,000	5,000	5,000	_	_	1,000	1,000	_	1,000	1,000
Co	100	1,000	1,000	_	_	100	100	3,400–32,500, 180–380	100	100
Cs	30	4	4	_	_	20	20	14,800–26,800, 34–240	4	4
Fe	_	_	_	5,000	1,000	100	100	7–18	12	12
Gd	_	5,000	5,000	_	_	_	_	_	1,000	1,000
Н	0	0	0	_	_	0	0	_	0	0
I	8	20	20	_	_	_	_	_	20	20
Mn	_	_	_	100	100	_	_	_	100	100
Mo	_	_	_	0.1	0.1	_	_	_	0.1	0.1
Nb	40	1,000	1,000	_	_	1,000	1,000	_	1,000	1,000
Ni	100	1,000	1,000	_	_	100	100	10-61	10	100
Np	2,000	2,000	2,000	_	_	2,000-5,000	5,000	>300 ->510	300	300
Pa	2,000	2,000	2,000	_	_	_	_	_	2,000	2,000
Pb	5,000	500	500	_	_	_	_	_	500	500
Po	_	500	500	_	_	_	_	_	500	500
Pu	5,000	5,000	5,000	_	_	5,000	5,000	>1,300 ->5,600	5,000	5,000
Ra	100	100	100	_	_	_	_	_	100	100
Sm	_	5,000	5,000	_	_	_	_	_	1,000	1,000
Sr	_	1	1	_	_	1–3	1–3	10–11	1	1
Tc	0	0	5,000	_	_	0-1	1,000	6–21	0	1,000
Th	5,000	5,000	5,000	_	_	5,000	5,000	_	5,000	5,000
U	1,000	1,000	5,000		_	_	_	_	1,000	5,000

^a Sources for the K_d values for cementitious systems are Krupka et al. (2004), Kaplan (2006, 2007), and Mattigod et al. (2002).

Values obtained from Table 5 of Mattigod et al. (2002) for Environment II, which considers moderately aged cement that may last from 100–10,000 years to 1,000–100,000 years. The original sources cited by Mattigod et al. (2002) for the K_d values are Krupka and Serne (1998) and Bradbury and Van Loon (1998).

c A dash means no information was available.

Appendix E: Evaluation of Long-Term Human Health Impacts

TABLE E-2 Inventories of the GTCC LLRW and GTCC-Like Waste in the Four NRC Regions for the No Action Alternativea

	Waste Volume (m ³)								
		GT	CC LLRW						
NRC Region	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	All Waste Types
I	960	520	1,600	2,000	0	0	930	1,300	7,300
II	420	740	0	390	2.9	0	270	270	2,100
III	220	420	0	0	0	0	0	0	640
IV	390	1200	42	33	9.9	0.83	31	19	1,700

Waste Activity (Ci)

		GT	CC LLRW			GTCC-Like Waste			
NRC Region	Activated Metals	Sealed Sources	Other Waste	Other Waste	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste	All Waste Types
I	3.3E+07	3.7E+05	2.4E+04	3.1E+04	0.0	0.0	3.3E+04	4.9E+05	3.4E+07
II	5.2E+07	5.3E+05	0.0	9.8E+04	2.3E+05	0.0	2.4E+02	4.2E+04	5.3E+07
III	2.4E+07	3.0E+05	0.0	0.0	0.0	0.0	0.0	0.0	2.4E+07
IV	4.7E+07	8.2E+05	1.1E+01	9.5E+04	5.2+03	7.7E+01	1.3E+03	2.0E+02	4.8E+07

All values are given to two significant figures.

TABLE E-3 RESRAD-OFFSITE Input Parameter Values for Groundwater Analysis for INL

Parameter	Value	Value Selection Rationale	Source
Site properties			
Wind speed (m/s)	3.4	Site-specific data.	WRCC 2007
Precipitation (m/yr)	0.22	Site-specific data.	WRCC 2007
Primary contamination area properties			
Irrigation (m/yr)	0	No agricultural activities.	Yu et al. 2007
Evapotranspiration coefficient	0.52	To obtain an infiltration rate of	DOE 2003
Runoff coefficient	0.6212	4 cm/yr, which is close to the value used for the base-case scenario (4.1 cm/yr) in the performance assessment (PA) for the Tank Farm facility.	
Rainfall and runoff	160	To obtain an erosion rate of	Yu et al. 2007 (applies to the
Slope-length-steepness factor	10	1E-5 m/yr for the cover and	sum of all four parameters at
Cover and management factor	0.045	contamination zone (i.e., would	left)
Support practice factor	1	yield more conservative results).	
Contaminated zone Total porosity	0.4		RESRAD-OFFSITE default
Erosion rate (m/yr)	1.00E-05	Chose a small value so that the	Yu et al. 2007
Elosion rate (m/yr)	1.00E-03	contaminated zone would not be eroded away (i.e., would yield more conservative results).	1 u et al. 2007
Dry bulk density (g/cm ³)	1.8	Estimated average for different waste types, based on GTCC inventory data.	Sandia 2008
Soil erodibility factor	0.00112	To obtain an erosion rate of 1E-5 m/yr.	Yu et al. 2007
Field capacity	0.3		RESRAD-OFFSITE default
b-parameter	5.3		RESRAD-OFFSITE default
Hydraulic conductivity (m/yr)	10		RESRAD-OFFSITE default
Cover layer			
Total porosity	0.4		RESRAD-OFFSITE default
Erosion rate (m/yr)	1.00E-05	Chose a small value so that the buried waste would remain covered within the time frame considered (i.e., would yield more conservative groundwater results because there would be no losses through surface runoff and erosion).	Yu et al. 2007
Dry bulk density (g/cm ³)	1.5	und Grosson).	RESRAD-OFFSITE default
Soil erodibility factor	0.00093	To obtain an erosion rate of 1E-5 m/yr.	Yu et al. 2007
Unsaturated Zone 1		Alluvium (surficial sediment, a coarse-grain unit consisting of predominantly sand and gravel).	
Thickness (m)	9.14	Based on Well USGS-51 strata information.	DOE 2003, p. 2-46
Density (g/cm ³)	1.643	Density for sandy clay/clay.	Yu et al. 2000, Table 3.1-1
Total porosity	0.5	J	DOE 2003

TABLE E-3 (Cont.)

Parameter	Value	Value Selection Rationale	Source
Effective porosity	0.5	Set to the same value as total porosity.	DOE 2003
Field capacity	0.1	Coarse grain retains less water.	
Hydraulic conductivity (m/yr)	29,200	Corresponds to 80 m/d used in the PA for the Tank Farm facility.	DOE 2003, p. 3-42
b-parameter	4.339	This b-parameter value, along with the hydraulic conductivity and infiltration rate, gives a moisture content of 0.16.	
Longitudinal dispersivity (m)	0	No dispersivity is assumed for all the sites.	
Unsaturated Zone 2		Thick-flow basalt units.	
Thickness (m)	94.64	Sum of thicknesses of thick-flow basalt layers. According to Well USGS-51 strata profile, thick-flow basalt constitutes roughly 90% of the total thickness of all basalt layers above the groundwater table.	
Density (g/cm ³)	2	Density for basalt.	DOE 2007
Total porosity	0.05	Value assumed for the basalt unit.	DOE 2003
Effective porosity	0.05	Set to the same as total porosity.	DOE 2003
Field capacity	0.001	Set to a value less than moisture content.	
Hydraulic conductivity (m/yr)	3,650	Corresponds to 10 m/d.	DOE 2003, p. 3-43
b-parameter	0.76	Selected to give a moisture content of 0.004, which is provided in INL's comments on RESRAD-OFFSITE input parameters.	Wilcox 2008
Longitudinal dispersivity (m)	0	No dispersivity is assumed for all sites.	
Unsaturated Zone 3		Upper interbed sequence with a low permeability.	
Thickness (m)	7.47	Sum of thicknesses of upper interbeds.	
Density (g/cm ³)	1.46	Value for silt loam.	NUREG/CR-6697 (Yu et al. 2000)
Total porosity	0.57	Porosity used for the C-D interbed in the Radioactive Waste Management Complex (RWMC) PA.	DOE 2006a
Effective porosity	0.57	Set to the same as total porosity.	DOE 2006a
Field capacity	0.3		RESRAD-OFFSITE default
Hydraulic conductivity (m/yr)	1.29	Corresponds to 0.0035 m/d, the geometric mean of 0.005 m/d and 0.0025 m/d assumed for the C-CD and D-DE2 interbeds in the Tank Farm facility PA.	DOE 2003

TABLE E-3 (Cont.)

Parameter	Value	Value Selection Rationale	Source
b-parameter	3.6	Calculated mean for silt loam soil. Distribution is log normal (1.28, 0.334). The b-parameter, along with the assumed infiltration rate and hydraulic conductivity, results in a moisture content of 0.414.	NUREG/CR-6697 (Yu et al. 2000)
Longitudinal dispersivity (m)	0	No dispersivity is assumed for all sites.	
Unsaturated Zone 4		Lower sedimentary interbeds.	
Thickness (m)	15.88	The difference between total thickness of the interbeds (estimated to be about 23.35 m according to the Well USGS-51 profile) and the thickness of the upper interbeds, 7.47 m.	
Density (g/cm ³) Total porosity	1.643 0.5	Set to the value for alluvium sediment since they were assumed to have similar hydraulic characteristics in the Tank Farm facility PA.	DOE 2003
Effective porosity	0.5	Set to the same as total porosity.	
Field capacity Hydraulic conductivity (m/yr)	0.3 29,200	Set to the same value as for alluvium.	RESRAD-OFFSITE default DOE 2003
b-parameter	10.4	Value for silty clay. This b-parameter value, along with the infiltration rate and hydraulic conductivity, results in a moisture content of 0.286.	
Longitudinal dispersivity (m)	0	No dispersivity is assumed for all sites.	
Unsaturated Zone 5		Thin-flow basalt units.	
Thickness (m)	15.39	Sum of thicknesses of thin-flow basalt layers. According to Well USGS-51 strata profile, thin flows basalt constitutes roughly 10% of the total thickness of all basalt layers above the groundwater table.	
Density (g/cm ³)	2	Density for basalt.	DOE 2007
Total porosity	0.05	Value assumed for the basalt unit.	DOE 2003
Effective porosity Field capacity	0.05 0.001	Set to the same as total porosity. Set to a value less than moisture content.	DOE 2003
Hydraulic conductivity (m/yr) b-parameter	365,000 1.67	Corresponds to 1,000 m/d. Selected to give a moisture content of 0.004, which is provided in INL's comments on RESRAD-OFFSITE input parameters.	DOE 2003, p. 3-43 Wilcox 2008

TABLE E-3 (Cont.)

Parameter	Value	Value Selection Rationale	Source
Longitudinal dispersivity (m)	0	No dispersivity is assumed for all sites.	
Saturated zone hydrology			
Thickness (m)	495	Site-specific average (76–914 m).	Anderson and Lewis 1989
Density of saturated zone (g/cm ³)	2	Density for basalt.	DOE 2007
Total porosity	0.05	Value assumed for basalt.	DOE 2003
Effective porosity	0.05	Set to the same as total porosity.	DOE 2003
Hydraulic conductivity (m/yr)	1,979	Corresponds to 5.42 m/d (the geometric mean of the range from 3.0E-3 to 9.8E+3 m/d, reported as the effective hydraulic conductivity of the basalt and interbedded sediments that compose the Snake River Plain Aquifer at and near INL).	DOE 2003
Hydraulic gradient to well	0.00075	Average for the site (0.00019 to 0.0028), close to the average slope of the water table (4 ft/mi) reported in the Tank Farm facility PA.	McCarthy and McElroy 1995; Anderson and Lewis 1989; DOE 2003
Depth of aquifer contributing to well (m), below the water table	10	·	RESRAD-OFFSITE default
Longitudinal dispersivity (m)	10% of distance traveled	Assumption used for all sites, which is commonly used for groundwater transport modeling.	
Horizontal lateral dispersivity (m)	10% of longitudinal dispersivity		
Disperse vertically (yes/no) Vertical lateral dispersivity (m)	Yes 10% of the horizontal lateral dispersivity	To consider dispersion. Assumption used for all sites.	Yu et al. 2007

 $TABLE\ E-4\ Soil/Water\ Distribution\ Coefficients\ (K_d\ values)^a\ for\ Different\ Radionuclides\ for\ INL$

			K _d Value (c	m ³ /g)				
Element	Unsaturated Zone 1 (alluvium, surficial sediment)	Unsaturated Zone 2 (thick flow basalt units)	Unsaturated Zone 3 (upper interbed sequence with a low permeability)	Unsaturated Zone 4 (lower sedimentary interbeds)	Unsaturated Zone 5 (thin flow basalt units)	Saturated Zone	Value Selection Rationale ^b	Source
Ac	225	0	225	225	0	9	Based on comments from INL, the same K_d value was used for alluvium and interbeds. The basalt K_d was set to 0, and the K_d for the saturated zone was set to 1/25 that of alluvium and interbeds.	DOE 2007
Am	225	0	225	225	0	9	Same as for Ac.	DOE 2007
C	0.4	0	0.4	0.4	0	0.016	Same as for Ac.	DOE 2007
Cm	4,000	0	4,000	4,000	0	160	Same as for Ac.	DOE 2007
Co	10	0	10	10	0	0.40	Same as for Ac.	Jenkins 2001
Cs	500	0	500	500	0	20	Same as for Ac.	Jenkins 2001
Fe	220	0	220	220	0	8.8	Same as for Ac.	Jenkins 2001
Gd	240	0	240	240	0	9.6	Same as for Ac.	Jenkins 2001
Н	0	0	0	0	0	0	Same as for Ac.	DOE 2007
I	0	0	0	0	0	0	Same as for Ac.	DOE 2007
Mn	50	0	50	50	0	2	Same as for Ac.	Jenkins 2001
Mo	10	0	10	10	0	0.4	Same as for Ac.	DOE 2007
Nb	500	0	500	500	0	20	Same as for Ac.	DOE 2007
Ni	100	0	100	100	0	4	Same as for Ac.	Jenkins 2001
Np	23	0	23	23	0	0.92	Same as for Ac.	DOE 2007
Pa	8	0	8	8	0	0.32	Same as for Ac.	DOE 2007
Pb	270	0	270	270	0	10.80	Same as for Ac.	DOE 2007
Po	150	0	150	150	0	6	Same as for Ac.	Jenkins 2001
Pu	2,500	0	2,500	2,500	0	100	Same as for Ac.	DOE 2007

			K _d Value (c	m^3/g)				
	Unsaturated							
	Zone 1	Unsaturated	Unsaturated Zone 3	Unsaturated	Unsaturated			
	(alluvium,	Zone 2	(upper interbed	Zone 4 (lower	Zone 5			
	surficial	(thick flow	sequence with a	sedimentary	(thin flow	Saturated		
Element	sediment)	basalt units)	low permeability)	interbeds)	basalt units)	Zone	Value Selection Rationale ^b	Source
Ra	575	0	575	575	0	23	Same as for Ac.	DOE 2007
Sm	2,500	0	2,500	2,500	0	100	Same as for Ac.	DOE 2007
Sr	12	0	12	12	0	0.48	Same as for Ac.	Jenkins 2001
Tc	0	0	0	0	0	0	Same as for Ac.	DOE 2007
Th	500	0	500	500	0	20	Same as for Ac.	DOE 2007
U	15.4	0	15.4	15.4	0	0.616	Same as for Ac.	DOE 2007

 $^{^{}a}$ K_{d} values are listed for the unsaturated zones and the saturated zone. For the contaminated zone, the release fraction of radionuclides is correlated with the metal corrosion rate for the activated metal wastes, the site-specific soil K_{d} values for sealed sources, and site-specific soil K_{d} values and cementitious system K_{d} values for Other Waste.

b For INL's review comments on the RESRAD-OFFSITE input parameters, see Wilcox (2008).

TABLE E-5 RESRAD-OFFSITE Input Parameter Values for Groundwater Analysis for Hanford

Parameter	Value	Value Selection Rationale	Source
Site properties			
Wind speed (m/s)	3.4	Site-specific data at Hanford Meteorology Station (HMS), 50 m above ground.	DOE 2004
Precipitation (m/yr)	0.17	Site-specific data (54.39 in./yr), based on HMS measurements. Consistent with values reported by the Western Regional Climate Center (1948–2005).	DOE 2004, p. 4.16
Primary contamination area			
properties			
Irrigation (m/yr)	0	No agricultural activities.	Yu et al. 2007
Evapotranspiration coefficient	0.97878	In DOE 2005, the infiltration rate suggested for the post-design life for the sitewide surface barrier is 3.5 mm/yr; the post-design life for the Integrated Disposal Facility (IDF) surface barrier is 0.9 mm/yr. However, for the IDF surface barrier, a sensitivity analysis needs to be conducted for an infiltration rate of 5.0 mm/yr as well. Considering the recharge rate at the 200 E Area, which ranges from 1.5 to 4 mm/yr with shrub covering, and to be consistent with the other sites that use a natural infiltration rate for the GTCC analysis, an infiltration rate of 3.5 mm/yr was chosen for the groundwater analysis. To obtain an infiltration rate of 0.0035 m/yr (3.5 mm/yr), the	DOE 2005
		evapotranspiration coefficient was calculated to be 0.97878.	
Runoff coefficient	0.03	Runoff is about 3% of the total precipitation; most of the remaining precipitation is lost through evapotranspiration.	Duncan et al. 2007
Rainfall and runoff	160	To obtain the desired erosion rates	Yu et al. 2007 (applies to sum
Slope-length-steepness factor	0.4	for the cover and contamination	of all four parameters at left
Cover and management factor	0.003	zone.	-
Support practice factor	1		

TABLE E-5 (Cont.)

Parameter	Value	Value Selection Rationale	Source
Contaminated zone			
Total porosity	0.4		RESRAD-OFFSITE default
Erosion rate (m/yr)	1.00E-05	Chose a small value so that the contaminated zone would not be eroded away. Will yield more conservative results.	Yu et al. 2007
Dry bulk density (g/cm ³)	1.8	Estimated average for different waste streams, based on preliminary GTCC waste inventory data.	Sandia 2008
Soil erodibility factor	0.42	To obtain the desired erosion rate.	Yu et al. 2007
Field capacity	0.3		RESRAD-OFFSITE default
b-parameter	5.3		RESRAD-OFFSITE default
Hydraulic conductivity (m/yr)	10		RESRAD-OFFSITE default
Cover layer			
Total porosity	0.4		RESRAD-OFFSITE default
Erosion rate (m/yr)	1.00E-05	Chose a small value so that the buried waste would remain covered within the time frame considered (i.e., would yield more conservative groundwater results because there would be no losses through surface runoff and erosion).	Yu et al. 2007
Dry bulk density (g/cm ³)	1.5	and crosion).	RESRAD-OFFSITE default
Soil erodibility factor	0.35	To obtain the desired erosion rate.	Yu et al. 2007
Unsaturated Zone 1		Fine sand plus coarse sand- dominated layers in the Hanford Formation. They were considered together because of their similar geological and hydrogeological properties.	
Thickness (m)	58	Average value calculated with the stratigraphic columns data for 200 E area.	Last et al. 2006
Density (g/cm ³)	1.65	For fine sand and coarse sand layers in Hanford Formation.	Last et al. 2006
Total porosity	0.37	Set to the same as effective porosity.	Last et al. 2006
Effective porosity	0.37	For fine sand and coarse sand layers in Hanford Formation.	Last et al. 2006
Field capacity Hydraulic conductivity (m/yr)	0.03 710	Residual moisture content. Corresponding to 2.25E-3 cm/s. Selected based on the information presented in Last et al. 2006 for fine and coarse sands in Hanford Formation.	Last et al. 2006
b-parameter	4.05	Value for sand soil.	Yu et al. 2001
Longitudinal dispersivity (m)	0	No dispersion.	Assumption used for all sites

TABLE E-5 (Cont.)

Parameter	Value	Value Selection Rationale	Source
Unsaturated Zone 2		Gravel-dominated layers in the Hanford Formation plus Ringold Unit E. They were considered together because of their similar geological and hydrogeological properties.	
Thickness (m)	30	Average value calculated with the stratigraphic columns data for 200 E area.	Data presented in Last et al. 2006, Appendix A.
Density (g/cm ³)	1.93	For gravel-dominated layers in Hanford Formation and Ringold Unit E.	Last et al. 2006
Total porosity	0.27	Value for Hanford and Ringold gravel.	DOE 2009
Effective porosity	0.27	Set to the same as total porosity.	DOE 2009
Field capacity Hydraulic conductivity (m/yr)	0.024 148	Residual moisture content. Corresponding to 4.68E-4 cm/s. Selected on the basis of information presented in Last et al. 2006 for gravel-dominated layers in Hanford Formation and Ringold Unit E.	Last et al. 2006 Last et al. 2006
b-parameter Longitudinal dispersivity (m)	7.12 0	Value for sandy clay loam soil. No dispersion.	Yu et al. 2001, Table E-2 Assumption used for all sites.
Saturated zone hydrology		Consider the combination of the Hanford Formation and Ringold Unit E.	
Thickness (m)	45	Entire aquifer is 45 to 71.7 m thick. Use the lower value.	Horton 2007
Density of saturated zone (g/cm ³)	1.98	Calculated on the basis of a soil particle density of 2.65 g/cm ³ and a total porosity of 0.25.	
Total porosity	0.25	Used for unconfined aquifer.	Page O-91, DOE 2009
Effective porosity Hydraulic conductivity (m/yr)	0.25 12,775	Set to the same as total porosity. Slug tests at five monitoring wells in the IDF location (Reidel 2004) indicate a high-permeability condition, ranging from >25 to >45 m/d. These estimates for the hydraulic conductivity beneath the IDF site are consistent with the unconfined aquifer flow through the gravel-dominated facies of the lower Hanford Formation. Use the average of 35 m/day, which converts to 12,775 m/yr.	Page O-91, DOE 2009 Reidel 2004
Hydraulic gradient to well	0.00124	Geometric mean of the range from 0.00073 to 0.00209.	Horton 2007
Depth of aquifer contributing to well (m), below water table	10		RESRAD-OFFSITE default

TABLE E-5 (Cont.)

Parameter	Value	Value Selection Rationale	Source	
Longitudinal dispersivity (m)	10% of	Assumptions used for all sites.		
	distance	Common practices for		
	traveled	groundwater transport modeling.		
Horizontal lateral dispersivity (m)	10% of			
	longitudinal			
	dispersivity			
Disperse vertically (yes/no)	Yes	To consider dispersion.	Yu et al. 2007	
Vertical lateral dispersivity (m)	10% of	Assumptions used for all sites.		
	horizontal			
	lateral			
	dispersivity			

 $TABLE\ E-6\ Soil/Water\ Distribution\ Coefficients\ (K_d\ values)^a\ for\ Different\ Radionuclides\ for\ Hanford$

	K _d Value (cm ³ /g)			_			
	Unsaturated	Unsaturated	Saturated	Value Selection Rationale for Unsaturated Zone 1		Value Selection Rationale for	
Source	Zone 1	Zone 2	Zone	and Saturated Zone	Source	Unsaturated Zone 2	Source
Ac	300	30	300	Best K_d value for far field in sand sequence with natural recharge (no impact from wastes).	Krupka et al. 2004, Table 5.6	Use 10% of the value for sand-dominated soil, an approach used in the groundwater data package.	Thorne et al. 2006
Am	1,900	190	1,900	To be consistent with values used in DOE 2009.	DOE 2009; Beyeler et al. 1999	Same as above.	Thorne et al. 2006
С	4	0.4	4	To be consistent with the values used in DOE 2009.	DOE 2005, 2009	Same as above.	Thorne et al. 2006
Cm	300	30	300	Best K_d value for far field in sand sequence with natural recharge (no impact from wastes).	Table 5.6, Krupka et al. 2004	Same as above.	Thorne et al. 2006
Co	2,000	200	2,000	Best K _d value for far field in sand sequence with natural recharge (no impact from wastes).	Table 5.6, Krupka et al. 2004	Same as above.	Thorne et al. 2006
Cs	80	8	80	To be consistent with the values used in DOE 2009.	DOE 2005, 2009	Same as above.	Thorne et al. 2006
Fe	220	22	220	Generic value for sand soil.	Site-specific value preferred. Sheppard and Thibault 1990; Yu et al. 2000	Same as above.	Thorne et al. 2006

TABLE E-6 (Cont.)

	K _d Value (cm ³ /g)			_			
Source	Unsaturated Zone 1	Unsaturated Zone 2	Saturated Zone	Value Selection Rationale for Unsaturated Zone 1 and Saturated Zone	Source	Value Selection Rationale for Unsaturated Zone 2	Source
Gd	825	82.5	825	Generic value for soil.	Yu et al. 2000	Same as above.	Thorne et al. 2006
Н	0	0	0	To be consistent with the values used in DOE 2009.	DOE 2005, 2009	Same as above.	Thorne et al. 2006
Ι	0	0	0	To be consistent with the values used in DOE 2009.	DOE 2005, 2009	Same as above.	Thorne et al. 2006
Mn	50	5	50	To be consistent with the values used DOE 2009.	Sheppard and Thibault 1990, Yu et al. 2000	Same as above.	Thorne et al. 2006
Mo	10	1	10	To be consistent with the values used DOE 2009.	Sheppard and Thibault (1990); Yu et al. 2000	Same as above.	Thorne et al. 2006
Nb	300	30	300	Best K_d value for far field in sand sequence with natural recharge (no impact from wastes).	Krupka et al. 2004, Table 5.6	Same as above.	Thorne et al. 2006
Ni	400	40	400	To be consistent with the values used in DOE 2009.	DOE 2009; Beyeler et al. 1999	Same as above.	Thorne et al. 2006
Np	2.5	0.25	2.5	To be consistent with the values used in DOE 2009.	DOE 2005, 2009	Same as above.	Thorne et al. 2006
Pa	2.5	0.25	2.5	Set to the same values as Np.	DOE 2005, 2009	Same as above.	Thorne et al. 2006
Pb	80	8	80	To be consistent with the values used in DOE 2009.	DOE 2005, 2009	Same as above.	Thorne et al. 2006

TABLE E-6 (Cont.)

	K _d Value (cm ³ /g)						
Source	Unsaturated Zone 1	Unsaturated Zone 2	Saturated Zone	Value Selection Rationale for Unsaturated Zone 1 and Saturated Zone	Source	Value Selection Rationale for Unsaturated Zone 2	Source
Po	150	15	150	Generic value for sand soil.	Sheppard and Thibault 1990; Yu et al. 2000	Same as above.	Thorne et al. 2006
Pu	150	15	150	To be consistent with the values used in DOE 2009.	DOE 2005, 2009	Same as above.	Thorne et al. 2006
Ra	10	1	10	Same as Sr.	DOE 2005	Same as above.	Thorne et al. 2006
Sm	300	30	300	Same as Ac.	Krupka et al. 2004, Table 5.6	Same as above.	Thorne et al. 2006
Sr	10	1	10	To be consistent with the values used in DOE 2009.	DOE 2005, 2009	Same as above.	Thorne et al. 2006
Тс	0	0	0	To be consistent with the values used in DOE 2009.	DOE 2005, 2009	Same as above.	Thorne et al. 2006
Th	3,200	320	3,200	To be consistent with the values used in DOE 2009.	DOE 2009; Beyeler et al. 1999	Same as above.	Thorne et al. 2006
U	0.6	0.06	0.6	To be consistent with the values used in DOE 2009.	DOE 2009; Beyeler et al. 1999	Same as above.	Thorne et al. 2006

 $[^]a$ K_d values are listed for the unsaturated zones and the saturated zone. For the contaminated zone, the release fraction of radionuclides is correlated with the metal corrosion rate for the activated metal wastes, the site-specific soil K_d values for sealed sources, and the site-specific soil K_d values and cementitious system K_d values for Other Waste.

TABLE E-7 RESRAD-OFFSITE Input Parameter Values for Groundwater Analysis for LANL

Parameter	Value	Value Selection Rationale	Source
Site properties			
Wind speed (m/s)	2.65	Geometric mean of the distribution log normal (2.65, 1.35).	Distribution information from Henckel 2008. The distribution function is based on wind speed data collected at the meteorological tower at TA-54 from January 1992 through April 2005 (http://weather.lanl.gov)
Precipitation (m/yr)	0.356	Site-specific data.	Bowen 1990
Primary contamination area properties			
Irrigation (m/yr) Evapotranspiration coefficient Runoff coefficient	0 0.9 0.8596	No agricultural activities. To obtain an infiltration rate of 5 mm/yr, which was determined for use in the analysis on the basis of the histogram shown on p. 23 of Stauffer et al. 2005.	Yu et al. 2007 Stauffer et al. 2005
Rainfall and runoff Slope-length-steepness factor Cover and management factor Support practice factor	160 10 0.045 1	To obtain the erosion rates used as the input values for the cover and contamination zone.	Yu et al. 2007 (applies to the sum of all four parameters at left)
Contaminated zone			
Total porosity Erosion rate (m/yr)	0.4 1.00E-05	Chose a small value so that the buried waste would remain covered within the time frame considered (i.e., would yield more conservative groundwater results because there would be no losses through surface runoff and erosion).	RESRAD-OFFSITE default Yu et al. 2007
Dry bulk density (g/cm ³)	1.8	Estimated average for different waste streams, on the basis of preliminary GTCC waste inventory data.	Sandia 2008
Soil erodibility factor	0.00112	To obtain the erosion rate used for the input value.	Yu et al. 2007
Field capacity	0.3		RESRAD-OFFSITE default
b-parameter	5.3		RESRAD-OFFSITE default
Hydraulic conductivity (m/yr)	10		RESRAD-OFFSITE default
Cover layer			
Total porosity	0.4		RESRAD-OFFSITE default
Erosion rate (m/yr)	1.00E-05	Chose a small value so that the cover material would not be eroded away completely within the time frame considered.	Yu et al. 2007
Dry bulk density (g/cm ³)	1.5		RESRAD-OFFSITE default
Soil erodibility factor	0.00093	To obtain the erosion rate used for the input value.	Yu et al. 2007

TABLE E-7 (Cont.)

Parameter	Value	Value Selection Rationale	Source
Unsaturated Zone 1		Tshirege Member Unit 2.	
Thickness (m)	13	Determined on the basis of as-drilled data for Well R-22.	Stauffer et al. 2005, Table 2
Density (g/cm ³)	1.4	Value for Tshirege Member Unit 2.	Stauffer et al. 2005, Table 4
Total porosity	0.41	Value for Tshirege Member Unit 2.	Stauffer et al. 2005, Table 4
Effective porosity	0.41	Set to the same value as total porosity.	
Field capacity	0.02	Set to a smaller value than 0.024, the moisture content for a saturation of 0.06.	
Hydraulic conductivity (m/yr)	61.81	Corresponds to a permeability of 2.0E-13 m ² for the Tshirege Member Unit 2.	Stauffer et al. 2005, Table 4
b-parameter	0.175	Selected to give a saturation of 0.06, an approximated value based on the range of site data for Unit 2 presented in Figure 2.1-2 of Birdsell et al. 1999.	Birdsell et al. 1999
Longitudinal dispersivity (m)	0	No dispersion for vadose zone, an assumption applied to all sites.	
Insaturated Zone 2		Tshirege Units 1v, 1g, and Cerro Toledo interval.	
Thickness (m)	26	Determined based on as-drilled data for Well R-22.	Stauffer et al. 2005, Table 2
Density (g/cm ³)	1.2	Average value for Tshirege Member Unit 5.	Stauffer et al. 2005, Table 4
Total porosity	0.47	Average value for Tshirege Units 1f, 1g, and Cerro Toledo interval.	Stauffer et al. 2005, Table 4
Effective porosity	0.47	Set to the same value as total porosity.	
Field capacity	0.02	Set to a smaller value than 0.094, the moisture content for a saturation of 0.2.	
Hydraulic conductivity (m/yr)	46.36	Corresponds to a permeability of 1.5E-13 m ² , the average for Tshirege Member Units 1v, 1g, and Cerro Toledo interval.	Stauffer et al. 2005, Table 4
b-parameter	1.339	Selected to give a saturation of 0.2, an approximated value based on the range of site data for Unit 2 presented in Figure 2.1-2 of Birdsell et al. 1999.	Birdsell et al. 1999
Longitudinal dispersivity (m)	0	No dispersion for vadose zone, an	

TABLE E-7 (Cont.)

Parameter	Value	Value Selection Rationale	Source
Unsaturated Zone 3		Otowi Member above Guaje Pumice.	
Thickness (m)	16	Determined based on as-drilled data for Well R-22.	Stauffer et al. 2005, Table 2
Density (g/cm ³)	1.2	Value for Otowi Member above Guaje Pumice.	Stauffer et al. 2005, Table 4
Total porosity	0.44	Value for Otowi Member above Guaje Pumice.	Stauffer et al. 2005, Table 4
Effective porosity	0.44	Set to the same value as total porosity.	
Field capacity	0.04	Set to a smaller value than 0.12; the moisture content corresponds to a saturation of 0.27.	
Hydraulic conductivity (m/yr)	71.08	Corresponds to a permeability of 2.3E-13 m ² for Otowi Member above Guaje Pumice.	Stauffer et al. 2005, Table 4
b-parameter	2.152	Selected to give a saturation of 0.27, an approximated value based on a range of site data in Figure 2.1-2 of Birdsell et al. 1999.	Birdsell et al. 1999
Longitudinal dispersivity (m)	0	No dispersion for vadose zone, an assumption applied to all sites.	
Unsaturated Zone 4		Otowi Member Guaje Pumice.	
Thickness (m)	3	Determined based on as-drilled data for Well R-22.	Stauffer et al. 2005, Table 2
Density (g/cm ³)	0.8	Value for Otowi Member Guaje Pumice.	Stauffer et al. 2005, Table 4
Total porosity	0.67	Value for Otowi Member Guaje Pumice.	Stauffer et al. 2005, Table 4
Effective porosity	0.67	Set to the same value as total porosity.	
Field capacity	0.00001	Set to a small value so that it is not used to reset the saturation ratio calculated.	
Hydraulic conductivity (m/yr)	46.36	Corresponds to a permeability of 1.5E-13 m ² for the Otowi Member Guaje Pumice.	Stauffer et al. 2005, Table 4
b-parameter	1.891	Selected to give a saturation of 0.26, an approximated value based on a range of site data presented in Figure 2.1-2 of Birdsell et al. 1999.	Birdsell et al. 1999
Longitudinal dispersivity (m)	0	No dispersion for vadose zone, an assumption applied to all sites.	
Unsaturated Zone 5		Cerros del Rio basalts vadose zone.	
Thickness (m)	211	Determined on the basis of as-drilled data for Well R-22.	Stauffer et al. 2005, Table 2
Density (g/cm ³)	2.7	Value for the basalts.	Stauffer et al. 2005, Table 4

TABLE E-7 (Cont.)

Parameter	Value	Value Selection Rationale	Source
Total porosity	0.001	Value for basalts vadose zone.	Stauffer et al. 2005, Table 4
Effective porosity	0.001	Set to the same value as total porosity.	,
Field capacity	0.00001	Set to a small value so that it is not used to reset the saturation ratio calculated.	
Hydraulic conductivity (m/yr)	309.05	Corresponds to a permeability of 1.0E-12 m ² for the basalts vadose zone.	Stauffer et al. 2005, Table 4
b-parameter	2.713	Selected to give a saturation of 0.27, an approximated value based on the range of site data presented in Figure 2.1-2 of Birdsell et al. 1999.	Birdsell et al. 1999
Longitudinal dispersivity (m)	0	No dispersion for vadose zone, an assumption applied to all sites.	
Saturated zone hydrology		Cerro del Rio basalts saturated zone.	
Thickness (m)	37.5	Used for groundwater modeling.	Stauffer et al. 2005
Density of saturated zone (g/cm ³)	2.7	Value for the basalts.	Stauffer et al. 2005, Table 4
Total porosity	0.05	Value for basalts saturated zone.	Stauffer et al. 2005, Table 4
Effective porosity	0.05	Set to the same value as total porosity.	
Hydraulic conductivity (m/yr)	309.05	Corresponds to a permeability of 1.0E-12 m ² for the basalts vadose zone.	Stauffer et al. 2005, Table 4
Hydraulic gradient to well	0.013		Stauffer et al. 2005, Section 3.1.4.3
Depth of aquifer contributing to well (m), below water table	10		RESRAD-OFFSITE default
Longitudinal dispersivity (m)	10% of distance traveled	Assumption applied to all sites considered. A common practice used in groundwater modeling.	
Horizontal lateral dispersivity (m)	10% of the longitudinal dispersivity		
Disperse vertically (yes/no) Vertical lateral dispersivity (m)	Yes 10% of the horizontal lateral dispersivity	To consider dispersion. Assumption applied to all sites considered.	Yu et al. 2007

1

 $TABLE\ E-8\ Soil/Water\ Distribution\ Coefficients\ (K_d\ values)^a\ for\ Different\ Radionuclides\ for\ LANL$

	K _d Value (cm ³ /g)			
Element	Unsaturated Zone	Saturated Zone	Value Selection Rationale	Source
Ac	130	130	Value suggested by French of LANL for use in RESRAD-OFFSITE modeling to	French 2008; Wolsberg 1980
Am	2,400	2,400	develop a GTCC waste disposal facility. Most likely value based on the distribution, T (2.0E+02, 2.4E+3, 2.7E+04).	French 2008; Longmire et al. 1996
C	0	0	For volcanic tuff.	Birdsell et al. 1999; Krier et al. 1997; Brookins 1984; French 2008
Cm	50	50	For devitrified volcanic tuff.	Birdsell et al. 1999; Krier et al. 1997; Brookins 1984; French 2008
Co	0.45	0.45	For volcanic tuff.	Birdsell et al. 1999; Krier et al. 1997; Brookins 1984; French 2008
Cs	7.5	7.5	Mean of distribution, U(1.0E+0, 1.5E+01, 7.5E+0).	French 2008; Bechtel/SAIC 2004
Fe	209	209	Value for generic soil.	Yu et al. 2000
Gd	50	50	Value for generic soil.	Krier et al. 1997
Н	0	0	Assumed no adsorption.	Krier et al. 1997
I	0	0	For volcanic tuff.	Birdsell et al. 1999; Krier et al. 1997
Mn	158	158	Value for generic soil.	Yu et al. 2000
Mo	4	4	For volcanic tuff.	Birdsell et al. 1999; Krier et al. 1997; Brookins 1984
Nb	100	100	For volcanic tuff.	Birdsell et al. 1999; Krier et al. 1997; Brookins 1984
Ni	50	50	For volcanic tuff.	Birdsell et al. 1999; Krier et al. 1997; Brookins 1984
Np	2.2	2.2	Most likely value based on the distribution, T(1.7E-01, 2.2E+0, 3.1E+0).	French 2008; Longmire et al. 1996
Pa	5,500	5,500	Mean of the distribution, TN(5.5E+03, 1.5E+03, 1.0E+03, 1.0E+04).	French 2008; Bechtel/SAIC 2004
Pb	25	25	For volcanic tuff.	Birdsell et al. 1999; Krier et al. 1997; Brookins 1984
Po	10	10	Value for generic soil.	Yu et al. 2000
Pu	4.10	4.10	Geometric mean for volcanic tuff (4.1-110).	Birdsell et al. 1999, Krier et al. 1997
Ra	500	500	Mean of the distribution, U(1.0E+2, 1.0E+03, 5.0E+02).	French 2008; Bechtel/SAIC 2004
Sm	50	50	Set to the same value as Gd.	Krier et al. 1997; Baes et al. 1984
Sr	40	40	Mean of the distribution, U(1.0E+0, 7.0E+01, 4.0E+01).	French 2008; Bechtel/SAIC 2004
Tc	0	0	Assumed no adsorption.	Birdsell et al. 1999; Krier et al. 1997; French 2008; Longmire et al. 1996
Th	5,000	5,000	Mean of the distribution, U(1.0E+3, 1.0E+04, 5.0E+03).	French 2008; Bechtel/SAIC 2004
U	2.4	2.4	Most likely value based on the distribution, T(1.4E+0, 2.4E+0, 3.5E+0).	French 2008; Longmire et al. 1996

 $^{^{}a}$ K_{d} values are listed for the unsaturated zones and the saturated zone. For the contaminated zone, the release fraction of radionuclides is correlated with the metal corrosion rate for the activated metal wastes, the site-specific soil K_{d} values for sealed sources, and site-specific soil K_{d} values and cementitious system K_{d} values for Other Waste.

TABLE E-9 RESRAD-OFFSITE Input Parameter Values for Groundwater Analysis for NNSS

Parameter	Value	Value Selection Rationale	Source
Site properties			
Wind speed (m/s) Precipitation (m/yr)	2.6 0.13	Site-specific data. Site-specific data.	Bechtel Nevada 2006 National Security Technologies, LLC 2008
Primary contamination area properties			
Irrigation (m/yr)	0	No agricultural activities.	Yu et al. 2007
Evapotranspiration coefficient Runoff coefficient	0.99 0.977	Selected to give an infiltration rate of 0.00003 m/yr, which is the site-specific hydraulic conductivity for the vadose zone.	Shott et al. 1998
Rainfall and runoff	160	To obtain the erosion rates used as	Yu et al. 2007 (applies to sum
Slope-length-steepness factor Cover and management factor Support practice factor	0.4 0.003 1	the input values for the cover and contamination zone.	of all four parameters at left;
Contaminated zone			
Total porosity	0.4		RESRAD-OFFSITE default
Erosion rate (m/yr)	1.00E-05	Chose a small value so that the buried waste would remain covered within the time frame considered (i.e., would yield more conservative groundwater results because there would be no losses through surface runoff and erosion).	Yu et al. 2007
Dry bulk density (g/cm ³)	1.8	Estimated average for different waste streams, based on preliminary GTCC waste inventory data.	Sandia 2008
Soil erodibility factor	0.42	To obtain the erosion rate used as the input value.	Yu et al. 2007
Field capacity	0.3	•	RESRAD-OFFSITE default
b-parameter Hydraulic conductivity (m/yr)	5.3 10		RESRAD-OFFSITE default RESRAD-OFFSITE default
Cover layer			
Total porosity Erosion rate (m/yr)	0.4 1.00E-05	Chose a small value so that the cover material would not be eroded away completely within the time frame considered. Would yield more conservative results.	RESRAD-OFFSITE default Yu et al. 2007
Dry bulk density (g/cm ³) Soil erodibility factor	1.5 0.35	To obtain the erosion rate used as the input value.	RESRAD-OFFSITE default Yu et al. 2007
Unsaturated Zone 1			
Thickness (m)	246	Average of the range from 235.3 to 256.6 m.	Bechtel Nevada 2001, 2002

TABLE E-9 (Cont.)

Parameter	Value	Value Selection Rationale	Source
Density (g/cm ³)	1.65	Site-specific data.	Shott et al. 1998
Total porosity	0.36	Site-specific data.	Shott et al. 1998
Effective porosity	0.36	Site-specific data.	Shott et al. 1998
Field capacity	0.3		RESRAD-OFFSITE default
Hydraulic conductivity (m/yr)	0.00003	Site-specific data.	Shott et al. 1998
b-parameter	5.3	site specific data.	RESRAD-OFFSITE default
Longitudinal dispersivity (m)	0	No dispersivity was assumed for the unsaturated zone.	Assumption used for all sites.
Saturated zone hydrology			
Thickness (m)	220	Average value from well monitoring data.	Reynolds Electrical & Engineering Company, Inc. 1994
Density of saturated zone (g/cm ³)	1.6	Site-specific data.	Shott et al. 1998
Total porosity	0.36	Site-specific data.	Shott et al. 1998
Effective porosity	0.36	Site-specific data.	Shott et al. 1998
Hydraulic conductivity (m/yr)	439	Site-specific data.	Shott et al. 1998
Hydraulic gradient to well	9.70E-05	Site-specific data.	National Security Technologies, LLC 2008
Depth of aquifer contributing to well (m), below water table	10		RESRAD-OFFSITE default
Longitudinal dispersivity (m)	10% of the	Assumption used for all sites.	
8	distance	Common practice for	
	traveled	groundwater modeling.	
Horizontal lateral dispersivity (m)	10% of the	Assumption used for all sites.	
1	longitudinal	Common practice for	
	dispersivity	groundwater modeling.	
Disperse vertically (yes/no)	Yes	To consider dispersion.	Yu et al. 2007
Vertical lateral dispersivity (m)	10% of the	Assumption used for all sites.	
• • •	horizontal	•	
	lateral		
	dispersivity		

1

TABLE E-10 Soil/Water Distribution Coefficients for Different Radionuclides for NNSSa

	K _d Value (cm ³ /g)			
Element	Unsaturated Zone	Saturated Zone	Value Selection Rationale	Source
Ac	7,000	7,000	Mean value of the distribution used in the Area 5 Radioactive Waste Management Site (RWMS) performance assessment (PA) model.	Bechtel Nevada 2006
Am	7,000	7,000	Same as Ac.	Bechtel Nevada 2006
C	0	0	Same as Ac.	Bechtel Nevada 2006
Cm	4,000	4,000	Suggested value for sandy soil.	Yu et al. 2000
Co	60	60	Suggested value for sandy soil.	Yu et al. 2000
Cs	280	280	Suggested value for sandy soil.	Yu et al. 2000
Fe	209	209	Suggested value for generic soil.	Yu et al. 2000
Gd	825	825	Suggested value for generic soil.	Yu et al. 2000
H	0	0	Value used in the Area 5 RWMS PA model.	Bechtel Nevada 2006
I	0	0	Value used in the Area 5 RWMS PA model.	Bechtel Nevada 2006
Mn	50	50	Suggested value for sandy soil.	Yu et al. 2000
Mo	10	10	Suggested value for sandy soil.	Yu et al. 2000
Nb	7,000	7,000	Mean value of the distribution used in the Area 5 RWMS PA model.	Bechtel Nevada 2006
Ni	100	100	Same as Nb.	Bechtel Nevada 2006
Np	5	5	Same as Nb.	Bechtel Nevada 2006
Pa	5	5	Same as Nb.	Bechtel Nevada 2006
Pb	300	300	Same as Nb.	Bechtel Nevada 2006
Po	300	300	Set to the same value as Pb.	Bechtel Nevada 2006
Pu	7.5	7.5	Same as Nb.	Bechtel Nevada 2006
Ra	185	185	Same as Nb.	Bechtel Nevada 2006
Sm	245	245	Set to the same value as Eu used in the	Bechtel Nevada 2006
			Area 5 RWMS PA model.	
Sr	420	420	Same as Nb.	Bechtel Nevada 2006
Tc	0	0	Same as Nb.	Bechtel Nevada 2006
Th	7,000	7,000	Same as Nb.	Bechtel Nevada 2006
U	0.8	0.8	Same as Nb.	Bechtel Nevada 2006

 $[^]a$ K_d values are listed for the unsaturated zones and the saturated zone. For the contaminated zone, the release fraction of radionuclides is correlated with the metal corrosion rate for the activated metal wastes, the site-specific soil K_d values for sealed sources, and site-specific soil K_d values and cementitious system K_d values for Other Waste.

1

TABLE E-11 RESRAD-OFFSITE Input Parameter Values for Groundwater Analysis for SRS

Parameter	Value	Value Selection Rationale	Source
Site properties			
Wind speed (m/s)	3	Site-specific data.	SRCC 2007a
Precipitation (m/yr)	1.2	Site-specific data.	SRCC 2007b; Cook et al. 2004
Primary contamination area properties			
Irrigation (m/yr)	0	No agricultural activities.	Yu et al. 2007
Evapotranspiration coefficient	0.598	On the basis of both coefficients, an	WSRC 2008 (applies to both
Runoff coefficient	0.221	infiltration rate of 0.376 m/yr (14.8 in./yr) was derived. The Flach et al. 2005 estimate for trenches covered with a 4-ft operational soil cover and topsoil is 14.8 in./yr. The Young and Pohlmann 2003 study shows an infiltration rate ranging from 9 to 16 in./yr with a median value of 14.8 in./yr, or 1/3 of the yearly rainfall of approximately 48 in. The above information is cited in WSRC 2008, Part C, pp. 68 and 69.	parameters at left)
Rainfall and runoff	160	To obtain the desired erosion rates for	Yu et al. 2007 (applies to
Slope-length-steepness factor	10	the cover and contamination zone.	sum of all four parameters
Cover and management factor	0.045	the cover and contamination zone.	at left)
Support practice factor	1		ut lott)
Contaminated zone			
Total porosity	0.4		RESRAD-OFFSITE default
Erosion rate (m/yr)	1.01E-05	Chose a small value so that the contaminated zone would not be eroded away. Will yield more conservative results.	Yu et al. 2007
Dry bulk density (g/cm ³)	1.8	Estimated average for different waste streams, based on preliminary GTCC waste inventory data.	Sandia 2008
Soil erodibility factor	0.00112	To obtain the desired erosion rate.	Yu et al. 2007
Field capacity	0.3		RESRAD-OFFSITE default
b-parameter	5.3		RESRAD-OFFSITE default
Hydraulic conductivity (m/yr)	10		RESRAD-OFFSITE default

TABLE E-11 (Cont.)

Parameter	Value	Value Selection Rationale	Source
Cover layer			
Total porosity	0.4		RESRAD-OFFSITE default
Erosion rate (m/yr)	1.00E-05	Chose a small value so that the buried waste would remain covered within the time frame considered (i.e., would yield more conservative	Yu et al. 2007
		groundwater results because there would be no losses through surface runoff and erosion).	
Dry bulk density (g/cm ³)	1.5		RESRAD-OFFSITE default
Soil erodibility factor	0.00093	To obtain the desired erosion rate.	Yu et al. 2007
Unsaturated Zone 1			
Thickness (m)	6.1	According to Part B, Figure 1-6, of WSRC 2008, the thickness of the upper vadose zone can be calculated as the sum of the thicknesses of the soil fill (4 ft), upper waste zone (2.5 ft), and lower waste zone (13.5 ft). The total is 20 ft, (i.e., 6.1 m).	WSRC 2008, Figure 1-6
Density (g/cm ³)	1.65	Calculated with a soil particle density of 2.70 g/cm ³ and an effective porosity of 0.39.	WSRC 2008, Part B, Table 1-14
Total porosity	0.39	ļ .	WSRC 2008, Part B, Table 1-14, p. 1-55
Effective porosity	0.39	Set to the same value as total porosity.	-
Field capacity	0.3	r	RESRAD-OFFSITE default
Hydraulic conductivity (m/yr)	2.7	For upper vadose zone.	WSRC 2008, Part B, Table 1-14, Appendix G, Table G-2
b-parameter	6.62	Mean of distribution, log normal (LN) (1.89, 0.260) for sandy clay soil.	Yu et al. 2000
Longitudinal dispersivity (m)	0	Join.	WSRC 2008, p. 2-43
Unsaturated Zone 2			
Thickness (m)	16.9	The water table in the E-Area and Z-Area is approximately 20 to 25 m below the ground surface.	Kaplan 2006
Density (g/cm ³)	1.62	Calculated with a soil particle density of 2.66 g/cm ³ and an effective porosity of 0.39.	WSRC 2008, Table 1-14
Total porosity	0.39	Used for PORFLOW transport analysis for lower vadose zone.	WSRC 2008, p. 2043
Effective porosity	0.39	For lower vadose zone.	WSRC 2008, Table 1-14
Field capacity	0.3		RESRAD-OFFSITE default
Hydraulic conductivity (m/yr)	29	For lower vadose zone.	WSRC 2008, Tables 1-14, G-2
b-parameter	4.1	Mean of distribution, LN (1.41, 0.275), for sandy clay loam.	Yu et al. 2000
Longitudinal dispersivity (m)	0	•	WSRC 2008, p. 2-43

TABLE E-11 (Cont.)

Parameter	Value	Value Selection Rationale	Source
Saturated zone hydrology			
Thickness (m)	27.85	Mean of the range of site-specific data (15.5–40.2 m), including thicknesses from the upper and lower aquifer zones and the tan clay confining zone.	For E Area, Cook et al. 2004
Density of saturated zone (g/cm ³)	1.39	Considering the distribution of local clayey sediments throughout the sandy aquifer.	WSRC 2008, p. 1-67
Total porosity	0.38	For sandy material associated with aquifers.	WSRC 2008, p. 1-57
Effective porosity	0.25	Considering the distribution of local clayey sediments throughout the sandy aquifer.	WSRC 2008, p. 1-67
Hydraulic conductivity (m/yr)	1,265	Geometric mean of the values for Upper Three Runs aquifer and Lower Three Runs aquifers.	WSRC 2008, p. 1-57 and Table G-1
Hydraulic gradient to well	0.0079	Geometric mean of the site-specific range for Aquifer Unit IIB, 0.0035–0.018.	MMES et al.1994
Depth of aquifer contributing to well (m), below water table	10		RESRAD-OFFSITE default
Longitudinal dispersivity (m)	10% of the distance traveled	Assumption used for all sites. Common practice for groundwater modeling.	
Horizontal lateral dispersivity (m)	1% of distance traveled	Assumption used for all sites. Common practice for groundwater modeling.	
Disperse vertically (yes/no) Vertical lateral dispersivity (m)	Yes 0.1% of distance traveled	To consider dispersion. Assumption used for all sites.	Yu et al. 2007

1

TABLE E-12 Soil/Water Distribution Coefficients for Different Radionuclides for SRS^a

K _d Value (cm ³ /g)				-	
Element	Unsaturated Zone 1	Unsaturated Zone 2	Saturated Zone	Value Selection Rationale	Source
Ac	8,500	1,100	1,100	Clay/sand material best estimated K _d . Clay material K _d for unsaturated Zone 1. Sand material K _d for unsaturated Zone 2 and saturated zone.	WSRC 2008, Table 2-33; Kaplan 2006
Am	8,500	1,100	1,100	Same as above.	Same as above
C	0	0	0	Same as above.	Same as above
Cm	8,500	1,100	1,100	Same as above.	Same as above
Со	30	7	7	Best value for clayey/sandy sediment.	Kaplan 2006, Table 10
Cs	250	50	50	Best value for sandy/clayey sediment.	Kaplan 2006, Table 10
Fe	400	200	200	Best value for clayey/sandy soil.	Kaplan 2007
Gd	8,500	1,100	1,100	Best value for clayey/sandy sediment.	Kaplan 2006, Table 10
Н	0	0	0	Clay/sand material best estimated K _d . Clay material K _d for unsaturated Zone 1. Sand material K _d for unsaturated Zone 2 and saturated zone.	WSRC 2008, Table 2-33; the values listed were obtained from Kaplan 2006
I	0.6	0	0	Same as above.	Same as above
Mn	200	15	15	Best value for clayey/sandy soil.	Kaplan 2007
Mo	120	6	6	Best value for clayey/sandy soil.	Kaplan 2007
Nb	0	0	0	Same as above.	WSRC 2008, Table 2-33; the values listed were obtained from Kaplan 2006
Ni	30	7	7	Same as above.	Same as above
Np	35	0.6	0.6	Same as above.	Same as above
Pa	35	0.6	0.6	Same as above.	Same as above
Pb	5,000	2,000	2,000	Same as above.	Same as above
Po	5,000	2,000	2,000	Best value for clayey/sandy soil.	Kaplan 2006
Pu	5,900	270	270	Clay/sand material best estimated K_d . Clay material K_d for unsaturated Zone 1. Sand material K_d for unsaturated Zone 2 and saturated zone.	WSRC 2008, Table 2-33; the values listed were obtained from Kaplan 2006
Ra	17	5	5	Same as above.	Same as above
Sr	17	5	5	Same as above.	Same as above
Sm	8,500	1,100	1,100	Same as above.	Same as above
Tc	0.2	0.1	0.1	Same as above.	Same as above
Th	2,000	900	900	Same as above.	Best value for sandy soil, Kaplan 2006
U	300	200	200	Same as above.	Same as above

 $[^]a$ K_d values are listed for the unsaturated zones and the saturated zone. For the contaminated zone, the release fraction of radionuclides is correlated with the metal corrosion rate for the activated metal wastes, the site-specific soil K_d values for sealed sources, and site-specific soil K_d values and cementitious system K_d values for Other Waste.

1

TABLE E-13 RESRAD-OFFSITE Input Parameter Values for Groundwater Analysis for WIPP Vicinity

Parameter	Value	Value Selection Rationale	Source
Site properties			
Wind speed (m/s)	3.71	Site-specific data, low end of the most prevalent range.	DOE 2006b
Precipitation (m/yr)	0.3048	Site-specific data (about 12 in.).	DOE 2006b
Primary contamination area			
properties			
Irrigation (m/yr)	0	No agricultural activities.	Yu et al. 2007
Evapotranspiration coefficient	0.9934	To obtain an infiltration rate of 0.002 m/yr, which is indicated in the source suggested by WIPP staff for reference.	Campbell et al. 1996
Runoff coefficient	0.0125	Because of the flat ground surface, the annual runoff is typically 0.1 to 0.2 in. The average value of 0.15 in. converts to a runoff coefficient of 0.0125.	For annual runoff — DOE 2006b
Rainfall and runoff	160	To obtain the erosion rates used as	Yu et al. 2007 (applies to sum
Slope-length-steepness factor	0.4	input values for the cover and	of all four parameters at left)
Cover and management factor	0.003	contamination zone.	
Support practice factor	1		
Contaminated zone			
Total porosity	0.4		RESRAD-OFFSITE default
Erosion rate (m/yr)	1.00E-05	Chose a small value so that the contaminated zone would not be eroded away. Will yield more conservative results.	Yu et al. 2007
Dry bulk density (g/cm ³)	1.8	Estimated average for different waste streams, based on GTCC waste inventory data.	Sandia 2008
Soil erodibility factor	0.42	To obtain the erosion rate used as the input value.	Yu et al. 2007
Field capacity	0.3		RESRAD-OFFSITE default
b-parameter	5.3		RESRAD-OFFSITE default
Hydraulic conductivity (m/yr)	10		RESRAD-OFFSITE default
Cover layer			
Total porosity	0.4		RESRAD-OFFSITE default
Erosion rate (m/yr)	1.00E-05	Chose a small value so that the buried waste would remain covered within the time frame considered (i.e., would yield more conservative groundwater results because there would be no losses through surface runoff and	Yu et al. 2007
		erosion).	
Dry bulk density (g/cm ³)	1.5	erosion).	RESRAD-OFFSITE default

TABLE E-13 (Cont.)

Parameter	Value	Value Selection Rationale	Source
Unsaturated Zone 1	Value	The perched aquifer located in the Dewey Lake Formation was selected as the groundwater of concern in the modeling. Among the subsurface and deep groundwater aquifers, it has the best water quality and was classified as a U.S. Environmental Protection Agency (EPA) Class II aquifer. The depth to the groundwater table (153 m) specified in Table 4.4-1 of Sandia 2007 (Task 3.4 report) also corresponds to this aquifer in	Source
		Dewey Lake Formation.	
Thickness (m)	153	Comparable to the groundwater level measurement data.	DOE 2006b; Sandia 2007
Density (g/cm ³)	1.47	Average of sandy and silty soils. According to the description in DOE 2006b, the Dewey Lake Redbeds Formation consists of alternating thin beds of siltstone and fine-grained sandstone.	Yu et al. 2000
Total porosity	0.445	Average of silty and sandy soil.	Distribution information for silt and sand soils from Yu et al. 2000
Effective porosity	0.404	Average of silty and sandy soil.	Distribution information for silt and sand soils from Yu et al. 2000
Field capacity	0.1	Used a smaller value because the moisture content is expected to be low because of the small infiltration rate.	
Hydraulic conductivity (m/yr)	107.31	Geometric mean for sandy and silty soils. Geometric mean for sandy soil was calculated as 803.5 m/yr. Geometric mean for silty soil was calculated as 14.33 m/yr.	Distribution information for silt and sand soils from Yu et al. 2000
b-parameter	1.76	Geometric mean for sandy and silty soils. Geometric mean for sandy soil was calculated as 0.975. Geometric mean for silty soil was calculated as 3.1899.	Distribution information for sand and silt soils from Yu et al. 2000
Longitudinal dispersivity (m)	0	No dispersivity was assumed for the unsaturated zone.	Assumption used for all sites.

TABLE E-13 (Cont.)

Parameter	Value	Value Selection Rationale	Source
Saturated zone hydrology			
Thickness (m)	5.1	Saturated thickness for the natural water table identified in middle Dewey Lake.	DOE 2006b
Density of saturated zone (g/cm ³)	1.47	Average of sandy and silty soils.	Distribution information for silt and sand soils from Yu et al. 2000
Total porosity	0.445	Average of silt and sand soil.	Distribution information for silt and sand soils from Yu et al. 2000
Effective porosity	0.404	Average of silt and sand soil.	Distribution information for silt and sand soils from Yu et al. 2000
Hydraulic conductivity (m/yr)	107.31	Geometric mean for sandy and silty soils. Geometric mean for sandy soil was calculated as 803.5 m/yr. Geometric mean for silty soil was calculated as 14.33 m/yr.	Distribution information for silt and sand soils from Yu et al. 2000
Hydraulic gradient to well	0.017	The gradient in Dewey Lake is 20–40 ft/mi in the east. It is up to 150 ft/mi to the west. Average is 90 ft/mi.	Powers et al. 1978
Depth of aquifer contributing to well (m), below water table	5.1	Set to the depth of aquifer.	Yu et al. 2007
Longitudinal dispersivity (m)	10% of the distance traveled	Assumption used for all sites. Common practice for groundwater modeling.	
Horizontal lateral dispersivity (m)	10% of the longitudinal dispersivity	Assumption used for all sites. Common practice for groundwater modeling.	
Disperse vertically (yes/no)	Yes	To consider dispersion.	Yu et al. 2007
Vertical lateral dispersivity (m)	10% of the horizontal lateral dispersivity	Assumption used for all sites.	

TABLE E-14 Soil/Water Distribution Coefficients for Different Radionuclides for WIPP Vicinity^a

	K _d Value	(cm ³ /g)	-	
Element	Unsaturated Zone	Saturated Zone	Value Selection Rationale ^b	Source
Ac	450	450	Value for sandy soil	Sheppard and Thibault 1990
Am	1,445	1,445	Value for generic soil	Yu et al. 2000
C	5	5	Value for sandy soil	Sheppard and Thibault 1990
Cm	4,000	4,000	Value for sandy soil	Sheppard and Thibault 1990
Co	60	60	Value for sandy soil	Sheppard and Thibault 1990
Cs	280	280	Value for sandy soil	Sheppard and Thibault 1990
Fe	209	209	Value for generic soil	Yu et al. 2000
Gd	825	825	Value for generic soil	Yu et al. 2000
Н	0.06	0.06	Value for generic soil	Yu et al. 2000
I	1	1	Value for sandy soil	Sheppard and Thibault 1990
Mn	50	50	Value for sandy soil	Sheppard and Thibault 1990
Mo	10	10	Value for sandy soil	Sheppard and Thibault 1990
Nb	160	160	Value for sandy soil	Sheppard and Thibault 1990
Ni	400	400	Value for sandy soil	Sheppard and Thibault 1990
Np	5	5	Value for sandy soil	Sheppard and Thibault 1990
Pa	380	380	Value for generic soil	Yu et al. 2000
Pb	270	270	Value for sandy soil	Sheppard and Thibault 1990
Po	150	150	Value for sandy soil	Sheppard and Thibault 1990
Pu	550	550	Value for sandy soil	Sheppard and Thibault 1990
Ra	500	500	Value for sandy soil	Sheppard and Thibault 1990
Sr	15	15	Value for sandy soil	Sheppard and Thibault 1990
Sm	245	245	Value of sandy soil	Sheppard and Thibault 1990
Tc	0.1	0.1	Value for sandy soil	Sheppard and Thibault 1990
Th	3,200	3,200	Value for sandy soil	Sheppard and Thibault 1990
U	35	35	Value for sandy soil	Sheppard and Thibault 1990

 $[^]a$ K_d values are listed for the unsaturated zones and the saturated zone. For the contaminated zone, the release fraction of radionuclides is correlated with the metal corrosion rate for the activated metal wastes, the site-specific soil K_d values for sealed sources, and site-specific soil K_d values and cementitious system K_d values for Other Waste.

b The K_d value selected was the smaller one of either the value for sandy soil given in Sheppard and Thibault (1990) or the value for generic soil recommended in NUREG/CR-6697 (Yu et al. 2000).

2 3

TABLE E-15 Water Infiltration Rates Used in the RESRAD-OFFSITE Analyses for the Six DOE Sites^a

			Evalua	ated Sites		
Parameter	Hanford	INL	LANL	NNSS	SRS	WIPP Vicinity
Precipitation rate (m/yr)	0.17	0.22	0.36	0.13	1.2	0.3
Irrigation rate ^b (m/yr) Infiltration rate used in the analyses (m/yr)	0 0.0035	0 0.05	0 0.005	0 0.00003	0 0.376	0 0.002

^a Values were obtained from site reports.

^b No agricultural activity over the disposal areas was assumed for this analysis

1

TABLE E-16 Unsaturated Zone Characteristics Used as Input Parameters in the RESRAD-OFFSITE Analyses for the Six DOE Sites^a

	Disposal Site Considered						
Parameter	Hanford	INL	LANL	NNSS	SRS	WIPP Vicinity	
Unsaturated Zone 1							
Thickness (m)	58	9.14	13	246	6.1	153	
Density (g/cm ³)	1.65	1.64	1.4	1.65	1.65	1.47	
Total porosity	0.37	0.5	0.41	0.36	0.39	0.445	
Effective porosity	0.37	0.5	0.41	0.36	0.39	0.404	
Field capacity	0.03	0.1	0.02	0.3	0.3	0.1	
Hydraulic conductivity (m/yr)	710	29,200	61.81	0.00003	2.7	107.31	
Soil b-parameter	4.05	4.34	0.175	5.3	6.62	1.76	
Unsaturated Zone 2							
Thickness (m)	30	94.6	26	_b	16.9	_	
Density (g/cm ³)	1.93	2.0	1.2	_	1.62	_	
Total porosity	0.27	0.05	0.47	_	0.39	_	
Effective porosity	0.27	0.05	0.47	_	0.39	_	
Field capacity	0.024	0.001	0.02	_	0.3	_	
Hydraulic conductivity (m/yr)	148	3650	46.36	_	29	_	
Soil b-parameter	7.12	0.76	1.339	-	4.1	_	
Unsaturated Zone 3							
Thickness (m)	_	7.47	16	_	_	_	
Density (g/cm ³)	_	1.46	1.2	_	_	_	
Total porosity	_	0.57	0.44	_	_	_	
Effective porosity	_	0.57	0.44	_	_	_	
Field capacity	_	0.3	0.04	_	_	_	
Hydraulic conductivity (m/yr)	_	1.29	71.08	_	_	_	
Soil b-parameter	_	3.6	2.152	-	_	_	
Unsaturated Zone 4							
Thickness (m)	_	15.88	3	_	_	_	
Density (g/cm ³)	_	1.64	0.8	_	_	_	
Total porosity	_	0.5	0.67	_	_	_	
Effective porosity	_	0.5	0.67	_	_	_	
Field capacity	_	0.3	0.00001	_	_	_	
Hydraulic conductivity (m/yr)	_	29,200	46.36	_	_	_	
Soil b-parameter	_	10.4	1.891	_	_	_	
Unsaturated Zone 5							
Thickness (m)	_	15.39	211	_	_	_	
Density (g/cm ³)	_	2.0	2.7	_	_	_	
Total porosity	_	0.05	0.001	_	_	_	
Effective porosity	_	0.05	0.001	_	_	_	
Field capacity	_	0.001	0.00001	_	_	_	
Hydraulic conductivity (m/yr)	_	365,000	309.05	_	_	_	
Soil b-parameter		1.67	2.71	<u> </u>			

^a The values given here were used in the RESRAD-OFFSITE evaluations for post-closure performance of the vault method. A smaller value for thickness (of the effective unsaturated zone) was used as the input value for evaluating post-closure performance of the trench and borehole methods to simulate placement of the waste in the unsaturated zone for these two methods.

b A dash means not applicable.

TABLE E-17 Saturated Zone Characteristics Used as Input Parameters in the RESRAD-OFFSITE Analyses for the Six DOE Sites^a

	Site Included for Evaluation							
Parameter	Hanford	INL	LANL	NNSS	SRS	WIPP Vicinity		
Thickness (m)	45	495	37.5	220	27.85	5.1		
Density of saturated zone (g/cm ³)	1.98	2.0	2.7	1.6	1.39	1.47		
Total porosity	0.25	0.05	0.05	0.36	0.38	0.445		
Effective porosity	0.25	0.05	0.05	0.36	0.25	0.404		
Hydraulic conductivity (m/yr)	12,775	1,979	309.1	439	1,265	107.31		
Hydraulic gradient to well	0.00124	0.00075	0.013	0.000097	0.0079	0.017		
Depth of aquifer contributing to well (m)	10	10	10	10	10	5.1		

^a Parameter values were obtained from site reports when available.

TABLE E-18 Soil/Water Distribution Coefficient (K_d) Values (cm^3/g) Used in RESRAD-OFFSITE Analyses for the Six DOE Sites $\!\!^a$

		Site					
Elementb	Soil Layer ^c	Hanford	INL	LANLd	NNSS	SRS	WIPP Vicinity
Ac	UZ	300, 30	225, 0, 225, 225, 0	130	7,000	8,500; 1,100	450
	SZ	300	9	130	7,000	1,100	450
Am	UZ	1,900; 190	225, 0, 225, 225, 0	2,400	7,000	8,500; 1,100	1,445
	SZ	1,900	9	2,400	7,000	1,100	1,445
C	UZ	4, 0.4	0.4, 0, 0.4, 0.4, 0	0	0	0, 0	5
	SZ	4	0.016	0	0	0	5
Cm	UZ	300, 30	4,000; 0; 4,000; 4,000; 0	50	4,000	8,500; 1,100	4,000
	SZ	300	160	50	4,000	1,100	4,000
Co	UZ	2,000; 200	10, 0, 10, 10, 0	0.45	60	30, 7	60
	SZ	2,000	0.4	0.45	60	7	60
Cs	UZ	80, 8	500, 0, 500, 500, 0	7.5	280	250, 50	280
	SZ	80	20	7.5	280	50	280
Fe	UZ	220, 22	220, 0, 220, 220, 0	209	209	400, 200	209
	SZ	220	8.8	209	209	200	209
Gd	UZ	825, 82.5	240, 0, 240, 240, 0	50	825	8,500; 1,100	825
	SZ	825	9.6	50	825	1,100	825

	_			Site			
Element ^b	Soil Layer ^c	Hanford	INL	LANL ^d	NNSS	SRS	WIPP Vicinity
Н	UZ	0, 0	0, 0, 0, 0, 0	0	0	0, 0	0.06
	SZ	0	0	0	0	0	0.06
I	UZ	0, 0	0, 0, 0, 0, 0	0	0	0.6, 0	1
	SZ	0	0	0	0	0	1
Mn	UZ	50, 5	50, 0, 50, 50, 0	158	50	200, 15	50
	SZ	50	2	158	50	15	50
Mo	UZ	10, 1	10, 0, 10, 10, 0	4	10	120, 6	10
	SZ	10	0.4	4	10	6	10
Nb	UZ	300, 30	500, 0, 500, 500, 0	100	7,000	0, 0	160
	SZ	300	20	100	7,000	0	160
Ni	UZ	400, 40	100, 0, 100, 100, 0	50	100	30, 7	400
	SZ	400	4	50	100	7	400
Np	UZ	2.5, 0.25	23, 0, 23, 23, 0	2.2	5	35, 0.60	5
	SZ	2.5	0.92	2.2	5	0.6	5
Pa	UZ	2.5, 0.25	8, 0, 8, 8, 0	5,500	5	35, 0.6	380
	SZ	2.5	0.32	5,500	5	0.6	380
Pb	UZ	80, 8	270, 0, 270, 270, 0	25	300	5,000; 2,000	270
	SZ	80	10.8	25	300	2,000	270
Po	UZ	150, 15	150, 0, 150, 150, 0	10	300	5,000; 2,000	150
	SZ	150	6	10	300	2,000	150

63

TABLE E-18 (Cont.)

				Site			
Elementb	Soil Layer ^c	Hanford	INL	LANLd	NNSS	SRS	WIPP Vicinity
Pu	UZ	150, 15	2,500; 0; 2,500; 2,500; 0	4.1	7.5	5,900; 270	550
	SZ	150	100	4.1	7.5	270	550
Ra	UZ	10, 1	575, 0, 575, 575, 0	500	185	17, 5	500
	SZ	10	23	500	185	5	500
Sm	UZ	300, 30	2,500; 0; 2,500; 2,500; 0	50	245	8,500; 1,100	245
	SZ	300	100	50	245	1,100	245
Sr	UZ	10, 1	12, 0, 12, 12, 0	40	420	17, 5	15
	SZ	10	0.48	40	420	5	15
Tc	UZ	0, 0	0, 0, 0, 0, 0	0	0	0.2, 0.1	0.1
	SZ	0	0	0	0	0.1	0.1
Th	UZ	3,200; 320	500, 0, 500, 500, 0	5,000	7,000	2,000; 900	3,200
	SZ	3,200	20	5,000	7,000	900	3,200
U	UZ	0.6, 0.06	15.4, 0, 15.4, 15.4, 0	2.4	0.8	300, 200	35
	SZ	0.6	0.616	2.4	0.8	200	35

^a K_d values were obtained from site reports and other site sources, as identified in Tables E-3, E-5, E-7, E-9, E-11, and E-13.

 $^{^{}b}$ The K_{d} values for different isotopes of the same element were assumed to be the same in the analysis.

For purposes of this analysis, the transport of radionuclides leached from the disposal area was assumed to occur in vadose zones and the saturated zone at all potential disposal sites. The physical properties of these zones are site dependent. Abbreviations for vadose zones (which are unsaturated) and the saturated zone are UZ and SZ, respectively.

 $^{^{\}rm d}$ For the LANL site, all the vadose zones were assumed to have the same $K_{\rm d}$ value.

TABLE E-19 RESRAD-OFFSITE Input Parameter Values for Groundwater Analysis for Generic Commercial Sites in the Four Regions

Precipitation (m/yr) ^a	Parameter Name	Region I	Region II	Region III	Region IV
Precipitation (m/yr) ^a 0.074 0.18 0.05 0.001 Primary contamination area properties ^b Irrigation (m/yr) 0 0 0 0 Evapotranspiration coefficient 0 0 0 0 0 Runoff coefficient ^c 0 0 0 0 0 Rainfall and runoff ^c 160 160 160 160 160 Slope-length-steepness factor 0.4 0.4 0.4 0.4 0.4 0.4 Cover and management factor 0.03 0.03 0.03 0.03 0.03 Support practice factor 1 0 0	Site properties				
Primary contamination area properties Irrigation (m/yr)		0.074	0.18	0.05	0.001
Irrigation (m/yr)		0.071	0.10	0.05	0.001
Evapotranspiration coefficient Runoff coefficients* 0 0 0 0 Rainfall and runoff* 160 160 160 160 Slope-length-steepness factor 0.4 0.4 0.4 0.4 Cover and management factor 0.03 0.03 0.03 0.03 Support practice factor 1 1 1 1 Contaminated zoneb 1 0.4 0.4 0.4 0.4 Erosion rate (m/yr) 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.8		0	0	0	0
Runoff coefficient ^c 0 0 0 0 Rainfall and runoff ^c 160 160 160 160 Slope-length-steepness factor 0.4 0.4 0.4 0.4 Cover and management factor 0.03 0.03 0.03 0.03 Support practice factor 1 1 1 1 1 Contaminated zone ^b 1 0.4 0.4 0.4 0.4 Erosion rate (m/yr) 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.8 1.8 1.8 1.8 Soil erodibility factor 0.42 0.42 0.42 0.42 0.42 Field capacity 0.3 0.3 0.3 0.3 0.3 0.3 b-parameter 5.3 5.3 5.3 5.3 5.3 5.3 Hydraulic conductivity (m/yr) 10 10 10 10 10 Cover layerb Total porosity 0.4 0.4 0.4					
Rainfall and runoff ^c Slope-length-steepness factor 160 160 160 160 160 Slope-length-steepness factor 0.4 0.4 0.4 0.4 0.4 Cover and management factor 0.03 0.03 0.03 0.03 Support practice factor 1 1 1 1 Contaminated zone ^b 1 0.4 0.4 0.4 0.4 Erosion rate (m/yr) 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.8 1.8 1.8 1.8 1.8 Soil erodibility factor 0.42 0.4					
Slope-length-steepness factor					
Cover and management factor 0.03 0.03 0.03 0.03 Support practice factor 1 1 1 1 Contaminated zone ^b 3 0.4 0.4 0.4 0.4 Total porosity 0.4 0.4 0.4 0.4 0.4 Erosion rate (m/yr) 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.8 1.8 1.8 1.8 1.8 Soil erodibility factor 0.42 0.42 0.42 0.42 0.42 Field capacity 0.3 0.3 0.3 0.3 0.3 0.3 b-parameter 5.3 5.3 5.3 5.3 5.3 5.3 1.0 Hydraulic conductivity (m/yr) 10 10 10 10 10 Cover layer ^b 1.00E-05					
Support practice factor 1 1 1 1 1 Contaminated zone ^b Total porosity 0.4 0.4 0.4 0.4 Total porosity 0.0E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.8 1.8 1.8 1.8 1.8 Soil erodibility factor 0.42 0.42 0.42 0.42 0.42 Field capacity 0.3 0.3 0.3 0.3 0.3 b-parameter 5.3 5.3 5.3 5.3 5.3 Hydraulic conductivity (m/yr) 10 10 10 10 10 Cover layer ^b 0.4 0.4					
Contaminated zone ^b O.4 0.4 0.4 0.4 Total porosity 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.8 1.8 1.8 1.8 Soil erodibility factor 0.42 0.42 0.42 0.42 Field capacity 0.3 0.3 0.3 0.3 b-parameter 5.3 5.3 5.3 5.3 Hydraulic conductivity (m/yr) 10 10 10 10 Cover layer ^b 0.4 0.4 0.4 0.4 Erosion rate (m/yr) 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.5 1.5 1.5 1.5 Soil erodibility factor 0.35 0.35 0.35 0.35 0.35 Unsaturated zone 1 ^d Thickness (m) 3.353 13.41 2.16 54.86 Density (g/cm³) 1.6 1.5 1.5 1.6 Total porosity 0.38 0.42 0.44 <					
Total porosity 0.4 0.4 0.4 0.4 Erosion rate (m/yr) 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.8 1.8 1.8 1.8 Soil erodibility factor 0.42 0.42 0.42 0.42 Field capacity 0.3 0.3 0.3 0.3 b-parameter 5.3 5.3 5.3 5.3 Hydraulic conductivity (m/yr) 10 10 10 10 Cover layerb Total porosity 0.4 0.4 0.4 0.4 Erosion rate (m/yr) 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.5 1.5 1.5 1.5 Soil erodibility factor 0.35 0.35 0.35 0.35 0.35 Unsaturated zone 1 ^d Thickness (m) 3.353 13.41 2.16 54.86 Density (g/cm³) 1.6 1.5 1.5 1.6 Total porosity 0.38		•	•	•	1
Erosion rate (m/yr) 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.8 1.8 1.8 1.8 Soil erodibility factor 0.42 0.42 0.42 0.42 Field capacity 0.3 0.3 0.3 0.3 b-parameter 5.3 5.3 5.3 5.3 Hydraulic conductivity (m/yr) 10 10 10 10 Cover layerb Total porosity 0.4 0.4 0.4 0.4 Erosion rate (m/yr) 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.5 1.5 1.5 1.5 Soil erodibility factor 0.35 0.35 0.35 0.35 Unsaturated zone 1 ^d Thickness (m) 3.353 13.41 2.16 54.86 Density (g/cm³) 1.6 1.5 1.5 1.6 Total porosity 0.38 0.42 0.44 0.41 Effective porosity 0.093 0		0.4	0.4	0.4	0.4
Dry bulk density (g/cm³) 1.8 1.8 1.8 1.8 Soil erodibility factor 0.42 0.42 0.42 0.42 Field capacity 0.3 0.3 0.3 0.3 b-parameter 5.3 5.3 5.3 5.3 Hydraulic conductivity (m/yr) 10 10 10 10 Cover layerb 0.4 0.4 0.4 0.4 0.4 Erosion rate (m/yr) 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.5 1.6 1.6 1.8 1.6 1.5 1.5 1.6 1.6 1.6 1.8 1.6 <td></td> <td></td> <td></td> <td></td> <td></td>					
Soil erodibility factor 0.42 0.42 0.42 0.42 Field capacity 0.3 0.3 0.3 0.3 b-parameter 5.3 5.3 5.3 5.3 Hydraulic conductivity (m/yr) 10 10 10 10 Cover layerb Total porosity 0.4 0.4 0.4 0.4 0.4 Erosion rate (m/yr) 1.00E-05 1.00E					
Field capacity 0.3 0.3 0.3 0.3 b-parameter 5.3 5.3 5.3 5.3 Hydraulic conductivity (m/yr) 10 10 10 10 Cover layerb Total porosity 0.4 0.4 0.4 0.4 Erosion rate (m/yr) 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.5 1.5 1.5 1.5 Soil erodibility factor 0.35 0.35 0.35 0.35 0.35 Unsaturated zone 1 ^d Thickness (m) 3.353 13.41 2.16 54.86 Density (g/cm³) 1.6 1.5 1.5 1.6 Total porosity 0.38 0.42 0.44 0.41 Effective porosity 0.38 0.42 0.44 0.41 Field capacity 0.093 0.15 0.23 0.12 Hydraulic conductivity (m/yr) 1981 201 518 1798 b parameter ^b 5.3 5.3					
b-parameter 5.3 5.3 5.3 5.3 10 10 10 10 10 10 10 10 10 10 10 10 10					
Hydraulic conductivity (m/yr) 10 10 10 10 Cover layer ^b Total porosity 0.4 0.4 0.4 0.4 Erosion rate (m/yr) 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.5 1.5 1.5 1.5 Soil erodibility factor 0.35 0.35 0.35 0.35 Unsaturated zone 1 ^d Thickness (m) 3.353 13.41 2.16 54.86 Density (g/cm³) 1.6 1.5 1.5 1.6 Total porosity 0.38 0.42 0.44 0.41 Effective porosity 0.38 0.42 0.44 0.41 Field capacity 0.093 0.15 0.23 0.12 Hydraulic conductivity (m/yr) 1981 201 518 1798 b parameter ^b 5.3 5.3 5.3 5.3 Longitudinal dispersivity (m) ^b 0 0 0 0 Saturated zone hydrology ^d 13.72 15.24	- ·				
Cover layerb O.4 0.4 0.4 0.4 0.4 Erosion rate (m/yr) 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.5 1.5 1.5 1.5 1.5 Soil erodibility factor 0.35 0.35 0.35 0.35 0.35 Unsaturated zone 1 ^d Thickness (m) 3.353 13.41 2.16 54.86 Density (g/cm³) 1.6 1.5 1.5 1.6 Total porosity 0.38 0.42 0.44 0.41 Effective porosity 0.38 0.42 0.44 0.41 Field capacity 0.093 0.15 0.23 0.12 Hydraulic conductivity (m/yr) 1981 201 518 1798 b parameterb 5.3 5.3 5.3 5.3 Longitudinal dispersivity (m)b 0 0 0 0 Saturated zone hydrologyd 13.72 15.24 11.28 64 Density of saturat	•				
Total porosity 0.4 0.4 0.4 0.4 Erosion rate (m/yr) 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.5 1.5 1.5 1.5 Soil erodibility factor 0.35 0.35 0.35 0.35 Unsaturated zone 1 ^d Thickness (m) 3.353 13.41 2.16 54.86 Density (g/cm³) 1.6 1.5 1.5 1.6 Total porosity 0.38 0.42 0.44 0.41 Effective porosity 0.38 0.42 0.44 0.41 Field capacity 0.093 0.15 0.23 0.12 Hydraulic conductivity (m/yr) 1981 201 518 1798 b parameter ^b 5.3 5.3 5.3 5.3 Longitudinal dispersivity (m) ^b 0 0 0 0 Saturated zone hydrology ^d 13.72 15.24 11.28 64 Density of saturated zone (g/cm³) 1.6 1.8 1.6 1.7		10	10	10	10
Erosion rate (m/yr) 1.00E-05 1.00E-05 1.00E-05 1.00E-05 Dry bulk density (g/cm³) 1.5 1.5 1.5 1.5 Soil erodibility factor 0.35 0.35 0.35 0.35 Unsaturated zone 1 ^d Thickness (m) 3.353 13.41 2.16 54.86 Density (g/cm³) 1.6 1.5 1.5 1.6 Total porosity 0.38 0.42 0.44 0.41 Effective porosity 0.093 0.15 0.23 0.12 Hydraulic conductivity (m/yr) 1981 201 518 1798 b parameter ^b 5.3 5.3 5.3 5.3 Longitudinal dispersivity (m) ^b 0 0 0 0 Saturated zone hydrology ^d 13.72 15.24 11.28 64 Density of saturated zone (g/cm³) 1.6 1.8 1.6 1.7 Total porosity 0.38 0.4 0.38 0.3		0.4	0.4	0.4	0.4
Dry bulk density (g/cm³) 1.5 1.5 1.5 1.5 Soil erodibility factor 0.35 0.35 0.35 0.35 Unsaturated zone 1 ^d Thickness (m) 3.353 13.41 2.16 54.86 Density (g/cm³) 1.6 1.5 1.5 1.6 Total porosity 0.38 0.42 0.44 0.41 Effective porosity 0.38 0.42 0.44 0.41 Field capacity 0.093 0.15 0.23 0.12 Hydraulic conductivity (m/yr) 1981 201 518 1798 b parameter ^b 5.3 5.3 5.3 5.3 Longitudinal dispersivity (m) ^b 0 0 0 0 Saturated zone hydrology ^d 13.72 15.24 11.28 64 Density of saturated zone (g/cm³) 1.6 1.8 1.6 1.7 Total porosity 0.38 0.4 0.38 0.3					
Soil erodibility factor 0.35 0.35 0.35 Unsaturated zone 1 ^d Thickness (m) 3.353 13.41 2.16 54.86 Density (g/cm³) 1.6 1.5 1.5 1.6 Total porosity 0.38 0.42 0.44 0.41 Effective porosity 0.38 0.42 0.44 0.41 Field capacity 0.093 0.15 0.23 0.12 Hydraulic conductivity (m/yr) 1981 201 518 1798 b parameter ^b 5.3 5.3 5.3 5.3 Longitudinal dispersivity (m) ^b 0 0 0 0 Saturated zone hydrology ^d 13.72 15.24 11.28 64 Density of saturated zone (g/cm³) 1.6 1.8 1.6 1.7 Total porosity 0.38 0.4 0.38 0.3	The state of the s				
Unsaturated zone 1d 3.353 13.41 2.16 54.86 Density (g/cm³) 1.6 1.5 1.5 1.6 Total porosity 0.38 0.42 0.44 0.41 Effective porosity 0.38 0.42 0.44 0.41 Field capacity 0.093 0.15 0.23 0.12 Hydraulic conductivity (m/yr) 1981 201 518 1798 b parameterb 5.3 5.3 5.3 5.3 Longitudinal dispersivity (m)b 0 0 0 0 Saturated zone hydrologyd 13.72 15.24 11.28 64 Density of saturated zone (g/cm³) 1.6 1.8 1.6 1.7 Total porosity 0.38 0.4 0.38 0.3		· -	· -		
Thickness (m) 3.353 13.41 2.16 54.86 Density (g/cm³) 1.6 1.5 1.5 1.6 Total porosity 0.38 0.42 0.44 0.41 Effective porosity 0.38 0.42 0.44 0.41 Field capacity 0.093 0.15 0.23 0.12 Hydraulic conductivity (m/yr) 1981 201 518 1798 b parameterb 5.3 5.3 5.3 5.3 Longitudinal dispersivity (m)b 0 0 0 0 Saturated zone hydrologyd 13.72 15.24 11.28 64 Density of saturated zone (g/cm³) 1.6 1.8 1.6 1.7 Total porosity 0.38 0.4 0.38 0.3		0.55	0.55	0.55	0.55
Density (g/cm³) 1.6 1.5 1.5 1.6 Total porosity 0.38 0.42 0.44 0.41 Effective porosity 0.38 0.42 0.44 0.41 Field capacity 0.093 0.15 0.23 0.12 Hydraulic conductivity (m/yr) 1981 201 518 1798 b parameterb 5.3 5.3 5.3 5.3 Longitudinal dispersivity (m)b 0 0 0 0 Saturated zone hydrologyd 13.72 15.24 11.28 64 Density of saturated zone (g/cm³) 1.6 1.8 1.6 1.7 Total porosity 0.38 0.4 0.38 0.3		3 353	13 41	2 16	54.86
Total porosity 0.38 0.42 0.44 0.41 Effective porosity 0.38 0.42 0.44 0.41 Field capacity 0.093 0.15 0.23 0.12 Hydraulic conductivity (m/yr) 1981 201 518 1798 b parameter ^b 5.3 5.3 5.3 5.3 Longitudinal dispersivity (m) ^b 0 0 0 0 Saturated zone hydrology ^d 0 13.72 15.24 11.28 64 Density of saturated zone (g/cm³) 1.6 1.8 1.6 1.7 Total porosity 0.38 0.4 0.38 0.3					
Effective porosity 0.38 0.42 0.44 0.41 Field capacity 0.093 0.15 0.23 0.12 Hydraulic conductivity (m/yr) 1981 201 518 1798 b parameter ^b 5.3 5.3 5.3 5.3 Longitudinal dispersivity (m) ^b 0 0 0 0 Saturated zone hydrology ^d 0 0 0 0 Thickness (m) 13.72 15.24 11.28 64 Density of saturated zone (g/cm³) 1.6 1.8 1.6 1.7 Total porosity 0.38 0.4 0.38 0.3					
Field capacity 0.093 0.15 0.23 0.12 Hydraulic conductivity (m/yr) 1981 201 518 1798 b parameterb 5.3 5.3 5.3 5.3 Longitudinal dispersivity (m)b 0 0 0 0 Saturated zone hydrologyd 0 0 0 0 Thickness (m) 13.72 15.24 11.28 64 Density of saturated zone (g/cm³) 1.6 1.8 1.6 1.7 Total porosity 0.38 0.4 0.38 0.3					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Saturated zone hydrologyd 13.72 15.24 11.28 64 Density of saturated zone (g/cm³) 1.6 1.8 1.6 1.7 Total porosity 0.38 0.4 0.38 0.3					
Thickness (m) 13.72 15.24 11.28 64 Density of saturated zone (g/cm³) 1.6 1.8 1.6 1.7 Total porosity 0.38 0.4 0.38 0.3		Ü	O .	Ü	· ·
Density of saturated zone (g/cm ³) 1.6 1.8 1.6 1.7 Total porosity 0.38 0.4 0.38 0.3		13.72	15 24	11.28	64
Total porosity 0.38 0.4 0.38 0.3					
± •	Total porosity				
EXECUTIVE DEPOSITS 11 // 1 // 1 // 1 // 1 // 1 // 1 // 1	Effective porosity	0.22	0.23	0.22	0.17
Hydraulic conductivity (m/yr) ^e 103.6 18.9 21.03 91	* *				
Hydraulic gradient to well ^e 1 1 1 1	• • • • • • • • • • • • • • • • • • • •				
Depth of aquifer contributing to well 10 10 10 10					
(m), below water table	1 1	10	10	10	10
Longitudinal dispersivity (m) 10% of 10% of 10% of 10% of		10% of	10% of	10% of	10% of
distance distance distance distance	Longitudinal dispersivity (iii)				
traveled traveled traveled traveled					

TABLE E-19 (Cont.)

Parameter Name	Region I	Region II	Region III	Region IV
Horizontal lateral dispersivity (m)	10% of	10% of	10% of	10% of
constant and an empty of the first	longitudinal	longitudinal	longitudinal	longitudinal
	dispersivity	dispersivity	dispersivity	dispersivity
Disperse vertically (yes/no)	Yes	Yes	Yes	Yes
Vertical lateral dispersivity (m)	10% of	10% of	10% of	10% of
	horizontal	horizontal	horizontal	horizontal
	lateral	lateral	lateral	lateral
	dispersivity	dispersivity	dispersivity	dispersivity

- The input value for the precipitation rate was set to match the infiltration rate used in NUREG-0782, Vol. 4 (NRC 1981). In order to obtain the same infiltration rate to the vadose zone as that used in NUREG-0782, the irrigation rate, evapotranspiration rate, and runoff coefficient were all set to 0.
- b Input parameters for the primary contamination area, contaminated zone, and cover layers were kept the same as those used for the DOE alternate sites, unless specifically noted.
- The evapotranspiration rate and runoff coefficient were set to zero in order to obtain the desired water infiltration rate. See also note footnote a.
- d Input parameters for the unsaturated and saturated zones were obtained from Toblin (1998, 1999), and Poe (1998), unless specifically noted.
- ^e To obtain the same Darcy's velocity as used in Toblin (1999), the hydraulic conductivity was set to the Darcy velocity value, while the hydraulic gradient was set to 0.

1

TABLE E-20 Soil/Water Distribution Coefficients (cm 3 /g) for Different Radionuclides a for Commercial Facilities in the Four Regions

	Regio	on I	Regio	n II	Region	n III	Regio	n IV
Element	Unsaturated Zone	Saturated Zone						
-								-
Ac	228	228	538	228	538	228	228	228
Am	82	82	200	82	200	82	82	82
C	0	0	0	0	0	0	0	0
Cm	82	82	200	82	200	82	82	82
Co	2	2	9	2	9	2	2	2
Cs	51	51	249	51	249	51	51	51
Feb	209	209	209	209	209	209	209	209
$Gd^{\mathbf{b}}$	50	50	50	50	50	50	50	50
Н	0	0	0	0	0	0	0	0
I	0	0	0	0	0	0	0	0
Mn ^b	50	50	50	50	50	50	50	50
$Mo^{\mathbf{b}}$	4	4	4	4	4	4	4	4
Nb	50	50	100	50	100	50	50	50
Ni	12	12	59	12	59	12	12	12
Np	3	3	3	3	3	3	3	3
Pa	0	0	50	0	50	0	0	0
Pb	234	234	597	234	597	234	234	234
Po^{C}	234	234	597	234	597	234	234	234
Pu	10	10	100	10	100	10	10	10
Ra	24	24	100	24	100	24	24	24
Sm	228	228	538	228	538	228	228	228
Sr	24	24	100	24	100	24	24	24
Tc	3	3	3	3	3	3	3	3
Th	100	100	100	100	100	100	100	100
U	0	0	50	0	50	0	0	0

 $^{^{\}rm a}$ K_d values were obtained from Toblin (1999) unless specifically noted.

^b Selected K_d values for Fe, Gd, Mn, Mo, respectively, were the smallest values among those used for the six federal sites.

^c The value of the K_d for Po was set to be same as the value of the K_d for Pb.

TABLE E-21 Estimated Peak Annual Doses (in mrem/yr) from the Use of Contaminated Groundwater for the No Action Alternative^{a,b}

			Peak Annual Dose (mrem/yr) within 10,000 and 100,000 Years											
			GTO	CC LLRW			GTCC-Like Waste							
NRC Region	Time Period of Analysis (yr)	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH					
I	10,000 100.000	130 130	73,000 73,000	3,800 3,800	26,000 26,000	_	_	97,000 97,000	270,000 270,000					
II	10,000 10,000 100.000	10 170	210 16.000	-	850 3,200	0.14 0.14	_	0.14 180	0 14,000					
III	10,000 10,000 100.000	6.2 190	120 13.000	 -	- -	- -	_	_ _ _	- -					
IV	10,000 100,000	0	0 9.3	0 0	0 0.023	0 0	0 0	0 0.89	0 9.8					

^a CH = contact-handled, GTCC = greater-than-Class C, RH = remote-handled, Region I–IV = a generic storage site located within each of the four NRC regions.

These annual doses are associated with the use of contaminated groundwater by a hypothetical resident farmer located 100 m (330 ft) from the edge of the storage facility. All values are given to two significant figures, and a dash means there is no inventory for that waste type. The values given in this table represent the peak annual doses from each waste type. Because of the different radionuclide mixes and activities contained in the different waste types, the peak annual doses that could result from each waste type individually generally occur at different times than the peak annual dose from the entire inventory. The peak annual doses from the entire GTCC waste inventory are given in Chapter 3 of the EIS.

TABLE E-22 Estimated Peak Annual Doses (in mrem/yr) from the Use of Contaminated Groundwater at the Various Sites for the Stored Group 1 Inventory^{a,b}

		m. p. 1		GT	CC LLRW			GTCC	C-Like Waste	
Site	Method	Time Period of Analysis (yr)	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste
Hanford	Vault	10,000	0.26	_b	0	0.044	0	0	0.012	40
		100,000	0.26	_	< 0.001	0.36	0	< 0.001	20	40
	Trench	10,000	0.33	_	0	0.042	0	0	0.014	39
		100,000	0.33	_	< 0.001	0.35	0	< 0.001	24	39
	Borehole	10,000	0.17	_	0	0.013	0	0	< 0.0042	0.11
		100,000	0.17	_	0	0.11	< 0.001	< 0.001	7.5	0.63
NL	Vault	10,000	7.7	_	0	2.3	0.86	0	5.5	2,200
		100,000	7.7	_	0.0029	2.3	0.86	0	70	2,200
	Trench	10,000	8.9	_	0	2.0	0.99	0	6.4	1,900
		100,000	8.9	_	0	2.0	0.99	0	78	1,900
	Borehole	10,000	6.2	_	0	0.79	0.68	0	48	750
		100,000	6.2	_	0	0.79	0.68	0	53	750
LANL	Vault	10,000	60	_	0	0.22	0.45	0	1.8	230
		100,000	60	_	0	0.22	0.45	0	1.8	230
	Trench	10,000	5.2	_	0	0.21	0.55	0	2.2	210
		100,000	5.2	_	0	0.21	0.55	0	2.2	210
	Borehole	10,000	3.0	_	0	0.065	0.33	0	0.74	67
		100,000	3.0	_	0	0.065	0.33	0	0.74	67
NNSS	Vault	10,000	0	_	0	0	0	0	0	0
		100,000	0	_	0	0	0	0	0	0
	Trench	10,000	0	_	0	0	0	0	0	0
		100,000	0	_	0	0	0	0	0	0
	Borehole	10,000	0	_	0	0	0	0	0	0
		100,000	0	_	0	0	0	0	0	0

TABLE E-22 (Cont.)

					Peak Annual	Dose (mrem/yr) w	rithin 10,000 an	d 100,000 Y	ears		
	Method		GTCC LLRW				GTCC-Like Waste				
Site		Time Period of Analysis I (yr)	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste	
SRS ^c	Vault	10,000 100,000	2.9 2.9	_ _	0.0051 0.0051	1.3 1.3	0.21 0.21	< 0.001 < 0.001	40 120	1,000 1,000	
	Trench	10,000 100,000	4.0 8.0	_ _	0.0059 0.0059	1.4 1.4	0.27 0.27	< 0.001 < 0.001	62 130	1,100 1,100	
WIPP Vicinity	Vault	10,000 100,000	0 2.9	_	0 0	0 0.16	0	0 0	0 0.039	0 36	
	Trench	10,000 10,000 100,000	0 2.9	_	0	0 0 0.12	0	0	0 0 0.039	0 28	
	Borehole	10,000 100,000	0 2.9	<u> </u>	0 0	0 0.068	0 0	0 0	0 0.022	0 16	
Region I ^c	Vault	10,000 100,000	14 14	- -	0 0	24 24	0.027 0.027	0.0075 0.0075	700 700	3,200 3,200	
Region II ^c	Vault	10,000 100,000	0.98 16	_	0.013 0.013	0.056 5.4	0.13 0.13	0	18 130	940 940	
	Trench	10,000 100,000	1.7 62	_ _	0 0	0.25 18	0.16 0.16	0	20 590	950 2,100	
Region III ^c	Vault	10,000 100,000	1.1 32	- -	0 0	0.077 3.7	0.16 0.16	0 0	6.3 90	410 410	
Region IV	Vault	10,000 100,000	0 0.0041	<u> </u>	0 0	0 0.11	0	0 0	0 5.8	0 5.7	
	Trench	10,000 100,000	0 0.0072	_ _	0	0 0.10	0	0 0	0 7.1	0 5.4	
	Borehole	10,000 100,000	0 0.028	-	0 0	0 0.034	0 0.0039	0	0 2.3	0 1.7	

Footnotes appear on next page.

Ĥ

TABLE E-22 (Cont.)

- a CH = contact-handled, GTCC = greater-than-Class C, INL = Idaho National Laboratory, LANL = Los Alamos National Laboratory,
 NNSS = Nevada National Security Site, RH = remote-handled, SRS = Savannah River Site, WIPP = Waste Isolation Pilot Plant, Region I–IV = a generic commercial site located within each of the four major regions of the country.
- These annual doses are associated with the use of contaminated groundwater by a hypothetical resident farmer located 100 m (330 ft) from the edge of the disposal facility. All values are given to two significant figures, and a dash means there is no inventory for that waste type. Annual doses of less than 0.001 mrem/yr are reported as <0.001. The values given in this table represent the peak annual doses from each waste type. Because of the different radionuclide mixes and activities contained in the different waste types, the peak annual doses that could result from each waste type individually generally occur at different times than the peak annual dose from the entire inventory. The peak annual doses from the entire GTCC waste inventory are given in the site-specific chapters of the EIS.
- ^c The above-grade vault is the only method evaluated for Region I and Region III because of the shallow groundwater depth. The borehole method is not considered suitable for SRS and Regions I, II, and III.

					Peak Annual I	Oose (in mrem/yr)	within 10,000 a	nd 100,000	Years		
				GT	CC LLRW		GTCC-Like Waste				
Site	Method	Time Period of Analysis (yr)	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	
Hanford	Vault	10,000 100,000	4.0 4.0	0 21	_b _	0.0013 0.011	0	0 0.0012	0.0045 5.6	0.12 480	
	Trench	10,000 100,000	5.0 5.0	0 25	_	0.0013 0.011	0	0 0.0015	0.0055 6.9	0.12 460	
	Borehole	10,000 100,000	2.6 2.6	0 11	- -	< 0.001 0.0033	0 < 0.001	0 < 0.001	0.0016 2.1	0.036 140	
INL	Vault	10,000 100,000	120 120	0.028 150	_ _	0.069 0.069	2.1 2.1	0 0.0058	1.6 19	6.4 1,700	
	Trench	10,000 100,000	140 140	0 170	<u>-</u>	0	2.5 2.5	0	1.8 22	5.7 1,500	
	Borehole	10,000 100,000	93 93	32 74	_ _	0.024 0.024	1.7 1.7	0	8.4 8.6	580 580	
LANL	Vault	10,000 100,000	64 64	0	_	0 0	1.1 1.1	0	0.52 0.52	0.62 0.62	
	Trench	10,000 10,000 100,000	78 78	0	_ _ _	0	1.1 1.4 1.4	0	0.63 0.63	0.58 0.58	
	Borehole	10,000 100,000	46 46	0	- -	0	0.81 0.81	0	0.21 0.21	0.18 0.18	
NNSS	Vault	10,000 100,000	0	0	_	0	0	0	0	0	
	Trench	10,000 10,000 100,000	0	0	_ _	0	0	0	0	0	
	Borehole	10,000 100,000	0	0 0	_ _	0 0	0	0 0	0	0	

TABLE E-23 (Cont.)

					Peak Annual	Dose (mrem/yr) w	vithin 10,000 an	d 100,000 Y	ears		
				GT	CC LLRW		GTCC-Like Waste				
Site		Time Period of Analysis hod (yr)	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste	
SRS ^c	Vault	,	45	150	_	0.039	0.53	< 0.001	10	3.6	
	Trench	10,000	45 60 120	150 170 330	- - -	0.039 0.043 0.043	0.53 0.66 0.66	< 0.001 < 0.001 0.073	33 16 38	400 3.9 430	
WIPP Vicinity	Vault	10,000	0	0	-	0	0	0	0	0	
	Trench	10,000	44 0 44	0 0 0	<u>-</u> -	0.0047 0 0.0037	0 0 0	0 0 0	0.014 0 0.014	0.44 0 0.34	
	Borehole	10,000	0 44	0 0	_ _ _	0 0 0.0021	0 0	0	0 < 0.001	0.19	
Region I ^c	Vault		220 220	5,300 5,300	_	0.73 0.73	0.067 0.067	10 10	200 200	9,700 9,700	
Region II ^c	Vault	10,000	15	220	_	0.0059	0.33	0	3.2	0.55	
	Trench	10,000	250 26 940	1,400 250 5,400	- - -	0.16 0 0.54	0.33 0.39 0.39	0.049 0 4.6	37 4.7 170	330 320 430	
Region III ^c	Vault		18 490	95 940	- -	0 0.11	0.40 0.40	0 0.19	1.4 26	0.2 170	
Region IV	Vault	10,000	0	0	_	0	0	0	0	0	
	Trench	100,000 10,000 100,000	0.062 0 0.11	5.7 0 6.9	_	0.0032 0 0.0031	0 0 0.0013	0 0 0	1.6 0 1.9	130 0 130	
	Borehole	10,000 10,000 100,000	0.11 0 0.45	0 2.3	_ _ _	0.0031	0.0013	0	0 0.64	0 44	

Footnotes appear on next page.

- ^a CH = contact-handled, GTCC = greater-than-Class C, INL = Idaho National Laboratory, LANL = Los Alamos National Laboratory, NNSS = Nevada National Security Site, RH = remote-handled, SRS = Savannah River Site, WIPP = Waste Isolation Pilot Plant, Region I–IV = a generic commercial site located within each of the four major regions of the country.
- These annual doses are associated with the use of contaminated groundwater by a hypothetical resident farmer located 100 m (330 ft) from the edge of the disposal facility. All values are given to two significant figures, and a dash means there is no inventory for that waste type. Annual doses of less than 0.001 mrem/yr are reported as <0.001. The values given in this table represent the peak annual doses from each waste type. Because of the different radionuclide mixes and activities contained in the different waste types, the peak annual doses that could result from each waste type individually generally occur at different times than the peak annual dose from the entire inventory. The peak annual doses from the entire GTCC waste inventory are given in the site-specific chapters of the EIS.
- ^c The above-grade vault is the only method evaluated for Region I and Region III because of the shallow groundwater depth. The borehole method is not considered suitable for SRS and Regions I, II, and III.

TABLE E-24 Estimated Peak Annual Doses (in mrem/yr) from the Use of Contaminated Groundwater at the Various Sites for the Total Group 1 Inventory a,b

				Peak Annual Dose (mrem/yr) within 10,000 and 100,000 Years									
				GT	CC LLRW		GTCC-Like Waste						
Site	Method	Time Period of Analysis (yr)	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste			
Hanford	Vault	10,000	4.2	0	0	0.045	0	0	0.016	41			
		100,000	4.2	21	< 0.001	0.38	0	0.0012	26	490			
	Trench	10,000	5.3	0	0	0.043	0	0	0.02	39			
	11011011	100,000	5.3	25	< 0.001	0.36	0	0.0015	31	480			
	Borehole	10,000	2.8	0	0	0.013	0	0.0013	0.0058	0.14			
	Boromore	100,000	2.8	11	0	0.11	< 0.001	< 0.001	9.6	140			
INL	Vault	10,000	130	0.028	0	2.3	3.0	0	7.1	2,200			
		100,000	130	150	0.0029	2.3	3.0	0.0058	89	2,200			
	Trench	10,000	150	0	0	2.0	3.4	0	8.2	1,900			
		100,000	150	170	0	2.0	3.4	0	100	1,900			
	Borehole	10,000	99	32	0	0.81	2.4	0	56	750			
		100,000	99	74	0	0.81	2.4	0	61	750			
LANL	Vault	10,000	120	0	0	0.22	1.6	0	2.3	230			
		100,000	120	0	0	0.22	1.6	0	2.3	230			
	Trench	10,000	84	0	0	0.21	1.9	0	2.8	210			
		100,000	84	0	0	0.21	1.9	0	2.8	210			
	Borehole	10,000	49	0	0	0.065	1.1	0	0.95	67			
		100,000	49	0	0	0.065	1.1	0	0.95	67			
NNSS	Vault	10,000	0	0	0	0	0	0	0	0			
		100,000	0	0	0	0	0	0	0	0			
	Trench	10,000	0	0	0	0	0	0	0	0			
		100,000	0	0	0	0	0	0	0	0			
	Borehole	10,000	0	0	0	0	0	0	0	0			
		100,000	0	0	0	0	0	0	0	0			

TABLE E-24 (Cont.)

		_			Peak Annual	Dose (mrem/yr) v	vithin 10,000 ar	d 100,000 Y	Years	
				GT	CC LLRW			GTCC	C-Like Waste	
Site	Method	Time Period of Analysis (yr)	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH
SRS ^c	Vault	10,000 100,000	48 48	150 150	0.0051 0.0051	1.3 1.3	0.74 0.74	< 0.001 < 0.001	50 150	1,000 1,000
	Trench	10,000 100,000	64 130	170 330	0.0059 0.0059	1.4 1.4	0.93 0.93	< 0.001 < 0.001 0.073	79 170	1,100 1,100
WIPP Vicinity	Vault	10,000 100,000	0 47	0 0	0	0 0.16	0	0 0	0 0.054	0 36
	Trench	10,000 100,000	0 47	0	0	0 0.13	0	0	0 0.053	0 28
	Borehole	10,000 100,000	0 47	0	0	0 0.070	0	0	0 0.030	0 16
Region I ^c	Vault	10,000 100,000	230 230	5,300 5,300	0 0	25 25	0.093 0.093	10 10	900 900	10,000 10,000
Region II ^c	Vault	10,000 100,000	16 260	220 1,400	0.013 0.013	0.060 5.5	0.46 0.46	0 0.049	19 170	940 940
	Trench	10,000 100,000	27 1,000	250 5,400	0	0.25 18	0.55 0.55	0 4.6	22 760	950 2,600
Region III ^c	Vault	10,000 100,000	19 520	95 940	0 0	0.077 3.8	0.55 0.55	0 0.19	6.8 120	410 580
Region IV	Vault	10,000 100,000	0 0.066	0 5.7	0 0	0 0.11	0	0	0 7.3	0 140
	Trench	10,000 100,000	0 0.12	0 6.9	0	0 0.11	0 0.0013	0	0 9	0 130
	Borehole	10,000 100,000	0 0.48	0 2.3	0 0	0 0.035	0 0.013	0 0	0 3	0 45

Footnotes appear on next page.

TABLE E-24 (Cont.)

- CH = contact-handled, GTCC = greater-than-Class C, INL = Idaho National Laboratory, LANL = Los Alamos National Laboratory, NNSS = Nevada National Security Site, RH = remote-handled, SRS = Savannah River Site, WIPP = Waste Isolation Pilot Plant, Region I- IV = a generic commercial site located within each of the four major regions of the country.
- These annual doses are associated with the use of contaminated groundwater by a hypothetical resident farmer located 100 m (330 ft) from the edge of the disposal facility. All values are given to two significant figures. Annual doses of less than 0.001 mrem/yr are reported as <0.001. The values given in this table represent the peak annual doses from each waste type. Because of the different radionuclide mixes and activities contained in the different waste types, the peak annual doses that could result from each waste type individually generally occur at different times than the peak annual dose from the entire inventory. The peak annual doses from the entire GTCC waste inventory are given in the site-specific chapters of the EIS.
- The above-grade vault is the only method evaluated for Region I and Region III because of the shallow groundwater depth. The borehole method is not considered suitable for SRS and Regions I, II, and III.

 $TABLE\ E-25\ Estimated\ Peak\ Annual\ Doses\ (in\ mrem/yr)\ from\ the\ Use\ of\ Contaminated\ Groundwater\ at\ the\ Various\ Sites\ for\ the\ Total\ Group\ 2\ Inventory^{a,b}$

	Method		Peak Annual Dose (rem/yr) within 10,000 and 100,000 Years									
				GT	CC LLRW		GTCC-Like Waste					
Site		Time Period of Analysis (yr)	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH		
Hanford	Vault	10,000	2.0	0	0.025	1.6	_b	-	0.0062	0.23		
		100,000	2.0	0	3.7	9.4	_	_	11	22		
	Trench	10,000	2.5	0	0.031	1.5	_	_	0.0076	0.22		
		100,000	2.5	0	4.5	8.9	_	_	14	21		
	Borehole	10,000	1.3	0	0.0091	0.47	_	_	0.0023	0.066		
		100,000	1.3	0	1.4	2.8	_	_	4.2	6.5		
INL	Vault	10,000	57	0	2.4	100	_	_	3.1	12		
		100,000	57	0	13	100	_	_	38	76		
	Trench	10,000	65	0	2.9	100	_	_	3.6	11		
		100,000	65	0	14	100	_	_	43	69		
	Borehole	10,000	45	0	5.6	50	_	_	17	26		
		100,000	45	0	5.9	50	_	_	18	30		
LANL	Vault	10,000	30	0	0.87	40	_	_	1.0	3.1		
		100,000	30	0	0.87	40	_	_	1.0	3.1		
	Trench	10,000	37	0	1.0	38	_	_	1.2	2.9		
		100,000	37	0	1.0	38	_	_	1.2	2.9		
	Borehole	10,000	22	0	0.35	13	_	_	0.42	0.96		
		100,000	22	0	0.35	13	_	_	0.42	0.96		
NNSS	Vault	10,000	0	0	0	0	_	_	0	0		
		100,000	0	0	0	0	_	_	0	0		
	Trench	10,000	0	0	0	0	_	_	0	0		
	11011011	100,000	0	0	0	0	_	_	0	0		
	Borehole	10,000	0	0	0	0	_	_	0	0		
	Dorelloic	100,000	0	0	0	0	_	_	0	0		

TABLE E-25 (Cont.)

		Peak Annual Dose (mrem/yr) within 10,000 and 100,000 Years										
				GTCC LLRW				GTCC-Like Waste				
Site	Method	Time Period of Analysis (yr)	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste - RH	Activated Metals	Sealed Sources	Other Waste - CH	Other Waste		
SRS ^c	Vault	10,000	21	0	10	390	_	_	20	50		
		100,000	21	0	26	390	_	_	66	110		
	Trench	10,000	28	0	13	460	_	_	32	59		
		100,000	62	0	27	460	_	_	76	59		
WIPP Vicinity	Vault	10,000	0	0	0	0	_	_	0	0		
•		100,000	20	0	0.017	3.6	_	_	0.022	0.67		
	Trench	10,000	0	0	0	0	_	_	0	0		
		100,000	20	0	0.016	2.8	_	_	0.022	0.52		
	Borehole	10,000	0	0	0	0	_	_	0	0		
		100,000	19	0	0.0091	1.6	_	_	0.012	0.29		
Region I ^c	Vault	10,000	110	0	71	490	_	_	410	820		
C		100,000	110	0	71	490	_	_	410	820		
Region II ^c	Vault	10,000	7.1	0	5.4	210	_	_	6.3	39		
C		100,000	120	0	10	210	_	_	76	150		
	Trench	10,000	12	0	6.6	210	_	_	9.5	35		
		100,000	480	0	43	330	_	_	340	530		
Region III ^c	Vault	10,000	7.8	0	2.1	83	_	_	2.5	15		
Ü		100,000	240	0	7.1	74	-	_	56	110		
Region IV	Vault	10,000	0	0	0	0	_	_	0	0		
J		100,000	0.11	0	1.0	8.4	_	_	3.1	6.2		
	Trench	10,000	0	0	0	0	_	_	0	0		
		100,000	0.14	0	1.2	6.9	_	_	3.9	5.8		
	Borehole	10,000	0	0	0	0	_	_	0	0		
		100,000	0.26	0	0.41	1.5	_	_	1.3	2.0		

Footnotes appear on next page.

- CH = contact-handled, GTCC = greater-than-Class C, INL = Idaho National Laboratory, LANL = Los Alamos National Laboratory, NNSS = Nevada National Security Site, RH = remote-handled, SRS = Savannah River Site, WIPP = Waste Isolation Pilot Plant, Region I–IV = a generic commercial site located within each of the four major regions of the country.
- These annual doses are associated with the use of contaminated groundwater by a hypothetical resident farmer located 100 m (330 ft) from the edge of the disposal facility. All values are given to two significant figures, and a dash means there is no inventory for that waste type. Annual doses of less than 0.001 mrem/yr are reported as <0.001. The values given in this table represent the peak annual doses from each waste type. Because of the different radionuclide mixes and activities contained in the different waste types, the peak annual doses that could result from each waste type individually generally occur at different times than the peak annual dose from the entire inventory. The peak annual doses from the entire GTCC waste inventory are given in the sitespecific chapters of the EIS.
- The above-grade vault is the only method evaluated for Region I and Region III because of the shallow groundwater depth. The borehole method is not considered suitable for SRS and Regions I, II, and III.

Appendix E: Evaluation of Long-Term Human Health Impacts

TABLE E-26 Sensitivity Analysis Cases Addressed in the EIS

Parameter	Base Case	Case I	Case II	Case III	Case IV	Case V	Case VI	Case VII	Case VIII	Case IX	Case X
Effective period of grout (yr)	500	500	500	2,000	2,000	2,000	5,000	5,000	5,000	500	500
Percentage of natural infiltration rate into the waste units after 500 years (%)	20	50	100	20	50	100	20	50	100	20	20
Distance to the hypothetical receptor (m)	100	100	100	100	100	100	100	100	100	300	500

TABLE E-27 Peak Annual Doses within 10,000 Years and the Occurrence Times at the WIPP Vicinity for the Different Sensitivity Analysis Cases^a

Result	Base Case	Case I	Case II	Case III	Case IV	Case V	Case VI	Case VII	Case VIII	Case IX	Case X
Peak annual dose (mrem/yr) Time (yr)	0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0

^a The sensitivity analysis considered the disposal of stored Group 1 GTCC-like Other Waste - CH by using the trench method.

Result	Base Case	Case I	Case II	Case III	Case IV	Case V	Case VI	Case VII	Case VIII	Case IX	Case X
Peak annual dose (mrem/yr) Time (yr)	62	140	250	41	85	130	37	72	100	23	13
	610	580	550	2,100	2,100	2.000	5,100	5.100	5,100	780	940

^a The sensitivity analysis considered the disposal of stored Group 1 GTCC-like Other Waste - CH by using the trench method. All values are given to two significant figures. The times for the peak annual doses represent the time after failure of the cover and engineered barriers (which is assumed to begin 500 years after closure of the disposal facility).

E.7 REFERENCES

2

- 3 Adler Flitton, M.K., et al., 2004, Long Term Corrosion/Degradation Test Six Year Results,
- 4 INEEL/EXT-04-02335, prepared for U.S. Department of Energy, Idaho Falls, Id., Sept.

5

- 6 Anderson, S.R., and B.D. Lewis, 1989, Stratigraphy of the Unsaturated Zone at the Radioactive
- 7 Waste Management Complex, Idaho National Engineering Laboratory, Idaho, Water-Resources
- 8 Investigations Report 89-4065, U.S. Geological Survey, DOE/ID-22080, U.S. Department of
- 9 Energy, Idaho Operations Office, Idaho Falls, Id., May.

10

- 11 Argonne (Argonne National Laboratory), 2010, Post-Closure Performance Analysis of the
- 12 Conceptual Disposal Facility Designs at the Sites Considered for the Greater-Than-Class C
- 13 Environmental Impact Statement, ANL/EVS/R-10/8, prepared by Argonne, Argonne, Ill., for
- 14 U.S. Department of Energy, Office of Environmental Management, Oct.

15

- 16 Baes, C.F., et al., 1984, A Review and Analysis of Parameters for Assessing Transport of
- 17 Environmentally Released Radionuclides through Agriculture, ORNL-5786, Oak Ridge National
- 18 Laboratory, Oak Ridge, Tenn., Sept.

19

- 20 Bechtel Nevada, 2001, Composite Analysis for the Area 5 Radioactive Waste Management Site
- 21 at the Nevada Test Site, Nye County, Nevada, DOE-NV-594.

22

- 23 Bechtel Nevada, 2002, 2001 Data Report: Groundwater Monitoring Program Area 5
- 24 Radioactive Waste Management Site, DOE/NV-11718-694.

25

- 26 Bechtel Nevada, 2006, Addendum 2 to the Performance Assessment of the Area 5 Radioactive
- 27 Waste Management Site at the Nevada Test Site, Nye County, Nevada, Update of the
- 28 Performance Assessment Methods and Results, DOE/NV/11718-176ADD2, Las Vegas, Nev.,
- 29 June.

30

- 31 Bechtel/SAIC, 2004, Radionuclide Transport Models under Ambient Conditions,
- 32 DOC.20041101.0002, prepared for U.S. Department of Energy, Office of Civilian Radioactive
- 33 Waste Management, Oct.

34

- 35 Beyeler, W.E., et al., 1999, Residual Radioactive Contamination from Decommissioning,
- 36 Parameter Analysis, Draft Report for Comment, NUREG/CR-5512, Vol. 3, U.S. Nuclear
- 37 Regulatory Commission, Washington, D.C., Oct.

38

- 39 Birdsell, K.H., et al., 1999, Simulation of Groundwater Flow and Radionuclide Transport in the
- 40 Vadose and Saturated Zones beneath Area G, Los Alamos National Laboratory, LA-13299-MS,
- 41 Los Alamos National Laboratory, Los Alamos, N.M., July.

42

- 43 BIOMOVS II, 1996, Long-Term Contaminant Migration and Impacts from Uranium Mill
- 44 Tailings Comparison of Computer Models Using a Realistic Dataset, BIOMOVS II Technical
- 45 Report No. 5, Biosphere Model Validation Study Steering Committee, Swedish Radiation
- 46 Protection Institute, Stockholm, Sweden.

- 1 Bowen, B.M., 1990, *Los Alamos Climatology*, LA-11735-MS, Los Alamos National Laboratory,
- 2 Los Alamos, N.M.

- 4 Bradbury, M.H., and L.R. Van Loon, 1998, Cementitious Near-Field Sorption Data Bases for
- 5 Performance Assessment of a L/ILW Repository in a Palfris Marl Host Rock, CEM-94,
- 6 UPDATE 1, June 1997, PSI Bericht, 98-01, Paul Scherrer Institut, CH-5232 Villigen PSI,
- 7 Switzerland.

8

- 9 Brookins, D.G., 1984, Geochemical Aspects of Radioactive Waste Disposal, Springer-Verlag,
- 10 New York, N.Y.

11

- 12 Campbell, A.R., et al., 1996, "Stable Isotope Study of Soil Water, WIPP Site New Mexico:
- 13 Estimation of Recharge to Rustler Aquifers," Radioactive Waste Management and
- 14 Environmental Restoration 20:153–165.

15

- 16 Cook, J.R., et al., 2004, Closure Plan for the E Area Low-Level Waste Facility, WSRC-RP-2000-
- 17 00425, Rev. 4, Westinghouse Savannah River Company, Aiken, S.C., May.

18

- 19 DOE (U.S. Department of Energy), 1999, Radioactive Waste Management Manual, DOE M
- 20 435.1-1, Change 1 dated June 19, 2001, certified Jan. 9, 2007, Office of Environmental
- 21 Management.

22

- 23 DOE, 2003, Performance Assessment for the Tank Farm Facility at the Idaho National
- 24 Engineering and Environmental Laboratory, Volume 1, Sections 1 through 8, DOE/ID-10966,
- 25 Rev. 1, Apr.

26

- 27 DOE, 2004, Final Hanford Site Solid (Radioactive and Hazardous) Waste Program
- 28 Environmental Impact Statement, Richland, Benton County, Washington, DOE/EIS-0286F,
- 29 Richland Operations Office, Richland, Wash., Jan.

30

- 31 DOE, 2005, Technical Guidance Document for Tank Closure Environmental Impact Statement
- 32 Vadose Zone and Groundwater Revised Analyses, Final Rev. 0, Mar.

33

- 34 DOE, 2006a, Performance Assessment for the Radioactive Waste Management Complex Active
- 35 Low-Level Waste Disposal Facility at the Idaho National Laboratory Site (Draft),
- 36 DOE/NE-ID-11243 (Draft), Apr.

37

- 38 DOE, 2006b, Waste Isolation Pilot Plant Annual Site Environmental Report for 2005,
- 39 DOE/WIPP-06-2225, Sept.

40

- 41 DOE, 2007, Performance Assessment for the Radioactive Waste Management Complex Active
- 42 Low-Level Waste Disposal Facility at the Idaho National Laboratory Site, DOE/NE-ID-11243,
- 43 Idaho Operations Office, Idaho Falls, Id.

44

45 DOE, 2009, *Draft Tank Farm Closure and Waste Management Environmental Impact Statement* 46 *for the Hanford Site, Richland, Washington*, DOE/EIS-0391, Oct.

- 1 Duncan, J.P. (editor), et al., 2007, Hanford Site National Environmental Policy Act (NEPA)
- 2 Characterization, PNNL-6415, Rev. 18, prepared by Pacific Northwest National Laboratory for
- 3 U.S. Department of Energy, Sept.

- 5 Flach, G.P., et al., 2005, Preliminary Closure Analysis for Slit Trenches #1 and #2,
- 6 WSRC-TR-2005-00093, Westinghouse Savannah River Company, Aiken, S.C., Mar. 9.

7

- 8 EPA (U.S. Environmental Protection Agency), 2000, Estimated per Capita Water Ingestion in
- 9 the United States, Based on Data Collected by the United States Department of Agriculture's
- 10 1994–1996 Continuing Survey of Food Intakes by Individuals, EPA-822-R-00-008, Office of
- 11 Water, Apr.

12

- 13 French, S., 2008, LANL Specific RESRAD Modeling Parameters, LA-UR-08-04028, Los Alamos
- 14 National Laboratory, Los Alamos, N.M., June.

15

- 16 Henckel, G.C., 2008, personal communication from Henckel (U.S. Department of Energy,
- 17 Albuquerque Operations Office, Albuquerque, N.M.) to G. Dixon (U.S. Department of Energy,
- 18 Office of Environmental Management), June 24.

19

- 20 Horton, D.G., 2007, Data Package for Past and Current Groundwater Flow and Contamination
- 21 beneath Single-Shell Tank Waste Management Areas, PNNL-15837, prepared by Pacific
- 22 Northwest National Laboratory for the U.S. Department of Energy, Jan.

23

- 24 IAEA (International Atomic Energy Agency), 1996, Validation of Models Using Chernobyl
- 25 Fallout Data from Southern Finland, Scenario S, IAEA-TECDOC-904, Second Report of the
- 26 VAMP Multiple Pathways Assessment Working Group, Vienna, Austria.

27

- 28 ICRP (International Commission on Radiological Protection), 1996, Age-Dependent Doses to the
- 29 Members of the Public from Intake of Radionuclides Part 5, Compilation of Ingestion and
- 30 Inhalation Coefficients, ICRP Publication 72, Pergamon Press, Oxford, U.K.

31

- 32 INL (Idaho National Laboratory), 2006, Performance Assessment for the Radioactive Waste
- 33 Management Complex Active Low-Level Waste Disposal Facility at the Idaho National
- 34 Laboratory Site, Draft, DOE/NE-ID-11243, prepared for U.S. Department of Energy, Idaho
- 35 Falls, Id., Apr.

36

- 37 Jenkins, T., 2001, "K_d Values for INTEC Groundwater Modeling," personal communication
- 38 from Jenkins (U.S. Department of Energy, Idaho Operations Office, Idaho Falls, Id.) to
- 39 M. Doornbos (Idaho National Engineering and Environmental Laboratory), July 3.

40

- 41 Kaplan, D.I., 2006, Geochemical Data Package for Performance Assessment Calculations
- 42 Related to the Savannah River Site (U), WSRC-TR-2006-00004, Rev. 0, Savannah River
- 43 National Laboratory, Washington Savannah River Company, Aiken, S.C., Feb.

- 1 Kaplan, D.I., 2007, "Distribution Coefficient for Various Elements of Concern to the Tank
- 2 Waste Performance Assessment, SRNL-RPA-2007-00006," personal communication from
- 3 Kaplan to B.T. Butcher et al., July 10.

- 5 Krier, D., et al., 1997, Geologic, Geohydrologic, and Geochemical Data Summary of Material
- 6 Disposal Area G, Technical Area 54, Los Alamos National Laboratory, LAUR-95-2696, Feb.

7

- 8 Krupka, K.M., and R.J. Serne, 1998, Effects on Radionuclide Concentrations by
- 9 Cement/Ground-Water Interactions in Support of Performance Assessment of Low-level
- 10 Radioactive Waste Disposal Facilities, NUREG/CR-6377 (PNNL-11408), prepared by Pacific
- 11 Northwest National Laboratory, Richland, Wash., for U.S. Nuclear Regulatory Commission.

12

- 13 Krupka, K.M., et al., 2004, Geochemical Data Package for the 2005 Hanford Integrated
- 14 Disposal Facility Performance Assessment, PNNL-13037, Rev. 2, prepared by Pacific Northwest
- 15 National Laboratory, Richland, Wash., for U.S. Department of Energy, Sept.

16

- 17 Last, G.V., et al., 2006, Vadose Zone Hydrogeology Data Package for Hanford Assessments,
- 18 PNNL-14702, Rev. 1, prepared by Pacific Northwest National Laboratory, Richland, Wash., for
- 19 U.S. Department of Energy, June.

20

- 21 Longmire, P., et al., 1996, Batch Sorption Results for Americium, Neptunium, Plutonium,
- 22 Technetium, and Uranium Transport through the Bandelier Tuff, Los Alamos, New Mexico,
- 23 LA-UR-96-4716, Los Alamos National Laboratory, Los Alamos, N.M.

24

- 25 Mattigod, S.V., et al., 2002, Radionuclide Desorption and Leaching Tests for Concrete Cores
- 26 from Haddam Neck Nuclear Plant Facilities, Final Letter Report, prepared for Connecticut
- 27 Yankee Atomic Power Company, Battelle, Pacific Northwest Division, Richland, Wash., Mar.

28

- 29 McCarthy, J.M., and D.L. McElroy, 1995, SDA Hydraulic Characterization Data Compilation:
- 30 Surficial Sediments and Interbeds, EDF-ER-WAG7-71, INEL-95-227, Idaho National
- 31 Engineering Laboratory, May.

32

- 33 MMES (Martin Marietta Energy Systems, Inc.) et al., 1994, Radiological Performance
- 34 Assessment for the E-Area Vaults Disposal Facility, WSRC-RP-94-218, Appendix E, pp. E-16
- 35 and E-17, prepared by MMES, EG&G Idaho, Inc., and Westinghouse Savannah River Company,
- 36 Aiken, S.C.

37

- 38 NAS (National Academy of Sciences), 2006, Health Risks from Exposure to Low Levels of
- 39 Ionizing Radiation, BEIR VII Phase 2, Committee to Assess Health Risks from Exposure to Low
- 40 Levels of Ionizing Radiation, Board on Radiation Effects Research, Division on Earth and Life
- 41 Studies, Washington, D.C.

42

- 43 National Security Technologies, LLC, 2008, 2007 Data Report: Groundwater Monitoring
- 44 Program Area 5 Radioactive Waste Management Site, DOE/NV/25946-344, Las Vegas, Nev.,
- 45 Jan.

- 1 NRC (U.S. Nuclear Regulatory Commission), 1981, Draft Environmental Impact Statement on
- 2 10 CFR Part 61 "Licensing Requirements for Land Disposal of Radioactive Waste,"
- 3 NUREG-0782, Vol. 4, Appendices G-Q.

- 5 Phifer, M.A., et al., 2007, FTF Closure Cap Concept and Infiltration Estimates, WSRC-STI-
- 6 2007-00184, Rev. 2, Washington Savannah River Company, Aiken, S.C., Oct.

7

- 8 Poe, W.L., Jr., 1998, Regional Binning for Continued Storage of Spent Nuclear Fuel and High-
- 9 Level Wastes, Jason Technologies, Las Vegas, Nev.

10

- 11 Powers, D.W., et al., 1978, Geological Characterization Report Waste Isolation Pilot Plant
- 12 (WIPP) Site, Southeastern New Mexico, SAND78-1596, Vols. 1 and 2, Sandia National
- 13 Laboratories, Albuquerque, N.M.

14

- 15 Reynolds Electrical & Engineering Company, Inc., 1994, Site Characterization and Monitoring
- 16 Data from Area 5 Pilot Wells, Nevada Test Site, Nye County, Nevada, DOE-NV-11432-74.

17

- 18 Reidel, S., 2004, Geologic Data Package for the 2005 Integrated Disposal Facility Performance
- 19 Assessment, PNNL-14586, Rev. 1, Pacific Northwest National Laboratory, Richland, Wash.,
- 20 Mar.

21

- 22 Sandia (Sandia National Laboratories), 2007, Two Technology Conceptual Designs for Disposal
- 23 of GTCC LLW, Task 3.4: Develop Conceptual Designs, Nov.

24

- 25 Sandia, 2008, Basis Inventory for Greater-than-Class-C Low-Level Radioactive Waste
- 26 Environmental Impact Statement Evaluations, Task 3.2 Report, Rev. 1, prepared by Sandia,
- 27 Albuquerque, N.M., for U.S. Department of Energy, Office of Environmental Management,
- 28 May.

29

- 30 Sheppard, M.I., and D.H. Thibault, 1990, "Default Soil/Liquid Partition Coefficients, K_d Values,
- 31 for Four Major Soil Types: A Compendium," *Health Physics* 59(4)471–482.

32

- 33 Shott, G.J., et al., 1998, Performance Assessment of the Area-5 Radioactive Waste Management
- 34 Site at the Nevada Test Site, Nye County, Nevada, Revision 2.1, DOE/NV/11718-176, Bechtel
- 35 Nevada, Las Vegas, Nev.

36

- 37 SRCC (Southern Regional Climate Center), 2007a, Average Windspeed for Selected Cities in the
- 38 *Southeast (Averaged over 57 Years)*, http://www.sercc.com/.

39

- 40 SRCC, 2007b, Historical Climate Summaries for South Carolina, Aiken 4 NE (1948–2005),
- 41 http://radar.meas.ncsu.edu/cgi-bin/sercc/cliMAIN.pl?sc0074.

42

- 43 Stauffer, P.H., et al., 2005, Groundwater Pathway Model for the Los Alamos National
- 44 Laboratory Technical Area 54, Material Disposal Area G, LA-UR-05-7393, Los Alamos
- 45 National Laboratory, Los Alamos, N.M.

- 1 Thorne, P.D., et al., 2006, Groundwater Data Package for Hanford Assessments, PNNL-14753,
- 2 Rev. 1, Pacific Northwest National Laboratory, Richland, Wash., Jan.

- 4 Toblin, A.L., 1998, Near Field Groundwater Transport and Gardener Dose Consequence, Tetra
- 5 Tech NUS, Gaithersburg, Md.

6

- 7 Toblin, A.L., 1999, Radionuclide Transport and Dose Commitment from Drinking Water from
- 8 Continued Storage and Degradation of Spent Nuclear Fuel and High Level Waste Materials
- 9 Under Loss of Institutional Control, Tetra Tech NUS, Gaithersburg, Md.

10

- 11 Waters, R.D., and M.M. Gruebel, 1996, Performance Evaluation of the Technical Capabilities of
- 12 DOE Sites for Disposal of Mixed Low-Level Waste, Volume 3: Site Evaluation, DOE/ID-
- 13 10521/3, SAND96-0721/3, prepared by Sandia National Laboratories for U.S. Department of
- 14 Energy, Mar.

15

- 16 Wilcox, M.V., 2008, "RE: RESRAD-OFFSITE Input Parameters and References for INL,"
- 17 personal communication from Wilcox (Waste Disposition Project, Idaho Cleanup Project) to
- 18 J. Joyce (U.S. Department of Energy, Office of Environmental Management), Aug. 6, with two
- 19 attachments, "Review of Input Parameters for the GTCC EIS Project, CWI, August 5, 2008" and
- 20 "Review of GTCC EIS RESRAD Offsite Input Parameters, BEA, August 5, 2008."

21

- 22 Wolsberg, K., 1980, "Sorptive Properties of Tuff and Nuclide Transport and Retardation,"
- 23 pp. 39-48 in Evaluation of Tuff as a Medium for a Nuclear Waste Repository; Interim Status
- 24 Report on the Properties of Tuff, SAND80-1464, Sandia National Laboratories, July.

25

- 26 WRCC (Western Regional Climate Center), 2007, Historical Climate Information, http://www.
- 27 wrcc.dri.edu/CLIMATEDATA.html.

28

- 29 WSRC (Washington Savannah River Company, LLC), 2008, E-Area Low-level Waste Facility
- 30 DOE 435.1 Performance Assessment, WSRC-STI-2007-00306, Rev. 0, prepared by WSRC,
- 31 Savannah River Site, Aiken, S.C., for U.S. Department of Energy, July.

32

- 33 Young, M.H., and K.F. Pohlmann, 2003, Analysis of Vadose Zone Monitoring System: Computer
- 34 Simulation of Water Flux under Conditions of Variable Vegetative Cover: E Area Disposal
- 35 Trenches, Publication No. 41188, Division of Hydrologic Sciences, Desert Research Institute,
- 36 Las Vegas, Nev., Aug.

37

- 38 Yu, C., et al., 2000, Development of Probabilistic RESRAD 6.0 and RESRAD BUILD 3.0
- 39 Computer Codes, NUREG/CR-6697, ANL/EAD/TM-98, prepared by Argonne National
- 40 Laboratory, Argonne, Ill., for U.S. Nuclear Regulatory Commission, Division of Risk Analysis
- 41 and Applications, Office of Nuclear Regulatory Research, Washington, D.C., Nov.

42

- 43 Yu, C., et al., 2001, User's Manual for RESRAD Version 6, ANL/EAD-4, Argonne National
- 44 Laboratory, Argonne, Ill., July.

- 1 Yu, C., et al., 2007, User's Manual for RESRAD-OFFSITE Version 2, ANL/EVS/TM07-1,
- 2 DOE/HS-0005, NUREG/CR-6937, prepared by Argonne National Laboratory, Argonne, Ill., for
- 3 U.S. Department of Energy and U.S. Nuclear Regulatory Commission, June.

Draft	GTCC	EIS
Druji	01CC	LID

Appendix E: Evaluation of Long-Term Human Health Impacts

1 2 3 4 5 6 7 8 9 10 11 12 13 This page is intentionally left blank. 14

APPENDIX F:

CONSULTATION CORRESPONDENCE FOR THE DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR THE DISPOSAL OF GREATER-THAN-CLASS C (GTCC) LOW-LEVEL RADIOACTIVE WASTE AND GTCC-LIKE WASTE

Table F-1 lists the consultation correspondence related to the GTCC reference locations evaluated in this EIS. (Note that in the letters, the Nevada National Security Site was still referred to as the Nevada Test Site or NTS, and this was not changed.) Copies of the correspondence follow this table. Background information on the project, which was included as an attachment to each letter from A.M. Edelman of the U.S. Department of Energy, Office of Disposal Operations, is provided at the end of this appendix, after the letters.

TABLE F-1 Consultation Correspondence

Page	Source	Recipient	Date of Letter
F-3	U.S. Department of Energy (A.M. Edelman)	U.S. Fish and Wildlife Service, Wenatchee, Wash. (J. Gonzales)	December 10, 2009
F-4	U.S. Fish and Wildlife Service, Wenatchee, Wash. (K.S. Berg)	U.S. Department of Energy (A.M. Edelman)	January 27, 2010
F-8	U.S. Department of Energy (A.M. Edelman)	U.S. Fish and Wildlife Service, Boise, Id. (J. Foss)	December 10, 2009
F-9	U.S. Fish and Wildlife Service, Chubbock, Id. (D. Miller)	U.S. Department of Energy (A.M. Edelman)	January 4, 2010
F-10	U.S. Department of Energy (A.M. Edelman)	U.S. Fish and Wildlife Service, Albuquerque, N.M. (W. Murphy)	December 10, 2009
F-11	U.S. Fish and Wildlife Service, Albuquerque, N.M. (W. Murphy)	U.S. Department of Energy (A.M. Edelman)	February 2, 2010
F-13	U.S. Department of Energy (A.M. Edelman)	U.S. Fish and Wildlife Service, Reno, Nev. (R. Williams)	December 10, 2009
F-14	U.S. Fish and Wildlife Service, Reno, Nev. (R.D. Williams)	U.S. Department of Energy (A.M. Edelman)	January 21, 2010
F-19	U.S. Department of Energy (A.M. Edelman)	U.S. Fish and Wildlife Service, Charleston, S.C. (M. Tobin)	December 10, 2009
F-20	U.S. Fish and Wildlife Service, Charleston, S.C. (D.L. Lynch)	U.S. Department of Energy (A.M. Edelman)	January 6, 2010
F-23	U.S. Department of Energy (A.M. Edelman)	Washington State Department of Fish and Wildlife Service, Yakima, Wash. (J. Tayer)	January 19, 2010

TABLE F-1 (Cont.)

Page	Source	Recipient	Date of Letter
F-25	U.S. Department of Energy (A.M. Edelman)	Idaho Department of Fish and Game, Idaho Falls, Id. (S. Schmidt)	January 19, 2010
F-27	U.S. Department of Energy (A.M. Edelman)	Ecological Services, Albuquerque, N.M. (W. Murphy)	January 19, 2010
F-29	U.S. Department of Energy (A.M. Edelman)	Nevada Natural Heritage Program, Carson City, Nev. (J.E. Newmark)	January 19, 2010
F-31	Nevada Natural Heritage Program, Carson City, Nev. (E.S. Miskow)	U.S. Department of Energy (A.M. Edelman)	February 10, 2010
F-35	U.S. Department of Energy (A.M. Edelman)	South Carolina Department of Natural Resources, Columbia, S.C. (J. Holling)	January 19, 2010
F-37	South Carolina Department of Natural Resources, Columbia, S.C. (J. Holling)	U.S. Department of Energy (A.M. Edelman)	January 27, 2010
F-40	U.S. Department of Energy (A.M. Edelman)	Los Alamos Site Office (J. Griego)	January 19, 2010
F-41	U.S. Department of Energy (A.M. Edelman)	Department of Archeology and Historic Preservation, Olympia, Wash. (A. Brooks)	January 19, 2010
F-43	U.S. Department of Energy (A.M. Edelman)	State Historic Preservation Office, Boise, Id. (K. Reid)	January 19, 2010
F-45	U.S. Department of Energy (A.M. Edelman)	State of New Mexico Department of Cultural Affairs, Santa Fe, N.M. (J. Biella)	January 19, 2010
F-47	U.S. Department of Energy (A.M. Edelman)	Nevada State Historic Preservation Office, Carson City, Nev. (R. James)	January 19, 2010
F-49	Nevada State Historic Preservation Office, Carson City, Nev. (A.M. Baldrica)	U.S. Department of Energy (A.M. Edelman)	February 26, 2010
F-50	U.S. Department of Energy (A.M. Edelman)	Department of Archives and History, Columbia, S.C. (E. Emerson)	January 19, 2010

Department of Energy

Washington, DC 20585

December 10, 2009

Ms. Jessica Gonzales Assistant Project Leader Wenatchee Field Office U.S. Fish and Wildlife Service 215 Melody Lane, Suite 119 Wenatchee, Washington 98801

Dear Ms. Gonzalez:

The Department of Energy, Office of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). In compliance with the Endangered Species Act, the EIS will contain an analysis of the proposed action and potential impacts to listed and proposed threatened and endangered species. We request that you provide us with any information regarding the occurrence of federally listed and proposed threatened and endangered species that may occur on or in the vicinity of the proposed GTCC LLRW disposal location immediately south of the Integrated Disposal Facility site in the 200 East Area in the central portion of the Hanford Site, Benton County that should be considered in preparing the EIS.

I have enclosed a brief background of the project, including information on the potential Hanford GTCC location, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact me at (301) 903-5145 or at arnold.edelman@em.doe.gov.

Sincerely,

Arnold M. Edelman EIS Document Manager

kind M Elelman

Office of Disposal Operations

Enclosures

cc: Woody Russell, ORP

United States Department of the Interior

FISH AND WILDLIFE SERVICE

Washington Fish and Wildlife Office Central Washington Field Office 215 Melody Lane, Suite 119

Wenatchee, WA 98801

January 27, 2010

In Reply Refer To:

USFWS Reference: 13260-2010-SL-0019

Arnold M. Edelman EIS Document Manager, Office of Disposal Operations Department of Energy 1000 Independence Ave., SW Washington, DC 20585

Dear Mr. Edelman:

We have received your request for information on endangered and threatened species and their critical habitats that may be present near your potential disposal location of Greater-Than-Class-C Low-Level Radioactive Waste (GTCC LLRW) in Benton County, Washington. For your convenience, updated countywide species and habitat listings are now available on our website at http://www.fws.gov/easternwashington. To view the listings in your area of concern, select "county species lists" within the ESA programs page, and then select the county of interest. The lists available on our website are compliant with Section 7(c) of the Endangered Species Act of 1973, as amended (Act), and are the most current available listings of endangered, threatened and proposed species and critical habitats in a given area. For optional consideration, the lists also contain updated species of concern and candidate species. Please be aware that the U.S. Fish and Wildlife Service is in the process of proposing bull trout critical habitat.

Species of anadromous fish that have been listed under the Act by the National Marine Fisheries Service (NMFS) may also occur in your project area. Please contact NMFS in Ellensburg, Washington, at (509) 962-8911 to request information on listed species within NMFS's jurisdiction.

If you would like information concerning state listed species or species of concern, you may contact the Washington Department of Fish and Wildlife, at (360) 902-2543, for fish and wildlife species; or the Washington Department of Natural Resources, at (360) 902-1667, for plant species.

When you submit a request for Section 7 consultation, we request that you include your downloaded species list and the date it was downloaded, as an attachment. If applicable,

Arnold M. Edelman

2

please also include the USFWS reference number on your consultation request. This will document your compliance with 50 CFR 402.12 (c).

Should your project plans change significantly, or if the project is delayed more than 90 days, you should update your species lists through our website and through the above listed agencies.

Thank you for your efforts to protect our nation's species and their habitats. If you have any questions concerning the above information, please contact Jeff Krupka at (509) 665-3508, extension 18, or via e-mail at Jeff_Krupka@fws.gov.

Sincerely,

Ken S. Berg, Manager

Washington Fish and Wildlife Office

cc: Joe Bartoszek, Mid-Columbia River NWR Complex, USFWS, Burbank, WA

Arnold M. Edelman

3

Enclosure A

LISTED AND PROPOSED ENDANGERED AND THREATENED SPECIES, CRITICAL HABITAT, CANDIDATE SPECIES, AND SPECIES OF CONCERN THAT MAY OCCUR IN THE COUNTIES OF EASTERN WASHINGTON AS LISTED BY THE U.S. FISH AND WILDLIFE SERVICE

January 27, 2010

FWS Reference: 13260-2010-SL-0019

COMMENTS

Major concerns that should be addressed in your biological assessment of project impacts to listed threatened, endangered, or proposed animal species are:

- Level of use of the project area by listed species.
- Effect of the project on listed species' primary food stocks and foraging areas in all areas influenced by the project.
- Impacts from project construction and implementation (e.g. increased noise levels, increased human activity and/or access, loss or degradation of habitat) which may result in disturbance to listed species and/or their avoidance of the project area.

Major concerns that should be addressed for listed or proposed plant species are:

- Distribution of taxon in project vicinity.
- Disturbance (trampling, uprooting, collecting, etc.) of individual plants and loss of habitat.
- Changes in hydrology where taxon is found.

Candidate species are those species for which the U.S. Fish and Wildlife Service has sufficient information to propose for listing as threatened or endangered under the Act. Species of concern (some of which are former Category 1 and Category 2 candidates) are those species whose conservation standing is of concern to the Service, but for which status information is still needed. Conservation measures for species of concern and candidate species are voluntary but recommended. Protection provided to these species now may preclude possible listing in the future.

For information regarding species listed by NOAA Fisheries, please visit the following website http://www.nwr.noaa.gov/lsalmon/salmesa/index.hhn or call (509) 962-8911 in Ellensburg, Washington.

Arnold M. Edelman

4

BENTON COUNTY

Updated 4/15/2008

Listed

Endangered

Pygmy rabbit (Brachylagus idahoensis) - Columbia Basin distinct population segment

Threatened

Bull trout (Salvelinus confluentus) - Columbia River distinct population segment Spiranthes diluvialis (Ute ladies'-tresses), plant

Candidate

Yellow-billed cuckoo (Coccyzus americanus) Eriogonum codium (Umtanum desert buckwheat), plant

Species of Concern

Animals

Bald eagle (Haliaeetus leucocephalus) (delisted, monitor status)
Burrowing owl (Athene cunicularia)
California floater (Anodonta californiensis), mussel
Columbia clubtail (Gomphus lynnae), dragonfly
Ferruginous hawk (Buteo regalis)
Giant Columbia spire snail (Fluminicola columbiana)
Loggerhead shrike (Lanius ludovicianus)
Long-eared myotis (Myotis evotis)
Margined sculpin (Cottus marginatus)
Pacific lamprey (Lampetra tridentata)
Pallid Townsend's big-eared bat (Corynorhinus townsendii pallescens)
Redband trout (Oncorhynchus mykiss)
River lamprey (Lampetra ayresi)
Sagebrush lizard (Sceloporus graciosus)

Vascular Plants

Astragalus columbianus (Columbia milk-vetch)
Cryptantha leucophaea (Gray cryptantha)
Haplopappus liatriformis (Palouse goldenweed)
Lomatium tuberosum (Hoover's desert-parsley)
Mimulus jungermannioides (Liverwort monkey-flower)
Rorippa columbiae (Persistent sepal yellowcress)

Townsend's ground squirrel (Spermophilus townsendii) Western brook lamprey (Lampetra richardsoni)

Department of Energy

Washington, DC 20585

December 10, 2009

Mr. Jeffery Foss, Field Supervisor U.S. Fish and Wildlife Service Idaho Fish and Wildlife Office 1387 South Vinnell Way, Suite 368 Boise, Idaho 83709-1657

Dear Mr. Foss:

The Department of Energy, Office of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). In compliance with the Endangered Species Act, the EIS will contain an analysis of the proposed action and potential impacts to listed and proposed threatened and endangered species. We request that you provide us with any information regarding the occurrence of federally listed and proposed threatened and endangered species that may occur on or in the vicinity of the proposed GTCC LLRW disposal location at the Idaho National Laboratory (INL), southwest of the Reactor Technology Complex in the south central portion of INL, Butte County that should be considered in preparing the EIS.

I have enclosed a brief background of the project, including information on the potential INL GTCC location, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact me at (301) 903-5145 or at arnold.edelman@em.doe.gov.

Sincerely,

Arnold M. Edelman EIS Document Manager

Revold M Elebrar

Office of Disposal Operations

Enclosures

cc: Richard Kauffman, ID

Printed with soy ink on recycled pape

United States Department of the Interior

FISH AND WILDLIFE SERVICE

Eastern Idaho Field Office 4425 Burley Dr., Suite A Chubbuck, Idaho 83202 Telephone (208) 237-6975 http://IdahoES.fws.gov

Arnold M. Edelman EIS Document Manager Office of Disposal Operations Department of Energy Washington, DC 20585

JAN 0 4 2010

Subject: Proposed Disposal of Greater-Than-Class-C Low-Level-Radioactive Waste at the INL in Southeast Idaho. SL #10-0116

Dear Mr. Edelman:

The U.S. Fish and Wildlife Service (Service) is writing in response to your request for information about the potential impacts to endangered, threatened, proposed, and/or candidate species from the proposed disposal of greater-than-C low-level-radioactive waste at the INL in Southeast Idaho. The Service has not identified any issues that indicate that consultation under section 7 of the Endangered Species Act of 1973, as amended, is needed for this project. This finding is based on our understanding of the nature of the project, local conditions, and/or current information indicating that no listed species are present. If you determine otherwise or require further assistance, please contact Sandi Arena of this office at (208)237-6975 ext 102.

Thank you for your interest in endangered species conservation.

Sincerely,

Damien Miller

Supervisor, Eastern Idaho Field Office

Department of Energy

Washington, DC 20585

December 10, 2009

Mr. Wally Murphy, Field Supervisor U.S. Fish and Wildlife Service New Mexico Ecological Services Field Office 2105 Osuna NE Albuquerque, New Mexico 87113

Dear Mr. Murphy:

The Department of Energy, Office of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). In compliance with the Endangered Species Act, the EIS will contain an analysis of the proposed action and potential impacts to listed and proposed threatened and endangered species. We request that you provide us with any information regarding the occurrence of federally listed and proposed threatened and endangered species that may occur on or in the vicinity of the three proposed GTCC LLRW disposal locations in your State: 1. Los Alamos National Laboratory within TA-54, on Mesita del Buey, Zone 6, North Site, and North Site Expanded, Los Alamos County; 2. the Waste Isolation Pilot Plant (WIPP) in Eddy County; and 3. Sections 27 and 35 in and around WIPP.

I have enclosed a brief background of the project, including information on the potential GTCC locations within the State, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact me at (301) 903-5145 or at arnold.edelman@em.doe.gov.

Sincerely,

Arnold M. Edelman

Timbe M Elelnan

EIS Document Manager Office of Disposal Operations

Enclosures

cc: George Rael, LASO Nancy Werdel, DOE AL Susan McCauslin, CBSO

FEB-02-2010 09:27AM

FROM-US.FISH AND WILDLIFE

+5053462542

T-237 P.001/004 F-406

United States Department of the Interior

FISH AND WILDLIFE SERVICE
New Mexico Ecological Services Field Office
2105 Osuna NE
Albuquerque, New Mexico 87113
Phone: (505) 346-2525 Fax: (505) 346-2542

FEB -2 2010

Thank you for your recent request for information on threatened or endangered species or important wildlife habitats that may occur in your project area. The New Mexico Ecological Services Field Office has posted lists of the endangered, threatened, proposed, candidate and species of concern occurring in all New Mexico Counties on the Internet. Please refer to the following web page for species information in the county where your project occurs: http://www.fws.gov/southwest/es/NewMexico/SBC_intro.cfm. If you do not have access to the Internet or have difficulty obtaining a list, please contact our office and we will mail or fax you a list as soon as possible.

After opening the web page, find New Mexico Listed and Sensitive Species Lists on the main page and click on the county of interest. Your project area may no necessarily include all or any of these species. This information should assist you in determining which species may or may not occur within your project area.

Under the Endangered Species Act of 1973, as amended (Act), it is the responsibility of the Federal action agency or its designated representative to determine if a proposed action "may affect" endangered, threatened, or proposed species, or designated critical habitat, and if so, to consult with us further. Similarly, it is their responsibility to determine if a proposed action has no effect to endangered, threatened, or proposed species, or designated critical habitat. On December 16, 2008, we published a final rule concerning clarifications to section 7 consultations under the Act (73 FR 76272). One of the clarifications is that section 7 consultation is not required in those instances when the direct and indirect effects of an action pose no effect to listed species or critical habitat. As a result, we do not provide concurrence with project proponent's "no effect" determinations.

If your action area has suitable habitat for any of these species, we recommend that speciesspecific surveys be conducted during the flowering season for plants and at the appropriate time for wildlife to evaluate any possible project-related impacts. Please keep in mind that the scope of federally listed species compliance also includes any interrelated or interdependent project activities (e.g., equipment staging areas, offsite borrow material areas, or utility relocations) and any indirect or cumulative effects. FEB-02-2010 09:27AM FROM-US.FISH AND WILDLIFE

+5053462542

T-237 P.002/004 F-406

2

Candidates and species of concern have no legal protection under the Act and are included on the web site for planning purposes only. We monitor the status of these species. If significant declines are detected, these species could potentially be listed as endangered or threatened. Therefore, actions that may contribute to their decline should be avoided. We recommend that candidates and species of concern be included in your surveys.

Also on the web site, we have included additional wildlife-related information that should be considered if your project is a specific type. These include communication towers, power line safety for raptors, road and highway improvements and/or construction, spring developments and livestock watering facilities, wastewater facilities, and trenching operations.

Under Executive Orders 11988 and 11990, Federal agencies are required to minimize the destruction, loss, or degradation of wetlands and floodplains, and preserve and enhance their natural and beneficial values. We recommend you contact the U.S. Army Corps of Engineers for permitting requirements under section 404 of the Clean Water Act if your proposed action could impact floodplains or wetlands. These habitats should be conserved through avoidance, or mitigated to ensure no net loss of wetlands function and value.

The Migratory Bird Treaty Act (MBTA) prohibits the taking of migratory birds, nests, and eggs, except as permitted by the U.S. Fish and Wildlife Service. To minimize the likelihood of adverse impacts to all birds protected under the MBTA, we recommend construction activities occur outside the general migratory bird nesting season of March turough August, or that areas proposed for construction during the nesting season be surveyed, and when occupied, avoided until nesting is complete.

We suggest you contact the New Mexico Department of Game and Fish, and the New Mexico Energy, Minerals, and Natural Resources Department, Forestry Division for information regarding fish, wildlife, and plants of State concern.

Thank you for your concern for endangered and threatened species and New Mexico's wildlife habitats. We appreciate your efforts to identify and avoid impacts to listed and sensitive species in your project area.

Sincerely,

Wally Murphy Field Supervisor

Department of Energy

Washington, DC 20585

December 10, 2009

Mr. Robert Williams, State Supervisor U.S. Fish and Wildlife Service Nevada Fish and Wildlife Office 1340 Financial Boulevard, Suite 234 Reno, Nevada 89502-7147

Dear Mr. Williams:

The Department of Energy, Office of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). In compliance with the Endangered Species Act, the EIS will contain an analysis of the proposed action and potential impacts to listed and proposed threatened and endangered species. We request that you provide us with any information regarding the occurrence of federally listed and proposed threatened and endangered species that may occur on or in the vicinity of the proposed GTCC LLRW disposal location at the Nevada Test Site (NTS), in the vicinity north of Frenchman Flat, either southeast or west of the existing Radioactive Waste Management Facility, Nye County that should be considered in preparing the EIS.

I have enclosed a brief background of the project, including information on the potential NTS GTCC location, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact me at (301) 903-5145 or at arnold.edelman@em.doe.gov.

Sincerely,

Arnold M. Edelman EIS Document Manager

Office of Disposal Operations

Grold M Elden

Enclosures

cc: Linda Cohn, NSO

Printed with soy ink on recycled paper

United States Department of the Interior

FISH AND WILDLIFE SERVICE

Nevada Fish and Wildlife Office 4701 North Torrey Pines Drive Las Vegas, Nevada 89130 Ph: (702) 515-5230 ~ Fax: (702) 515-5231

> January 21, 2010 File No. 84320-2010-SL-0133

Mr. Arnold Edelman Office of Disposal Operations U.S. Department of Energy Cloverleaf Building (EM-43) 1000 Independence Avenue, SW Washington, DC. 20585

Dear Mr. Edelman:

Subject:

Request for Information on Federally Listed and Proposed Threatened or Endangered Species or Designated Critical Habitats that May Occur Near the Proposed Low-level Radioactive Waste Disposal Project Area on the Nevada Test Site in Nye County, Nevada

This responds to your letter dated December 10, 2009, requesting information on federally listed and proposed threatened or endangered species or designated critical habitat that may occur near the proposed project area on the Nevada Test Site in Nye County, Nevada. We have determined that there is no critical habitat in/near the action area, but that the following federally listed species may occur in/near the action area:

· Desert tortoise (Gopherus agassizii) (Mojave population), threatened

This response fulfills the requirement of the Fish and Wildlife Service (Service) to provide information on potential presence of federally listed species pursuant to section 7(c) of the Endangered Species Act of 1973 (Act), as amended (16 U.S.C. 1531 *et seq.*), for projects that are authorized, funded, or carried out by a Federal agency.

To minimize the potential effects to this species from the implementation of this proposed action, we recommend the Department of Energy (DOE) propose minimization measures in accordance with the terms of the *Incidental Take Statement* in our Final Programmatic Biological Opinion for Implementation of Actions Proposed on the Nevada Test Site, Nye County, Nevada dated February 12, 2009 (Service File No. 84320-2008-F-0416).

Mr. Arnold M. Edelman

File No. 84320-2010-SL-0133

As a reminder, pursuant to the Act if the action agency determines that the proposed action may affect listed species or designated critical habitat the action agency would request that the proposed action be appended under the programmatic consultation and provide project-specific information that: (1) describes each proposed action and the specific areas to be affected; (2) identifies the species and critical habitat that may be affected; (3) describes the manner in which the proposed action may affect listed species; (4) describes the anticipated effects; (5) specifies, if appropriate, that the anticipated effects from the proposed project are consistent with those anticipated in the programmatic biological opinion; (6) describes proposed measures to minimize potential effects of the action; (7) describes any additional effects, if any, not considered in the programmatic consultation. The project information and effects analysis should be accompanied by a cover letter that specifies that the action agency has determined the proposed project is consistent with the programmatic biological opinion.

The Nevada Fish and Wildlife Office no longer provides species-of-concern lists. Most of these species for which we have concern are on the at-risk or watch-list species lists for Nevada maintained by the State of Nevada's Natural Heritage Program (Heritage). Instead of maintaining our own list, we have adopted Heritage's lists and partnered with them to provide distribution data and information on the conservation needs for sensitive species to agencies or project proponents. The mission of Heritage is to continually evaluate the conservation priorities of native plants, animals, and their habitats, particularly those most vulnerable to extinction or those that are in serious decline. Consideration of these sensitive species and exploring management alternatives early in the planning process can provide long-term conservation benefits and avoid future conflicts.

For a comprehensive list of at-risk or watch-list species that may occur in the project area, you can obtain a data request form from http://heritage.nv.gov/forms.htm or by contacting the Administrator of Heritage at 901 South Stewart Street, Suite 5002, Carson City, Nevada, 89701, 775-684-2900. Please indicate on the form that your request is being obtained as part of your coordination with the Service under the Act. During your project analysis, if you obtain new information or data for any Nevada sensitive species, we request that you provide the information to Heritage at the above address.

We are concerned that the project may impact the Gila monster (*Heloderma suspectum cinctum*), a species listed as sensitive under the Heritage Program and as a protected species under Nevada State law. The banded Gila monster resides primarily in the Mojave desert scrub and salt desert scrub ecosystems in southern Nevada, southeastern California, southwestern Utah, and western Arizona. The Gila monster is one of only two venomous lizard species in the world. Gila monsters are difficult to locate as they spend the majority of the year in underground burrows; however, illegal collection, construction of roads, and loss of habitat continue to threaten this sensitive. Given that the Gila monster may occur within the project area, we encourage you to minimize project impacts to any existing populations and suitable habitat for this species.

Mr. Arnold M. Edelman

File No. 84320-2010-SL-0133

Furthermore, certain species of fish and wildlife are protected by the State of Nevada (see http://www.leg.state.nv.us/NAC/NAC-503.html). You must first obtain the appropriate license, permit, or written authorization from the Nevada Department of Wildlife to take or possess any parts of protected wildlife species. Please visit http://www.ndow.org or contact Supervisory Biologist - Habitat, Nevada Department of Wildlife at 4747 Vegas Drive, Las Vegas, Nevada 89108, 702-486-5127.

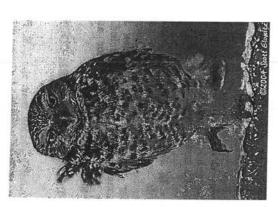
The Service also has conservation responsibilities and management authority for migratory birds under the Migratory Bird Treaty Act (MBTA) of 1918, as amended (16 U.S.C. 703 et seq.). Under the MBTA, nests (nests with eggs or young) of migratory birds may not be harmed, nor may migratory birds be killed. Such destruction may be in violation of the MBTA. Therefore, we recommend land clearing, or other surface disturbance associated with the proposed project, be conducted outside the avian breeding season to avoid potential destruction of bird nests or young, or birds that breed in the area. If this is not feasible, we recommend a qualified biologist survey the area prior to land clearing. If nests are located, or if other evidence of nesting (i.e., mated pairs, territorial defense, carrying nesting material, transporting food) is observed, a protective buffer (the size depending on the habitat requirements of the species) should be delineated and the entire area avoided to prevent destruction or disturbance to nests until they are no longer active.

In particular, we are concerned about the State-protected western burrowing owl (Athene cunicularia hypugea) and potential project impacts to this species from your project. The reduction of habitat in southern Nevada is a major threat to this species. Therefore, we recommend that the project avoid disturbing burrows that are used by burrowing owls. If this is not possible, we ask that the project incorporate the recommendations in our pamphlet, "Protecting Burrowing Owls at Construction Sites in Nevada's Mojave Desert Region" (Enclosure).

Please reference File No. 84320-2010-SL-0133 in future correspondence concerning this species list. If you have questions regarding this correspondence or require additional information, please contact Brian A. Novosak in the Nevada Fish and Wildlife Office in Las Vegas at 702-515-5230.

Sincerely,

Robert D. Williams
State Supervisor


7 M Caloi

Enclosure

U. S. Fish and Wildlife Service

Nevada Fish and Wildlife Office Conserving the Biological Diversity of Great Basin, Eastern Sierra & Mojave Desert

PROTECTING BURROWING OWLS AT CONSTRUCTION SITES IN NEVADA'S MOJAVE DESERT REGION (June 2007)

Burrowing owl numbers are declining despite protection under the Migratory Bird Treaty Act. Killing or possessing these birds or destruction of their eggs or nest is prohibited.

Be part of the solution; help these owls!

U.S. Fish and Wildlife Service Nevada Fish and Wildlife Office 4701 N. Torrey Pines Drive Las Vegas, NV 89130 Phone: 702-515-5230 Fax: 702-515-5231

http://www.fws.gov/nevada

Though burrowing owls are capable of digging their own burrows, they often will use burrows of other animals for shelter and nesting. They will even adopt pipes or culverts 6" to 8" in diameter.

Tips for Protecting Burrowing Owls, Their Eggs and Young at Construction Sites:

Even though burrowing owls are often active during the day, always check burrows, cracks, and crevices for owls before beginning construction. Use of a fiber-optic scope or remote mini-camera to look into a burrow can help determine the presence of owls or nests. Ensure owls and eggs are not present in burrows when grading begins, to avoid burying them.

In southern Nevada, owls breed from about mid-March through August. If a burrow has an active nest, the site must be avoided until the chicks have fledged. To ensure that birds will not abandon the nest, a buffer of at least a 250-foot radius should be placed around the burrow, within which no construction should occur. It takes a minimum of 74 days from when eggs are laid until chicks are able to fly (fledge). After the young have fledged, check the nest burrow for any owlets before resuming construction.

The following owl behaviors may help determine breeding or the presence of an active nest:

- A pair of owls is initially observed at a site, then only one owl is observed. This may indicate that the pair has chosen a nest burrow, and the female has gone down into the burrow to lay and incubate eggs. Once incubation begins the female rarely leaves the burrow.
- An owl is frequently observed carrying food to the burrow. The male provides food for the female while she is incubating eggs. The best time of day to observe owls is dawn and dusk, but they may be active throughout the day. The male will most likely leave the food in front of the burrow and the female will come to the entrance to take

the food. This is probably the best indication that the owls have an active nest.

• Only one owl has been seen for a period of time; then, two owls are observed. This may indicate that either the nest has failed, or the eggs have hatched, and the female has emerged from the burrow to assist the male in hunting for food to feed the chicks. The chicks will appear at the burrow entrance when they are about 10 days old.

If you are unsure of breeding status, seek the assistance of a professional biologist or other knowledgeable person. Should breeding behavior be observed, presence of an active nest should be assumed and the area avoided until the chicks have fledged or the nest is no longer occupied.

IMPORTANT! In the Mojave Desert portions of Clark, southern Lincoln and Nye counties, owls may use desert tortoise burrows for nesting and shelter. Desert tortoises are protected under the Endangered Species Act. Killing, harming, or harassing desert tortoises, including destruction of their nests with eggs, without prior authorization is prohibited by Federallaw.*

* IF YOUR PROJECT IS IN CLARK COUNTY, PLEASE READ ON:

Clark County holds a permit from the U.S. Fish & Wildlife Service authorizing "take" of desert tortoises during the course of otherwise legal activities on non-federal lands. In Clark County only, discouraging burrowing owls from breeding in the construction site on private property is allowed by collapsing tortoise burrow's during the owl's non-breeding season (September through February). This may help avoid construction delays. Prior to collapsing a burrow, always check for owls or other protected wildlife occupying the burrow for the winter. Call the Nevada Department of Wildlife at 702-486-5127 if a Gila monster is found as this is a State protected species.

Thank you for your assistance in protecting migratory birds and Nevada's endangered and threatened species!

Department of Energy Washington, DC 20585

December 10, 2009

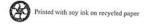
Mr. Melvin Tobin, Field Supervisor U.S. Fish and Wildlife Service Charleston Ecological Services Field Office 176 Croghan Spur Road, Suite 200 Charleston, South Carolina 29407-7558

Dear Mr. Tobin:

The Department of Energy, Office of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). In compliance with the Endangered Species Act, the EIS will contain an analysis of the proposed action and potential impacts to listed and proposed threatened and endangered species. We request that you provide us with any information regarding the occurrence of federally listed and proposed threatened and endangered species that may occur on or in the vicinity of the proposed GTCC LLRW disposal location at the Savannah River Site (SRS) at the upland ridge overlooking Tinker Creek, northeast of Area Z in the north-central portion of SRS, Aiken County, that should be considered in preparing the EIS.

I have enclosed a brief background of the project, including information on the potential SRS GTCC location, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact me at (301) 903-5145 or at arnold.edelman@em.doe.gov

Sincerely,


Arnold M. Edelman EIS Document Manager

ed M Elelm

Office of Disposal Operations

Enclosure

cc: Drew Grainger, SR

United States Department of the Interior

FISH AND WILDLIFE SERVICE 176 Croghan Spur Road, Suite 200 Charleston, South Carolina 29407

January 6, 2010

Mr. Arnold M. Edelman EIS Document Manager Office of Disposal Operations Department of Energy Washington, DC 20585

Re: Radioactive Waste Disposal, Savannah River Site, Aiken County, SC FWS Log No. 42410-2010-SL-0118

Dear Mr. Edelman:

The U.S. Fish and Wildlife Service (Service) has received your request for information regarding threatened and endangered species in the vicinity of the proposed low level radioactive waste disposal site at the Savannah River Site in Aiken County, SC. The Department of Energy (DOE) is developing an Environmental Impact Statement (EIS) to consider alternative disposal sites for low level radioactive waste. The Savannah River Station is one of the sites under consideration. Information requested by the DOE is pursuant to the requirements of the National Environmental Policy Act (NEPA) of 1969, as amended.

Please find attached a list of T&E species that are known to or may occur in Aiken County. This list includes species of state and federal concern. Reconnaissance efforts for the project must include a search for the federally listed T&E species. We also recommend the DOE include all state listed species in its biological/ecological review. Please contact the S.C. Department of Natural Resources for further information on these species and their habitat requirements.

The Service appreciates the opportunity to provide comments and reserves the right to provide additional comments throughout the development of this project. If you have any questions concerning the submitted comments please contact the Service's project manager Mr. Mark Caldwell at (843) 727-4707 ext. 215.

Sincerely,

pains a piece, the Severation River are in A. Diane Is. Lynch. The Delantiment of Energy (1998)

वस्तिकाश्चीकृष्ट संस्कृतकान् सारक्ष्य राज्य

Acting Field Supervisor

DLL/MAC

is rath spranga na garkiph austra. The Americans

South Carolina Distribution Records of Endangered, Threatened, Candidate and Species of Concern March 2009

E	Federally endangered
1	Federally threatened
Р	Proposed in the Federal Register
CH	Critical Habitat
BGEPA	Federally protected under the Bald and Golden Eagle Protection Act
C	The U.S. Fish and Wildlife Service or the National Marine Fisheries
	Service has on file sufficient information on biological vulnerability and
	threat(s) to support proposals to list these species
S/A	Federally protected due to similarity of appearance to a listed species
SC	Federal Species of concern. These species are rare or limited in
	distribution but are not currently legally protected under the Endangered
	Species Act.
*	Contact the National Marine Fisheries Service for more information on this species

These lists should be used only as a guideline, not as the final authority. The lists include known occurrences and areas where the species has a high possibility of occurring. Records are updated continually and may be different from the following.

AIKEN COUNTY			
Bald eagle	Haliaeetus leucocephalus	BGEPA	Known
Wood stork	Mycteria americana	E	Known
Red-cockaded woodpecker	Picoides borealis	E	Known
Shortnose sturgeon	Acipenser brevirostrum*	E	Known
Relict trillium	Trillium reliquum	E	Known
Piedmont bishop-weed	Ptilimnium nodosum	E	Known
Smooth coneflower	Echinacea laevigata	E	Known
Southern Dusky Salamander	Desmognathus auriculatus	SC	Possible
Gopher frog	Rana capito	SC	Known
Small-flowered buckeye	Aesculus parviflora	SC	Known
Sandhills milk-vetch	Astragalus michauxii	SC	Known
Elliott's croton	Croton elliottii	SC	Known
Dwarf burhead	Echinodorus parvulus	SC	Known
Shoals spider-lily	Hymenocallis coronaria	SC	Known
White-wicky	Kalmia cuneata	SC	Known
Bog spicebush	Lindera subcoriacea	SC	Known
Boykin's lobelia	Lobelia boykinii	SC	Known
Carolina bogmint	Macbridea caroliniana	SC	Known
Awned-meadowbeauty	Rhexia aristosa	SC	Known
Pickering's morning-glory	Stylisma pickeringii var. pickeringii	SC	Known

AIKEN COUNTY (cont)

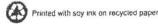
Reclined meadow-rue	Thalictrum subrotundum	SC	Known
Bachman's sparrow	Aimophila aestivalis	SC	Possible
Henslow's sparrow	Ammodramus henslowii	SC	Known
American kestrel	Falco sparverius	SC	Possible
Loggerhead shrike	Lanius Iudovicianus	SC	Possible
Painted bunting	Passerina ciris ciris	SC	Possible
Redhorse, Robust	Moxostoma robustum	SC	Known
Arogos skipper	Atrytone arogos arogos	SC	Known
Rafinesque's big-eared bat	Corynorhinus rafinesquii	SC	Known
Gopher tortoise	Gopherus polyphemus	SC	Known
Southern hognose snake	Heterodon simus	SC	Known
Pine or Gopher snake	Pituophis melanoleucus melanoleucus	SC	Known

Department of Energy

Washington, DC 20585

JAN 1 9 2010

Mr. Jeff Tayer Regional Program Director Washington State Department of Fish and Wildlife 1701 South 24th Avenue Yakima, Washington 98902


Dear Mr. Tayer:

The Department of Energy, Office (DOE) of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). The development of this EIS is mandated under Section 631 of the Energy Policy Act (EPAct) of 2005 and Section 3(b)(1)(D) of the Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA) of 1985. The LLRWPAA assigned the Federal Government responsibility for the disposal of GTCC LLRW that result from Nuclear Regulatory Commission (NRC) licensed activities. The LLRWPAA also directed that such waste be disposed of in a facility licensed by NRC. DOE is the Federal agency responsible for the disposal of GTCC LLRW. This Draft EIS will be issued for public comment in late spring 2010.

Pursuant to Section 631 of EPAct, before making a final decision on the disposal alternative(s) to be implemented, DOE is required to submit to Congress a report that describes all alternatives considered in the EIS and await Congressional action. DOE will issue a report to Congress once the Final EIS is published; anticipated in summer 2011.

The Department is in the process of analyzing the proposed action and potential impacts to listed and proposed threatened and endangered species both at the Federal and State level. We request that you provide us with any information regarding the occurrence of state listed and proposed threatened and endangered species and state sensitive species that may occur on or in the vicinity of the proposed GTCC LLRW disposal location immediately south of the Integrated Disposal Facility site in the 200 East Area in the central portion of the Hanford Site, Benton County that should be considered in preparing the EIS.

I have enclosed a brief background of the project, including information on the potential GTCC locations within the State, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact me at (301) 903-5145 or at arnold.edelman@em.doe.gov.

Please send the requested information to:

Arnold Edelman
Office of Disposal Operations
Department of Energy, Cloverleaf Building (EM-43)
1000 Independence Avenue, SW
Washington, DC 20585

Sincerely,

Arnold M. Edelman EIS Document Manager

Office of Disposal Operations

Enclosures

cc: Woody Russell, ORP

Washington, DC 20585

JAN 19 2010

Mr. Steve Schmidt Idaho Department of Fish and Game 4279 Commerce Circle Idaho Falls, Idaho 83401

Dear Mr. Schmidt:

The Department of Energy, Office (DOE) of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). The development of this EIS is mandated under Section 631 of the Energy Policy Act (EPAct) of 2005 and Section 3(b)(1)(D) of the Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA) of 1985. The LLRWPAA assigned the Federal Government responsibility for the disposal of GTCC LLRW that result from Nuclear Regulatory Commission (NRC) licensed activities. The LLRWPAA also directed that such waste be disposed of in a facility licensed by NRC. DOE is the Federal agency responsible for the disposal of GTCC LLRW. This Draft EIS will be issued for public comment in late spring 2010.

Pursuant to Section 631 of EPAct, before making a final decision on the disposal alternative(s) to be implemented, DOE is required to submit to Congress a report that describes all alternatives considered in the EIS and await Congressional action. DOE will issue a report to Congress once the Final EIS is published; anticipated in summer 2011.

The Department is in the process of analyzing the proposed action and potential impacts to listed and proposed threatened and endangered species both at the Federal and State level. We request that you provide us with any information regarding the occurrence of State listed and proposed threatened and endangered species and any state sensitive species that may occur on or in the vicinity of the proposed GTCC LLRW disposal location at the Idaho National Laboratory (INL), southwest of the Reactor Technology Complex in the south central portion of INL, Butte County that should be considered in preparing the EIS.

I have enclosed a brief background of the project, including information on the potential GTCC locations within the State, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact me at (301) 903-5145 or at armold.edelman@em.doc.gov.

Please send the requested information to:

Arnold Edelman
Office of Disposal Operations
Department of Energy, Cloverleaf Building (EM-43)
1000 Independence Avenue, SW
Washington, DC 20585

Sincerely,

Arnold M. Edelman EIS Document Manager Office of Disposal Operations

ed M Edelman

Enclosures

cc: Jack Depperschmidt, IDSO

Washington, DC 20585

JAN : 9 2010

Mr. Wally Murphy, Field Office Supervisor Ecological Services 2105 Osuna Road, NE Albuquerque, New Mexico 87113

Dear Mr. Murphy:

The Department of Energy, Office (DOE) of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). The development of this EIS is mandated under Section 631 of the Energy Policy Act (EPAct) of 2005 and Section 3(b)(1)(D) of the Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA) of 1985. The LLRWPAA assigned the Federal Government responsibility for the disposal of GTCC LLRW that result from Nuclear Regulatory Commission (NRC) licensed activities. The LLRWPAA also directed that such waste be disposed of in a facility licensed by NRC. DOE is the Federal agency responsible for the disposal of GTCC LLRW. This Draft EIS will be issued for public comment in late spring 2010.

Pursuant to Section 631 of EPAct, before making a final decision on the disposal alternative(s) to be implemented, DOE is required to submit to Congress a report that describes all alternatives considered in the EIS and await Congressional action. DOE will issue a report to Congress once the Final EIS is published; anticipated in summer 2011.

The Department is in the process of analyzing the proposed action and potential impacts to listed and proposed threatened and endangered species both at the Federal and State level. We request that you provide us with any information regarding the occurrence of state listed and proposed threatened and endangered species and any State sensitive species that may occur on or in the vicinity of the three proposed GTCC LLRW disposal locations in your State: 1. Los Alamos National Laboratory within TA-54, on Mesita del Buey, Zone 6, North Site, and North Site Expanded, Los Alamos County; and 2. the Waste Isolation Pilot Plant (WIPP) in Eddy County; and 3. Sections 27 and 35 in and around WIPP.

I have enclosed a brief background of the project, including information on the potential GTCC locations within the State, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact me at (301) 903-5145 or at arnold.edelman@em.doe.gov.

Please send the requested information to:

Arnold Edelman
Office of Disposal Operations
Department of Energy, Cloverleaf Building (EM-43)
1000 Independence Avenue, SW
Washington, DC 20585

Sincerely,

and M Eldner

Arnold M. Edelman EIS Document Manager Office of Disposal Operations

Enclosures

cc: George Rael, LASO Nancy Werdel, DOE AL Susan McCauslin, CBFO

Washington, DC 20585

JAN 19 2010

Ms. Jennifer E. Newmark, Administrator Nevada Natural Heritage Program Richard H. Bryan Building 901 South Stewart Street, Suite 5002 Carson City, Nevada 89701-5245.

Dear Ms. Newmark:

The Department of Energy, Office (DOE) of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). The development of this EIS is mandated under Section 631 of the Energy Policy Act (EPAct) of 2005 and Section 3(b)(1)(D) of the Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA) of 1985. The LLRWPAA assigned the Federal Government responsibility for the disposal of GTCC LLRW that result from Nuclear Regulatory Commission (NRC) licensed activities. The LLRWPAA also directed that such waste be disposed of in a facility licensed by NRC. DOE is the Federal agency responsible for the disposal of GTCC LLRW. This Draft EIS will be issued for public comment in late spring 2010.

Pursuant to Section 631 of EPAct, before making a final decision on the disposal alternative(s) to be implemented, DOE is required to submit to Congress a report that describes all alternatives considered in the EIS and await Congressional action. DOE will issue a report to Congress once the Final EIS is published; anticipated in summer 2011.

The Department is in the process of analyzing the proposed action and potential impacts to listed and proposed threatened and endangered species both at the Federal and State level. We request that you provide us with any information regarding the occurrence of State listed and proposed threatened and endangered species and any state sensitive species that may occur on or in the vicinity of the proposed GTCC LLRW disposal location at the Nevada Test Site (NTS), in the vicinity north of Frenchman Flat, either southeast or west of the existing Radioactive Waste Management Facility, Nye County that should be considered in preparing the EIS.

I have enclosed a brief background of the project, including information on the potential GTCC locations within the State, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact me at (301) 903-5145 or at armold.edelman@em.doe.gov.

Please send the requested information to:

Arnold Edelman
Office of Disposal Operations
Department of Energy, Cloverleaf Building (EM-43)
1000 Independence Avenue, SW
Washington, DC 20585

Sincerely,

Junea M Edelmer

Arnold M. Edelman EIS Document Manager Office of Disposal Operations

Enclosures

cc: Linda Cohn, NSO Lori Plummer, NSO ALLEN BIAGGI Director

Department of Conservation and Natural Resources

JENNIFER E. NEWMARK Administrator

Nevada Natural Heritage Program Richard H. Bryan Building 901 S. Stewart Street, Suite 5002 Carson City, Nevada 89701-5245 U.S.A.

> tel: (775) 684-2900 fax: (775) 684-2909

> > -

STATE OF NEVADA DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES

Nevada Natural Heritage Program

10 February 2010

Arnold Edelman
Office of Disposal Operations
Department of Energy, Cloverleaf Building (EM-43)
1000 Independence Ave., SW
Washington, DC 20585

RE: Data request received 25 January 2010

Dear Mr. Edelman:

We are pleased to provide the information you requested on endangered, threatened, candidate, and/or at risk plant and animal taxa recorded within or near the Proposed Greater-Than-Class-C Low Level Radioactive Waste disposal project area on the Nevada Test Site. We searched our database and maps for the following, a three kilometer radius around the location provided in your request including:

Township	12S	Range	54E	Sections	All
Township	12S	Range	55E	Sections	All
Township	13S	Range	53E	Sections	All
Township	13S	Range	54E	Sections	All
Township	13S	Range	55E	Sections	All

The enclosed printout lists the taxa recorded within the given area. Please be aware that habitat may also be available for: the Clokey pincushion, Coryphantha vivipara var. rosea, a Taxon determined to be Vulnerable by the Nevada Natural Heritage Program as well as a protected cactus under NRS 527.060-120); the Clarke phacelia, Phacelia filiae, a Nevada Bureau of Land Management (BLM) Sensitive Species; the western small-footed myotis, Myotis ciliolabrum, a Nevada BLM Sensitive Species; and the pallid bat, Antrozous pallidus, a Nevada BLM Sensitive Species. We do not have complete data on various raptors that may also occur in the area; for more information contact Chet VanDellen, Nevada Division of Wildlife at (775) 688-1565. Note that all cacti, yuccas, and Christmas trees are protected by Nevada state law (NRS 527.060-.120), including taxa not tracked by this office.

Please note that our data are dependent on the research and observations of many individuals and organizations, and in most cases are not the result of comprehensive or site-specific field surveys. Natural Heritage reports should never be regarded as

(NSPO 8-08)

1 2 3

DOE GTCC NTS 10 February 2010

page 2 of 2

final statements on the taxa or areas being considered, nor should they be substituted for on-site surveys required for environmental assessments.

Thank you for checking with our program. Please contact us for additional information or further assistance.

Sincerely,

Eric S. Miskow

Biologist/Data Manager

1 2 3

At Risk Taxa Recorded Near the GTCC Reference Location on the NTS Project Area Compiled by the Nevada Natural Heritage Program for the U.S. Department of Energy 10 February 2010

Scientific name	Common name	Usfws	Blm	Usfs	State	Srank	Grank	IITM E	I'M N	1	
									OTWIN	rrec	Last
Plants				T							opserved
Arctomecon merriamii	white bearpoppy		z	v		53	53	07771040	40/42/0		
Astragalus funereus	black woollybod		Ċ	0		6	6 8	597410.49	4004/18.51	5	1971-06-04
Astragalus funereus	New York		2,5	2 0		25	75	290092.17	4086468.33	S	1979-05-10
Astronolise finovous	ti i i i		N;C	n		S2	G2	593788.82	4084956.51	S	1992-05-04
asin agains junereus	black woollypod		S.	S		S2	G2	593421.31	4084613.41	S	1992-05-05
Camissonia megaianina	Cane Spring suncup		z			S3	G3Q	594939.94	4081610.01	×	1978-09-26
Camissonia megalantha	Cane Spring suncup		z			S3	G30	593595.51	408677270	N	1002 00 17
Camissonia megalantha	Cane Spring suncup		z			83	G3Q	594251.35	4083420.67	S	1992-08-17
Camissonia megalantha	Cane Spring suncup		z			S3	G3Q	593834.18	4085326.80	· v	1992-08-04
Cymopterus ripleyi var. saniculoides	sanicle biscuitroot		N;C			S3	G3G4T3Q	590467.43	4073764.28	G	1965-05-19
Cymopterus ripleyi var. saniculoides	sanicle biscuitroot		N;C			S3	G3G4T3Q	589218.92	4088821.27	C	1965-05-20
Cymopterus ripleyi var. saniculoides	sanicle biscuitroot		N;C			83	G3G4T30	595068.38	4070085 31	0	1941-05-13
Phacelia beatleyae	Beatley scorpionflower		z			83	G3	595818.80	4087105.60	2	1976-06-71
Phacelia beatleyae	Beatley scorpionflower		Z			\$3	63	594839.83	4083920.27	V	1992-06-11
Phacelia beatleyae	Beatley scorpionflower		z			S3	G3	597347 06	4083301 44	> >	1070 05 10
Phacelia beatleyae	Beatley scorpionflower		z			83	G3	506294 14	4086648 76	Tall o	1077 501
Phacelia beatleyae	Beatley scorpionflower		z			S3	89	597773 31	4089285.79	o M	1970-05 10
									77.007.001	TAT	01-00-6/61
Reptiles											
Gopherus agassizii	desert tortoise (Mojave Desert pop.)	LT	S	F	YES	8283	G4	50022005	4070008 40	W	1004 ppr
Gopherus agassizii	desert tortoise (Mojave Desert pop.)	LT	S	ь	YES	S2S3	G4	599850.80	4076673 52	M	1004 DDE
Gopherus agassizii	desert tortoise (Mojave Desert pop.)	LT	S	T	YES	8283	G4	587377 81	4077061 68	N N	1004 PPE
Gopherus agassizii	desert tortoise (Mojave Desert pop.)	LT	S	F	YES	\$283	G4	593997 43	4081753.65	W	1994-FRE
Gopherus agassizii	desert tortoise (Moiave Desert non)	1.1	v	F	VEC	6363	20	24 00203	40707000	,	CO-CO-CCC1
	(ided special party)	i	2	+	271	2533	5	30/332.40	40/9019.89	M	1994-PRE
Mammals				T							
Notiosorex crawfordi	Crawford's desert shrew			T		S3	GS	595367.85	4067684.80	9	11-01-1961
									Tourson	,	1201-10-11

Act:
necies /
pasered §
Enda
er the
g und
Listin
es for
Categoric
(Dsfws)
Service
Wildlife
h and
J. S. Fis

Listed Threatened - likely to be classified as Endangered in the foreseeable LT

Bureau of Land Management (Blm) Species Classification:

- Nevada Special Status Species USFWS listed, proposed or candidate for listing, or protected by Nevada state law Nevada Special Status Species designated Sensitive by State Office California Special Status Species (see definition S and N) ZU S
- United States Forest Service (Usfs) Species Classification:
- Region 4 (Humboldt-Toiyabe NF) sensitive species Region 4 and/or Region 5 Threatened species SH

Nevada State Protected (State) Species Classification:

Species protected under NRS 501. Fauna: YES

Precision (Prec) of Mapped Occurrence:

Precision, or radius of uncertainty around latitude/longitude coordinates:

- Seconds: within a three-second radius OZN
- Minutes: within a one-minute radius, approximately 2 km or 1.5 miles General: within about 8 km or 5 miles, or to map quadrangle or place name

Nevada Natural Heritage Program Global (Grank) and State (Srank) Ranks for Threats and/or Vulnerability:

Global rank indicator, based on worldwide distribution at the species level Global trinomial rank indicator, based on worldwide distribution at the infraspecific

UH

- State rank indicator, based on distribution within Nevada at the lowest taxonomic level
- Critically imperiled and especially vulnerable to extinction or extirpation due to extreme rarity, imminent threats, or other factors
- Imperiled due to rarity or other demonstrable factors Vulnerable to decline because rare and local throughout its range, or with very restricted range
 - Long-term concern, though now apparently secure; usually rare in parts of its range, especially at its periphery

4 2

- Demonstrably secure, widespread, and abundant Accidental within Nevada
- Non-breeding status within Nevada (excludes resident taxa) Breeding status within Nevada (excludes resident taxa) Historical; could be rediscovered
 - Taxonomic status uncertain
- Enduring occurrences cannot be defined (usually given to migrant or Unrankable
 - Assigned rank uncertain

Washington, DC 20585

JAN 19 2010

Ms. Julie Holling
Department of Natural Resources
Wildlife and Freshwater Fisheries Division
P.O. Box 167
Columbia, South Carolina 29202-0167

Dear Ms. Holling:

The Department of Energy, Office (DOE) of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). The development of this EIS is mandated under Section 631 of the Energy Policy Act (EPAct) of 2005 and Section 3(b)(1)(D) of the Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA) of 1985. The LLRWPAA assigned the Federal Government responsibility for the disposal of GTCC LLRW that result from Nuclear Regulatory Commission (NRC) licensed activities. The LLRWPAA also directed that such waste be disposed of in a facility licensed by NRC. DOE is the Federal agency responsible for the disposal of GTCC LLRW. This Draft EIS will be issued for public comment in late spring 2010.

Pursuant to Section 631 of EPAct, before making a final decision on the disposal alternative(s) to be implemented, DOE is required to submit to Congress a report that describes all alternatives considered in the EIS and await Congressional action. DOE will issue a report to Congress once the Final EIS is published; anticipated in summer 2011.

The Department is in the process of analyzing the proposed action and potential impacts to listed and proposed threatened and endangered species both at the Federal and State level. We request that you provide us with any information regarding the occurrence of State listed and proposed threatened and endangered species and any state sensitive species that may occur on or in the vicinity of the proposed GTCC LLRW disposal location at the Savannah River Site (SRS) at the upland ridge overlooking Tinker Creek, northeast of Area Z in the north-central portion of SRS, Aiken County, that should be considered in preparing the EIS.

I have enclosed a brief background of the project, including information on the potential GTCC locations within the State, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact me at (301) 903-5145 or at armoide.gov.

Please send the requested information to:

Arnold Edelman
Office of Disposal Operations
Department of Energy, Cloverleaf Building (EM-43)
1000 Independence Avenue, SW
Washington, DC 20585

Sincerely,

arnold M. Edelmer

EIS Document Manager
Office of Disposal Operations

Enclosures

cc: Drew Grainger, SR

John E. Frampton Director

Ken Renticrs
Deputy Director for
Land, Water and Conservation
Division

January 27, 2010

Mr. Arnold M. Edelman, EIS Document Manager Office of Disposal Operations Department of Energy, Cloverleaf Building (EM-43) 1000 Independence Avenue, SW Washington, DC 20585

RE: Threatened and Endangered Species and GTCC LLRW waste disposal at Savannah River Site, South Carolina

STOREST OF STREET

11 - 1876 | 1 1 - 1 1 | 1-206 Ala | 181

Dear Mr. Johnson,

Because our database does not represent a comprehensive biological inventory of the state, I can only verify the known occurrences in the vicinity of your project. There may be occurrences of species in the vicinity of your project area that have not been reported to us. Fieldwork remains the responsibility of the investigator.

Since this is a preliminary report and only a rough idea given for the location, I have reviewed our database a little more broadly than usual. There are no known occurrences or any federally or state listed threatened or endangered within the expected drainage of the project area. However, there are a number of rare plant records for the drainage area, including: Carex folliculata (Long Sedge, G4G5, S1), Ilex amelanchier (Sarvis Holly, G4, S3), Lindera subcoriacea (Bog Spicebush, G2G3, S3), Nestronia umbellula (Nestronia, G4, S3), Nolina georgiana (Georgia Bear-grass, G3G5, S3), Platanthera lacera (Green-fringe Orchis, G5, S2), and Rhododendron flammeum (Piedmont azalea, G3, S3). Although these species do not have any legal protection, we ask that you consider protecting them during your work. As further indication of other species that may occur in the project area, I have also enclosed the list of rare, threatened, and endangered species and communities that occur within roughly 5 miles of the project site.

Rembert C. Dennis Building • 1000 Assembly Street • PO Box 167 • Columbia, SC 29202 • Telephone: 803-734-9100 • Fax: 803-734-9200 EQUAL OPPORTUNITY AGENCY

www.dnr.sc.gov

PRINTED ON RECYCLED PAPER

As a professional courtesy, we ask that you acknowledge S.C. Heritage Trust as a source of information whenever you use this data in reports.

If you need additional assistance, please contact me by phone at 803-734-3917 or by e-mail at HollingJ@dnr.sc.gov.

Sincerely,

Juli Holly

Julie Holling, Data Manager SC Department of Natural Resources Heritage Trust Program

Encl.

Rare, Threatened, and Endangered Species and Communities Known to Occur within 5 miles of SRS GTCC LLRW Disposal Site January 26, 2010

Scientific Name	Common Name	USESA Designation	State Protection Global Rank State Rank	Global Rank	State Rank
Vertebrate Animals					
Condylura cristata	Star-nosed Mole			65	53?
Corynorhinus rafinesquii	Rafinesque's Big-eared Bat		SE-Endangered	6364	523
Egretta caerulea	Little Blue Heron			65	SNRB, SNRN
Heterodon simus	Southern Hognose Snake			62	SNR
Neotoma floridana	Eastern Woodrat			G5	5354
Pituophis melanoleucus	Pine or Gopher Snake			64	5354
Rana capito	Gopher Frog		SE-Endangered	63	51
Vascular Plants					
Allium cuthbertii	Striped Garlic			G4	S2
Baptisia lanceolata	Lance-leaf Wild-indigo			64	S3
Carex folliculata	Long Sedge			6465	S1
Coreopsis rosea	Rose Coreopsis			63	52
Croton elliottii	Elliott's Croton	Y .		6263	\$253
Echinacea laevigata	Smooth Coneflower	LE: Listed endangered		6263	53
Echinodorus tenellus	Dwarf Burhead			G5?	52
Eleocharis robbinsii	Robbins Spikerush			G4G5	S2
Ilex amelanchier	Sarvis Holly			64	S3
Lindera subcoriacea	Bog Spicebush			6263	53
Ludwigia spathulata	Spatulate Seedbox			6263	S3
Nestronia umbellula	Nestronia			64	S3
Nolina georgiana	Georgia Beargrass			6365	53
Paronychia americana	American Nailwort			6364	SNR
Platanthera lacera	Green-fringe Orchis			65	52
Rhododendron flammeum	Piedmont Azalea			63	S3
Sagittaria isoetiformis	Slender Arrow-head			64?	S3
Utricularia floridana	Florida Bladderwort			6365	S2
Utricularia olivacea	Piedmont Bladderwort			64	SZ
Communities					
Fagus grandifolia - (Liquidambar	Piedmont/coastal Plain Beech -			63?	SNR
styraciflua) / Oxydendrum arboreum /	Mountain Laurel Slope Forest				
Kalmia latifolia forest					

Page 1 of 2

Department of Energy Washington, DC 20585

JAN 19 2010

MEMORANDUM FOR JUAN GRIEGO

ASSISTANT MANAGER FOR NATIONAL SECURITY MISSION LOS ALAMOS SITE OFFICE

FROM:

CHRISTING ØELLES

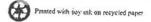
DIRECTOR

OFFICE OF DISPOSAL OPERATIONS

SUBJECT:

Cultural and Paleontological Resources Consultation for the Disposal of Greater-Than-Class C (GTCC) Low Level Radioactive Waste and GTCC-Like Waste Environmental Impact Statement (DOE/EIS-0375D)

The Department of Energy, Office of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). In compliance with the National Historic Preservation Act of 1966 (PL-89-665), the EIS will contain an analysis of the proposed action and potential impacts to cultural resources. We request that you provide us with any information regarding cultural resources that may be affected by the location of the proposed GTCC LLRW disposal locations within TA-54, on Mesita del Buey, Zone 6, North Site, and North Site Expanded, Los Alamos County.


I have attached a brief background of the project, including information on the potential GTCC location, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact Arnie Edelman at (301) 903-5145 or at arnold.edelman@em.doe.gov.

Please send the requested information to:

Arnold Edelman
Office of Disposal Operations
Department of Energy, Cloverleaf Building (EM-43)
1000 Independence Avenue, SW
Washington, DC 20585

Attachment

cc: Vicki Loucks, LASO

Washington, DC 20585

JAN 19 2010

Dr. Allyson Brooks
State Historic Preservation Officer
Department of Archeology and Historic Preservation
Washington Department of Community, Trade and Economic Development
P.O. Box 48343
Olympia, Washington 98504-8343

Dear Dr. Brooks:

The Department of Energy, Office (DOE) of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). The development of this EIS is mandated under Section 631 of the Energy Policy Act (EPAct) of 2005 and Section 3(b)(1)(D) of the Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA) of 1985. The LLRWPAA assigned the Federal Government responsibility for the disposal of GTCC LLRW that result from Nuclear Regulatory Commission (NRC) licensed activities. The LLRWPAA also directed that such waste be disposed of in a facility licensed by NRC. DOE is the Federal agency responsible for the disposal of GTCC LLRW. This Draft EIS will be issued for public comment in late spring 2010.

Pursuant to Section 631 of EPAct, before making a final decision on the disposal alternative(s) to be implemented, DOE is required to submit to Congress a report that describes all alternatives considered in the EIS and await Congressional action. DOE will issue a report to Congress once the Final EIS is published; anticipated in summer 2011.

In compliance with the National Historic Preservation Act of 1966 (PL-89-665), the EIS will contain an analysis of the proposed action, and potential impacts to cultural and paleontological resources. The Department is in the process of analyzing information regarding cultural and paleontological resources in the 200-West Area. This information will be presented in the Draft EIS chapter on Hanford.

Should the EIS Record of Decision, expected to be issued in 2011, select a site near the Hanford Site Central Waste Complex for disposal of GTCC waste, a formal Cultural Resources Review would be conducted in accordance with Section 106 of the National Historic Preservation Act, and Advisory Council on Historic Preservation regulations for Protection of Historic Properties (36 CFR Part 800).

In support of the preparation of this EIS, DOE is soliciting any specific concerns you may have regarding cultural resources that may be affected by the proposed project.

rinted with soy ink on recycled paper

I have enclosed a brief background of the project, including information on the location of the potential GTCC location within the State, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact me at (301) 903-5145 or at arrnold.edelman@em.doe.gov.

Please send the requested information to:

Arnold Edelman
Office of Disposal Operations
Department of Energy, Cloverleaf Building (EM-43)
1000 Independence Avenue, SW
Washington, DC 20585

Sincerely,

Arnold M. Edelman

NEPA Document Manager Office of Disposal Operations

well M Elelman

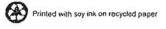
Enclosure

cc: Woody Russell, ORP A. Rodriguez, DOE-RL R. Corey, DOE-RL

Washington, DC 20585

JAN 19 2010

Mr. Ken Reid, Deputy SHPO State Historic Preservation Office 210 Main Street (The Assay Office) Boise, Idaho 83702


Dear Mr. Reid:

The Department of Energy, Office (DOE) of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). The development of this EIS is mandated under Section 631 of the Energy Policy Act (EPAct) of 2005 and Section 3(b)(1)(D) of the Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA) of 1985. The LLRWPAA assigned the Federal Government responsibility for the disposal of GTCC LLRW that result from Nuclear Regulatory Commission (NRC) licensed activities. The LLRWPAA also directed that such waste be disposed of in a facility licensed by NRC. DOE is the Federal agency responsible for the disposal of GTCC LLRW. This Draft EIS will be issued for public comment in late spring 2010.

Pursuant to Section 631 of EPAct, before making a final decision on the disposal alternative(s) to be implemented, DOE is required to submit to Congress a report that describes all alternatives considered in the EIS and await Congressional action. DOE will issue a report to Congress once the Final EIS is published; anticipated in summer 2011.

In compliance with the National Historic Preservation Act of 1966 (PL-89-665), the EIS will contain an analysis of the proposed action, and potential impacts to cultural and paleontological resources. The Department is in the process of analyzing the proposed action and their potential impacts. We request that you provide us with any information regarding cultural and paleontological resources that may be affected by the proposed GTCC LLRW disposal location at the Idaho National Laboratory (INL), southwest of the Reactor Technology Complex in the south central portion of INL, Butte County that should be considered in preparing the EIS.

I have enclosed a brief background of the project, including information on the location of the potential GTCC location within the State, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact me at (301) 903-5145 or at arrold.edelman@em.doe.gov.

Please send the requested information to:

Arnold Edelman
Office of Disposal Operations
Department of Energy, Cloverleaf Building (EM-43)
1000 Independence Avenue, SW
Washington, DC 20585

Sincerely,

Arnold M. Edelman

NEPA Document Manager Office of Disposal Operations

aurel M Elelman

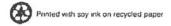
Enclosure

cc: Jack Depperschmidt, IDSO

Washington, DC 20585

JAN 19 2010

Ms. Jan Biella State of New Mexico Department of Cultural Affairs Bataan Memorial Building 407 Galisteo Street Suite 236 Santa Fe, New Mexico 87501


Dear Ms. Biella:

The Department of Energy, Office (DOE) of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). The development of this EIS is mandated under Section 631 of the Energy Policy Act (EPAct) of 2005 and Section 3(b)(1)(D) of the Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA) of 1985. The LLRWPAA assigned the Federal Government responsibility for the disposal of GTCC LLRW that result from Nuclear Regulatory Commission (NRC) licensed activities. The LLRWPAA also directed that such waste be disposed of in a facility licensed by NRC. DOE is the Federal agency responsible for the disposal of GTCC LLRW. This Draft EIS will be issued for public comment in late spring 2010.

Pursuant to Section 631 of EPAct, before making a final decision on the disposal alternative(s) to be implemented, DOE is required to submit to Congress a report that describes all alternatives considered in the EIS and await Congressional action. DOE will issue a report to Congress once the Final EIS is published; anticipated in summer 2011.

In compliance with the National Historic Preservation Act of 1966 (PL-89-665), the EIS will contain an analysis of the proposed action and potential impacts to cultural and paleontological resources The Department is in the process of analyzing the proposed action and their potential impacts. We therefore request that you provide us with any information regarding cultural and paleontological resources that may be affected by the location of the proposed GTCC LLRW disposal locations in your State, the Waste Isolation Pilot Plant (WIPP) in Eddy County; and Sections 27 and 35 in and around WIPP. Please note that we are working with our DOE offices on development of the EIS and that Consultation with the State, if needed for LANL, will occur through the Los Alamos Site Office.

I have enclosed a brief background of the project, including information on the potential New Mexico GTCC locations, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact me at (301) 903-5145 or at amold.edelman@em.doe.gov.

Please send the requested information to:

Arnold Edelman
Office of Disposal Operations
Department of Energy, Cloverleaf Building (EM-43)
1000 Independence Avenue, SW
Washington, DC 20585

Sincerely,

Arnold M. Edelman

NEPA Document Manager Office of Disposal Operations

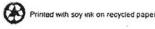
Enclosure

cc: Susan McCauslin, CBFO Vicki Loucks, LASO Elizabeth Withers, DOE-AL

Washington, DC 20585

1AN 19 2010

Mr. Ronald James
Historic Preservation Office
100 North Stewart Street
Capitol Complex
Carson City, Nevada 89701-4285


Dear Mr. James:

The Department of Energy, Office (DOE) of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). The development of this EIS is mandated under Section 631 of the Energy Policy Act (EPAct) of 2005 and Section 3(b)(1)(D) of the Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA) of 1985. The LLRWPAA assigned the Federal Government responsibility for the disposal of GTCC LLRW that result from Nuclear Regulatory Commission (NRC) licensed activities. The LLRWPAA also directed that such waste be disposed of in a facility licensed by NRC. DOE is the Federal agency responsible for the disposal of GTCC LLRW. This Draft EIS will be issued for public comment in late spring 2010.

Pursuant to Section 631 of EPAct, before making a final decision on the disposal alternative(s) to be implemented, DOE is required to submit to Congress a report that describes all alternatives considered in the EIS and await Congressional action. DOE will issue a report to Congress once the Final EIS is published; anticipated in summer 2011.

In compliance with the National Historic Preservation Act of 1966 (PL-89-665), the EIS will contain an analysis of the proposed action, and potential impacts to cultural and paleontological resources. The Department is in the process of analyzing the proposed action and their potential impacts. We request that you provide us with any information regarding cultural and paleontological resources that may be affected by the proposed GTCC LLRW disposal location at the Nevada Test Site (NTS), in the vicinity north of Frenchman Flat, either southeast or west of the existing Radioactive Waste Management Facility, Nye County that should be considered in preparing the EIS.

I have enclosed a brief background of the project, including information on the location of the potential GTCC location within the State, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact me at (301) 903-5145 or at armold.edelman@em.doe.gov.

Please send the requested information to:

Arnold Edelman
Office of Disposal Operations
Department of Energy, Cloverleaf Building (EM-43)
1000 Independence Avenue, SW
Washington, DC 20585

If you have any questions, please contact me at (301) 903-5145.

Arnold M. Edelman NEPA Document Manager

Office of Disposal Operations

Enclosure

cc: Linda Cohn, NSO

From: Alice Baldrica [mailto:ABaldrica@nevadaculture.org]

Sent: Wednesday, March 24, 2010 5:39 PM

To: Edelman, Arnold

Subject: RE: your request for information

Dear Mr. Edelman:

I checked the Nevada Cultural Resources Information System (NVCRIS), the State's electronic database for archaeological resources. A handful of very small lithic scatters are located within the alternative project area but none of them are eligible for inclusion in the National Register of Historic Places.

Historic properties resulting from nuclear testing activities have been recorded at Frenchman Flat that are associated with the Cold War. At the present time, the effect of a project on such historic properties is unknown.

If you have any questions let me know.

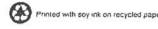
Alice M. Baldrica State Historic Preservation Office 100 N. Stewart St. Carson City, NV 89701 Telephone: 775-684-3444 FAX: 775-684-3442

abaldrica@nevadaculture.org

Washington, DC 20585

JAN 19 2010

Mr. Eric Emerson
Department of Archives and History
8301 Parklane Road
Columbia, South Carolina 29223-4905


Dear Mr. Emerson:

The Department of Energy, Office (DOE) of Environmental Management is preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act for the disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW). The development of this EIS is mandated under Section 631 of the Energy Policy Act (EPAct) of 2005 and Section 3(b)(1)(D) of the Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA) of 1985. The LLRWPAA assigned the Federal Government responsibility for the disposal of GTCC LLRW that result from Nuclear Regulatory Commission (NRC) licensed activities. The LLRWPAA also directed that such waste be disposed of in a facility licensed by NRC. DOE is the Federal agency responsible for the disposal of GTCC LLRW. This Draft EIS will be issued for public comment in late spring 2010.

Pursuant to Section 631 of EPAct, before making a final decision on the disposal alternative(s) to be implemented, DOE is required to submit to Congress a report that describes all alternatives considered in the EIS and await Congressional action. DOE will issue a report to Congress once the Final EIS is published; anticipated in summer 2011.

In compliance with the National Historic Preservation Act of 1966 (PL-89-665), the EIS will contain an analysis of the proposed action, and potential impacts to cultural and paleontological resources. The Department is currently in the process of analyzing the proposed action and their potential impacts. We request that you provide us with any information regarding cultural and paleontological resources that may be affected by the proposed GTCC LLRW disposal location at the Savannah River Site (SRS) at the upland ridge overlooking Tinker Creek, northeast of Area Z in the north-central portion of SRS, Aiken County, which should be considered in preparing the EIS.

I have enclosed a brief background of the project, including information on the location of the potential GTCC location within the State, and a copy of the Notice of Intent. I wish to thank you in advance for the information that you will be providing to us. If you have any questions, please contact me at (301) 903-5145 or at arrold.edelman@em.doe.gov.

Please send the requested information to:

Arnold Edelman
Office of Disposal Operations
Department of Energy, Cloverleaf Building (EM-43)
1000 Independence Avenue, SW
Washington, DC 20585

Sincerely,

and of the m

Arnold M. Edelman NEPA Document Manager Office of Disposal Operations

Enclosure

cc: Drew Grainger, SRSO

1 2 3 4 5 6 7 8 9 10 11 12 13 This page is intentionally left blank. 14 15

1	PROJECT BACKGROUND INFORMATION
2	
3	This is a copy of the information attached as an enclosure to the letter sent out by
1	A.M. Edelman of DOE.
5	
<	

1 2 3 4 5 6 7 8 9 10 11 12 13 This page is intentionally left blank. 14 15

Enclosure

Project Background Information

The following provides a brief background of the project and an overview of the alternative disposal sites.

The Department of Energy (DOE) published its Notice of Intent (NOI) to prepare an Environmental Impact Statement (EIS) for disposal of Greater-Than-Class-C Low-Level-Radioactive Waste (GTCC LLRW) in the Federal Register (Vol. 72, No.140) on July 23, 2007. (A copy of the NOI is attached). DOE proposes to construct and operate a new facility or facilities, or use an existing facility or facilities, for the disposal of GTCC LLRW and GTCC-like waste. DOE would then close the facility or facilities at the end of each facility's operational life. Institutional controls, including monitoring, would be employed for a period of time determined during the implementation phase. A combination of disposal methods and locations may be appropriate, depending on the characteristics of the waste and other factors.

The Waste Isolation Pilot Plant (WIPP) in Eddy County, New Mexico is evaluated for deep geologic disposal. Land disposal methods (i.e., boreholes, trench and above-grade vault methods) are evaluated at seven federally owned sites: (1) Hanford Site in Benton County, Washington; (2) Idaho National Laboratory (INL) in Butte County, Idaho; (3) Los Alamos National Laboratory (LANL) in Los Alamos County, New Mexico; (4) Nevada Test Site (NTS) in Nye County, Nevada; (5) Oak Ridge Reservation (ORR) in Roane and Anderson Counties, Tennessee; (6) Savannah River Site (SRS) in Aiken County, South Carolina; and (7) WIPP Vicinity in Eddy County, New Mexico. The WIPP Vicinity location is situated just outside the boundary of the WIPP facility. A map of these sites being considered for waste disposal is provided in Figure 1.

The DOE sites evaluated for the land disposal methods were chosen on the basis of mission compatibility (i.e., only DOE sites that currently have radioactive waste disposal as part of their ongoing mission were considered). Since these sites are currently being used for disposal of LLRW, it is expected that they may contain areas within them that are suitable for disposal of similar but generally higher-activity LLRW (i.e., the GTCC LLRW and GTCC-like waste inventory that will be discussed in the EIS). These DOE sites would also have supporting infrastructure already in place that might be useful for future potential GTCC waste disposal activities. The WIPP Vicinity was chosen because of its proximity to ongoing waste disposal operations at WIPP and the potential to use its supporting infrastructure.

Aside from mission compatibility, site factors that were considered in identifying an acceptable area for developing a GTCC LLRW disposal facility were as follows: have sufficient depth to avoid groundwater; not to be located within the 100-year floodplain or in or near wetlands; be consistent with current land use plans; have low probability for erosion, mass wasting, faulting, folding, and seismic activity; and have site data available for modeling or evaluation purposes.

¹ The proposed Yucca Mountain repository mentioned in the NOI is no longer being considered for a disposal site for GTCC LLRW.

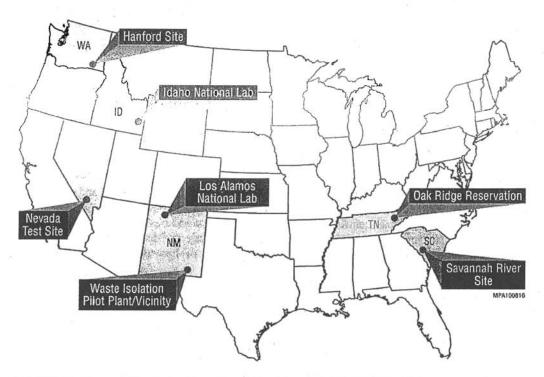


FIGURE 1 Map of Sites Being Considered for Disposal of GTCC LLRW and GTCC-Like Waste

WIPP

WIPP is a DOE facility that is the world's first underground repository permitted by the U.S. Environmental Protection Agency (EPA) and the state of New Mexico to safely and permanently dispose of defense-related TRU radioactive waste associated with the research and production of nuclear weapons. WIPP is located 26 mi east of Carlsbad, New Mexico, in the Chihuahuan Desert in the southeast corner of the state (Figure 2). Project facilities include disposal rooms that are mined 2,150 ft under the ground in a salt formation (the Salado Formation) that is 2,000-ft thick and has been stable for more than 200 million years. The WIPP facility sits in the approximate center of a 16-mi² area that was withdrawn from public domain and transferred to DOE (Figure 3). The facility footprint itself encompasses 35 fenced acres of surface space and about 7.5 mi of underground excavations in the Salado Formation.

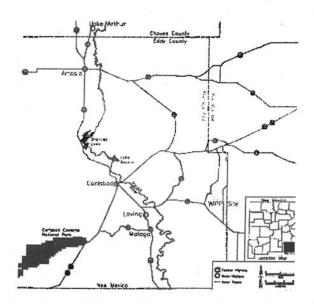


FIGURE 2 General Location of WIPP in Eddy County, New Mexico

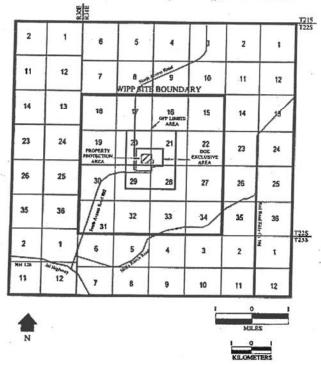


FIGURE 3 Land Withdrawal Area Boundary at WIPP

Hanford Site

The Hanford Site is located in south-central Washington State on 586 mi² of land between the Cascade Range and the Rocky Mountains (Figure 4). The Columbia River flows through the northern portion of the site and forms part of its eastern boundary. Hanford has been operated by DOE and its predecessors (the Manhattan Engineer District, U.S. Atomic Energy Commission [AEC], and U.S. Energy Research and Development Administration) since it was created in 1943. Its primary mission was to produce nuclear materials in support of national defense, research, and biomedical programs. Operations associated with those programs used facilities for the fabrication of nuclear reactor fuel, reactors for nuclear materials production, chemical separation plants, nuclear material processing facilities, research laboratories, and waste management facilities. Current activities include research, environmental restoration, and waste management. The U.S. Fish and Wildlife Service (Service) and DOE co-manage the 195,000-acre Hanford Reach National Monument, which was established by Presidential proclamation in 2000.

The GTCC reference location is immediately south of the Integrated Disposal Facility (IDF) site in the 200 East Area in the central portion of the Hanford Site (Figure 4). The 200 East and West Areas are located on a plateau about 7 and 5 miles, respectively, south of the Columbia River. Historically, these areas have been dedicated to fuel reprocessing and to waste management and disposal activities.


Current waste management activities at the Hanford Site include the treatment and disposal of LLRW on site, the processing and certification of TRU waste pending its disposal at WIPP, and the storage of high-level radioactive waste on site pending its disposal in a geologic repository. The main areas where waste management activities occur are the 200 West Area and the 200 East Area, which are south of the Columbia River. These 200 Areas cover about 6 mi². Activities at the 200 Areas include the operation of lined trenches for the disposal of LLRW and mixed LLRW and the operation of the Environmental Restoration Disposal Facility for the disposal of LLRW generated by environmental restoration activities that are being conducted at Hanford Site to comply with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). U.S. Ecology, Inc., operates a commercial LLRW disposal facility on a 40-ha (100-ac) site leased by the State of Washington near the 200 East Area. The facility is licensed by the NRC and the State of Washington.

INL

INL is located in southeastern Idaho on 890 mi² of relatively undisturbed DOE land in the upper Snake River Plain (Figure 5). Basalt flows cover most of the plain, producing a rolling topography. INL is bordered by mountain ranges on the north and by volcanic buttes and open plain on the south. Lands immediately adjacent to the INL site consist of open rangeland, foothills, and agricultural fields. About 60 percent of the site is open to livestock grazing. Key facilities at INL consist of clusters of buildings and structures that are typically less than a few square miles each, separated from each other by miles of gently rolling sagebrush-covered semi-arid desert. The GTCC reference location is southwest of the Reactor Technology Complex

(RTC) in the south central portion of INL (Figure 5). The RTC is dedicated to research supporting DOE missions, including nuclear technology research.

Current waste management activities at INL include the treatment and storage of mixed LLRW (waste containing hazardous constituents in addition to radionuclides) on site, the treatment and disposal of LLRW on site, the storage of TRU waste on site, and the storage of high-level radioactive waste and Spent Nuclear Fuel (SNF) on site pending the disposal of these last two materials in a geologic repository. These wastes originate from DOE activities and from the onsite Naval Reactors Program. LLRW from INL site operations is disposed of at the Subsurface Disposal Area at the Radioactive Waste Management Complex (RWMC). TRU waste is also stored and treated at the RWMC to prepare it for disposal at WIPP.

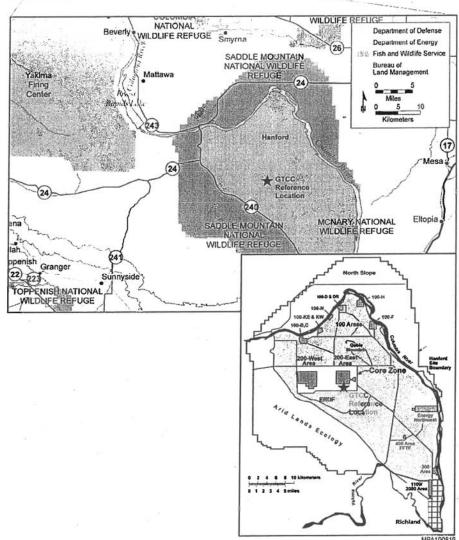


FIGURE 4 GTCC Reference Location at the Hanford Site

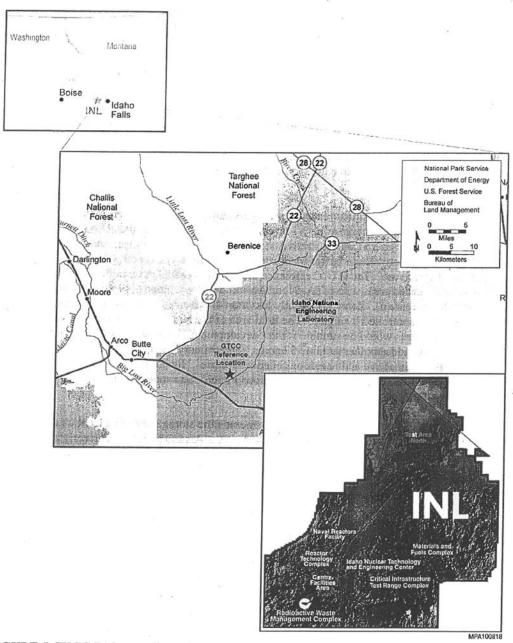


FIGURE 5 GTCC Reference Location at INL

LANL

LANL is located in northern New Mexico, within Los Alamos County, on 40 mi² or 25,600 acres of land owned by the U.S. Government. The laboratory is administered by DOE and the National Nuclear Security Administration (NNSA) (Figure 6). The site is situated on the eastern flank of the Jemez Mountains along an area known as the Pajarito Plateau. The terrain in the LANL area consists of mesa tops and canyon bottoms that trend in a west-to-east direction, with the canyons intersecting the Rio Grande River to the east of LANL. Laboratory operations are conducted in numerous facilities located in 48 designated technical areas (TAs) and at other leased properties located nearby. The laboratory's core mission has been to maintain the effectiveness of the nation's nuclear deterrent. As one of the world's leading research institutions, it is also involved in hydrogen fuel cell development, supercomputing, and applied environmental research.

There are more than 2,000 structures on the site, providing about 8.6 million ft² of covered space. About half of the square footage at LANL is considered laboratory or production space; the remaining area is considered administrative, storage, service, or other space. Most of the site is undeveloped, which provides a buffer for security and safety and offers the possibility of expansion for future use. The GTCC reference location is situated in two undeveloped and relatively undisturbed areas within TA-54, on Mesita del Buey: Zone 6, North Site, and North Site Expanded (Figure 6). Zone 6 is slightly less than 40 acres in area. It is not fenced, but access by road is controlled by a gate. The total area of the North Site is about 63 acres, of which about 50 acres would be suitable for the development of disposal cells. The North Site Expanded section adds another suitable 57 acres. The primary function of TA-54 is the management of radioactive and hazardous chemical wastes. Its northern border coincides with the boundary between LANL and the San Ildefonso Pueblo; its southeastern boundary borders the town of White Rock.

Current waste management activities at LANL include the storage of mixed LLRW, the disposal of LLRW on site, and the storage of TRU waste on site. Area G at TA-54 currently accepts on-site LLRW for disposal, and in special cases, off-site waste has also been accepted from other DOE sites for disposal. Engineered shafts are actively used to dispose of remote handled LLRW.

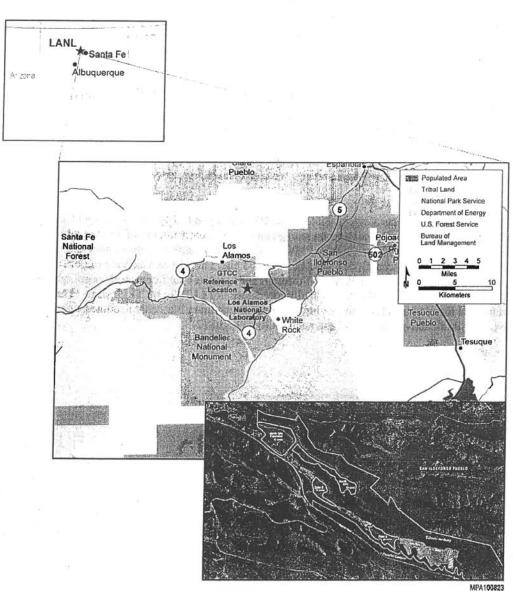


FIGURE 6 GTCC Reference Location at LANL

NTS

NTS is located about 65 miles northwest of Las Vegas in southern Nevada on 1,350 mi² of land managed by DOE (Figure 7). Its terrain is characterized by high relief, with elevations ranging from about 3,000 ft at Frenchman Flat in the southeastern portion of the site to about 7,400 ft on Rainier Mesa. Historically, the primary mission of NTS was to conduct nuclear weapons tests. The tests have altered the natural topography of NTS, creating craters in Yucca Flat and Frenchman Flat basins and on the Pahute and Rainier Mesas. Since the moratorium on nuclear testing that began in October 1992, the mission of NTS has changed to one of maintaining readiness to conduct nuclear tests in the future. The site also supports DOE's waste management program, as well as other national-security related research and development and testing programs.

NTS presently serves as a disposal site for LLRW and mixed LLRW generated by DOE defense-related facilities. It is also an interim storage site for a limited amount of TRU mixed wastes pending transfer to WIPP for disposal. Waste management activities are conducted in four primary NTS areas: Areas 3, 5, 6, and 11. Areas 3 and 5 are the two existing radioactive waste management sites at NTS. From 1984 through 1989, greater confinement disposal (at depths of 70 to 120 ft) was used at the Area 5 facility to dispose of LLRW and TRU waste. The GTCC reference location at NTS in the vicinity north of Frenchman Flat, either southeast or west of the existing Radioactive Waste Management Facility (Figure 7).

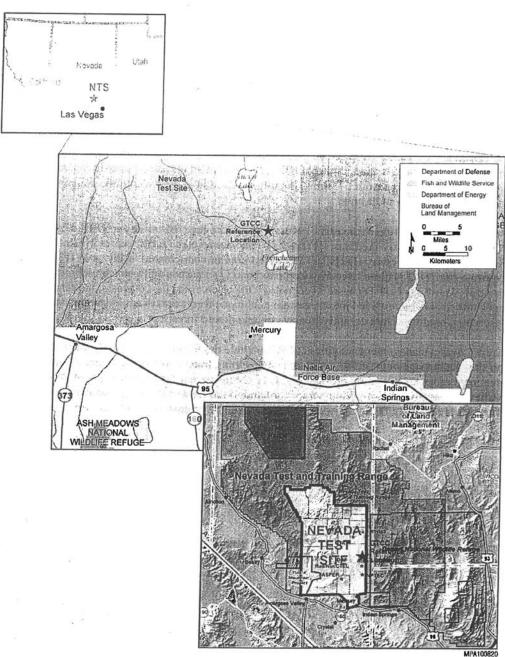


FIGURE 7 GTCC Reference Location at NTS

ORR

ORR is located in eastern Tennessee, in Roane and Anderson Counties, on 34,241 acres of mostly contiguous land owned by DOE (Figure 8). The terrain is characterized by a series of parallel valleys and ridges with a northeast-southwest trend caused by the differential weathering of interstratified formations exposed at the surface. The topographic relief between valley floors and ridge crests is generally about 300 to 350 ft. The majority of ORR lies within the corporate limits of the city of Oak Ridge. The residential section of Oak Ridge forms ORR's northern and eastern boundaries; the Tennessee Valley Authority's Melton Hill and Watts Bar Reservoirs on the Clinch and Tennessee Rivers form the southern and western boundaries. Except for the city of Oak Ridge, the land within 5 miles of ORR is semirural and is used primarily for residences, small farms, and cattle pasture. Fishing, boating, water skiing, and swimming are popular recreational activities in the area.

Following its acquisition in the early 1940s, much of the land that makes up ORR served as a buffer for three primary facilities: (1) the X-10 nuclear research facility currently known as Oak Ridge National Laboratory (ORNL); (2) the first uranium enrichment facility or Y-12, currently known as the Y-12 National Security Complex; and (3) a gaseous diffusion enrichment facility currently known as East Tennessee Technology Park. Over the past 60 years, the relatively undisturbed area has evolved into an eastern deciduous forest ecosystem of streams and reservoirs, hardwood forests, and extensive upland mixed forests.

Current waste management activities at ORR include the treatment and storage of mixed LLRW on site, the management of TRU waste on site pending transfer off site for disposal, and the treatment of hazardous waste on site. The GTCC reference location is in Western Bear Creek Valley, just south of White Wing Scrap Yard and to the west of the Y-12 Complex (Figure 8). The area is relatively flat and bisected by a creek running perpendicular to the valley's trend.

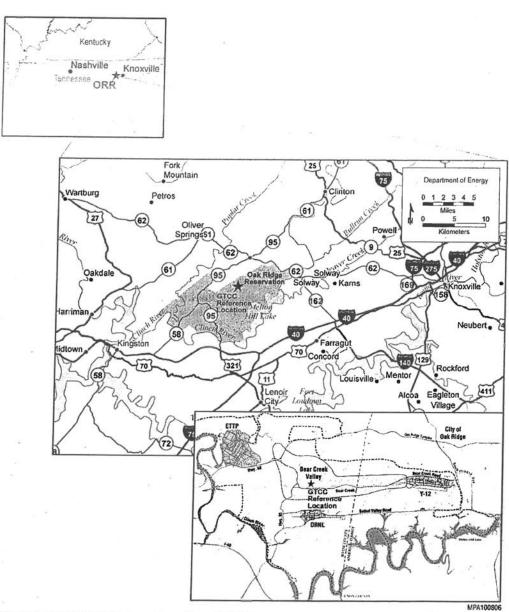
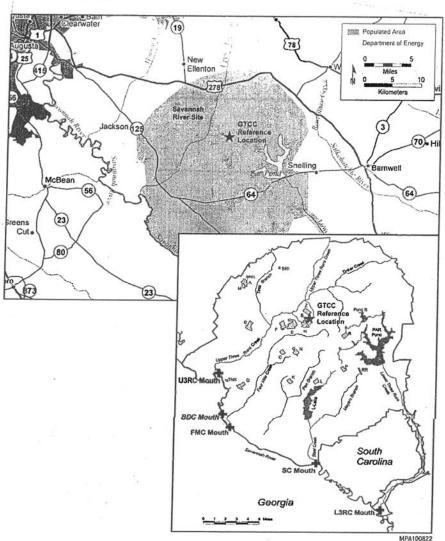


FIGURE 8 GTCC Reference Location at ORR


SRS

SRS is located on 310 mi² of DOE land along the Savannah River, about 12 miles south of Aiken, South Carolina, and 15 miles southeast of Augusta, Georgia, in southwestern South Carolina (Figure 9). Until the early 1990s, SRS primary mission was the production of special radioactive isotopes to support national defense programs. Currently, the site's mission emphasizes waste management, environmental restoration, and decontamination and decommissioning of facilities that are no longer needed for its traditional defense activities.

Current waste management activities at SRS include shipping hazardous waste, mixed LLRW, and TRU waste off site for treatment and disposal. High-level radioactive waste is stored on site pending disposal in a geologic repository. LLRW is treated and disposed of on site as well as at other DOE or commercial facilities. In addition, mixed LLRW may be treated and stored on site before being shipped off site. Other on-site activities include the treatment of LLRW prior to disposal and the preparation of TRU waste for shipment to WIPP for disposal. On-site disposal facilities at SRS include engineered trenches and vaults for the permanent disposal of solid LLRW.

The GTCC reference location is on an upland ridge overlooking Tinker Creek, to the northeast of Area Z in the north-central portion of SRS (Figure 9). The area is not currently being used for waste management.

GTCC Reference Location at SRS

WIPP Vicinity

The WIPP Vicinity reference locations are within Section 27, within the WIPP Land Withdrawal Boundary (LWB) and Section 35, outside of and immediately adjacent to the south eastern boundary of the WIPP LWB. WIPP is located in Eddy County in southeastern New Mexico, about 30 miles east of the city of Carlsbad (Figure 10). The land is a relatively flat area. It is primarily used for grazing, potash mining, and oil and gas exploration. There are currently no waste management activities being conducted within either of these locations.

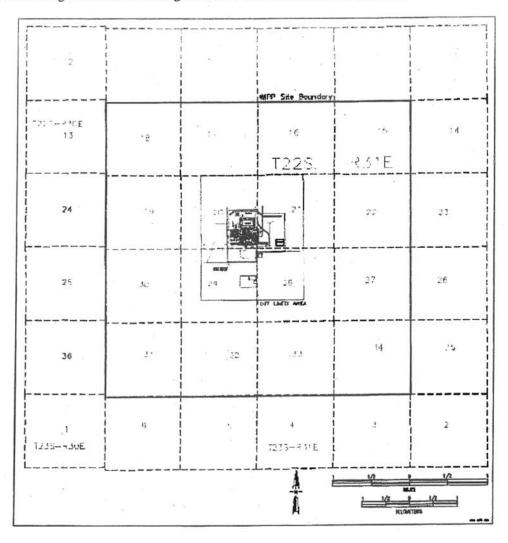


FIGURE 10 GTCC Reference Locations (Section 27 and 35) at the WIPP Vicinity

Attachment

Federal Register /Vol. 72, No. 140 /Monday, DEPARTMENT OF ENERGY Notice of Intent To Prepare an **Environmental Impact Statement for** the Disposal of Greater-Than-Class-C Low-Level Radioactive Waste AGENCY: Department of Energy. ACTION: Notice of Intent To Prepare an Environmental Impact Statement. SUMMARY: The Department of Energy (DOE) announces its intent to prepare an environmental impact statement (EIS) under the National Environmental Policy Act (NEPA) for the disposal of Greater-Than-Class-C low-level radioactive waste (GTCC LLW). GTCC LLW is defined by the Nuclear Regulatory Commission (NRC) in 10 CFR 72.3 as "low-level radioactive waste that exceeds the concentration limits of radionuclides established for Class C waste in [10 CFR 61.55]." GTCC LLW is generated by NRC or Agreement State-licensed activities (hereafter referred to as NRC-licensed activities). DOE proposes to evaluate alternatives for GTCC LLW disposal: in a geologic repository; in intermediate depth boreholes; and in enhanced near surface facilities. Candidate locations for these disposal facilities would be: the Idaho National Laboratory (INL) in Idaho; the Los Alamos National Laboratory (LANL) and Waste Isolation Pilot Plant (WIPP) in New Mexico; the Nevada Test Site (NTS) and the proposed Yucca Mountain repository in Nevada; the Savannah River Site (SRS) in South Carolina; the Oak Ridge Reservation (ORR) in Tennessee; and the Hanford Site (Hanford) in Washington, DOE will also evaluate disposal at generic commercial facilities in arid and humid locations In addition, DOE proposes to include DOE LLW and transuranic waste having characteristics similar to GTCC LLW and which may not have an identified path to disposal (hereafter referred to as GTCC-like waste) in the scope of this EIS. DOE's GTCC-like waste is owned or generated by DOE. The use of the term "GTCC-like" does not have the intent or effect of creating a new classification of radioactive waste. DOE invites public comment on the scope of this EIS during a 60-day public scoping period. During this period, DOE will hold public scoping meetings to

provide the public with an opportunity to comment on the scope of the EIS and to learn more about the proposed action from DOE officials. DOE issued an Advance Notice of Intent (ANOI), 70 FR 24775 (May 11, 2005), inviting the public to provide preliminary comments on the potential scope of the EIS. This Notice of Intent (NOI) includes a summary of the public comments received on the ANOI. DATES: The public scoping period starts with the date of publication of this NOI in the Federal Register and will continue until September 21, 2007. DOE will consider all comments received or postmarked by September 21, 2007 in defining the scope of this EIS. Comments received or postmarked after that date will be considered to the extent practicable. Public scoping meetings will be held to provide the public with an opportunity to present comments on the scope of the EIS and to learn more about the proposed action from DOE officials. The locations, dates, and times for the public scoping meetings are listed in the "Public Scoping" section under SUPPLEMENTARY INFORMATION. ADDRESSES: Written comments on the scope of the GTCC LLW EIS or requests to speak at one of the public scoping meetings should be sent to: James L. Joyce, Document Manager, Office of Regulatory Compliance (EM-10), U.S. Department of Energy, 1000 Independence Avenue, SW., Washington, DC 20585-0119. Telephone: (301) 903-2151. Fax: 301-903-4303. E-mail: gtcceis@anl.gov. Written comments on the scope of the GTCC LLW EIS and requests to speak at one of the public scoping meetings can also be submitted through the Web site at http://www.gtcceis.anl.gov. FOR FURTHER INFORMATION CONTACT: To request further information about the EIS, the public scoping meetings, or to be placed on the EIS distribution list, use any of the methods (fax, telephone, e-mail, or Web site) listed under ADDRESSES above. For general information concerning the DOE NEPA process, contact: Carol Borgstrom, Director, Office of NEPA Policy and Compliance (GC-20), U.S. Department of Energy, 1000 Independence Avenue, SW., Washington, DC 20585-0119.

Telephone: 202-586-4600, or leave a message at 1-800-472-2756. Fax: 202-586-7031. This NOI will be available on the internet at http://www.eh.doe.gov/nepa. Additional information on the GTCC LLW EIS can be found at http:// www.gtcceis.anl.gov. SUPPLEMENTARY INFORMATION: Background GTCC LLW is defined by NRC in 10 CFR 72.3 as "low-level radioactive waste that exceeds the concentration limits of radionuclides established for Class C waste in 10 CFR 61.55." In 10 CFR 61.55, the NRC defines classes of LLW as A, B and C by the concentration of specific short- and long-lived radionuclides, with Class C LLW having the highest radionuclide concentration limits. Consistent with NRC's and DOE's authorities under the Atomic Energy Act of 1954 (as amended), the NRC LLW radioactive waste classification system does not apply to radioactive wastes generated or owned by DOE and disposed of at DOE facilities. However, DOE owns and generates LLW and transuranic radioactive waste with characteristics similar to GTCC LLW and that may not have a path to disposal. For the purposes of this EIS, DOE is referring to this DOE waste as GTCC-like waste (the use of the term "GTCC-like" does not have the intent or effect of creating a new classification of radioactive waste). DOE proposes to evaluate alternatives for the disposal of both GTCC LLW and DOE GTCC-like waste in this EIS. Section 3(b)(1)(D) of the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) assigns the responsibility for the disposal of GTCC LLW to the Federal Government. The LLRWPAA specifies that the GTCC LLW covered under Section 3(b)(1)(D) is to be disposed of in a facility licensed and determined to be adequate by the NRC. DOE is the federal agency responsible for the disposal of GTCC LLW. This responsibility was described in a 1987 report to Congress, Recommendations for Management of Greater-Than-Class-C Low-Level Waste (DOE/NE-0077), U.S. Department of Energy, February 1987. The report can be obtained by contacting the Document Manager listed under ADDRESSES above or from the Web site at http://www.gtcceis.anl.gov. The September 11, 2001, attacks and subsequent threats have heightened

concerns that terrorists could gain possession of radiological sealed sources, including GTCC LLW sealed sources, and use them for malevolent purposes. Since 2003, the Government Accountability Office (GAO) has issued three reports on matters related to the security of uncontrolled sealed sources, including the Department's progress in developing a GTCC LLW disposal facility. In addition, the Energy Policy Act of 2005 contains several provisions (e.g., sections 631, 651, and 957) directed at improving the control of sealed sources, including disposal availability. Because of its technical expertise in radiation protection, the U.S. Environmental Protection Agency (EPA) will participate as a cooperating agency in the preparation of this EIS. NRC will be a commenting agency. Energy Policy Act of 2005 Reporting Requirements Section 631 of the Energy Policy Act of 2005 requires the Secretary of Energy to: provide Congress with notification of the DOE office with responsibility for completing activities needed to provide for safe disposal of GTCC LLW; submit a report to Congress containing an estimate of the cost and schedule to complete an EIS and record of decision (ROD) for a permanent disposal facility for GTCC LLW; and prior to making a final decision on the disposal alternative or alternatives to be implemented, submit to Congress a report that describes all alternatives considered in the EIS. In meeting these requirements thus far, DOE has named the Office of Environmental Management as the lead organization having responsibility to develop GTCC LLW disposal capability and has submitted a report to Congress dated July 2006 on the estimated cost and proposed schedule to complete the EIS. Types and Estimated Quantities of GTCC LLW and DOE GTCC-like Waste GTCC LLW may generally be categorized into the following three types: sealed sources, activated metals, and other miscellaneous waste (e.g., contaminated equipment). Sealed sources are typically small, high-activity radioactive materials encapsulated in closed metal containers. They are used for a variety of purposes including irradiating food and medical products for sterilization, detecting flaws and failures in pipelines and metal welds,

calculating moisture content in soil and other materials, and assisting in the diagnosis and treatment of illnesses. Activated metal wastes are primarily generated in nuclear reactors during facility modifications and decommissioning. There are 104 operating commercial reactors in the United States and an additional 18 that have been closed or decommissioned. The activated metals consist of internal nuclear components that have become radioactive from neutron absorption. These components include portions of the reactor vessel and other stainless steel components near the fuel assemblies.

Other miscellaneous waste includes all GTCC LLW that is not activated metals or sealed sources. This waste includes contaminated equipment. debris, trash, scrap metal and decontamination and decommissioning waste from miscellaneous industrial activities, such as the manufacture of sealed sources and laboratory research. DOE GTCC-like waste includes some sealed sources owned or generated by DOE activities; activated metals including reflector materials from research reactors as well as other miscellaneous waste owned by DOE or generated by DOE activities that has characteristics similar to GTCC LLW and may not have a path to disposal. Most of the DOE GTCC-like waste consists of transuranic waste2 (a DOE waste category) that may have originated from non-defense activities and therefore may not be authorized for disposal at WIPP under the Waste Isolation Pilot Plant Land Withdrawal Act of 1992 and has no other currently identified path to disposal. DOE estimates a total inventory (existing and projected to be generated) of approximately 2,600 cubic meters of GTCC LLW and approximately 3,000 cubic meters of GTCC-like waste. A small percentage of this waste is mixed waste (i.e., radioactive waste that contains a hazardous component subject

2 rTransuranic waste is radioactive waste containing more than 100 nanocuries of alphaemitting transuranic isotopes per gram of waste, with half-lives greater than 20 years, except for: (1) High-level waste; (2) waste that the Secretary of Energy has determined, with the concurrence of the Administrator of EPA, does not need the degree of isolation required by the 40 CFR Part 191 disposal regulations; or (3) waste that the NRC has approved for disposal on a case-by-case basis in accordance with 10 CFR Part 61.

to the Resource Conservation and Recovery Act). Table 1 shows estimated quantities of GTCC LLW and GTCC-like waste that DOE proposes to analyze and is based on the report entitled Greater-Than-Class C Low-Level Radioactive Waste Inventory Estimates, (DOE, July 2007). This report updates the 1993 inventory estimates contained in the report entitled Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclides, Activities, and Other Characteristics, DOE/LLW-114, Revision 1 (Sept. 1994), which served as the basis for inventories in the ANOI. Copies of both reports are available by contacting the Document Manager listed under ADDRESSES above or at http:// www.gtcceis.anl.gov.

Table 1.—Inventory Summary of Estimated Quantities of GTCC LLW and DOE GTCC-like Waste^a

	In storage	Projected	Total stored and projected			
Waste type			Volume in cubic me ters (m²)	Activity ^b MCI	Volume m ⁹	Activity b MGI
GTCC LLW: Activated metal Sealed sources Other	58 (°) 76	3.5 (°) 0.0076	810 1.700 1.0	110 2.4 0.00023	870 1,700 77	110 2.4 0.0078
Total GTCC LLW DOE GTCC-like waste: Activated metal Seeled sources Otherd	130 5.0 8.7 860	3.5 0.11 0.013 11	2,500 29 25 2,000	0.82 0.030 19	2,600 34 34 2,900	0.93 0.043 30
Total DOE GTCC-like waste	870	11	2,100	20	3,000	31
Total GTCC and GTCC-like waste	1,000	15	4,600	130	5,600	140

a Values have been rounded to two significant figures.
b Radicactivity values are in millions of curies (MCD).
There are sealed sources currently possessed by NRC licensees that may become GTCC LLW when no longer needed by the licensee. The estimated volume and activity of those sources are included in the projected inventory, notwithstanding the lack of information on the current status of the sources (e.g., in use, waste, etc.).
a Other GTCC LLW and DOE GTCC-like waste includes contaminated equipment, debris, trash, scrap metal and decontamination and decommissioning waste.

Purpose and Need for Action

As shown in Table 1, NRC and Agreement State licensees have generated and continue to generate GTCC LLW for which there is no permitted disposal facility. DOE is responsible for the safe and secure disposal of GTCC LLW covered under Section 3(b)(1)(D) of the LLRWPAA, including determining how and where to dispose of these wastes. In addition, DOE owns or generates certain LLW and transuranic wastes with characteristics similar to GTCC LLW that also may not have an identified path to disposal.

Proposed Action

DOE proposes to construct and operate a new facility or facilities, or use an existing facility, for the disposal of GTCC LLW and GTCC-like waste. DOE would then close the facility or facilities at the end of each facility's operational life. Based on the EIS analysis, DOE expects to make a decision on the method(s) and location(s) for disposing of GTCC LLW and DOE GTCC-like waste. A combination of disposal methods and locations may be appropriate based on the characteristics of the waste and other factors. Alternatives Proposed for Evaluation The GTCC EIS will evaluate the range of reasonable alternatives for the disposal of GTCC LLW and GTCC-like waste, together with a no action alternative. The NRC regulations at 10

CFR 61.55(a)(2)(iv) define GTCC LLW as that waste which would require disposal in a geologic repository as defined in 10 CFR Part 60 or 63, unless proposals for an alternative method of disposal are approved by NRC under 10 CFR 61.55(a)(2)(iv). Although NRC regulations state that GTCC LLW is generally not acceptable for near surface-disposal, the NRC recognizes in 10 CFR 61.7(b)(5) that "there may be some instances where waste with concentrations greater than permitted for Class C waste would be acceptable for near-surface disposal with special processing or design." Therefore, the disposal methods DOE proposes to evaluate in the EIS include deep geologic repository disposal, intermediate depth borehole disposal, and enhanced near-surface disposal. For deep geologic disposal, DOE intends to analyze disposal at Yucca Mountain in Nevada, a proposed geologic repository to be licensed under 10 CFR Part 63. DOE will also evaluate deep geologic repository disposal at WIPP in New Mexico. Identification of the proposed Yucca Mountain repository for analysis in the EIS is based on the 10 CFR 61.55 regulations, which identify disposal in a geologic repository licensed under 10 CFR Part 60 or 63 as an acceptable method for the disposal of GTCC LLW. Identification of WIPP is based on its characteristics as

a geologic repository, although not subject to NRC licensing as a geologic repository under 10 CFR Parts 60 or 63. DOE does not plan to evaluate an additional deep geologic repository facility because siting of another deep geologic repository facility for GTCC LLW and GTCC-like waste is impractical due to the cost, time, and the relatively small volume of GTCC LLW and GTCC-like waste. DOE also intends to evaluate disposal of GTCC LLW and GTCC-like waste in a new intermediate depth borehole facility and enhanced-near surface facility at existing DOE sites and generic commercial locations. The DOE sites considered for analysis include INL in Idaho, LANL in New Mexico, WIPP vicinity (either within the WIPP Land Withdrawal perimeter that is under the jurisdiction of DOE, or on government property in the vicinity of WIPP), NTS in Nevada, SRS in South Carolina, ORR in Tennessee, and Hanford in Washington. Identification of these sites for potential analysis is based on mission compatibility (these DOE sites currently have waste disposal operations as part of their mission) and physical characteristics of the sites such as hydrogeology and topography. In addition, DOE intends to evaluate a generic enhanced near surface and intermediate depth borehole commercial disposal facility under both arid and humid conditions in the EIS. In a Request for Information in the FedBizOpps on July 1, 2005, DOE solicited technical capability statements from commercial vendors that may be interested in constructing and operating a GTCC waste disposal facility. Although several commercial vendors expressed an interest, no vendors have provided specific information on disposal locations and methods for analysis in the EIS. Including a generic commercial facility in the EIS would allow DOE to make a programmatic determination regarding disposal of GTCC LLW and GTCC-like waste in such a facility. Should one or more commercial facilities be identified at a later time, DOE would conduct further NEPA review, as appropriate. DOE intends to evaluate each of the GTCC waste types (i.e., sealed sources, activated metals, and other waste) individually and in combination for each of the disposal alternatives, taking into account the characteristics of the

waste types and other considerations (e.g., waste volumes, physical and radiological characteristics, and generation rates). For example, GTCC LLW containing transuranic radionuclides with longer half-lives may require greater isolation or other special measures to protect against potential inadvertent human intrusion, whereas GTCC LLW containing radionuclides with shorter half-lives may require less extensive measures. DOE will also consider volumes and time periods when wastes would be generated and require disposal. In the GTCC LLW EIS, DOE will describe the statutory and regulatory requirements for each disposal alternative and whether legislation or regulatory modifications may be needed to implement the alternative under consideration. In summary, DOE proposes to evaluate the alternatives listed below: Alternative 1: No Action-under this alternative, current and future GTCC LLW and GTCC-like waste would be stored at designated locations consistent with ongoing practices, such as storage of GTCC LLW activated metals at nuclear utilities; Alternative 2: Disposal in a Geologic Repository at WIPP—under this alternative, DOE would dispose of GTCC LLW and GTCC-like waste at Alternative 3: Disposal in a Geologic Repository at Yucca Mountain-under this alternative, DOE would dispose of GTCC LLW and GTCC-like waste at the proposed Yucca Mountain Repository; Alternative 4: Disposal at a New Enhanced Near-Surface Facility-under this alternative, DOE would dispose of GTCC LLW or GTCC-like waste at a new enhanced near-surface facility at INL, LANL, WIPP vicinity, NTS, SRS, ORR, and Hanford, or a commercial facility should such a facility be identified in the future: Alternative 5: Disposal at a New Intermediate Depth Borehole Facilityunder this alternative, DOE would dispose of GTCC LLW or GTCC-like waste at a new intermediate depth borehole facility at INL, LANL, WIPP vicinity, NTS, SRS, ORR and Hanford. or a commercial facility should such a facility be identified in the future.

Identification of Environmental Issues DOE proposes to evaluate disposal

commercial locations for the construction, operation, and closure of a facility or facilities for the disposal of GTCC LLW and GTCC-like waste. DOE proposes to address the issues listed below in the process of considering the potential impacts of the proposed disposal alternatives. ☐ Potential impacts on air, noise, surface water and groundwater. ☐ Potential impacts from the shipment of GTCC LLW and GTCC-like waste to the disposal site(s). ☐ Potential impacts from postulated accidents. ☐ Potential impacts on human health, including impacts to involved and noninvolved site workers and members of the public. Dependent impacts to historical and cultural artifacts or sites of historical and cultural significance. ☐ Potential disproportionately high and adverse effects on low income and minority populations (environmental justice). ☐ Potential Native American concerns. ☐ Short-term and long-term land use impacts. ☐ Long-term site suitability, including erosion and seismicity. ☐ Potential impacts to endangered species. ☐ Intentional destructive acts. ☐ Compliance with applicable federal, state, and local requirements. ☐ Irretrievable and irreversible commitment of resources. ☐ Cumulative impacts from past, present and reasonably foreseeable actions. This list is not intended to be inclusive, and we invite interested parties to suggest other issues to be considered, including aspects of the waste inventories presented in Table 1. Summary of Public Comments on the Advance Notice of Intent In 2005, DOE issued an ANOI, 70 Fed. Reg. 24775 (May 11, 2005), inviting the public to provide preliminary comments on the potential scope of the EIS. DOE received comments on the ANOI from: the states of Nevada, Oregon and Washington; the Sacramento Municipal Utility District; the New England Coalition; the Sierra Club; the Nuclear Energy Institute; and the Savannah River Site Citizens Advisory Board. The

technologies at various DOE and generic

comments are summarized below, along with DOE's response. ☐ EIS General Scope: Commenters questioned the need for the EIS, assuming that GTCC LLW would be disposed of in the proposed Yucca Mountain repository for spent nuclear fuel and high-level waste. Some commenters favored the inclusion of DOE's GTCC-like waste along with GTCC LLW generated from NRClicensed activities in the EIS, while other commenters recommended restricting the scope of the EIS to GTCC LLW analyzed in the Yucca Mountain EIS (DOE/EIS-0250, February 2002) or to waste generated from NRC-licensed activities. Still other commenters questioned the basis for projecting the GTCC LLW volume to 2035 and 2055. Response: GTCC waste is LLW, not high-level waste or spent nuclear fuel; nevertheless, DOE has identified the proposed Yucca Mountain repository as one of the sites to be analyzed in the EIS for GTCC LLW as a disposal alternative, as well as other appropriate sites, in accordance with 10 CFR Part 61. Under the LLRWPAA, DOE is responsible for disposing of this waste, and because such disposal would be a major federal action, DOE is required by the Council on Environmental Quality regulations that implement NEPA to complete an EIS analyzing the range of reasonable alternatives for this action. The Energy Policy Act of 2005 also requires DOE to take actions related to the preparation of an EIS for GTCC LLW. DOE plans to include its GTCC-like waste that may have no path to disposal, as well as waste generated from NRC or Agreement State licensed activities, and to identify where economies of scale may be achieved in using the same disposal methods and locations. DOE has identified the estimated GTCC LLW and GTCC-like waste volumes based on the best available data. DOE has changed the projections to 2035 and 2062 to include the 20-year license renewal that commercial reactors may receive plus an additional 6-year "cooling period" before commencing reactor decommissioning activities. Thus GTCC LLW and GTCClike waste estimates are projected through 2035, except for GTCC LLW activated metals estimates, which are projected through 2062, based on anticipated nuclear reactor

major scoping issues identified in the

decommissioning schedules. □ Waste Disposal Alternatives: Commenters stated that DOE should identify its criteria for including sites considered in the EIS as potential disposal locations and criteria for selecting the technologies and disposal methods to be evaluated. Response: DOE has identified its basis for the disposal locations and disposal methods proposed for analysis in the EIS under "Alternatives Proposed for Evaluation" in this Notice. ☐ Waste Inventories: Commenters stated that the inventory data provided in the ANOI should be updated. Response: DOE has updated the inventory data as shown in Table 1. DOE will incorporate other appropriate inventory data that may become available during preparation of the EIS. ☐ Resource Areas Proposed for Analysis: Commenters suggested a number of subjects that DOE should include in the EIS impact analyses. Response: DOE's list of subjects proposed for evaluation in the EIS under "Identification of Environmental Issues" in this NOI responds to those □ Concentration Averaging:

☐ Concentration Averaging:
Commenters raised questions about
DOE's potential use of "concentration
averaging" in which, for example, the
activity of one component is averaged
over the volume or mass of waste to
identify applicable waste classification
standards.

Response: For the purposes of analysis in the EIS, DOE would use guidance in the Branch Technical Position on Concentration Averaging and Encapsulation, U.S. Nuclear Regulatory Commission, Washington DC, January 1995, to determine when LLW is greater than Class C as defined at according to 10 CFR Part 61.

☐ Regulatory Requirements: A number of commenters discussed the need to address compliance with regulatory and other legal requirements in the EIS.

Response: The EIS would describe applicable regulatory and other legal requirements and consider the extent to which the alternatives analyzed meet those requirements.

Public Scoping
Interested parties are invited to participate in the public scoping process to provide their comments on the proposed disposal alternatives for

analysis in the EIS and the environmental issues to be analyzed. The scoping process is intended to involve all interested agencies (federal, state, county, and local), public interest groups, Native American tribes, businesses, and members of the public. Public scoping meetings will be held at the following locations and times: Carlsbad, New Mexico: Pecos River Village Conference Center, Carousel House, 711 Muscatel Avenue, Carlsbad, New Mexico, Monday, August 13, 2007, 6 p.m.-9 p.m. □ Los Alamos, New Mexico: Hilltop House Best Western, La Vista Room, 400 Trinity Drive, Los Alamos, New Mexico, Tuesday, August 14, 2007, 6 p.m.-9 □ Oak Ridge, Tennessee: DOE Oak Ridge Information Center, 475 Oak Ridge Turnpike, Oak Ridge, Tennessee, Wednesday, August 22, 6 p.m.-9 p.m. □ North Augusta, South Carolina: North Augusta Community Center, 495 Brookside Avenue, North Augusta, South Carolina, Thursday, August 23, 6 p.m.-9 p.m. ☐ Troutdale, Oregon: Comfort Inn & Suites-Columbia Gorge West, 477 NW Phoenix Drive, Troutdale, Oregon, Monday, August 27, 2007, 6 p.m.-9 p.m. □ Pasco, Washington: Red Lion Hotel, Gold Room, 2525 N 20th Avenue, Pasco, Washington, Tuesday, August 28, 2007, 6 p.m.-9 p.m. □ Idaho Falls, Idaho: Red Lion Hotel On The Falls, Yellowstone/Teton Rooms, 475 River Parkway, Idaho Falls, Idaho, Thursday, August 30, 2007, 6 p.m.-9 p.m. □ Las Vegas, Nevada: Atomic Testing Museum, 755 E. Flamingo Road (Just East of Paradise Road), Las Vegas, Nevada, Tuesday, September 4, 2007, 6 p.m.-9 p.m. ☐ Washington DC: Hotel Washington, Washington Room, 15th and Pennsylvania Avenue, NW., Washington, DC, Monday, September 10, 1 p.m.-5 p.m. During the first hour of each scoping meeting, DOE officials will be available for informal discussions with attendees. During the formal part of the meeting, the public will have the opportunity to provide comments orally or in writing. The presiding officer will establish procedures to ensure that everyone who wishes to speak has a chance to do so. Both oral and written comments will be considered and given equal weight.

Issued in Washington, DC on July 17, 2007.

James A. Rispoli,
Assistant Secretary for Environmental
Management.

[FR Doc. E7-14139 Filed 7-20-07; 8:45 am]
BILLING CODE 6450-01-P

DEPARTMENT OF ENERGY

Office of Civilian Radioactive Waste
Management; Safe Routine
Transportation and Emergency
Response Training; Technical
Assistance and Funding
AGENCY: Department of Energy.

ACTION: Notice of revised proposed

policy and request for comments. SUMMARY: The Department of Energy (DOE) is publishing this notice of revised proposed policy to set forth its revised plans for implementing Section 180(c) of the Nuclear Waste Policy Act of 1982 (the NWPA). Under Section 180(c) of the NWPA, DOE shall provide technical and financial assistance for training of local public safety officials to States and Indian Tribes through whose jurisdictions the DOE plans to transport spent nuclear fuel or high-level

6 7 8

9 10

	TRIBAL NARRATIVES
(Consolidated Group of Tribes and Organizations
7	Tribal Narrative for the Nevada Test Site ^a
1	Nez Perce Tribe Narrative for EIS, Department of Energy,
ŀ	Hanford Site
F	Pueblo Views on Environmental Resource Areas,
I	Los Alamos Meeting of Pueblo EIS Writers
Ţ	Jmatilla Input from NEPA Analysis for Confederated Tribes
C	of the Umatilla Indian Reservation (CTUIR) at Hanford
Ţ	Wanapum Overview and Perspectives Developed during
	Tribal Narrative Workshop, Hanford, WA

the Nevada Test Site or NTS, and this was not changed.

1 2 3 4 5 6 7 8 9 10 11 12 This page is intentionally left blank. 13 14

1	American Indian Writers Committee
2	of the
3	Consolidated Group of Tribes and Organizations
4	
5	Tribal Narrative for the Nevada Test Site
6	
7	
8	
9	
10	
11	May 11-15, 2009
12	
13	
14	
15	American Indian Writers Committee
16	Richard Arnold
17	Jerry Charles
18	Betty Cornelius
19	Maurice Frank-Churchill
20	Danelle Gutierrez
21	Gerald Kane
22	Lalovi Miller
23	
24	
25	Facilitated By
26	Richard W. Stoffle, University of Arizona
27	
28	
29	
30	Document Approved by
31	Consolidated Group of Tribes and Organizations
32	Meeting August 31 – September 2, 2009
33	Mercury, Nevada
34	
35	Date Submitted to DOE/EM Division
36	
37	September 2009

Tribal Views on Nevada Test Site: Affected Environment and Consequences

1 2

1.0 Affected Environment

1.1 Climate

CGTO knows that the climate of the region has changed over the thousands of years that the Indian people have lived in this region (See Indian Appendix for more). The NTS has only occupied this area since the early 1940s. It is important to recognize that major climatic changes have taken place since the end of the Pleistocene and shorter term climate changes such as the wet period in the 1980s and 1990s contrast with the current 10-year drought. It is important for the GTCC EIS to assess the impacts of short term and long term climatic changes because the DOE expects to safely manage these GTCC wastes for up to 10K years during which similar climate changes can be expected.

The current climate description in the GTCC EIS is specific to the present decade-long period of extended drought (a similar one occurred between 1896 and 1906) so this type of drought and the wet period between 1980s and 1990s may be a factor in siting the GTCC facility. An analysis of long term impacts based on current conditions will neither be representative of climate conditions viewed over much longer periods nor applicable to a short climate shift to much wetter conditions.

1.2 Groundwater

The CGTO knows that most dry lakes are not known to be completely dry. An example is Soda Lake near Barstow, California. The Mohave River flows into this dry lake and most of the year it looks dry but it actually flows underground. Building berms on dry lake beds to offset water and runoff doesn't sound like a good idea to the Indian way of thinking. As one CGTO member added, to Indian people "water is life. Our water has healing powers" (NRC 2009a). So why build a GTCC site on and use this playa when the odds of radiation seem feasible? The Indian people who visited this site recommend not to bother Frenchmen Playa. It is only one of two in the immediate region and has special meanings. There should be a more descriptive study to fully understand the impacts. More time is needed, also for Indians to revisit this site. Although some people continue to view Frenchman playa as a wasteland, the CGTO knows it is not. Further ethnographic studies are needed.

1.3 Ecology

The CGTO knows that this site (in Area 5) is an ancient playa, surrounded by mountain ranges (See Indian Appendix for more). The runoff from these ranges serves to maintain the healthy desert floor. Animals frequent this area, there are numerous animals' trails, and these play a significant part in the history of the locality and of the Indian lifestyles. Our ancestors knew that the Creator always provided for them and this site is one of their favorite places to hunt and trap rabbits. We have special leaders that organized large rabbit hunts. Many people participated so this place would be occupied at times by all kinds of our people. Rabbits provided good eating,

bones for tool-making, warm blankets, and even games. Indian people refrained from eating

- 2 coyote, wolves, and birds but these contribute to our stories which tell us how to behave and why
- we are here. We have many stories and songs that include animals and birds who have human-3
- like antics. From these antics Indian people learn the life lessons to build character to become
- 5 better persons. So animals and the places where they live contribute to our history and culture.

6

- 7 This culturally central place was used by and important to Indian people from our agricultural 8 and horticultural communities located to the north – near Reese River Valley and Duckwater, to
- 9 the south – near Ash Meadows, to the southeast – near Indian Springs and Corn Creek, to the
- east near the Pahranagat-Muddy River, and west near the Oasis Valley. It was also used by 10
- 11 people from our agricultural and horticultural communities to the far west in Owens Valley, to
- the far south near Cottonwood Island and Palo Verde Valley on the Colorado River, to the far 12
- 13 southwest at Twenty Nine Palms, to the far east along the Virgin River, Santa Clara River, and
- 14 Kanab Creeks, to the far north along the Humbolt River and Ruby Valley.

15

- 16 **Plants**
- 17 The CGTO knows based on previous DOE-sponsored ethnobotany studies that there are at least
- 18 364 Indian use plants on the NTS (see Appendix G). Indian people visiting the proposed location
- 19 of the GTCC facility identified the following traditional use plants: (1) Indian Tea, (2) White
- 20 Sage or Winter Fat, (3) Indian Rice Grass, (4) Creosote, (5) Wolfberries, (6) Four O'clock, (7)
- Spiny Hop Sage, (8) Joshua Tree, (9) Daises, (10) Desert Trumpet, (11) Cholla, (12) Globe 21
- 22 Mallow, (13) Fuzzy Sage, (14) Tortoise Food plant, (15) Sacred Datura, (16) Wheat Grass, and
- 23 (17) Lichen. Other plants were present but not identified due to the late season and the dry
- 24 condition of the plants.

25

- 26 Plants are still used for medicine, food, basketry, tools, homes, clothing, fire, and ceremony –
- 27 both social and healing. The characteristics of the plants at the proposed GTCC area are smaller 28
- and thinner than in other desert areas where it is wetter. Indian people from elsewhere traveled to 29 this area to gather specific plants because they have stronger characteristics when they grow in
- dry places. The sage is used for spiritual ceremonies, smudging, and medicine. The Indian rice 30
- grass and wheat grass are used for breads and puddings. Joshua trees and Yucca plants are 31
- 32 important for hair dye, basketry, foot ware, and rope. Datura is used for hallucinogenic effects
- during which alternative places can be visited by medicine men. Datura also goes itself to 33
- 34 disturbed areas and heals them. The globe mallow had traditional medicine uses, but in recent 35 times is also used for curing European contagious diseases.
- 36

37

- Animals/Insects
- 38 The CGTO knows based on previous DOE-sponsored ethnofauna studies that there are at least
- 39 170 Indian use animals on the NTS (see Appendix G). Indian people visiting the proposed
- 40 location of the GTCC facility identified the following traditional use animals: (1) Jack Rabbits,
- 41 (2) Whiptail Lizards, (3) Antelope, (4) Tortoise, (5) Kangaroo Rats, (6) Horned Toad, (7) Rock
- 42 Wrens, (8) Ravens, (9) Grasshoppers, and (10) Stink Bugs. Other animals (such as snakes, bats,
- and owls) were perceived to be present but not observed because they primarily emerge at night. 43

44

- 45 All animals and insects were and are culturally important and the relationships between them, the
- Earth, and Indian people are represented by the respectful roles they play in the stories of our life 46

- 1 then and now. The GRCC valley is where a spiritual journey occurred. It involved Wolf (*Tavats*
- 2 in Southern Paiute, Bia esha in Western Shoshone, Wi gi no ki in Owens Valley Paiute) and
- 3 Coyote (Sinav in Southern Paiute, Duhvo esha in Western Shoshone, Esha in Owens Valley
- 4 Paiute) and is considered a Creation Story. Only parts of this can be presented here. When Wolf
- 5 and Coyote had a battle over who was more powerful, Coyote killed Wolf and felt glorious.
- 6 Everyone asked Coyote what happened to his brother Wolf. Coyote felt extremely guilty and
- 7 tried to run and hide but to no avail. Meanwhile, the Creator took Wolf and made him into a
- 8 beautiful Rainbow (Paro wa tsu wu nutuvi in Southern Paiute, Oh ah podo in Western Shoshone,
- 9 Paduguna in Owens Valley Paiute). When Coyote saw this special privilege he cried to the
- 10 Creator in remorse and he too wanted to be a Rainbow. Because Coyote was bad, the Creator put
- 11 Coyote as a fine white mist at the bottom of the Rainbow's arch. This story and the spiritual
- 12 trails discussed in the full version are connected to the Spring Mountains and the large sacred
- 13 cave in the Pintwater Mountains as well as to lands now called the Nevada Test Site. This area is
- 14 the home place of Wolf who is still present and watches over the area and us.

15

- 16 Minerals
- 17 The CGTO knows based on previous DOE-sponsored cultural studies that there are many
- 18 minerals on the NTS (no complete list available). Indian people visiting the proposed GTCC site
- 19 identified the following traditional use minerals: (1) Obsidian, (2) chalcedony, (3) Yellow Chert
- 20 or Jasper, (4) Black Chert, (5) Pumice, (6) Quartz Crystal, and (7) Rhyolite Tuff. Other minerals
- 21 were perceived to be present but not observed because of the limited time and search area.

22

- 23 All minerals are culturally important and have significant roles in many aspects of Indian life.
- 24 For example, the Chalcedony on the proposed GTCC site would have made an attractive offering
- 25 which would be acquired here by a ceremonial traveler and then left at the vision quest or
- 26 medicine site located to the north on top of a volcano like Scrugham Peak. Returning ceremonial
- 27 travelers would also bring offerings back to where they had acquired offerings, thus the Yellow
- 28 Chert or Jasper (observed on the GTCC site) which outcrops about 70 miles to the north would
- 29 be gathered there and returned to the Chalcedony site as an offering.

30 31

- Playas
- 32 The CGTO knows, based on cultural studies funded by the DOE on the NTS and playa-specific
- 33 studies funded by Nellis Air Force Test and Training Range (Henderson 2008), that playas
- 34 occupy a special place in Indian culture. Playas are often viewed as empty and meaningless
- 35 places by western scientists, but to Indian people playas have a role and often contain special
- 36 resources that occur no where else. The following text was prepared by the Indian people who
- 37 visited the proposed GTCC site.

38

- 39 Is a playa a wasteland? According to Indian elders playas were used in traveling or moving to
- 40 places where work, hunting, pine cutting or gathering of other important foods and medicine
- 41 could be done. One elder remembers crossing over dry lake beds and traveling around but near
- 42 the edges and they discussed how provisions were left there and at nearby springs by previous
- 43 travelers at camping spots. Indian people left caches in playa areas for people who crossed
- 44 valleys when water and food was scarce. Frenchmen Playa is such a place. Indian people took
- 45 advantage of traveling through this playa as mountains completely surround this area. The
- 46 CGTO knows that most dry lakes are not known to be completely dry. An example is Soda Lake

near Barstow, California. The Mohave River flows into this dry lake and most of the year it looks dry but it actually flows underground. Building berms on dry lake beds to offset water and runoff doesn't sound like a good idea to the Indian way of thinking. As one CGTO member added, to Indian people "water is life. Our water has healing powers" (NRC 2009a). So why build a GTCC site on and use this playa when the odds of radiation seem feasible? The Indian people who visited this site recommend not to bother Frenchmen Playa. It is only one of two in the immediate region and has special meanings. There should be a more descriptive study to fully understand the impacts. More time is needed, also for Indians to revisit this site. Although some people continue to view Frenchman playa as a wasteland, the CGTO knows it is not. Further ethnographic studies are needed.

1.4 Environmental Justice

DOE has recognized the need to address environmental justice concerns of the CGTO based on disproportionately high and adverse impacts to their member tribes from DOE NTS activities. In 1996, the CGTO expressed concerns relating to environmental justice that included (1) damage to Holy Lands, (2) negative health impacts, and (3) lack of access to traditional places that contributes to breakdowns in cultural transmission. In the 2002 NTS SA, NNSA/NSO concluded that with the selection of the Preferred Alternative, the CGTO would be impacted at a disproportionately high and adverse level consequently creating an environmental justice issue. Since 2002, NNSA/NSO has supported a few ethnographic studies involving the CGTO and culturally important places including in 2004, when NNSA/NSO arranged for tribal representatives to conduct evening ceremonies at Water Bottle Canyon. While the opportunity for the evening ceremony was a significant accommodation, disproportionately high and adverse impacts from DOE NTS activities continue to affect American Indians. The three environmental justice issues noted by the CGTO need to be addressed.

1.5 Radiation

The CGTO knows that radiation can be and is viewed from both a western science and a Native American perspective (See Indian Appendix for more). These alternative and competing perspectives are key for understanding the cultural foundations of American Indian responses to the mining, processing, use, transportation, and disposal of radioactive materials. At some level of analysis from and Indian perspective, all radioactive waste is basically the same problem to Indian people. Subtle differences in classification from a western science perspective of radioactive waste only mask and do not significantly modify the basic cultural problems of radioactive waste for Indian people and their traditional lands.

The Angry Rock is a concept used by Indian people, involved in DOE funded radioactive waste transportation and disposal studies, to quickly summarize the complex cultural problems associated with what happened to this known mineral when it was improperly taken and used by non-Indians. The notion of an Angry Rock is premised on the belief that all of the earth is alive, sentient, speaks Indian, and has agency. When the elements of the earth are approached with respect and asked for the permission before being used they share their power with humans. The reverse occurs when they are taken without permission – they become angry withhold their power and often using it against humans. Thus uranium is an Angry Rock. Uranium has been

- 1 known and carefully used by spiritual specialists and medicine persons for thousands of years
- 2 (Lindsay et al. 1968). The following American Indian elder quote from a DOE funded report
- 3 (Austin 1998) begins to explain this perspective:
- 4 We are the only ones who can talk to these things. If we do not make sure that we talk to those
- 5 things, then they are going to give us more bad harm, because it is already happening
- 6 throughout the country. Those are the reasons why the Indian people say ... like uranium, for
- 7 one, uranium was here since the beginning of this Earth, when it was here we knew uranium at
- 8 one time. And still it is used, but then they got a hold of it and made something else out of it.
- 9 Now it is a man made thing, and today it accumulates waste from nuclear power plants, it
- 10 accumulates more, it has its own life. Radiation has said to us at one time "If you use me make
- 11 sure you tell me before you use me why you are going to use me and what for. "And we never
- 12 said anything to that uranium at all, and we put something else in there with it, which shouldn't
- 13 belong with it. It gives it more power to eliminate the life, of all living things on this planet of
- 14 ours. Those are the reasons, why the Indian people always say, and I know because I have been
- 15 there. The rocks have a voice...
- 16 Although from a Western science perspective radiation can be isolated and contained by
- 17 conventional techniques, the Angry Rock has the power to move and cannot be contained by
- 18 barriers. Indian people who have dealt with the Angry Rock for thousands of years note that
- 19 there are traditional ways to deal with uranium, the natural rock, if used by trained Indian
- 20 specialists, but these may or may not work with the Angry Rock of modern radiation waste.
- 21 Songs ... we are the ones who should be talking to those things. Radiation is going to take all of
- 22 our lives; it is continuously moving over the land. The land don't want it, nobody wants it. And
- 23 today, we are doing a bad thing by using radiation on each other. Radiation is something that
- 24 should not be used to kill animal life...

2526 Anor

Another elder noted:

27 28 An

And can it be contained? As it's transformed it can be, I think it can be contained physically but not spiritually, and again I think spiritually as it's been altered because it's in that energy field

- 30 because it's been altered. The spirit, that's where it can do its harm in an altered form. It doesn't
- 31 do any good to anybody. And there you're just in the wrong place in the wrong time, it does
- 32 influence plants and animals, minerals and air, the spirit of any area it passes through. The
- 33 reason somebody is sick. I don't think it's necessary to talk about how each one of these is
- 34 influenced, it just is.

35 36

29

Another elder noted:

3738

As far as the transportation of waste there's a lot of unknowns and we don't know what the consequences are. We know there are many sicknesses that come out from people that have

- 39 consequences are. We know there are many sicknesses that come out from people that have 40 been contaminated by nuclear waste and as far as Indian people go, we show respect to the
- 41 land, show respect to other people, for the animals, the plants, the rocks. The power of the rock
- 42 Just looking at Chemehuevi Mountain, it's a very spiritual mountain from this perspective
- 43 right here. When I look out towards the mountains and I don't just see a mountain, I see a place

of power, I see a place where I can go and meditate and speak with the Creator directly and ask for prayers and blessings for people directly. Just like anything else, you have to give prayers all the time because the creator is here to watch and protect over us. I feel that we wouldn't have come this far if he wasn't here to watch over us and we are here to pray and we are here to protect the other resources.

5 6 7

2

3

Another elder said:

8 I can envision the animals standing back once it goes through for the first time and they recognize that there's a danger that they would move away because of fear. That they would no 9 longer be there and that there's something bad coming down the road and they disperse and 10 11 move away into different corridors. Kind of like a dust storm, they disperse and move further and 12 further away. I see it from the animals' standpoint, they're a lot smarter than us and they've been 13 doing this for longer than us and their senses are more keen and I think the animals would get 14 back and it would create dead zones throughout the country. Through these corridors or 15 transportation routes of course at the site there will be those that are curious who want to go 16 see.

17 18

Another elder said:

19 I don't know what you would do with this rock if it's angry and this is its way of rebelling, getting 20 back. I think as a Native American I would backstep and ask for forgiveness. Sometimes 21 forgiving is not very easy because there's sacrifices we have to make and there's consequences ... 22 I don't think it can be done as a group, it's an individual thing and each one of us has to go back 23 and ... ask for forgiveness for what has taken place. It's not just only that I think it's going to be 24 more complicated than going out into the mountains and saying, "hey, I'm sorry, I won't do this, 25 I won't do that and I won't bother you anymore. There's a lot of other things that need to be 26 forgiven. The rock is the most precious and it's the largest and it's the one that needs to be 27 forgiven the most. There's a lot of small forgiveness that have to be given before the large rock. I 28 think it's a stepping stone... the rocks are angry, yes, they're striking out saying "don't do this to 29 me, don't touch me, don't let this happen. " In a sense you look at it from a spirituality 30 standpoint, it's the spirits of Mother Earth telling us don't mess with Mother Earth. It remains a 31 matter of debate as to whether traditional means of placating powerful rock-based forces can be 32 used to control or placate radioactive waste. Western scientists have created a problem for 33 Indian people that, despite being very critical to their future, is not easily resolved.

34 35

1.6 Cultural Resources

36 37

38 39

40

41

42

The CGTO knows that American Indian cultural resources include all physical, artifactual, and spiritual aspects of the NTS. The CGTO has established that formal studies of these aspects of the land should be conducted to identify, assess, mitigate, and manage these resources. These resources should be studied with members of the CGTO recommended for the study. Such studies are termed: (1) Ethnoarchaeology, (2) Ethnobotany, (3) Ethnozoology, (4) Storied Rocks, (5) Traditional Cultural Properties, (6) Ethnogeography, and (7) Cultural Landscapes (see Appendix G).

43 44 45

46

The CGTO knows that many of these cultural resources are directly present on the GTCC proposed site, in the Indian Defined Area of Potential Effect, and immediate region surrounding

the GTCC site. The Indian people who visited the GTCC site note that their time on site was insufficient to fully identify, analyze, and evaluate resource that may be present. They 3 recommend one or more of the kinds of resource studies identified above be conducted. Based on their site visit they do know that the area contains important cultural resources including plants, 5 animals, minerals, trails, and portions of cultural landscapes (see Indian Appendix of this EIS).

6 7

Cultural Artifacts and Features

8 9

10

11

12 13

14

15 16

17

18

19 20

21

The CGTO knows based on previous DOE-sponsored cultural studies that there are many cultural artifacts and features on the NTS (American Indian Transportation Committee, Stoffle, and Toupal 1998; American Indian Transportation Committee, et al. 1999; American Indian Writers Subgroup, CGTO 1996; Arnold et al. 1997; Arnold et al. 1998; Arnold et al. 1999; Austin 1998; Stoffle et al. 2001a; Stoffle et al. 2001b; Stoffle, Evans, Harshbarger 1989; Stoffle, Evans, Halmo 1988; Stoffle et al. 1989; Stofle, Halmo, and Dufort 1994; Stoffle, Olmsted, and Evans 1988; Stoffle, Zedeño, and Carroll 2000; United States Department of Energy (USDOE) 1996; USDOE, National Nuclear Security Administration 2002; USDOE, National Nuclear Security Administration 2008; Henderson 2008). Indian people visiting the proposed GTCC site identified the following traditional cultural artifacts and features: (1) Chert Flakes, (2) Rock Alignments, (3) Boulder Grinding Indentation or metate (Mata in Owens Valley, Doso in Western Shoshone, Mada in Southern Paiute), (4) Hand Grinding Stone or mano (Paha or Tusu in Owens Valley, Botoh in Western Shoshone, Mohum in Southern Paiute), (5) Volcanoes, (6) Trails, and (7) Chalcedony, and (8) Yellow Jasper.

22 23 24

25 26

27

28

29

30 31

32

Artifacts are the evident signs of our ancestors on this land. They are proof that we were here for thousands of years. We were told by our elders never to move artifacts or take them from their place. This is their home because they were left there for us to see and understand the past. We never remove them because they still belong to the ancestors who put them there for us and still watch over them today. Artifacts come from parts of the living earth and are still alive with a right to remain where they were placed. Whether or not there is evidence of being modified, the volcanoes, stones, rocks and trails that we incorporated into our lives are artifacts. These were visited for ceremony, chosen and moved as offerings, and traveled on our journeys and thus were a part of our life, are artifacts of our ancestors that we respect, and are there for future generations.

33 34

1.7 Visual Resources

35 Views are important cultural resources that contribute to the location and performance of 36 37 American Indian ceremonialism. Views combine with other cultural resources to produce special 38 places where power is sought for medicine and other types of ceremonies. Views can be of any 39 landscape, but more central viewscapes are experienced from high places, which are often the tops of mountains and the edges of mesas. Indian viewscapes tend to be panoramic and are 40 special when they contain highly diverse topography. The viewscape panorama is further 41 enhanced by the presence of volcanic cones and lava flows. Viewscapes are tied with songscapes 42 and storyscapes, especially when the vantage point has a panorama composed of multiple 43 44 locations from either song or story. Key to the Indian experience of viewscapes is isolation.

45 Successful performance of ceremonies (whether by individuals or groups) is often

commemorated by the building of rock cairns and by storied rocks and paintings. The CGTO 46

tribes recognize the cultural significance of viewscapes and have identified a number of these on the NTS. The Timber Mountain Caldera contains a number of significant points with different panoramas, including Scrugham Peak-Buckboard Mesa and the Shoshone Mountain massif.

1.8 Waste Management

The CGTO requests an analysis of the hydrological and ecological impacts of the existing water diversion dike of the current Radioactive Waste Management Complex in Area 5. The DOE recognizes that this is a very flood prone area, with major flooding episodes occurring about every 23 years. Indian people visiting this site observed that even though the current dike has been built recently and thus not experienced a 23-year flood, it has diverted and consolidated sufficient runoff that a small arroyo has been established. The Indian people visiting this site believe that the existing dike has unnaturally stressed down-slope plants and animals who now do not receive normal sheet runoff. The Indian people visiting the site believe that by concentrating the runoff, the dike has reduced the amount of water absorbed during normal sheet runoff because the consolidated runoff moves more quickly and only flows in the new and developing eroded arroyo. It is believed by the Indian people visiting the site that were a GTCC facility to be established east of the current RWMC then the dike would necessarily have to be extended causing an even greater runoff shadow and an even greater developing arroyo. The desert tortoise in the area will have to move out of this larger runoff shadow and may be concentrated in the area of Frenchmen Playa. Moving their living areas towards the playa will expose them to higher levels of radioactivity. The Indian people visiting the site believe that these current and potential impacts should be analyzed, monitored by Indian people, and reported back to the CGTO at the next annual meeting.

1.9 Site Description

The CGTO knows that the southern bajada (alluvial fan) of French Peak and associated hills to the east combine to periodically cause massive runoffs which flow rapidly towards Frenchman Playa making it a seasonal shallow lake. Frenchman Playa has a 140 square-mile watershed that could impact the GTCC site as it potentially does the current RWMS (Raytheon Services 1993). Especially considered in these Indian comments are runoffs from the north of the proposed GTCC storage area. This watershed involves 13.6 square miles and directly impacts the current RWMS. This runoff from this area is normally sheetflow, but every 23 years or so a major flood occurs. This threat has resulted in the RWMS building a large diversion dike and trench to protect the current Radioactive Waste Management Complex. The Raytheon study indicates that the southwest corner of the RWMS is located in the 100-year flood hazard zone, but the entire northern alluvial fan brings runoff directly into the immediate area.

1.10 Climate and Air Quality

One performance objective in selecting a preferred site is to protect individuals and communities who might occupy the disposal site after active and passive controls are no longer present. These individuals are to be protected from exposure to GTCC radiation while they engage in normal activities such as agriculture, dwelling construction, food acquisition, and ceremony. The CGTO

- believes that a wetter climate will raise the water table up to or over the GTCC waste site.
- Nearby wetland plants and animals would absorb radiation and then expose local people.
- Drinking water from these wetlands will also result in exposure. Indian people visiting the site 3
- believe their descendants will live near and use these wetlands as their ancestors did thousands of

5 years ago.

6 7

8

The climatic effects of both wet and dry periods should be analyzed and incorporated in the GTCC site assessment.

9

10 11

2.0 Environmental Consequences

12 13 14

2.1 Radiation

15 Indian people have raised in past radioactive waste disposal and transportation studies a range of questions regarding how to protect themselves and their natural resources from exposure to what 16 17 they call the Angry Rock (See Indian Appendix for more). The analysis of GTCC waste should 18 address directly these potential impacts and suggest ways to either avoid or mitigate them. The 19 potential impacts to Indian people and their life are significant including potentially blocking the 20 path to the afterlife (Stoffle and Arnold 2003).

21 22

2.2 Cultural Resources

23 24

25 26

27

28

29

30

31

32

The CGTO knows that there are physical, spiritual, and archaeological elements associated with the entire Frenchman Flat valley. Impacts to any of these elements are considered important and need to be considered during GTCC siting considerations. There are direct impacts to Indian cultural resources that have been observed by the Indian people who visited the current RWMS. Especially obvious is the construction of a water diversion dike and subsequent arroyo cutting and dewatering of areas down slope of the dike. Surface disturbance will remove medicine and food plants, impact animal habitat and concentrate certain species of animals. The Chalcedony deposits and chert offerings will be totally removed thus causing a disconnect between the Indian ancestors who used these and contemporary and future generations of Indian people. This is an act of disrespect.

33 34 35

2.3 Waste Management

36 37

38

39

40

41

42

The CGTO requests an analysis of the hydrological and ecological impacts of the existing water diversion dike of the current Radioactive Waste Management Complex in Area 5. The DOE recognizes that this is a very flood prone area, with major flooding episodes occurring about every 23 years. Indian people visiting this site observed that even though the current dike has been built recently and thus not experienced a 23-year flood, it has diverted and consolidated sufficient runoff that a small arroyo has been established. The Indian people visiting this site believe that the existing dike has unnaturally stressed down-slope plants and animals who now

43 44 do not receive normal sheet runoff. The Indian people visiting the site believe that by

concentrating the runoff, the dike has reduced the amount of water absorbed during normal sheet 45

runoff because the consolidated runoff moves more quickly and only flows in the new and developing eroded arroyo. It is believed by the Indian people visiting the site that were a GTCC facility to be established east of the current RWMS then the dike would necessarily have to be extended causing an even greater runoff shadow and an even greater developing arroyo. The desert tortoise in the area will have to move out of this larger runoff shadow and may be concentrated in the area of Frenchmen Playa. Moving their living areas towards the playa will expose them to higher levels of radioactivity. The Indian people visiting the site believe that these current and potential impacts should be analyzed, monitored by Indian people, and reported back to the CGTO at the next annual meeting.

2.4 Cumulative Impacts from the GTCC Action at NTS

According to the CGTO tribes, increased land disturbances associated with all forms of activities and development on the NTS could result in a decrease in access to these areas for American Indians. Limiting access could reduce the traditional use of the NTS and other areas and affect their sacred nature. Increased development at the NTS could increase the potential for greater disturbance and vandalism of American Indian cultural resources. The CGTO tribes believe (See Final Environmental Impact Statement for the NevadaTest Site and Off-Site Locations in the State of Nevada 1996: Appendix G) that cumulative impacts in the following areas may occur:

• *Holy land violations*. Further destruction of traditional cultural sites, making the water disappear, general treatment of the land without proper respect.

• *Cultural survival*. Decreased ability and access to perform ceremonies.

• Environmental restoration. Revegetation of restored lands with native species.

• Empowerment process. Over the past 17 years of regular consultation between the NNSA/NV and the CGTO tribes, there has been a growing co-management role for the tribes. Their recommendations have been heard and, for the most part, responded to by the NNSA/NV. Indian access to places on the NTS has increased, after an early period of access loss. Unfortunately, each new program that is added to the NTS decreases the amount of space that is available for the practice of Indian religions, ceremonies, and cultural persistence. However, having no programs also can have an impact. For example, even though the mesas are now accessible to Indians for ceremonies, the roads are not maintained because there are no projects on the mesas. This makes access to the ceremonially important areas difficult.

• *Radiation risks*. These risks began with nuclear testing. Today, the CGTO tribes perceive that the radioactive risks continue in known and unknown ways underground.

There are still ongoing risks to Indian people from storage and disposal of waste and these will continue. Finally, transportation of radioactive materials is continuing and increasing. It is not clear to the CGTO tribes that, after two American Indian studies of radioactive waste transportation, there has been a meaningful consideration of their concerns. It is not clear to what extent further radioactive waste disposal at the proposed GTCC facility will do to increase

radiation risks to the physical and spiritual dimensions of Frenchman Playa area but some 2 assessment is possible by Indian religious leaders. 3 4 3.0 5 References 6 **AIRFA** 7 1978 American Indian Religious Freedom Act. 42 U.S.C. § 1996 (Pub. L. 95-341, § 1, 8 Aug. 11, 1978, 92 Stat. 469). 9 10 American Indian Transportation Committee, with R. Stoffle and R. Toupal A Summary of the American Indian Transportation Committee Meeting Regarding 1998 11 12 the U.S. Department of Energy Pre-Approval Draft Environmental Assessment of 13 Intermodal Transportation of Low Level Radioactive Waste to the Nevada Test Site. 14 Prepared for U.S. Department of Energy Nevada Field Office, Las Vegas. Bureau of Applied Research in Anthropology. Tucson, AZ: The University of Arizona. 15 16 American Indian Transportation Committee, with R. Stoffle, R. Toupal, and H. Illahiane 17 18 American Indian Transportation Committee Field Assessment of Cultural Sites Regarding the U.S. Department of Energy Pre-Approval Draft Environmental 19 Assessment of Intermodal Transportation of Low-Level Radioactive Waste to the 20 Nevada Test Site. Prepared for U.S. Department of Energy Nevada Field Office, Las 21 22 Vegas. Bureau of Applied Research in Anthropology. Tucson, AZ: The University of Arizona. 23 24 25 American Indian Writers Subgroup, Consolidated Group of Tribes and Organizations Appendix G: American Indian Assessments. In Final Environmental Impact 26 Statement for the NevadaTest Site and Off-Site Locations in the State of Nevada,. Las 27 28 Vegas, Nevada: U.S. Department of Energy Nevada Operations Office. 29 30 Arnold, Richard, Elliot Booth, Don Cloquet, Betty Cornelius, Larry Eddy, Maurice Frank, Milton Hooper, Ted Howard, Calvin Meyers, Gaylene Moose 31 32 1999 American Indian Transportation Committee Field Assessment of Cultural Sites 33 Regarding the U. S. Department of Energy Preapproval Draft Environmental Assessment of Intermodal Transportation of Low-Level Radioactive Waste to the 34 35 Neveda Test Sight. With the support of Richard W. Stoffle, Rebecca S. Toupal, Hsain Ilahiane, Bureau of Applied Research in Anthropology, University of Arizona in 36 Tucson, Arizona. 37 38 39 Arnold, Richard, Don Cloquet, Betty Cornelius, Maurice Frank-Churchill, Gaylene Moose, and 40 with Richard W. Stoffle 41 Tevitsi Yakakante (It is Crying Hard): American Indian rapid cultural assessment of 42 DOE Nevada Operations Office environmental restoration activities at Double Tracks, Clean Slate, and the central Nevada Test area. Report prepared for 43 Environmental Restoration Division, U.S. Department of Energy, Nevada Operations 44 Office. Tucson: Bureau of Applied Research in Anthropology, University of Arizona. 45 46

1		ichard, D. Cloquet, B. Cornelius, M. Frank, and G. Moose, with R. Stoffle and G.
2	Dewey-H	efley
3	1998	Paa'oatsa Hunuvi (Water Bottle Canyon): American Indian Rapid Cultural
4		Assessment of Archaeological Site 26NY10133, Nevada Test Site. Report prepared
5		for Environment, Safety and Health Division, U.S. Department of Energy, Nevada
6		Operations Office. Tucson: Bureau of Applied Research in Anthropology, University
7		of Arizona.
8		
9	Austin, Di	iane, ed.
0	1998	Native Americans Respond to the Transportation of Low Level Radioactive Waste to
1		the Nevada Test Site. Prepared for U.S. Department of Energy Nevada Field Office,
12		Las Vegas. Bureau of Applied Research in Anthropology. Tucson, AZ: The
13		University of Arizona.
14		•
15	Cook, E.R	R., C.A Woodhouse, C.M Eakin, D.M. Meko, D W. Stahle
16		Long-Term Aridity Changes in the Western United States. <i>Science</i> 306, 1015–1018.
17		
18	Cooney, F	Rosie and Barney Dickson
19	2005	Biodiversity and the Precautionary Principle: Risk and Uncertainty in Conservation
20	2000	and Sustainable Use. Sterling, VA: Earthscan.
21		with 2000minus 0 0001 2001ming, 1111 2011minus
22	Goodrich,	Gregory
23	2007	Multidecadal Climate Variability and Drought in the United States. <i>Geography</i>
24	2007	Compass. 1: 713-738
25		Compuss. 1. 713 730
26	Henderson	n T
27	2008	Nellis Air Force Base Native American Dry Lakes Study. Las Vegas, NV: Nellis Air
28	2000	Force Base.
29		Torce Base.
30	Hughes N	M. K. and L. J. Graumlich.
31	1996	Climatic Variations and Forcing Mechanisms of the Last 2000 years. Volume 141.
32	1770	Multi-Millenial Dendroclimatic Studies from the western United States. NATO ASI
33		Series, pp. 109-124.
34		Series, pp. 107-124.
35	Lindson	A., R. Ambler, M Stein, and P. Hobler.
36	1968	Survey and Excavations North and East of Navajo Mountain, Utah, 1959–1962.
37	1906	· · · · · · · · · · · · · · · · · · ·
		Flagstaff: Northern Arizona Society of Science and Art, Inc.
88	NIA CDD A	
39	NAGPRA	
10	1990	Native American Graves Protection and Repatriation Act. 25 U.S.C. § 3001-3013
11		(Pub. L. 101-601 § 13, Nov. 16, 1990, 104 Stat. 3058).
12	NT / 1 /	
13		Oceanic and Atmospheric Administration
14	2007	Climate of 2007- June Nevada Moisture
15		Status.http://www.ncdc.noaa.gov/oa/climate/research/2007/jun/st026dv00pcp200706.ht
16		ml, accessed July 18, 2007.

1		
2 3	2007	National Climate Data Center. http://www.ncdc.noaa.gov/oa/climate/research/2007/jun/us-drought.html), accessed July 27, 2007
4		
5	NRC	
6	2009a	Nuclear Regulatory Commission. Atomic Safety and Licensing Board. Declaration of
7		Barbara Durham. Barbara Durham. 3576663_1. February 24, 2009.
8	NDC	
9 10	NRC	Nuclear Regulatory Commission. Atomic Safety and Licensing Board. Declaration of
11	20090	Pauline Esteves. Pauline Esteves. 3576663_1. February 24, 2009.
12		Taume Esteves. Taume Esteves. 3370003_1. Teoruary 24, 2009.
13	Raytheon	Services
14	1993	Flood Assessment at the Area 5 Radioactive Waste Management Site and the
15		Proposed DOE/Nevada Test Site, Nye County, Nevada. Prepared by Raytheon
16		Services Nevada.
17		
18	Stoffle, Ri	
19	1987	Native Americans and Nuclear Waste Storage at Yucca Mountain, Nevada: Potential
20		Impacts of Site Characterization Activities. Prepared for Science Applications
21		International Corporation. Ann Arbor: Institute for Social Research, University of
22 23		Michigan.
23 24	Dichard W	7. Stoffle & Richard Arnold
2 4 25	2003	Confronting the Angry Rock: American Indians' Situated Risks from Radioactivity.
26	2003	Ethnos, vol. 68 (2): 230-248.
27		Zamos, voi. 00 (2). 250 2 10.
28	Stoffle, Ri	chard, Richard Arnold, Jerry Charles, Betty Cornelius, Maurice Frank-Churchill,
29		iller and Gaylene Moose
30		Shoshone Mountain, Nevada Test Site: Its Meaning in Numic Culture
31		Based on extant studies. Prepared for U.S. Department of Energy Nevada Operations
32		Office, Las Vegas, Nevada. Bureau of Applied Research in Anthropology University
33		of Arizona, Tucson, Arizona. (February 23, revised March 8, 2001)
34		
35	2001b	MNS Wind Farm Project on the Nevada Test Site: American Indian Rapid Cultural
36		Assessment of Proposed Gravel Road improvements Trip Report, March 2001.
37		Prepared for U.S. Department of Energy Nevada Operations Office, Las Vegas,
88		Nevada. Bureau of Applied Research in Anthropology University of Arizona,
39 10		Tucson, Arizona.
10 11	Stoffle Di	chard W., and Michael J. Evans
+1 12	1988	American Indians and Nuclear Waste Storage: The Debate at Yucca Mountain,
13	1700	Nevada. <i>Policy Studies Journal</i> 16(4): 751-67.
14		1101 add. 1 one y Similes John 10(1). 131 01.
15	1990	Holistic Conservation and Cultural Triage: American Indian Perspectives on Cultural
16		Resources. <i>Human Organization</i> 49(2):91-99.

1	1	
2		d Nuclear Waste Storage: The Debate at Yucca Mountain,
3		mericans and Public Policy edited by F. Lyden and L. Letgers,
4		h: University of Pittsburg Press.
5		
6		Evans, and Camilia L. Harshbarger
7		rpretation of Cultural Resources in the Area of Yucca Mountain,
8	<u> </u>	U.S. Department of Energy Nevada Operations Office. Institute
9 10		nn Arbor: University of Michigan.
11		ns and David B. Halmo
12		ns for Reducing Potential Adverse Effects on Native American
13		ed by Site Characterization Activities. Prepared for Science
14		l Corporation, Las Vegas, Nevada, and the U.S. Department of
15		ns Office. Ann Arbor: Institute for Social Research, University
16	= -	
17	<u> </u>	
18	8 Stoffle, Richard W., Michael J. E	Evans, David B. Halmo, Molly C. Dufort, and Brian Fulfrost
19	19 1994a Native American Cult	tural Resources on Pahute and Rainier Mesas, Nevada Test Site.
20		oplied Research in Anthropology, University of Arizona. Desert
21 22	Research Institute Tec	chnical Report No. 84.
22	22	
23		as, David B. Halmo, Wesley E. Niles, and Joan T. O'Farrell
24	1989 Native American Plan	t Resources in the Yucca Mountain Area, Nevada, Interim
25	Report Prepared for L	OOE, Nevada Operations Office. Las Vegas: Science
26 27	26 Applications Internati	onal Corporation.
27 28		
20 29		almo, and John F. Olmsted
30		vsis of Native American Cultural Resource Mitigation. Report
31	•	esearch Institute, University of Nevada. Ann Arbor: Institute for
32	*	· · · · · · · · · · · · · · · · · · ·
33		reactly of the control of the contro
34		almo, John E. Olmsted, and Michael J. Evans
35	· · · · · · · · · · · · · · · · · · ·	tural Resource Studies at Yucca Mountain, Nevada. Ann Arbor:
36	Institute for Social Re	esearch, University of Michigan.
37	37	
38	Stoffle, Richard W., David B. Ha	almo, Michael J. Evans, and John E. Olmsted
39	U	ral Significance of American Indian Plants: Paiute and Shoshone
10	-	a Mountain, Nevada. American Anthropologist 92:416-432.
11		
12		
13		and the Nevada Test Site Collection, Final Report of Subgroup
14 15		pared for the NAGPRA Subgroup, Consolidated Group of
15	For Tribes and Organization	ons, the Desert Research Institute, and the U.S. Department of

1 2 3		Energy Nevada Operations Office. Tucson: Bureau of Applied Research in Anthropology, University of Arizona.	
4	Stoffle, Richard, W., John E. Olmsted, and Michael J. Evans		
5 6 7 8 9		Literature Review and Ethnohistory of Native American Occupancy and Use of the Yucca Mountain Region. Prepared for Science Applications International Corporation, Las Vegas, Nevada, and the U.S. Department of Energy, Nevada Operations Office. Ann Arbor: Institute for Social Research, University of Michigan.	
10	Stoffle, Ri	chard, W., Kathleen A. Van Vlack, and Richard W. Arnold	
11 12 13	2005	Paa'oasta Hunuvi: Water Bottle Canyon Traditional Cultural Property Study Bureau of Applied Research in Anthropology, University of Arizona, Tucson.	
14	Stoffle Ri	chard W., María Nieves Zedeño, and Alex K. Carroll	
15 16 17 18 19	2000	From Place to Object: Native American Graves Protection and Repatriation Act Consultation for the Hot Creek Valley Collection, Central Nevada Test Area. Report prepared for the U.S. Department of Energy Nevada Operations Office. Tucson: Bureau of Applied Research in Anthropology, University of Arizona.	
20	Stoffle Ri	chard W., Maria Nieves Zedeño, and David B. Halmo, eds.	
21 22 23	,	American Indians and the Nevada Test Site: A Model of Research and Consultation. Washington, DC: Government Printing Office.	
24	Stoffle Ri	chard W., María Nieves Zedeño, Diane E. Austin, and David B. Halmo	
25 26 27	1994	Native American Graves Protection and Repatriation Act consultation and the Nevada Test Site collection. Technical Report 89. Las Vegas: Desert Research Institute.	
28	Stoffle Ri	chard W., Maria Nieves Zedeño, Richard W. Arnold, Kathleen A. Van Vlack, Mance	
29		n, Heather Fauland, and Aja Y. Martinez	
30 31 32 33	2006	Dá Me Na-Nu-Wu-Tsi: "Our Relations All of Mother Earth" The Timber Mountain Caldera Ethnographic Report. Bureau of Applied Research in Anthropology, University of Arizona, Tucson.	
34	United States Department of Energy		
35 36 37 38	1996	Final Enivronmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada. Las Vegas, Nevada: U.S. Department of Energy Nevada Operations Office.	
39	United States Department of Energy, National Nuclear Security Administration		
40	2002	Supplement Analysis for the Final Environmental Impact Statement for the Nevada	
41		Test Site and Off-Site Locations in the State of Nevada. Las Vegas, Nevada: U.S.	
42 43 44		Department of Energy Nevada Operations Office.	
	United Sta	ites Department of Energy National Nuclear Security Administration	

1	2008	Supplement Analysis for the Final Environmental Impact Statement for the Nevada
2		Test Site and Off-Site Locations in the State of Nevada. Las Vegas, Nevada: U.S.
3		Department of Energy Nevada Operations Office.
4	Zadaña N	Maria Niavas, Elatahan Chroma Huff, Alay Carnell, and Dahacas C. Tayral
5 6	Zedeño, Maria Nieves, Fletcher Chmara-Huff, Alex Carroll, and Rebecca S. Toupal 2005 From Red Spring to Cane Spring: Landscapes of movement across the greater Belt	
7	2003	Range. Tucson, AZ: Bureau of Applied Research in Anthropology, the University of
8		Arizona.
9		Tillond.
10	Zedeño, M	1. N., Richard. Stoffle, Genevieve Dewey-Hefley, and David Shaul
11	1999	Storied rocks: American Indian inventory and interpretation of rock art on the Nevada
12		Test Site. Desert Research Institute Technical Report 93. Tucson: Bureau of Applied
13		Research in Anthropology, University of Arizona.
14		
15		
16		
17		
18		
19		
20 21		
22		
23		
24		
25		
26		
27		
28		

Appendix A: Native American Responses to The GTCC Proposal on the NTS

 This Greater Than Class C EIS study was funded by the Waste Management Office of the DOE and NNSA/NSO. Text was provided by the American Indian Subgroup who represents the seventeen tribes and Indian organizations that are in consultation with the NNSA/NSO regarding the Nevada Test Site (NTS) and related locations. The consulting Indian tribes and organizations are known as the Consolidated Group of Tribes and Organizations (CGTO), within which there are numerous subgroups who act in different roles such as the American Indian Writers Subgroup (AIWS). The recognized role of the AIWS and other CGTO subcommittees is to follow closely specific issues and report to the CGTO. The CGTO members then report back to their respective tribal governments or Indian organization governing boards. It is important to note that official responses to issues only come from tribal governments and governing boards.

The role of the AIWS is to review all manuscripts that involve Indian people on the NTS and to review fieldwork proposals. The AIWS is composed of a coordinator, three officially appointed members, and three alternates who were selected by the subgroup members. The members of this subcommittee are (1) Southern Paiutes – Betty Cornelius and Lalovi Miller, (2) Western Shoshones – Maurice Frank-Churchill and Jerry Charles, and (3) Owens Valley Paiutes – Gerald Kane and Danelle Gutierrez. Richard Arnold is the appointed AIWS coordinator.

AIWS Responses

The AIWS believes that the Native American responses for the current GTCC EIS should be presented together with some responses also repeated in relevant sections of the main body of the EIS. Their responses, however, are directed at different sections of this EIS and vary in terms of structure and purpose. The current American Indian text builds upon already established ideas presented in Appendix G (American Indian Writers Subgroup, CGTO 1996), the 2002 Nevada Test Site Supplement Analysis (United States Department of Energy, National Nuclear Security Administration 2002) and the 2008 Draft Nevada Test Site Supplement Analysis (United States Department of Energy, National Nuclear Security Administration 2008). This writing procedure reflects the ongoing interest of the CGTO in the activities and potential environmental impacts of NNSA/NSO, and emphasizes the continuity of issues established in the previous documents and again in this SA.

The following text is provided as an appendix of this GTCC EIS. This integrated essay represents the responses of the consulting tribes who have participated for almost 23 years in the NNSA/NSO American Indian Program and who refer to themselves in this consultation as the CGTO. Some portions of the following text are repeated in other sections of this report. The full analysis and text are held together in this section so that the consulting tribes and organizations who will review this document will have a holistic view of the American Indian responses. This report reflects the assessments of the AIWS, but it was technically finalized by the Bureau of Applied Research in Anthropology (BARA) team at the University of Arizona.

1 LAND USE (DaMiDovia "Our Land", Ia-vooTuvipum "Our Land") 2

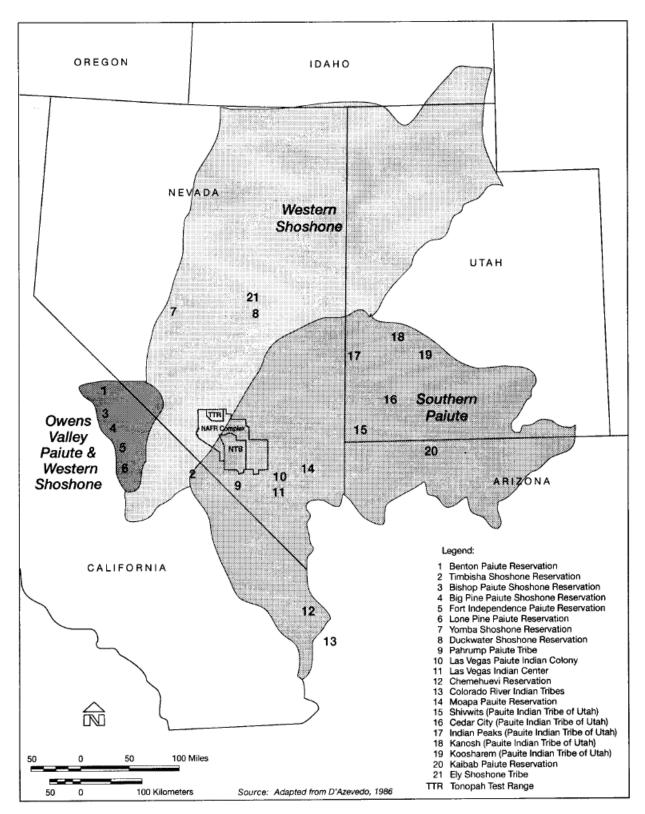


Figure A-1 American Indian Region of Influence for NTS GTCC EIS

- 1 The CGTO maintains that members of the consulting tribes have Creation based rights to protect,
- 2 use, and access lands (Divia, 1 Tuvip, 2) of the NTS and immediate area. These rights were
- 3 established at Creation and persist forever. During the past decade representatives of the
- 4 consulting tribes have visited portions of the NTS and have identified places, Puha Paths, and
- 5 cultural landscapes of traditional and contemporary cultural significance. The managers of the
- 6 NTS have responded to CGTO requests that portions of these identified areas be set aside for
- 7 traditional and contemporary ceremonial use. Because this is a public document the exact
- 8 locations of these areas will not be revealed, however they do include a burial cave, a Native
- 9 American Graves Protection and Repatriation Act (NAGPRA) reburial area, and a local Puha
- Path and ceremonial landscape near a large water tank (Stoffle, Evans, and Harshbarger1989;
- 11 Stoffle et al. 2001a; Stoffle et al. 2001b; Stoffle, Zedeño, and Halmo 2001; Stoffle et al. 2006).
- 12 These actions by the agency are in keeping with the persistent recommendations of the CGTO
- 13 that portions of their holy lands be placed under co-stewardship arrangements. In order to fulfill
- 14 the holy land use expectations, the members of the consulting tribes of the CGTO recommend
- 15 continuing to identify special places, Puha Paths, and landscapes and setting aside these places
- 16 for unique co-stewardship and ceremonial access. For example, currently studies have begun and
- 17 portions are completed regarding the identification of places, Puha Paths and cultural landscapes
- 18 in the Timber Mountain Caldera (Stoffle et al. 1994a; Stoffle, Halmo, and Dufort 1994; Stoffle et
- 19 al. 2001a; Stoffle et al. 2001b; Stoffle, Zedeño, and Halmo 2001; Stoffle et al. 2006). These
- 20 studies are planned to continue and when completed will add a Native American cultural
- 21 sensitivity component which will contribute to the currently recognized importance of this
- 22 National Natural Landmark and Area of Critical Environmental concern.

Climate

252627

29

30

31 32

33

CGTO knows that the climate of the region has changed over the thousands of years that the Indian people have lived in this region. The NTS has only occupied this area since the early 1940s. It is important to recognize that major climatic changes have taken place since the end of the Pleistocene and shorter term climate changes such as the wet period in the 1980s and 1990s contrast with the current 10-year meteorological drought. It is important for the GTCC EIS to assess the impacts of short term and long term climatic changes because the DOE expects to safely manage these GTCC wastes for up to 10K years during which similar climate changes can be expected.

34 35 36

37

38

39

40

The current climate description in the GTCC EIS is specific to the present decade-long period of extended drought (a similar one occurred between 1896 and 1906), so this type of drought and the wet period between 1980s and 1990s may be factors in siting the GTCC facility. An analysis of long term impacts based on current conditions will neither be representative of climate conditions viewed over much longer periods nor applicable to short climate shift to much wetter conditions.

- The CGTO maintains that during the last decade the NTS and surrounding region has experienced a meteorological drought. Current meteorological analysis suggests that this is a 10-
- 45 year duration type drought and even could be the beginning of a longer drought episode. The
- 46 region has not experienced a drought with these characteristics since a decade spanning the

beginning of the 20th century. Therefore, this meteorological episode can be termed a 100-year drought. The early 20th century drought becomes an analog against which to discuss the environmental implications of the current episode (see Figure A–4).

The 100-Year Drought (Uh-na-hp dumime sogobe basa-type "A long time our Mother Earth has been dry", Minga- na-vas-so-quip "very dry land")

Nevada is "much below normal" to date in 2007. As of June 2007, the Palmer Z Index, which measures short term drought on a monthly scale, indicated that central Nevada, including the NTS, was in a "severe drought" condition. Data from the National Climatic Data Center shows that Nevada was ranked the driest state in the U.S. for the period of August 2006 to June 2007. This period reflects the drought trend in Nevada that has characterized the past decade (Figures A–1, A–2) (http://www.ncdc.noaa.gov/oa/climate/research/2007/jun/st026dv00pcp200706.html).

On a broad scale, the two previous decades (1980s and 1990s) were unusually wet with short periods of extensive droughts. The 1930s and 1950s showed the opposite trend with prolonged periods of extensive droughts and few wet periods http://www.ncdc.noaa.gov/oa/climate/research/2007/jun/us-drought.html).

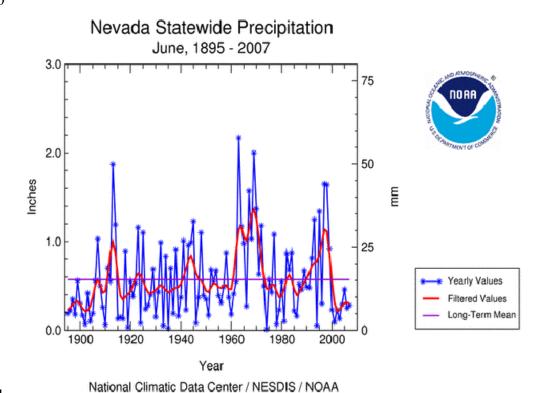
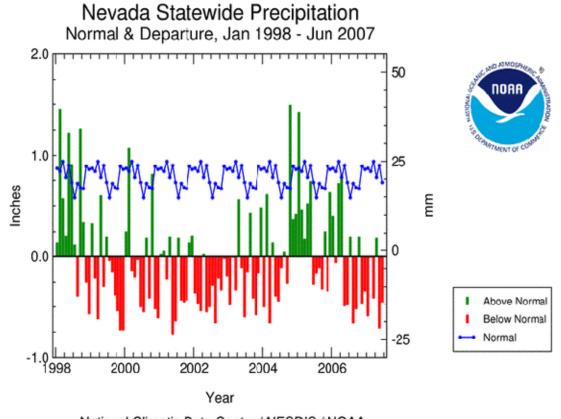



Figure A-2 One hundred and twelve years of Nevada precipitation averages

National Climatic Data Center / NESDIS / NOAA

Figure A-3 Fluxuations in Nevada statewide precipitation since 1998

Hughes and Graumlich (1996) reconstructed 7979 years of annual precipitation from bristlecone pine in the White Mountains of eastern California to document the occurrence of eight multidecadal droughts, with the two most recent centered on 924 AD and 1299 AD (Figure A–3).

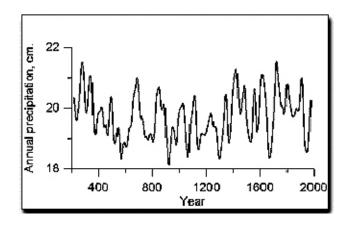


Figure A-4 7979 Years of annual precipitation reconstructed from bristlecone pine

10 11 12

8

2

3 4

5

Areas specific to the NTS and southern Nevada are in a 100-year drought cycle; Figure A–4 shows that major drought conditions have occurred in multiyear waves since 1895. The current drought that is affecting the NTS and its neighboring lands has persisted since 1996 (Goodrich 2007). Researchers think that the rise in greenhouse gases in the atmosphere may lead to a return of multi-decadal megadrought conditions that existed prior to 1600 AD. The most severe megadrought occurred between 900 AD and 1300 AD (Cook et al. 2004, Goodrich 2007).

Figure A-5 Palmer hydrological drought index from 1895-2005 in Nevada - Division 04

The CGTO recommends that action be taken to lessen the impacts of this drought cycle through meaningful research and management applications because there is the potential for irreversible environmental degradation and biodiversity loss. This type of action is a concept found in social impact assessment and environmental studies known as the precautionary principle. This principle implies that there must be a willingness to take action in the advance of scientific proof or evidence of the need for proposed action. If there is a delay in action, it will be devastating to both society and nature (Cooney and Dickson 2005). The precautionary principle stresses that there must be ethical responsibilities towards maintaining the integrity of natural systems, and the fallibility of human understanding. The CGTO requests that traditional environmental management practices occur in order to help restore and maintain the ecology of the NTS.

HYDROLOGY

2 3

One inevitable implication of the current 100-year drought is that the surface water on the NTS and immediate areas has diminished and become more sporadic. Surface water is here defined as water available for shallow rooted plants during rainfall, water available during post-rain ponding, runoff, and absorption, and water recharged into near-surface aquifers. The modification and availability of surface water has the ability to affect all plants, animals, and associated trophic levels on the NTS.

8 9 10

6

Calling the Rain (Pahwwanipagee "calling the rain", Oo-wap-pi "calling the rain")

11

12 One type of interaction was in the form of calling the rain. Rain calling is a basic aspect of American Indian life and culture. Traditionally there were rain callers (rain shamans, rain 13 14 doctors), rain ceremonies, and helpers from the spiritual world which would help facilitate rain 15 production. Most traditional communities had a rain maker. When the special rain shaman called upon the rain, he sang songs and was aided by his spirit helper, which was usually in the form of 16 a mountain sheep, to call upon the rain. The mountains had important roles in this activity. They

17 interacted with the clouds and the sky to call down the rain. 18

Winter Ceremonies-Snow Making Ceremonies: Western Shoshone

20 21

22

23

24

25 26

27

19

The Winter Ceremony was performed in the fall to ensure that a good winter with heavy snow fall will happen. The spiritual leader (weather doctor) would call the people together and meet at a special place in the mountains, sometimes near a Pine Nut gathering area. Prayers and songs were done by the spiritual leader. Usually this ceremony lasted a day. If too much rain was falling certain precautions would be taken, for example, the children were not allowed to shake willows that would be used for weaving or to kill frogs as this would bring more rain. Hummingbirds

29

were not killed for many reasons, but if they were killed, there would be flooding and lighting storms, with lightning killing the person who killed the hummingbird.

30 31 32

Stinkbug (Bee-voos, Wu-who-koo-wechuts)

33 34

35

Even today, individual traditional native people can bring rain. This is done by turning a stinkbug on his back. The rain will come provided the stinkbug allows a person to tickle his belly with a small stick. As the person prays for rain, he tells the stinkbug why he is asking for rain.

36 37 38

Snow Fleas

39

40 Snow Fleas represent a special category of Native American environmental knowledge because 41 they are almost invisible and live at the highest elevations on mountains. According to Indian 42 beliefs during the late fall when it is cold there is a snow ceremony. A part of this ceremony 43 involves calling on the snow fleas. The snow fleas are the ones that make the snow wet and absorb into the mountain. Without the snow fleas, the snow is dry and evaporates quickly. 44 45 Without ceremonies and the water making fleas, there is less water for the mountains and the valleys below. The snow ceremony is conducted in relationship with ceremony of the seeds

where young girls dance with seeds in winnowing trays and a spiritual person sings songs to bring whirlwinds which envelope the dancers and scatter the seeds as a gesture of fertilizing the earth. Thus, water is brought to the fertile and dispersed seeds.

Ecology Indian Comments

The CGTO knows that this site is an ancient playa, surrounded by mountain ranges. The runoff from these ranges serves to maintain the healthy desert floor. Animals frequent this area, there are numerous animals' trails, and these play a significant part in the history of the locality and of the Indian lifestyles. Our ancestors knew that the Creator always provided for them and this site is one of their favorite places to hunt and trap rabbits. We have special leaders that organized large rabbit hunts. Many people participated so this place would be occupied at times by all kinds of our people. Rabbits provided good eating, bones for tool-making, warm blankets, and even games. Indian people refrained from eating coyote, wolves, and birds but these contribute to our stories which tell us how to behave and why we are here. We have many stories and songs that include animals and birds who have human-like antics. From these antics Indian people learn the life lessons to build character to become better persons. So animals and the places where they live contribute to our history and culture.

This culturally central place was used by and important to Indian people from our agricultural and horticultural communities located to the north – near Reese River Valley and Duckwater, to the south – near Ash Meadows, to the southeast – near Indian Springs and Corn Creek, to the east – near the Pahranagat-Muddy River, and west – near the Oasis Valley. It was also used by people from our agricultural and horticultural communities to the far west in Owens Valley, to the far south near Cottonwood Island and Palo Verde Valley on the Colorado River, to the far southwest at Twenty Nine Palms, to the far east along the Virgin River, Santa Clara River, and Kanab Creeks, to the far north along the Humbolt River and Ruby Valley.

Plants

 The CGTO knows based on previous DOE-sponsored ethnobotany studies that there are at least 364 Indian use plants on the NTS (see Appendix G). Indian people visiting the proposed location of the GTCC facility identified the following traditional use plants: (1) Indian Tea, (2) White Sage or Winter Fat, (3) Indian Rice Grass, (4) Creosote, (5) Wolfberries, (6) Four O'clock, (7) Spiny Hop Sage, (8) Joshua Tree, (9) Daises, (10) Desert Trumpet, (11) Cholla, (12) Globe Mallow, (13) Fuzzy Sage, (14) Tortoise Food Plant, (15) Sacred Datura, (16) Wheat Grass, and (17) Lichen. Other plants were present but not identified due to the late season and the dry condition of the plants.

Plants are still used for medicine, food, basketry, tools, homes, clothing, fire, and ceremony – both social and healing. The characteristics of the plants at the proposed GTCC area are smaller and thinner than in other desert areas where it is wetter. Indian people from elsewhere traveled to this area to gather specific plants because they have stronger characteristics when they grow in dry places. The sage is used for spiritual ceremonies, smudging, and medicine. The Indian rice grass and wheat grass are used for breads and puddings. Joshua tree is important for hair dye, basketry, foot ware, and rope. Datura is used for hallucinogenic effects during which alternative

places can be visited by medicine men. Datura also goes itself to disturbed areas and heals them.

2 The globe mallow had traditional medicine uses, but in recent times is also used for curing

3 European contagious diseases.4

Animals/Insects

5 6 7

8

9

The CGTO knows based on previous DOE-sponsored ethnofauna studies that there are at least 170 Indian use animal on the NTS (see Appendix G). Indian people visiting the proposed location of the GTCC facility identified the following traditional use animals: (1) Jack Rabbits,

10 (2) Whiptail Lizards, (3) Antelope, (4) Tortoise, (5) Kangaroo Rats, (6) Horned Toad, (7) Rock

Wrens, (8) Ravens, (9) Grasshoppers, and (10) Stink Bugs. Other animals (such as snakes, bats,

12 and owls) were perceived to be present but not observed because they primarily emerge at night.

13

- All animals and insects were and are culturally important and the relationships between them, the Earth, and Indian people are represented by the respectful roles they play in the stories of our life
- 16 then and now. The GRCC valley is where a spiritual journey occurred. It involved Wolf (*Tavats*
- 17 in Southern Paiute, *Bia esha* in Western Shoshone, *Wi gi no ki* in Owens Valley Paiute) and
- 18 Coyote (Sinav in Southern Paiute, Duhvo esha in Western Shoshone, Esha in Owens Valley
- 19 Paiute) and is considered a Creation Story. Only parts of this can be presented here. When Wolf
- and Coyote had a battle over who was more powerful, Coyote killed Wolf and felt glorious.
- 21 Everyone asked Coyote what happened to his brother Wolf. Coyote felt extremely guilty and
- 22 tried to run and hide but to no avail. Meanwhile, the Creator took Wolf and made him into a
- 23 beautiful Rainbow (Paro wa tsu wu nutuvi in Southern Paiute, Oh ah podo in Western Shoshone,
- 24 Paduguna in Owens Valley Paiute). When Coyote saw this special privilege he cried to the
- 25 Creator in remorse and he too wanted to be a Rainbow. Because Coyote was bad, the Creator put
- 26 Coyote as a fine white mist at the bottom of the Rainbow's arch. This story and the spiritual
- 27 trails discussed in the full version are connected to the Spring Mountains and the large sacred
- cave in the Pintwater Mountains as well as to lands now called the Nevada Test Site. This area is the home place of Wolf who is still present and watches over the area and us.

30 31

Minerals

32 33

34

35

36

The CGTO knows based on previous DOE-sponsored cultural studies that there are many minerals on the NTS (no complete list available). Indian people visiting the proposed GTCC site identified the following traditional use minerals: (1) Obsidian, (2) Chalcedony, (3) Yellow Chert or Jasper, (4) Black Chert, (5) Pumice, (6) Quartz Crystal, and (7) Rhyolite Tuff. Other minerals were perceived to be present but not observed because of the limited time and search area.

37 38 39

- All minerals are culturally important and have significant roles in many aspects of Indian life.
- 40 For example, the Chalcedony on the proposed GTCC site would have made an attractive offering
- 41 which would be acquired here by a ceremonial traveler and then left at the vision quest or
- 42 medicine site located to the north on top of a volcano like Scrugham Peak. Returning ceremonial
- 43 travelers would also bring offerings back to where they had acquired offering, thus the Yellow
- 44 Chert or Jasper (observed on the GTCC site) which outcrops about 70 miles to the north would
- 45 be gathered there and returned to the Chalcedony site as an offering.

Playas

1 2

The CGTO knows, based on cultural studies funded by the DOE on the NTS and playa-specific studies funded by Nellis Air Force Test and Training Range (Henderson 2008), that playas occupy a special place in Indian culture. Playas are often viewed as empty and meaningless places by Western scientists, but to Indian people playas have a role and often contain special resources that occur nowhere else. The following text was prepared by the Indian people who visited the proposed GTCC site.

9

10 Is a playa a wasteland? According to Indian elders playas were used in traveling or moving to 11 places where work, hunting, pine cutting or gathering of other important foods and medicine could be done. One elder remembers crossing over dry lake beds and traveling around but near 12 13 the edges and they discussed how provisions were left there and at nearby springs (See NRC 14 2009b for additional information about the cultural importance of springs) by previous travelers at camping spots. Indian people left caches in playa areas for people who crossed valleys when 15 16 water and food was scarce. Frenchmen playa is such a place. Indian people took advantage of 17 traveling through this playa as mountains completely surround this area. The CGTO knows that 18 most dry lakes are not known to be completely dry. An example is Soda Lake near Barstow, 19 California. The Mohave River flows into this dry lake and most of the year it looks dry but it 20 actually flows underground. Building berms on dry lakes beds to offset water and runoff doesn't 21 sound like a good idea to the Indian way of thinking. So why build a GTCC site on and use this 22 playa when the odds of radiation seem feasible? The Indian people who visited this site 23 recommend not to bother Frenchmen Playa. It is only one of two in the immediate region and has 24 special meanings. There should be a more descriptive study to fully understand the impacts. More time is needed, also for Indians to revisit this site. Although some people continue to view 25 26 Frenchman playa as a wasteland, the CGTO knows it is not. Further ethnographic studies are 27 needed.

28 29

BIOLOGICAL RESOURCES (Dá Me Na-Nu-Wu-Tsi "Our Relations All of Mother Earth")

30 31 32

33

34

It is nearly impossible to observe and monitor the changes on cultural resources on the NTS study lands. Some changes occur quickly and certain changes happen slowly. For an example, an earthquake could cause serve damage instantly and the onslaught of impending drought and famine can become a great heavy burden on mankind and his environment.

35 36 37

38

39

40

41

The current 100-year drought has increasingly stressed all of the plants and animals on the NTS. Because this is a unique, albeit, perhaps a cyclical event, its environmental impacts are unprecedented in the history of the operation and management of the lands of the NTS. It is expected that the 100-year drought has modified the abundance and distribution of all animals and plants. The quality, quantity, and distribution of indigenous plants necessary to sustain a healthy environment to maintain a productive animal habitat is clearly affected.

42 43 44

45

46

Because Native Americans view the NTS lands as holy lands there is deep concern for it. Certain springs have dried up, which makes animals travel into other districts, makes food foraging difficult, and dries up the land (See NRC 2009b for additional information about the cultural

3

4

16

17

18

19

20

21

22

23

24

25 26 27

28

29

30 31

32

33

34

35

36 37

38

39

40

41

42

43

44

45

importance of springs). The remaining stressed animals and plants have lower fecundity and nutritional value in the food chain. The CGTO recognizes the nation-wide need to identify and protect threatened and endangered plants and animals.

5 The members of the consulting tribes who have lived on these lands since Creation value all plants and animals, yet some of these occupy a more culturally central position in their lives. The 6 main characteristic of a healthy landscape is healthy plants, animals, and visual beauty. The role of land managers is to help care for the land and its ecosystems. Therefore, the CGTO applauds the efforts being designed to minimize the severe impacts of the ongoing drought. Conservation and preservation should become high priority. In order to convey the Native American meaning 10 11 of these plants, a series of studies were conducted and the findings were negotiated into a set of criteria for assessing the cultural importance of each plant and of places where plant 12 13 communities exist. The CGTO provided these cultural guidelines so that NEPA analysis and

other agency decisions could be assessed from a Native American perspective.

14 15

Because of these stresses, the animals and plants of the NTS require management interventions unforeseen during the 1996 NTS EIS. American Indian people have faced such drought episodes in the past and have the capacity to suggest and carry out adaptive responses. Adaptive responses to extreme climatic fluctuations involve both physical and spiritual interventions designed to restore balance and well-being to the area. All tribes involved in the CGTO recognize a range of these interventions, which have been successful in the past. The following are a series of cases that demonstrate how Native American people have interacted with the land and natural elements to help all aspects of life.

What is Out There?

The CGTO has identified as fundamental in their cultural concern a list of 364 plants and 170 animals which were traditionally used and are currently culturally central. Concerns exist that this larger list has been reduced to an official list of 107 plants and 26 animals (see American Indian Writers Subgroup, CGTO 1996: Table G-1, G-2, pp G-14 – G-17, G-18). The CGTO argues that the full list should be used to assess impacts because both plants and animals appear and disappear on the NTS at various seasons and during various climatic episodes. Thus the working list of potentially impacted plants and animals needs to be expanded to the full list of Indian plants and animals. These species have been identified as indicators of the health of NTS ecosystems.

Native Americans have always been concerned that the native species of vegetation on the NTS may be in danger of being lost. To native people, plants provided most of the food resources as well as the raw materials for medicines, tools, shelter, and even ceremonial objects. Take the tobacco, considered highly sacred, the tobacco plant was carefully cultivated to ensure its posterity. Religious leaders and traditionalists would guard the location for their own use. The plant used properly would bloom and blossom for the user, because it was being utilized appropriately. Other sacred plants were the sage, sweet-grass and cedar. These are considered as gifts from the earth and are to be applied in traditional ceremonies and not for so-called "recreational" purposes. There is much evidence that regaining and reclaiming Indian plant

- knowledge could benefit humans in many ways. The CGTO would like the land managers of the
- NTS to implement measures with the goal of restoring lands with native species.
- 3 Ecosystem health includes the people with whom the natural environment developed,
- specifically, the member tribes of the CGTO. By involving the CGTO in the design,
- implementation, and analysis of the biological surveys, NNSA/NSO can obtain more
- comprehensive reports of ecosystem health and potential impacts, as well as further facilitate 6 government-to-government consultation with the CGTO.

Environmental Justice

10 11

The CGTO would like to have their DOE approved definition of Environmental Justice added to the current Environmental Justice description.

12 13

- 14 DOE has recognized the need to address environmental justice concerns of the CGTO based on disproportionately high and adverse impacts to their member tribes from DOE NTS activities. In
- 15
- 16 1996, the CGTO expressed concerns relating to environmental justice that included 1) damage to
- 17 Holy Lands, 2) negative health impacts, and 3) lack of access to traditional places that
- contributes to breakdowns in cultural transmission. In the 2002 NTS SA, NNSA/NSO concluded 18
- 19 that with the selection of the Preferred Alternative, the CGTO would be impacted at a
- 20 disproportionately high and adverse level consequently creating an environmental justice issue.
- Since 2002, NNSA/NSO has supported a few ethnographic studies involving the CGTO and 21
- 22 culturally important places including in 2004, when NNSA/NSO arranged for tribal
- 23 representatives to conduct evening ceremonies at Water Bottle Canyon. While the opportunity
- 24 for the evening ceremony was a significant accommodation, disproportionately high and adverse
- impacts from DOE NTS activities continue to affect American Indians. The three environmental 25 justice issues noted by the CGTO need to be addressed.
- 26

27 28

- The CGTO is the voice for acclaiming the responsibility of maintaining stewardship with the
- 29 land for all Native American Indian Tribes. The bonding is a privilege to be faceted above all
- else and must be carried and held by enabling principles. The CGTO believes this right was 30
- given to them at Creation and must be followed. Otherwise, the networking of the other spirit 31
- 32 world will be severed. The CGTO knows there are places on the NTS landscape that needs
- 33 traditional ceremonies and blessings to offset the tensions of severe land disturbances done to it.
- An example is Shoshone Mountain. Shoshone Mountain is large and long. Roads are limited to 34
- 35 its crest making it inaccessible for religious and traditional people to go there to conduct
- ceremonies. The CGTO recommends that special privileges be allowed for ceremonial journeys 36
- 37 to take place and to provide funding for transporting traditional leaders to inaccessible places
- 38 such as Shoshone Mountain by helicopter to perform ceremonies.

39 40

Environmental Justice and the Ruby Valley Treaty of 1863

- 42 The CGTO supports the efforts of the Western Shoshone to have the Ruby Valley Treaty of
- 1863 be fully recognized as originally intended. Previously, DOE/ NNSA has relied on the 43
- Supreme Court Decision of U.S. v. Dann as a means of abrogating their trust responsibilities. 44
- 45 The focus of this case dealt with trespass violations associated with grazing cattle on government
- land. In the opinion of the Western Shoshone people, this treaty of peace and friendship is still in 46

- 1 full force and affect. Subsequent, to this court decision, the Western Shoshone Nation brought
- 2 the matter before the United Nations and the Organization of Human Rights in Geneva,
- 3 Switzerland. On January 9, 2003, the Inter-American Commission on Human Rights rendered its
- 4 final decision in the case of Western Shoshone land rights in favor of Mary and Carrie Dann.
- 5 This international body found the actions of the U.S. Government to be in violation of Western
- 6 Shoshone rights with regard to property, due process, and equality under the law.
- 8 In 2004, the United States attempted to bring closure to the Western Shoshone claims by offering
- 9 compensation. This highly controversial action has not affected nor diminished the aboriginal
- 10 claims of the Western Shoshone to the land. It is maintained in previous EIS documents that the
- 11 United States has failed to uphold its trust responsibility and negotiate further with the Western
- 12 Shoshone Nation. No nation to nation discussions as promulgated under federal law have
- 13 occurred. In this regard, the Western Shoshone Nation should receive equal treatment as afforded
- 14 to other countries.

7

- In March 2005, the Western Shoshone Nation filed a lawsuit against the DOE for the siting of a
- 17 High-Level Nuclear Waste and Spent Nuclear Fuel Underground Geologic Repository at Yucca
- 18 Mountain. It is the position of the Western Shoshone that such action being proposed by the
- 19 DOE violates the terms and conditions of the Ruby Valley Treaty of 1863. At this current time,
- all activities at Yucca Mountain have been suspended as ordered by President Obama. Despite
- 21 this freeze, the CGTO recommends that the DOE abide by the treaty as originally intended.

Transportation

232425

26

27

28

29

30

31 32

33

22

The transportation of low level radioactive waste (LLRW) was a major issue originally addressed in Appendix G of the 1996 EIS. The AIWS addressed serious flaws in the then draft transportation study by noting that neither the CGTO nor the tribes were consulted formally. The tribes were only informed of the matter through a series of public meetings, which the AIWS viewed as a violation of federal legislation requiring government to government consultation. The AIWS also detected limited and faulty assessments of new railroads and other activities on cultural and Native American resources. The study documents revealed missing or misnamed Indian tribes and reservations therefore, the AIWS recommended a systematic comprehensive study of American Indian transportation issues to complete the general study that incorporated concerns of "stakeholders."

34 35 36

Native Americans Respond to the Transportation of Low Level Radioactive Waste to the Nevada Test Site (Austin 1998)

373839

40

41

42

43 44

45

On July 25, 1996, the DOE/NV sent a letter announcing a comprehensive Native American LLRW study and requested tribal participation. The five members of the AIWS who recommended the study participated in a planning team and formed the core of the American Indian Transportation Committee (AITC). The planning team began by meeting with DOE/NV officials to determine which proposed transportation routes were under consideration. A study proposal was developed and three criteria were determined that needed to be met by each tribe invited to participate in the study. The criteria were aboriginal and/or historic cultural affiliation

to the lands along any of the three proposed routes, location near any of the three proposed routes in the vicinity of Nevada, and frequent use of the proposed routes by tribal members.

 In addition to the regular CGTO members, the AITC planning team identified six additional Western Shoshone tribes, bands, communities, and organizations, as well as Mohave, Hopi, Navajo, and Goshute peoples all of whom met the criteria for participation in the study. A total of 29 tribes, subgroups, bands, communities, and organizations were potentially affected by the transportation of LLRW.

 This study addressed perceived risks by American Indians that derive from the transportation of LLRW. It focused on three truck haul routes as these pass through in a four-state area that generally reflects the administrative responsibility of the DOE/NV. The study involved a series of unique methods including both quantitative and qualitative data collection. The study documented that radiation is perceived as an Angry Rock by many Indian people. It exists and acts according to epistemological guidelines that do not reflect those perceived as existing in Western science. This is an extremely important finding because American Indian responses to radioactivity reflect its spiritual as well as its physical dimensions (Austin 1998).

U.S. DOE Nevada Operations Office, Intermodal Transportation of LLRW to the Nevada Test Site, Summary of Meeting with Native Americans, November 18 to 20, 1998, Tonopah, NV (American Indian Transportation Committee 1998)

While the initial Native American LLRW study was being completed, the DOE decided to conduct an Environmental Assessment of the Intermodal Transportation of Low Level Radioactive Waste (IM EA). Intermodal refers to the use of both railroad and trucks to haul LLRW from its producers to the NTS. The intermodal study introduced the concept of an entrepot (a transshipment facility) where LLRW would be taken from railroads, perhaps stored for a period of time, and then reshipped via truck to the NTS. The DOE asked the members of the AITC to take the findings from the Austin report and any pertinent previous studies and apply them directly to the IM EA. This task was accomplished at a meeting held in Tonopah, Nevada and resulted in a report entitled U.S. DOE Nevada Operations Office, Intermodal Transportation of LLRW to the Nevada Test Site, Summary of Meeting with Native Americans, November 18 to 20, 1998, Tonopah NV (American Indian Transportation Committee 1998).

 American Indian Transportation Committee Field Assessment of Cultural Sites Regarding the U.S. Department of Energy Pre-approval Draft Environmental Assessment of Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (American Indian Transportation Committee 1999)

The AITC concluded that the Austin study (1) was not designed to assess specific locations along its study-area highways, (2) the IM EA was considering some highway routes that had not been considered in the Austin study, and (3) the IM EA raised the issue of potential LLRW impacts along railroad routes. The AITC thus recommended to the DOE/NV that they support the AITC to conduct on-site studies along the new highway routes. This request was resulted in a formal research proposal submitted to the DOE on December 22, 1998. The proposal was funded on January 4, 1999. The AITC went into the field on January 11, 1999 and worked continuously

until January 21, 1999. The direct field observations of the AITC during this period of study were the foundation for their summary of findings.

The study was guided by a series of agreed to methods for collecting data. Given the great distances and the time needed to assess each place visited along the proposed routes, it was agreed by the AITC that two kinds of site evaluations would be conducted. The first is a complete site evaluation and the second was called a mini-site evaluation. Each had his/her own forms and each AITC member filled out one or the other form at each site that was identified along the proposed routes. At the end of three days of site visits, the AITC spent one day writing the results of their evaluations. These site descriptions and evaluations were fully discussed by the AITC; therefore, the text provided in this summary of findings has been agreed to by the entire AITC.

A total of 25 sites were evaluated by the AITC. The sites were dispersed across an extensive area within the previously established region of influence, from Moapa and Caliente, Nevada in the east, to Barstow, California in the west. This vast stretch of land contained a large variety of culturally significant Indian places. Cultural resources and cultural landscape features were identified and evaluated; these included mountains, valleys, springs, trails, a variety of plants and animals, archaeological remains, storied rocks, rivers, and urban communities considered important to Numic and Yuman speaking peoples.

Comments and concerns made for the places visited and the associated resources, as well as Indian socioeconomics and environmental justice were edited and integrated into the existing preapproval draft IM EA text sections. Also recommendations pertaining to further Native American input and assessments as part of the EA process were made to the DOE (Arnold et al. 1999).

Confronting the Angry Rock: American Indians' Situated Risks from Radioactivity (Stoffle and Arnold 2003)

This article synthesized the key findings from the previous transportation studies by discussing Numic-speaking peoples' epistemological views towards radioactive materials and how it could impact places and resources on traditional lands. The article framed the discussion in terms of perceived risks from the transportation of radioactive waste. As mentioned earlier, Numic-speaking people view radioactive material as an angry rock and they have possessed this knowledge and have used this rock for thousands of years. The angry rock is a powerful spiritual being that is a threat that cannot be controlled nor contained through conventional means. It has the power to pollute places, food, and medicines thus they cannot be used afterwards by Indian people. The angry rock also has the ability to cause serious spiritual impacts. The transportation of the angry rock along the highways poses threats to areas like Animal Creation places (the Red Tail Hawk Origin Site), access to spiritual beings (Potato Woman), human souls that have not been sung to the afterlife (Hiko Massacre Site), and ceremonial areas (Black Canyon, Pahranagat Valley).

The findings presented in this article demonstrate that American Indian risk perceptions are real and need to be understood as calculated risks. Also the shared cognitions of risk among people who share a common culture raise questions of alternative epistemologies which are not normally addressed in risk assessments. The article concluded with thoughts on the "logical step" towards

addressing risk. There is a need to afford special protection for Indian people and their connected environment and allow the reestablishment of this relationship (Stoffle and Arnold 2003). The AIWS addresses this issue directly in the Biological Resources and Environmental Justice sections of this essay.

4 5

9

10 11

12 13

14

2

3

The Angry Rock

6 7 8

The CGTO knows that radiation can be and is viewed from both a western science and a Native American perspective. These alternative and competing perspectives are key for understanding the cultural foundations of American Indian responses to the mining, processing, use, transportation, and disposal of radioactive materials. At some level of analysis from an Indian perspective, all radioactive waste is basically the same problem to Indian people. Subtle differences in classification from a Western science perspective of radioactive waste only mask and do not significantly modify the basic cultural problems of radioactive waste for Indian people and their traditional lands.

15 16 17

18

19 20

21

22

23

24

25 26

The Angry Rock is a concept used by Indian people, involved in DOE funded radioactive waste transportation and disposal studies, to quickly summarize the complex cultural problems associated with what happened to this known mineral when it was improperly taken and used by non-Indians. The notion of an Angry Rock is premised on the belief that all of the earth is alive, sentient, speaks Indian, and has agency. When the elements of the earth are approached with respect and asked for the permission before being used they share their power with humans. The reverse occurs when they are taken without permission – they become angry withhold their power and often using it against humans. Thus, uranium is an Angry Rock. Uranium has been known and carefully used by spiritual specialists and medicine persons for thousands of years (Lindsay et al. 1968). The following American Indian elder quote from a DOE funded report (Austin 1998) begins to explain this perspective:

27 28 29

30

31

32

33

34

35

36 37

38 39

We are the only ones who can talk to these things. If we do not make sure that we talk to those things, then they are going to give us more bad harm, because it is already happening throughout the country. Those are the reasons why the Indian people say ... like uranium for one, uranium was here since the beginning of this Earth, when it was here we knew uranium at one time. And still it is used, but then they got a hold of it and made something else out of it. Now it is a man made thing, and today it accumulates waste from nuclear power plants, it accumulates more, it has its own life. Radiation has said to us at one time "If you use me make sure you tell me before you use me why you are going to use me and what for. "And we never said anything to that uranium at all, and we put something else in there with it, which shouldn't belong with it. It gives it more power to eliminate the life, of all living things on this planet of ours. Those are the reasons, why the Indian people always say, and I know because I have been there. The rocks have a voice...

40 41 42

43

44 45

46

Although from a Western science perspective radiation can be isolated and contained by conventional techniques, the Angry Rock has the power to move and cannot be contained by barriers. Indian people who have dealt with the Angry Rock for thousands of years note that there are traditional ways to deal with the uranium the natural rock if used by trained Indian specialists, but these may or may not work with the Angry Rock of modern radiation waste.

Another elder noted:

Songs ... we are the ones who should be talking to those things. Radiation is going to take all of our lives, it is continuously moving over the land. The land don't want it, nobody wants it. And today, we are doing a bad thing by using radiation on each other. Radiation is something that should not be used to kill animal life...

Another elder noted:

 And can it be contained? As it's transformed it can be, I think it can be contained physically but not spiritually, and again I think spiritually as it's been altered because it's in that energy field because it's been altered. The spirit, that's where it can do its harm in an altered form. It doesn't do any good to anybody. And there you're just in the wrong place in the wrong time, it does influence plants and animals, minerals and air, the spirit of any area it passes through. The reason somebody is sick. I don't think it's necessary to talk about how each one of these is influenced, it just is.

Another elder noted:

As far as the transportation of waste there's a lot of unknowns and we don't know what the consequences are. We know there are many sicknesses that come out from people that have been contaminated by nuclear waste and as far as Indian people go, we show respect to the land, show respect to other people, for the animals, the plants, the rocks. The power of the rock – Just looking at Chemehuevi Mountain, it's a very spiritual mountain from this perspective right here. When I look out towards the mountains and I don't just see a mountain, I see a place of power, I see a place where I can go and meditate and speak with the Creator directly and ask for prayers and blessings for people directly. Just like anything else, you have to give prayers all the time because the creator is here to watch and protect over us. I feel that we wouldn't have come this far if he wasn't here to watch over us and we are here to pray and we are here to protect the other resources.

Another elder said:

 I can envision the animals standing back once it goes through for the first time and they recognize that there's a danger that they would move away because of fear. That they would no longer be there and that there's something bad coming down the road and they disperse and move away into different corridors. Kind of like a dust storm, they disperse and move further and further away. I see it from the animals' standpoint, they're a lot smarter than us and they've been doing this for longer than us and their senses are more keen and I think the animals would get back and it would create dead zones throughout the country. Through these corridors or transportation routes of course at the site there will be those that are curious who want to go see.

Another elder said:

I don't know what you would do with this rock if it's angry and this is its way of rebelling, getting

- 1 back. I think as a Native American I would backstep and ask for forgiveness. Sometimes
- 2 forgiving is not very easy because there's sacrifices we have to make and there's consequences ...
- 3 I don't think it can be done as a. group, it's an individual thing and each one of us has to go
- 4 back and ... ask for forgiveness for what has taken place. It's not just only that I think it's going
- 5 to be more complicated than going out into the mountains and saying, "hey, I'm sorry, I won't do
- 6 this, I won't do that and I won't bother you anymore. There's a lot of other things that need to be
- 7 forgiven. The rock is the most precious and it's the largest and it's the one that needs to be
- 8 forgiven the most. There's a lot of small forgiveness that have to be given before the large rock. I
- 9 think it's a stepping stone...
- 10 ... the rocks are angry, yes, they're striking out saying "don't do this to me, don't touch me, don't
- 11 let this happen. "In a sense you look at it from a spirituality standpoint, it's the spirits of Mother
- 12 Earth telling us don't mess with Mother Earth.

It remains a mater of debate as to whether traditional means of placating powerful rock-based forces can be used to control or placate radioactive waste. Western scientists have created a problem for Indian people that, despite being very critical to their future, is not easily resolved.

16 17 18

15

Cultural Resources

19 20

21 22

23

24

25

2627

28

29

The CGTO affirms a commitment to assisting the archaeology program by providing CGTO appointed tribal monitors. These monitors are provided approved guidance and training by the CGTO as well as extensive project orientation by the professional archaeologists. Monitors are trained so they know certain appropriate cultural responses to materials identified during archaeological survey, but they recognize that certain kinds of cultural resources require spiritual specialists who are then called in to evaluate and respond to newly identified cultural resources. In cases where NAGPRA relevant resources are identified then the CGTO is contacted and will set into motion NAGPRA inadvertent discovery protocols (NAGPRA 1990; Stoffle, Halmo, and Dufort 1994; Stoffle, Zedeño, and Carroll 2000). At the end of the monitoring experience, each monitor provides his or her own personal notes and experiences for a summary report that is prepared and submitted to the CGTO.

30 31

32

33

34

35

36

37

38

The CGTO knows the distribution and density of known archaeology sites has not significantly changed since the 1996 NTS EIS. They know the largest number of recorded cultural resources is in the northwest part of the NTS, on and around Jackass Flats, Yucca Mountain and Shoshone Mountain. The reason for this is because numerous activities were conducted on those portions of the NTS within the last 10 years, less attention has been directed to these regions and adverse impacts has been minimized. While this lapse is occurring, NTS decision-makers may consider conducting new projects and investigations. The CGTO recommends that prior to land disturbances of projects a timely American Indian Assessment be completed.

39 40 41

Types of American Indian Resources

- 43 The CGTO knows, based upon its collective knowledge of Indian culture and past American
- 44 Indian studies, that American Indian people view cultural resources as being integrated. Thus
- 45 certain systematic studies of a variety of American Indian cultural resources must be conducted
- 46 before the cultural significance of a place, area, or region can be fully assessed. Although some

of these studies have been conducted, in other areas studies have not begun. A number of studies are currently planned. Indian people can fully assess the cultural significance of a place and its associated natural and cultural resources when all studies have been completed and our governments and tribal organizations have reviewed the recorded thoughts of our elders and have officially supported these conclusions. American Indian studies focus on one topic at a time so that tribes and organizations can send experts in the subject being assessed. The following is a list of studies for a complete American Indian assessment:

7 8 9

3

4

6

Ethnoarchaeology – the interpretation of the physical artifacts produced by our Indian ancestors.

10 11 12

Ethnobotany – the identification and interpretation of the plants used by Indian people.

13 14

Ethnozoology – the identification and interpretation of the animals used by Indian people.

15 16

Storied Rocks – the identification and interpretation of traditional Indian paintings and rock peckings.

17 18 19

20

21

Traditional Cultural Properties – the identification and interpretation of places of central cultural importance to a people, called Traditional Cultural Properties; often Indian people refer to these as "power places." Native American Indian properties and interpretations shall be determined by Native American spiritual person when:

Ethnogeography – the identification and interpretation of soils, rocks, water, and air.

22 23

o Cleansing (removing negatives)

24 25 Purifications/preparations (repatriations and related issues).

26 27

28

Cultural Landscapes – the identification and interpretation of special units that are culturally and geographically unique areas for American Indian people.

29 30

31

32

33 34

35

36 37

38

39 40

41

When all of these subjects have been studied, then it will be possible for American Indian people to assess three critical issues: (1) What is the natural condition of this portion of our traditional lands? (2) What has changed due to DOE activities? And (3) What impacts will proposed alternatives have on either furthering existing changes in the natural environment or restoring our traditional lands to their natural condition? Indian people believe that the natural state of their traditional lands was what existed before 1492, when Indian people were fully responsible for the continued use and management of these lands. The NTS and nearby lands were central to the Western Shoshone, Owens Valley Paiute, and Southern Paiute people. The lands were central in the lives of these people and so were mutually shared for religious ceremony, resource use, and social events (Stoffle et al. 1990a and b). When Europeans encroached on these lands, the numbers of Indian people, their relations with one another, and the condition of their traditional lands began to change. European diseases killed many Indian people; European animals replaced Indian animals and disrupted fields of natural plants; Europeans were guided to and then assumed control over Indian minerals; and Europeans took Indian agricultural areas. Despite the

- 44
- 45 pollution and destruction of some cultural resources and the physical separation from the NTS

and neighboring lands, Indian people continue to value and recognize the central role of these 2 lands in their continued survival.

3

4 Recognizing this continuity in traditional ties between the NTS and Indian people, the DOE in 1985 began long-term research involving the inventory and evaluation of American Indian cultural resources in the area. This research was designed to comply with the American Indian 6 7 Religious Freedom Act (AIRFA), which specifically reaffirms the First Amendment of the U.S. 8 Constitution rights of American Indian people to have access to lands and resources essential in the conduct of their traditional religion. These rights are exercised not only in tribal lands, but 10 also beyond the boundaries of a reservation (AIRFA 1978; Stoffle et al. 1994; Stoffle, Halmo, 11 and Dufort1994). To reinforce their cultural affiliation rights to prevent the loss of ancestral ties to the NTS, 17 tribes and organizations have aligned themselves to form the CGTO. This group 12 13 is formed by officially appointed representatives who are responsible for representing their 14 respective tribal concerns and perspectives. The CGTO has established a long standing relationship with the DOE. The primary focus of the group has been the protection of cultural 15

16 17

18

19

20

21

22

23

25 26

27

28

resources.

The DOE and the CGTO have participated in cultural resource management, including the Yucca Mountain Project (Stoffle 1987; Stoffle, Evans, and Halmo 1988; Stoffle, Olmsted, and Evans 1988; Stoffle, Evans, and Harsbarger 1989; Stoffle et al. 1989; Stoffle, Halmo, and Olmsted 1990; Stoffle et al. 1990a; Stoffle et al. 1990b; Stoffle and Evans 1988; Stoffle and Evans 1990; Stoffle and Evans 1992), the Underground Weapons Testing Project (Stoffle et al. 1994), the Rock Art Study (Zedeño et al. 1999), the Water Bottle Canyon Interpretation and Traditional 24 Cultural Property Study (Arnold et al. 1998; Stoffle, Van Vlack, and Arnold 2005) and the Timber Mountain Caldera Study (Stoffle et al. 2006). These studies are used in this GTCC EIS, along with the collective knowledge of the CGTO, as the basis of the comments in the 1996 NTS EIS, 2002 NTS SA, and the current SA. The cultural resource management projects sponsored by the DOE have been extremely useful for expanding the inventory of American Indian cultural

resources beyond the identification of archaeological remains and historic properties.

29 30 31

Visual Resources

32 Views are important cultural resources that contribute to the location and performance of 33 American Indian ceremonialism. Views combine with other cultural resources to produce special 34 places where power is sought for medicine and other types of ceremonies. Views can be of any 35 landscape, but more central viewscapes are experienced from high places, which are often the 36 tops of mountains and the edges of mesas. Indian viewscapes tend to be panoramic and are 37 special when they contain highly diverse topography. The viewscape panorama is further 38 enhanced by the presence of volcanic cones and lava flows. Viewscapes are tied with songscapes 39 and storyscapes, especially when the vantage point has a panorama composed of multiple locations from either song or story. Key to the Indian experience of viewscapes is isolation. 40 41 Successful performance of ceremonies (whether by individuals or groups) is often 42 commemorated by the building of rock cairns and by storied rocks and paintings. The CGTO tribes recognize the cultural significance of viewscapes and have identified a number of these on 43 44 the NTS. The Timber Mountain Caldera contains a number of significant points with different 45 panoramas, including Scrugham Peak-Buckboard Mesa and the Shoshone Mountain massif.

Waste Management

The CGTO requests an analysis of the hydrological and ecological impacts of the existing water diversion dike of the current Radioactive Waste Management Complex in Area 5. The DOE recognizes that this is a very flood prone area, with major flooding episodes occurring about every 23 years. Indian people visiting this site observed that even though the current dike has been built recently and thus not experienced a 23-year flood, it has diverted and consolidated sufficient runoff that a small arroyo has been established. The Indian people visiting this site believe that the existing dike has unnaturally stressed down-slope plants and animals who now do not receive normal sheet runoff. The Indian people visiting the site believe that by concentrating the runoff, the dike has reduced the amount of water absorbed during normal sheet runoff because the consolidated runoff moves more quickly and only flows in the new and developing eroded arroyo. It is believed by the Indian people visiting the site that were a GTCC facility to be established east of the current RWMC then the dike would necessarily have to be extended causing an even greater runoff shadow and an even greater developing arroyo. The desert tortoise in the area will have to move out of this larger runoff shadow and may be concentrated in the area of Frenchmen Playa. Moving their living areas towards the playa will expose them to higher levels of radioactivity. The Indian people visiting the site believe that these current and potential impacts should be analyzed, monitored by Indian people, and reported back to the CGTO at the next annual meeting.

NTS Waste Management in Perspective

After 11 years of formal transportation studies the CGTO continues to have reservations in regards to the storage of low-level and other hazardous wastes at the NTS and the transportation of low-level waste to the NTS for storage. The CGTO still maintains that what was suggested 11 years ago still exists and affects cultural resources. Disposal diminishes the potential for visitation by members of the CGTO representatives and other Indian people.

The CGTO still believes that the waste should be disposed of in a culturally appropriate manner and that the transportation of low-level radioactive waste poses risks to the people and the environment. Previous reports on this issue document the extent and depth of our concerns for these issues (American Indian Transportation Committee 1998; Arnold et al.1997; Austin 1998; Stoffle and Arnold 2003). Waste disposal activity on the NTS is still ongoing in regards to non-Nevada low-level radioactive waste. The NTS presently uses the Disposal Crater Complex, which is expected to close by 2010. Although the NTS has future low-level radioactive waste disposal pits on standby, there is a possibility that additional craters would need to be developed. Disposal of the following materials is performed at the NTS: Nevada-generated low-level radioactive waste, mixed low-level radioactive waste, greater confinement disposal waste, asbestiform low level radioactive waste, Nevada-generated mixed waste and transuranic waste, mixed transuranic waste. These materials are stored on-site until shipped elsewhere. The CGTO remains on record as opposed to this type of practice as it potentially will limit cultural activities involving the Indian tribes.

Cumulative Impacts

Cumulative Impacts are key to the various Indian peoples connected to the NTS and specifically the proposed GTCC waste facility in Frenchman Flats. These issues have been discussed for more than 13 years with the DOE (See American Indian Writers Subgroup, CGTO 1996) but it remains unclear the extent that the process of negative impacts to Indian people and culture has been mitigated by DOE actions. Still some progress has occurred through appropriate consultation with the CGTO and their subsequent involvement in the identification and management of cultural resources (see earlier discussion of what Indian people define as cultural resources).

 According to the CGTO tribes, increased land disturbances associated with all forms of activities and development on the NTS could result in a decrease in access to these areas for American Indians. Limiting access could reduce the traditional use of the NTS and other areas and affect their sacred nature. Increased development at the NTS could increase the potential for greater disturbance and vandalism of American Indian cultural resources. The CGTO tribes believe (See Appendix G – AIWS 1996) that cumulative impacts in the following areas may occur:

• *Holy land violations*. Further destruction of traditional cultural sites, making the water disappear, general treatment of the land without proper respect.

• Cultural survival. Decreased ability and access to perform ceremonies.

• Environmental restoration. Revegetation of restored lands with native species.

• Empowerment process.

• *Radiation risks*. These risks began with nuclear testing. Today, the CGTO tribes perceive that the radioactive risks continue in known and unknown ways underground.

Over the past 17 years of regular consultation between the NNSA/NV and the CGTO tribes, there has been a growing co-management role for the tribes. Their recommendations have been heard and, for the most part, responded to by the NNSA/NV. Indian access to places on the NTS has increased, after an early period of access loss. Unfortunately, each new program that is added to the NTS decreases the amount of space that is available for the practice of Indian religions, ceremonies, and cultural persistence. However, having no programs also can have an impact. For example, even though the mesas are now accessible to Indians for ceremonies, the roads are not maintained because there are no projects on the mesas. This makes access to the ceremonially important areas difficult.

There are still ongoing risks to Indian people from storage and disposal of waste and these will continue. Finally, transportation of radioactive materials is continuing and increasing. It is not clear to the CGTO tribes that, after two American Indian studies of radioactive waste transportation, there has been a meaningful consideration of their concerns. It is not clear to what extent further radioactive waste disposal at the proposed GTCC facility will do to increase

- 1 radiation risks to the physical and spiritual dimensions of Frenchman Playa area but some
- 2 assessment is possible by Indian religious leaders.

1	
2	GTCC Waste Repository
3	
4	Nez Perce Tribe Narrative for EIS
5	
6	Department of Energy, Hanford Site
7	
8	2009
9	
10	

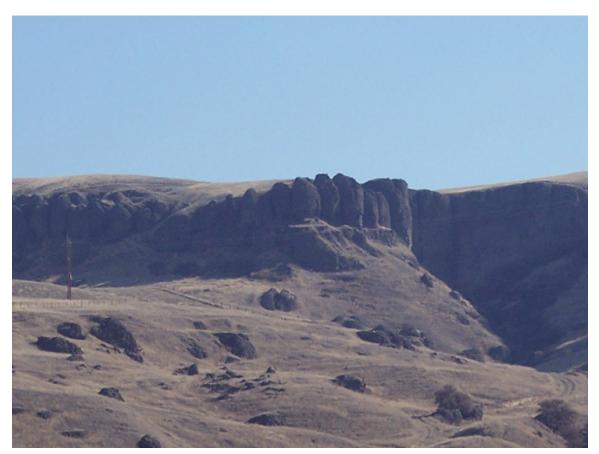
1	INTRODUCTION	G-46
2	NEZ PERCE HISTORY AND PERSPECTIVE	G-46
3	Preparing for the Nez Perce	
4	Seasonal Round	G-48
5	AFFECTED ENVIRONMENT	G-55
6	CLIMATE, AIR QUALITY, AND NOISE	G-55
7	Climate	G-55
8	Air Quality	
9	Noise	
10	Light pollution	
11	GEOLOGY AND SOILS	
12	Geology	
13	Soils	
14	MINERALS AND ENERGY RESOURCES	
15	WATER RESOURCES	
16	Groundwater	
17	Water Use	
18	Human Health	
19	Risk Assessments	
20	Ecology	
21	Biodiversity on the National Monument	
22 23	Salmon	
24	SOCIOECONOMICS	
25	Environmental Justice	
26	Tribal Access	
27	Comprehensive Land Use Plan (CLUP):	
28	Hanford National Monument	
29	Operable Units (OUs)	
30	TRANSPORTATION	
31	Traditional transportation:	
32	Present Transportation:	
33	Cultural Resources	
34	Landscape and Ethno-Habitat	
35	Waste Management	
36	CUMULATIVE IMPACTS	
37	REFERENCES	G-71
38	APPENDIX A	G-72
39	Legal Framework	G-72
40	TREATY RIGHTS AND OBLIGATIONS	
41	FEDERAL RECOGNITION OF TRIBAL SOVEREIGNTY	
42	EXECUTIVE ORDERS	
43	Executive order, 13007	
44	Executive Order 11593	
45		

Executive Order 13175, November 6, 2000	G-76
THE ROLES OF THE NEZ PERCE TRIBE AT HANFORD	
Nez Perce and DOE Relationship	G-77

INTRODUCTION

2 Nez Perce History and Perspective

3 Preparing for the Nez Perce


- 4 Tribal memory can still recall the origins of the Nimiipuu or Nez Perce. The oral traditions bind the Nez
- 5 Perce to the landscape. They also explain how to perceive and value the landscape and its many
- 6 resources. The oral traditions described hereafter are formative in the Nez Perce relationship with the land
- 7 and its resources. The first story describes how the animal people stepped forth in council to offer
- 8 assistance and guidance to the new people to help them survive. It is one of the earliest oral traditions
- 9 explaining the arrival of the Nimiipuu. The synopsis of this oral tradition is as follows:

At one time only the animal people lived on the land and all of them spoke the same language. Each animal could communicate with the others. A council was called and the animal people began to gather around. It was announced that the land would change with the arrival of a new creature that walked on two legs and this new creature will need help to survive. It would need to learn what to eat and how to keep warm. The animal people were asked to make an offering to help this creature survive. A great commotion arose as the animal people engaged in discussion about what was going to be offered. First among them was Nacox the Salmon. It said that it would give its entire body as food to help the new people survive. It said that it would travel to far away places and give gifts to the people upon its return. Nacox said that its sacrifice must be remembered by allowing it to die in the place in which it was born.

All were impressed by the generosity of the Salmon and followed its example by making an offering of food. One group of animals was discussing how they were going to look. They were trying to settle their size, color of fur and horns as well as which direction their horns or antlers were going to face. At last they stepped forth and declared that they give their bodies to be foods for the new people just as salmon had proclaimed, adding that their skins could be made into clothing for the new people to keep warm. They also announced that their bones, horns and antlers could be made into tools to process hides into clothing and shelter. The were recognized with names and they are Bison, Moose, Elk, Mountain Sheep, Mountain Goat, Antelope and various kinds of deer. The birds were next and they went through the same process and were recognized as the various birds. Some of them are Prairie Chicken, Raven, Crow, Meadowlark, Owl, Hawk, Eagle, Condor and the many other types of birds found in Nez Perce Country. In a similar manner, the rest of the animal people stepped forth and proclaimed their gifts in front of the council; stating how they would assist the new people in their efforts to survive.

There was one animal that was late to the council and when it asked what was going on, everything had to be retold. It was announced that there would be a new creature to walk the land and that each animal was making an offering to help the creature to live. Each gift was described again and upon hearing the news, the late one wanted to be like Grizzly Bear. It was asked to display how it would be a convincing Grizzly. It promptly showed its small teeth, slightly growled and passed its little claws through the air. All the

animal people laughed because, although this late one was furry, it was nowhere near as fierce as Grizzly Bear. So then the late one said it wanted to be like Eagle and it backed up and ran toward the center of the council and jumped into the air landing only a short distance away. All the people laughed again because it failed to capture the grace of an eagle in the air. Then it wanted to be a salmon so it was sent to the river to demonstrate its agility in the water. It promptly dived in the water and slowly paddled around in the fashion of a dog and all the animal people laughed as it crawled from the river and shook the water from its fur. All the positions were taken so a special task was given to this creature. It would be the one to create the new two-legged creatures and its name would be 'Iceyeeye or Coyote. 'Iceyeeye was cautioned that all the qualities he possessed would be carried on by the creatures he went on to create: 'Iceyeeye was known to be good, helpful, very intelligent, curious to a fault and, at times, fool hardy. He was also very forgetful. Some of the animal people chose to remain in the area in which the council occurred; pulling their robes up over their shoulders and heads. They became stone in order to serve as a reminder of the great council that occurred wherein the animal people gave tremendous gifts for the survival of the coming new people.

The place of the council can still be seen in the Nez Perce homeland along the valley of the Clearwater River in North Central Idaho (Landeen and Pinkham 1999 p.4-8).

20

17

18

2

3

4

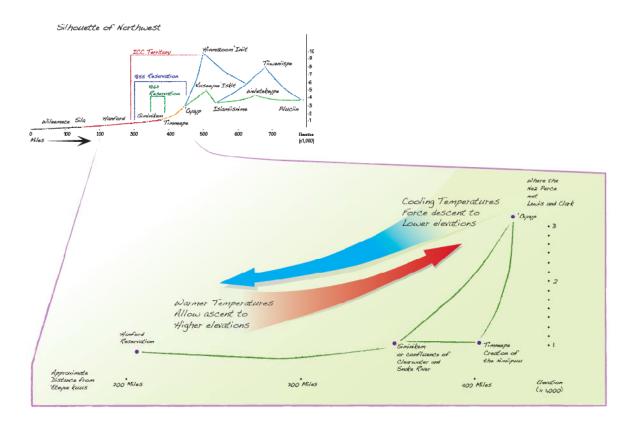
5

7

9

10 11

12


13

14

'Iceyeeye went on to numerous adventures; frequently proclaiming his preparations for the new people. 'Iceyeeye turned many animal people to stone to serve as a reminder of both proper and improper conduct. He carved rivers into the ground, turned giants into mountains and turned some animal people into constellations in the night sky so the new people could travel to far away places.

6 Seasonal Round

The seasonal round is best described as a *return to a specific area* for the purpose of gathering resources: food, medicinal or otherwise. The seasonal round advanced in area and elevation simultaneously. It is not the act of following resources wherever they occur but rather a return to an area to gather resources based on prior knowledge or experience. It is also marked by the availability as warming seasonal temperatures foster development of the resource. Examples are the return to root digging areas as spring or summer temperatures have warmed plants to the point of opening the opportunity to harvest, or a return to a hunting area in the fall before temperatures drop to low. The map below shows how the Hanford area fits into the area used by the Nez Perce over time.

Diagram 1

15

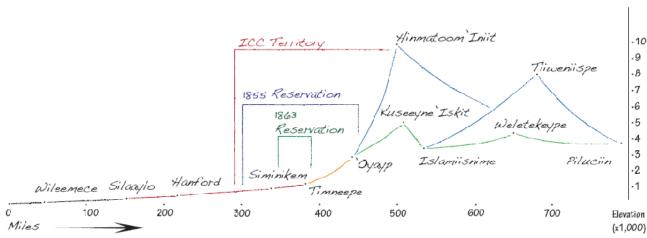
16

17

18

19

20


The time for gathering resources is marked by lunar changes. Since there were more foods than there were moons during the year some resource gathering times were simultaneous. The diagram below shows how the seasons for gathering various foods correspond to the commonly used twelve-month calendar and

- 1 four seasons. The Nez Perce changed elevations depending on the warming weather and this is shown
- 2 through another diagram showing the names of the gathering seasons and the elevations.
- 3 It also covered an elevation from sea level up to ten thousand feet. The map titled "Silhouette of the
- 4 Northwest" shows the elevation difference in the usual and accustomed areas used by the Nez Perce. The
- 5 beginning of the seasonal round is marked with a Ke'uyit or first foods ceremony in the spring. Ke'uyit
- 6 translates to "first bite" and is an annual ritual of prayer immersed in song for the first foods of the year.
- 7 Traditional foods are laid out on the floor in the order in which they are gathered throughout the year
- 8 beginning with Salmon. This annual ritual is an expression of gratitude to the foods for their return and
- 9 for those gathered during the seasonal round. Other tribes have more than one feast such as a root feast
- and a huckleberry feast but the Nez Perce only have one and it is held toward the latter part of the spring.

12

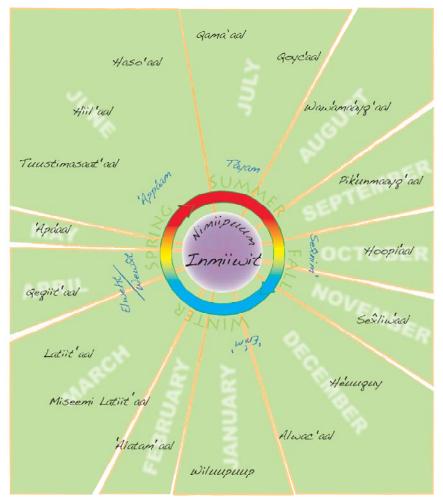
13

Silhouette of Northwest

14

Diagram 2

16


15

17 Gathering Times

- 18 Examples of resource gathering times is shown in diagram 3:
- 19 Wiluupup: Time when cold air travels. Often corresponds to the month of January.
- 20 'Alatam'aal: Time between winter and spring or the time for fires (often corresponds to the month of
- 21 February) 'Ala=fire

- 1 Miseemi latiit'al: Time of false blossoms roughly corresponding to early March. Miseemi=to lie or speak
- 2 falsely, Latii=to bloom or blossom.
- 3 Latiit'al or Latiit'aal: Time when flowers bloom. Roughly corresponds to the month of March. Latii=to
- 4 bloom or blossom.
- 5 Qeqiit'aal or qaqiit'aal: Time of gathering qeqiit roots. Roughly corresponds to April.
- 6 'Apa'aal: Time for digging roots and making them into small cakes called 'Apa. Roughly corresponds to
- 7 the month of May or June.
- 8 Tustimasaatal: Ascend to higher mountain areas. Roughly corresponds to the month of June.
- 9 Tusti=higher/above
- 10 'Il'aal: The time of the first run of Salmon. Roughly corresponds to the month of June.
- 11 Haso'al': The time to gather eels or Pacific Lamprey. Roughly corresponds to the month of June.
- 12 Heesu=eel.
- 13 Qama'aal: Time for digging and roasting qem'es bulbs. Often corresponds to the month of July.
- 14 Qem'es=camas bulbs.
- 15 Q'oyxc'aal: Time of gathering Blueback Salmon. Often around the month of July. Q'oyxc=Blueback
- 16 Salmon

Higher Elevation Seasons Warmer Temperature

Lower Elevation Seasons Colder Temperature

2 Diagram 3

4

3

- 5 Waw'ama'aq'aal: Season when salmon swim to the headwaters of streams (often corresponds to August)
- 6 Waaw'am=headwaters
- 7 Pik'unma'ayq'al or pik'onma'ayq'aal: Time when Chinook Salmon return to the main river and steelhead
- 8 begin their ascent. Roughly corresponds to September. Piik'un=river
- 9 Hoopl'al: Time when Tamarack needles begin to fall. Huup=to fall (as Pine needles do). Roughly
- 10 corresponds to October.

- 1 Sexliw'aal: Autumn or the time roughly corresponding to November.
- 2 He'uquy: Time of calf elk or foaling roughly corresponding to December.
- 3 'Alwac'aal: Time of Bison Yearling roughly corresponding to December. 'Alawa=bison yearling.

5 Oral History

- 6 Oral histories impart basic beliefs, taught moral values, and explained the creation of the world,
- 7 the origin of rituals and customs, the location of food, and the meaning of natural phenomena.
- 8 The oral tradition provides accounts and descriptions of the region's flora, fauna, and geology.
- 9 Fish and other animals are characters in many of these stories. Coyote, is the main character in
- 10 many of the stories because he exhibits all the good and bad of traits of human beings. Although
- some of the characters and themes may differ slightly, many of these same stories are held in
- 12 common by Columbia Basin tribes.

13

14 Tribal Values

- 15 Tribal values lie imbedded within the rich cultural context of oral tradition and are conveyed to
- 16 the next generation by the depth of the Nez Perce language. The numerous landmarks that
- 17 season the precious landscape are reminders to the events, stories, and cultural practices of our
- 18 people. How to properly perceive life and land are among the core tenets of which the stories
- 19 speak. The values are what must endure and they can only be properly conveyed by the oral
- 20 traditions and language. Overall the values are intent on protection, preservation and
- 21 perpetuation of resources for the sake of survival. The Nez Perce still maintain those same
- 22 values for our children just as they were for those that carry them today. The most appropriate
- 23 way to convey the values of the Nez Perce is to discuss some of the cultural practices still
- 24 conducted on our landscape. They reflect a complex tradition of high regard for the land by
- 25 utilizing the resources, but not using so much that the resource cannot propagate to preserve their
- 26 continued existence.
- 27 Land was managed by cultural practices so that resources would not be jeopardized by the
- 28 actions of one generation. The Nez Perce Tribe utilized resource areas with several other tribes
- 29 that carried similar resource values. The Nez Perce value the landscape for the rich resources it
- 30 offers our children for their survival. The landscape is full of powerful reminders that were
- 31 placed in their respective areas in the form of rock features associated with oral traditions
- 32 relating the exploits of the animal people. The Nez Perce elders recall hunting and fishing areas
- 33 taught to them when they were young. These are the same places they learned about in the same
- 34 way from their elder kinsmen. The women dig roots and harvest berries in the same places that

- they learned about from their grandmothers. Each place utilized for the resources was
- 2 maintained with balance to sustain children and future generations.
- 3 Each plant had a window of harvest in which it could be gathered. The window of harvest was
- 4 always honored because gathering at another time would either affect its strength or viability.
- 5 When women were gathering *qem'es* bulbs, they would evaluate the field to ensure that others
- 6 had not already gathered past the threshold of the resource's stability. If the field looked as
- 7 though others had already been there and the resource needed to be left so it could continue on,
- 8 then they would simply go to another place. When a place was found which could be used for
- 9 harvest, the digging would begin with prayer songs and it was common for many of the women
- 10 to sing as they continued to dig. When the work was finished for the day it was closed with a
- prayer song just as it had began. They were cautious about the way in which they gathered the
- 12 roots as well. Arguing and fighting didn't occur while gathering foods, even among the young,
- because they were strictly forbidden. Root diggers were reminded by the elderly to be prayerful
- 14 and concentrate on good thoughts as they conducted their work avoiding negative feelings that
- 15 might be carried by the foods to those that would consume them. Peelings from the roots always
- were to be returned to the original grounds from which they came or buried in the earth. They are
- 17 never to be simply thrown in the garbage. There are traditional stories that communicate values
- 18 that regardless of where the oral tradition originated, it applies during times that native tribes are
- 19 on site and practicing usual and accustomed rights. These are teachings tied to the landscape and
- 20 the land ethic that is our culture.
- 21 Fishing and hunting were conducted in the same way. Young boys were raised with the guidance
- 22 of elder kinsmen. A group of hunters or fishermen would depart for areas that were, on occasion,
- 23 previously scouted for the presence of fish and/or game. Young hunters and fishermen would
- 24 observe the actions of those that were responsible for imparting knowledge of how to conduct
- 25 oneself appropriately as game was stalked or fish were caught. Expectations were similar to
- 26 those of the young women; concentrate on good thoughts and feelings, prohibited acts included
- 27 fighting and arguing. Excessive pride and boasting were frowned upon by elder kinfolk since the
- 28 hunt was to be conducted with the utmost humility. Hunters and fisherman learned to avoid
- 29 catching the largest fish or killing the largest animal they could find because it preserved the
- 30 gene pool that replaced that size animal. Upon return, the hunters were not questioned as to the
- 31 number each hunter killed and it was never announced because it was deemed as a group
- 32 activity. One exception was when a young hunter killed an animal for the first time or caught his
- 33 first fish. At this time the family recognized the young hunter or fisherman as a provider with a
- 34 ceremonial feast. The elder fisherman and hunters sat around the meat which was to be boiled,
- 35 baked or prepared in some traditional fashion as stories were told conveying more teachings and
- 36 proper conduct. As the elder hunters and fishermen consumed the meat the newly recognized
- 37 hunter or fisherman was not allowed to partake of even a morsel of the meal. Everyone else was
- 38 to eat before the hunter or fisherman could consume a meal. This reinforced their role as a
- 39 provider rather than someone that merely killed game or caught fish for recreational purposes.

- 1 Young hunters were taught proper shot placement, as it was crucial to the hunting experience.
- 2 Young hunters were taught to shoot an animal so that it would be killed as quickly and limit the
- 3 animal's suffering as much as possible. Shooting an animal or catching a fish was only part of
- 4 the overall commitment to the animal's sacrifice. It had to be cleaned and taken care of with the
- 5 same regard as the roots and berries. The utmost gratitude and respect was offered to the
- 6 animal's spirit for imparting a tremendous gift of life to the people.
- 7 Spiritual or religious aspects of natural resources are the heart of Indian culture. There is a
- 8 connection to the daily activities of a traditional lifestyle communicated through the oral
- 9 traditions that tell how to take care of the land. Even landmarks have oral traditions associated
- 10 with them. These landmarks are tangible cultural reminders.
- 11 Value of uncontaminated resources- For natural resources to be uncontaminated as part of
- 12 Niimiipuu physical and spiritual well-being, then land and waters and air from which they come
- 13 should be uncontaminated otherwise the risk to human health increases the potential for illness
- 14 and other ailments.
- 15 For tribal use of natural resources to be fully utilized, the example of manufacturing and using a
- 16 wistiitam'o or sweat lodge is presented. One purpose of a sweat lodge is for purification. It is for
- 17 cleansing and a time for meditation, spiritual reflection, healing, sharing oral history and
- 18 teaching. The wistiitam'o is often a place where the Nez Perce return to have spiritual well-
- 19 being restored after family losses. It is a place of contemplation and an opportunity to relieve
- 20 stress and anxiety built up from the day's activities. It is a place for centering your soul through
- 21 prayer and meditation. It is also a place where many socialize with family and friends and learn
- 22 what is happening in the community.
- 23 For these reasons, it is imperative that the materials used in making a sweat lodge come from the
- 24 natural environment. The structure is to be made of willows gathered from the immediate
- 25 vicinity of where the sweat lodge will stand. The covering is to be of animal hides, or other
- 26 natural materials. The water for the bathing after sweating is to be from a natural spring or
- 27 stream. Herbs are collected in their proper season with prayers and gratitude offered for their
- 28 service.
- 29 Sitting in a sweat bath is a rigorous activity. While outwardly relaxed, your inner organs are as
- 30 active as though you were exercising. The skin is the largest organ of the body and through the
- 31 pores it plays a major role in the detoxifying process along with the lungs, kidneys, bowels, liver
- 32 and the lymphatic and immune systems. Capillaries dilate permitting increased flow of blood to
- 33 the skin in an attempt to draw heat from the surface and disperse it inside the body. The heart is
- 34 accelerated to keep up with the additional demands for circulation. Impurities in the liver,
- 35 stomach, muscles, brain, and most other organs are flushed from the body. It is in this way that
- 36 purification occurs.

Affected Environment

- 2 NEPA approaches the environment with a certain defined boundary. This fragmentation of the
- 3 natural and human environment does not adequately describe different resource values that a
- 4 particular part of society may have, like a formally recognized tribe and its federally protected
- 5 rights. A tribal environmental ethic, which maintains a cultural and spiritual connection to the
- 6 natural environment and a holistic approach, is difficult to communicate in a NEPA document.
- 7 There needs to be a placeholder in this document to accept these important yet different values
- 8 that tribes bring to evaluating environmental and human impacts.
- 9 The Nez Perce Tribe recommends that the draft EIS include the following analysis or issues
- 10 for the GTCC Programmatic EIS evaluation. We have summarized the issues/concerns by
- 11 EIS sections for ease of DOE's organization and inclusion. This *Tribal Narrative* is for DOE
- 12 to consider for inclusion into the EIS.

13

14 Climate, Air Quality, and Noise

15 Climate

- 16 Climate is one of the dominate issues of our time. Indian people have experience with volcanic
- 17 periods when it seemed our world was on fire and times when our world was much colder.
- 18 Distinct climatic periods have occurred during which Tribal life adapted to environmental
- 19 changes and our oral history reflects these climate changes and adaptations. Scientific and
- 20 historic knowledge validates tribal oral history for many thousands of years.
- 21 Columbia Plateau Tribes have stories about the world being transformed from a time considered
- 22 prehistoric to what is known today. The Nez Perce remember volcanoes, great floods, and
- 23 animals now extinct. Mammoth and bison harvest sites are found throughout the Columbia
- 24 Plateau. They have memories of their world being destroyed by fire and water and believe it will
- 25 happen again.
- 26 The Nez Perce know and remember about the weather and its changes because it was so
- 27 important to forming their lives. Oral histories indicate that the climate was much wetter and
- 28 supported vast forests in the region. Oral histories also recall a time when Gable Mountain or
- 29 Nookshia (Relander1986: 305), a major landscape feature on the Hanford Reservation, rose out
- 30 of the Missoula floods. There is a story about Indian people who fought severe winds that were
- 31 common a long time ago. One story tells of how a family trained their son by having him fight
- 32 with the ice in the river until he became strong enough to fight the wind. He then beat the very
- 33 strong winds of the past and now we do not have such winds.
- 34 Holocene (Roberts 1998) is the term used to describe the climate since the last glaciers (11,700
- 35 years ago), covering much of the northwestern North America. This archaeological record

- 1 confirms the prehistory that includes arctic foxes found with Marmes Rock Shelter (Browman
- 2 and Munsell 1969; Hicks 2004). The Palynological data would be a good source for recreating
- 3 climates that supported ecosystems of the past 10,000 years.

4 Air Quality

- 5 The Nez Perce believe that radioactivity is brought into the air by high winds commonly
- 6 blowing 40-45 miles per hour and intermittently much stronger (http://www.bces.wa.
- 7 gov/windstorms.pdf). High winds over 150 mile per hour were recorded in 1972 on Rattlesnake
- 8 Mountain and in 1990 winds on the mountain were recorded at 90 miles per hour. Dust devils
- 9 can be massive in size, spin up to 60 miles per hour, and frequently occur at the site. Tornadoes
- 10 have been observed in Benton County which is regionally famous for receiving strong winds.
- 11 It gets so windy that the site managers at Environmental Restoration Disposal Facility (ERDF)
- 12 occasionally sends all workers home and close down the facility due to the degree of blowing
- 13 dust making it unsafe to work. Air quality monitoring results, including radioactive dust, should
- 14 be presented for ERDF, various plant operations, emission stacks, venting systems, and power
- 15 generation sites. Also, fugitive dust can affect Viewshed and contribute to health affects during
- 16 inversions.

Noise

17

- 18 Native people understand that non-natural noise can be offensive while traditional ceremonies
- 19 are being held. Traditional ceremonies have been held at the Hanford site in recent years. Some
- 20 of the cultural use of the Hanford site by Tribes is being lost. Not all ceremonial sites are known
- 21 to non-Indians. The noise generated by the Hanford facility may presently create noise
- 22 interference for ceremonies held at sites like Gable Mountain and Rattlesnake Mountain. Noise
- 23 generating projects, such as the GTCC proposed site, can interrupt the thoughts and focus and
- 24 thus the spiritual balance and harmony of the community participants of a ceremony (Greider
- 25 1993). The Nez Perce Tribe recommends that quiet zones and time periods should be identified
- 26 for known Native American ceremonial locations on and near the Hanford Reservation. The
- 27 general values or attributes provide solitude, quietness, darkness and wilderness-like or
- 28 undegraded environments. These attributes provide unquantifiable value and are fragile. These
- 29 types of values are also discussed in the Viewshed section.

30 Light pollution

- 31 Artificial light can be a "pollutant" when it creates measurable harm to the environment. Light
- 32 can affect nocturnal and diurnal animals. It can affect reproduction, migration, feeding and other
- 33 aspects of survival. Artificial light can also reduce the quality of experience during tribal cultural
- 34 and ceremonial activities.

1 Geology and Soils

2 **Geology**

- 3 **Physiography** The Yakima Fold Belt and the Palouse Slope play potentially very significant
- 4 roles at Hanford both culturally and geologically. Rattlesnake and Gable Mountains are
- 5 examples of folded basalt structures within the Yakima Fold Belt. These geological features
- 6 have direct bearing on the ground water and groundwater flow direction. There are oral history
- 7 accounts of these basalt features above the floodwaters of Lake Missoula. Many other
- 8 topography features have oral history explanations such as the Mooli Mooli (flood ripples along
- 9 the river terrace) and the sand dunes.
- 10 **Site Geology and Stratigraphy -** The GTCC referenced vadose zone location is similar to
- 11 that of the 200 West area. A primary similarity between the GTCC location and the 200 West is
- 12 that the underlying sediments are the Hanford Formation and possibly the Cold Creek formation.
- 13 Like the 200 west area there is uncertainly about the geology and hydraulic conductivity in this
- 14 area.
- 15 The vadose zone needs to be discussed as part of the Stratigraphy Section of the GTCC EIS and
- 16 is probably one of the most important elements to discuss for a potential Hanford GTCC
- 17 repository. It should be noted that within those sediments, a major subsurface trough feature
- 18 exists (an eroded channel at the surface of the Ringold Formation) that can be traced in the
- 19 stratigraphy from Gable Gap across the eastern part of 200 East and on to the southeast. This
- 20 trough contains the Cold Creek sedimentary unit. Geologists are still trying to determine the
- 21 effects this subsurface feature in the vadose zone has on contaminant transport.
- 22 Clastic dikes are networks of features in the near surface wherein cracks were developed in the
- 23 vadose zone from sediments either upwelling from a deeper layer, or by filling in from a feature
- 24 open at the surface, or a combination of both. These features are thought to be related to seismic
- 25 activity. What affect these have directly on contaminant transport needs to be understood, and
- 26 thus far they have not. There is a question as to whether or not the DOE has looked for them at
- 27 the site. They were noted to be present in the 200 Areas during the tank farm construction.
- 28 Regional Seismicity The Pacific Northwest has been historically geologically active and this
- 29 needs to be discussed if there is to be analysis of putting more contaminants in the ground at
- 30 Hanford. The 1936 earthquake and the 1973 earthquakes at Hanford need to be discussed in
- 31 terms of the GTCC.
- 32 Geologic structure of the Pacific Northwest includes a feature called the Olympic-Wallowa
- 33 Lineament (the OWL). Surface and depth data have identified a structural "line" within the

- 1 earth's crust that can be traced roughly from southeast of the Wallowa Mountains, under
- 2 Hanford, through the Cascades and under Seattle and the Sound. Such lineaments are signals of
- 3 crustal structure that are not yet well identified. Emerging research being reported through the
- 4 USGS is highlighting the importance of Seattle area faults connecting under the Cascades into
- 5 the Yakima Fold Belt and on along the OWL. The geologic stress on the surface of the earth in
- 6 the local region have a north-south compressional force direction that has caused the surface to
- 7 wrinkle in folds that trend approximately east-west, thus creating the Yakima Fold Belt. Fault
- 8 movement along these folds occurs all the time, and studies have shown these to be considered
- 9 active fault zones (Repasky, TR, et.al., 1998; Campbell, N.P., et.al., 1995).

10 Soils

- 11 Native Peoples understand the importance of soils and minerals. Oral history has suggested that
- 12 soils have a medicinal purpose for healing wounds as well as used for building structures,
- 13 creating mud baths, and filtering water. Material from the White bluffs was used for cleaning
- 14 hides, making paints, and whitewashing villages.
- 15 Soil characteristics: soil chemistry (ph, ion activity, micronutrients, microorganisms, lack of this
- 16 knowledge is a data gap such as the influence of past tank leaks on soil chemistry and
- 17 characteristics/properties. Sandy soils have high transmissivity. Soil integrity is important to
- 18 tribes since the soils support plant life, which supports many other life forms, which are all
- 19 important to tribes.

20 Minerals and Energy Resources

- 21 Tribal Comments: Barrow material site and waste material site: Alternatives selection will have
- 22 varying degrees of impact and footprint. For example, a vault alternative will need significant
- 23 capping material from barrow area C that has its own set of ramifications.
- 24 Questions to be answered: What will the energy use be for a fully functioning GTCC waste site?
- 25 What is the size and location of the footprint?

26 Water Resources

27 Groundwater

- 28 Purity of water is very important to the Nez Perce, and thus DOE should be managing for an
- 29 optimum condition considering Tribal cultural connection and direct use of water, rather than
- 30 managing for a minimum water quality threshold.
- 31 From the perspective of the Nez Perce Tribe, the greatest long-term threat at the Hanford site lies
- 32 in the contaminated groundwater. There is insufficient characterization of the vadose zone and
- 33 groundwater. There is a tremendous volume of radioactive and chemical contamination in the
- 34 groundwater. The mechanisms of flow and transport of contaminants through the soil to the

- 1 groundwater are still largely unknown. The volumes of contamination within the groundwater
- 2 and direction of flow are still only speculative. Due to lack of knowledge and limited technical
- 3 ability to remediate the vadose zone and groundwater puts the Columbia River at continual risk.

4 Water Use

- 5 The Columbia River is the lifeblood of the Nez Perce people. It supports the salmon and every
- 6 food or material that they rely on for subsistence. It is an essential human right to have clean
- 7 water.
- 8 If water is contaminated it then contaminates all living things. Tribal members that exercise a
- 9 traditional lifestyle would also become contaminated. A perfect example is making a sweat
- 10 lodge and sweating. It is a process of cleansing and purification. If water is contaminated then
- 11 the sweat lodge materials and process of cleansing would actually contaminate the individual.

12

- 13 Tribal people are well known for adopting technology if it were instituted wisely and did not
- 14 sacrifice or threaten the survival of the group as a whole. This approach applies to tribal use of
- 15 groundwater. Even though groundwater was not used except at springs, tribes would have
- 16 potentially used technology for developing wells and would have used groundwater if seen to be
- 17 an appropriate action. The existing contamination is considered an impact to tribal rights to
- 18 utilize this valuable resource.

19 20

The hyporheic zone in the Columbia River needs to be more fully characterized to understand the location and potential of groundwater contaminants discharging to the Columbia River.

21 22

- 23 Contaminated groundwater plumes at Hanford are moving towards the Columbia River and some
- 24 contaminants are already recharging to the river. It is the philosophy of the Columbia River
- 25 Tribes that groundwater restoration and protection be paramount to DOE's management of
- 26 Hanford. Institutional controls, such as preventing use of groundwater, should only be a
- 27 temporary measure for the safety of people and animals. It will be questioned when DOE views
- 28 institutional controls as a viable long-term management option to allow natural attenuation. The
- 29 timeline of natural attenuation may not best represent a Tribal preference of a proactive
- 30 corrective cleanup measure(s). for contamination plumes. Cleanup should be a priority before
- 31 considering placement of additional waste like GTCC in the 200 area.

32

33

Human Health

- 34 Nez Perce health involves access to traditional foods and places. Both of these are located on the
- 35 Hanford facility and can be impacted by placement of the GTCC waste in the 200 area.
- 36 Definition of Tribal health- Native American ties to the environment are much more complex
- and intense than is generally understood by risk assessors (Harris 1998, Oren Lyons¹). All of the
- 38 foods and implements gathered and manufactured by the traditional American Indian are

¹ http://www.ratical.org/many_worlds/6Nations/OLatUNin92.html; http://www.youtube.com/watch?v=hDF7ia23hVg.

- 1 interconnected in at least one way, but more often in many ways. Therefore, if the link between a
- 2 person and his/her environment is severed through the introduction of contamination or physical
- 3 or administrative disruption, the person's health suffers, and the well being of the entire
- 4 community is affected.
- 5 To many American Indians, individual and collective well being is derived from membership in
- 6 a healthy community that has access to, and utilization of, ancestral lands and traditional
- 7 resources. This wellness stems from and is enhanced by having the opportunity and ability to live
- 8 within traditional community activities and values. If the links between a tribal person and his or
- 9 her environment were severed through contamination or DOE administrative controls, the well
- 10 being of the entire community is affected.

11 Risk Assessments

27

28

29

30

31

32

33

34

35

36

37

- 12 Risk assessments should take a public health approach to defining community and individual
- 13 health. Public health naturally integrates human, ecological, and cultural health into an overall
- 14 definition of community health and well-being. This broader approach used with risk
- 15 assessments is adaptable to indigenous communities that, unlike westernized communities, turn
- 16 to the local ecology for food, medicine, education, religion, occupation, income, and all aspects
- 17 of a good life (Harris, 1998, 2000; Harper and Harris, 2000).
- 18 "Subsistence" in the narrow sense refers to the hunting, fishing, and gathering activities that are
- 19 fundamental to the way of life and health of many indigenous peoples.
- 20 The more concrete aspects of a subsistence lifestyle are important to understanding the degree of
- 21 environmental contact and how subsistence is performed in contemporary times. Also,
- 22 traditional knowledge can be learned directly from nature. Through observation this knowledge
- 23 is recognized and a spiritual connection is often attained as a result. Subsistence utilizes
- 24 traditional and modern technologies for harvesting and preserving foods as well as for
- 25 distributing the produce through communal networks of sharing and bartering. The following is
- 26 a useful explanation of "subsistence," slightly modified from the National Park Service:

"While non-native people tend to define subsistence in terms of poverty or the minimum amount of food necessary to support life, native people equate subsistence with their culture. It defines who they are as a people. Among many tribes, maintaining a subsistence lifestyle has become the symbol of their survival in the face of mounting political and economic pressures. To Native Americans who continue to depend on natural resources, subsistence is more than eking out a living. The subsistence lifestyle is a communal activity that is the basis of cultural existence and survival. It unifies communities as cohesive functioning units through collective production and distribution of the harvest. Some groups have formalized patterns of sharing, while others do so in more informal ways. Entire families participate, including elders, who assist with less physically

- demanding tasks. Parents teach the young to hunt, fish, and farm. Food and goods are also distributed through native cultural institutions. Nez Perce young hunters and fisherman are required to distribute their first catch throughout the community at a first feast (first bite) ceremony. It is a ceremony that illustrates the young hunter is now a man and a provider for his community. Subsistence embodies cultural values that recognize both the social obligation to share as well as the special spiritual relationship to the land and resources."²
- 8 The following four categories of an undisturbed environment contribute to individual and
- 9 community health. Impacts to any of these functions can adversely affect health. Metrics
- 10 associated with impacts within each of these categories are presented in Harper and Harris
- 11 (1999).
- 12 Human Health-Related Goods and Services: This category includes the provision of water,
- 13 air, food, and native medicines. In a tribal subsistence situation, the land provided all the food
- 14 and medicine that was necessary to enjoy long and healthy lives. From a risk perspective, those
- 15 goods and services can also be exposure pathways.
- 16 **Environmental Functions and Services:** This category includes environmental functions such
- 17 as soil stabilization and the human services that this provides, such as erosion control or dust
- 18 reduction. Dust control in turn would provide a human health service related to asthma reduction.
- 19 Environmental functions such as nutrient production and plant cover would provide wildlife
- 20 services such as shelter, nesting areas, and food, which in turn might contribute to the health of a
- 21 species important to ecotourism. Ecological risk assessment includes narrow examination of
- 22 exposure pathways to biota as well as examination of impacts to the quality of ecosystems and
- 23 the services provided by individual biota, ecosystems, and ecology.
- 24 Social and Cultural Goods, Functions, Services, and Uses: This category includes many
- 25 things valued by suburban and tribal communities about Introduction particular places or
- 26 resources associated with intact ecosystems and landscapes. Some values are common to all
- 27 communities, such as the aesthetics of undeveloped area s, intrinsic existence value,
- 28 environmental education, and so on.
- 29 **Economic Goods and Services:** This category includes conventional dollar-based items such as
- 30 jobs, education, health care, housing, and so on. There is also a parallel non-dollar indigenous
- 31 economy that provides the same types of services, including employment (i.e., the functional role
- 32 of individuals in maintaining the functional community and ensuring its survival), shelter (house
- 33 sites, construction materials), education (intergenerational knowledge required to ensure
- 34 sustainable survival throughout time and maintain personal and community identity), commerce
- 35 (barter items and stability of extended trade networks), hospitality, energy (fuel), transportation

² National Park Service: http://www.cr.nps.gov/aad/cg/fa_1999/Subsist.htm

- (land and water travel, waystops, navigational guides), recreation (scenic visitation areas), and
- 2 economic support for specialized roles such as religious leaders and teachers.

3 Ecology

- 4 The Nez Perce people have lived in these lands for a very long time and thus have learned about
- 5 the resources and their ecological interrelationships. They knew about environmental indicators
- 6 that foretold seasons and conditions that guided them. When Cliff Swallows first appear in the
- 7 spring, their arrival is an indicator that the fish are coming up the river. Doves are the fish
- 8 counters, telling how many fish are coming. Many natural phenomena foretell when the earth is
- 9 coming alive again in the spring, even if things are dormant underground. The Nez Perce has
- 10 traditional ecological knowledge of this environment and tribal people have ceremonies that
- 11 acknowledge the arrival of Spring. The winds bring information about what will happen. It
- 12 provides guidance about how to bring balance back to the land.

13 Biodiversity on the National Monument

- 14 The Monument encompasses a biologically diverse landscape containing an irreplaceable natural
- and historic legacy. Limited development over approximately 70 years has allowed for the
- 16 Monument to become a haven for important and increasingly scarce plants and animals of
- 17 scientific, historic and cultural interest. It supports a broad array of newly discovered or
- 18 increasingly uncommon native plants and animals. Migrating salmon, birds and hundreds of
- 19 other native plant and animal species, some found nowhere else in the world, rely on its natural
- 20 ecosystems. The Monument also includes 46.5 miles of the last free-flowing, non-tidal stretch of
- 21 the Columbia River, known as the "Hanford Reach."

22 **Salmon**

- 23 Columbia River salmon runs, once the largest in the world, have declined over 90% during the
- last century. The 7.4 12.5 million average annual number of fish above Bonneville Dam have
- 25 dropped to 600,000. Of these, approximately 350,000 are produced in hatcheries. Many salmon
- 26 stocks have been removed from major portions of their historic range (Columbia Basin Fish and
- 27 Wildlife Authority, 2009).
- 28 Multiple salmon runs reach the Hanford Nuclear Reservation. These runs include Spring
- 29 Chinook, Fall Chinook, Sockeye, Silver and Steelhead. The runs tend to begin in April and end
- 30 in November.
- 31 Salmon runs have been decimated as a result of loss and change to habitat. The changes include
- 32 non-tribal commercial fisheries, agriculture interests, and especially construction of hydro-
- 33 projects on the Columbia River. Protection and preservation of anadromous fisheries were not a
- 34 priority when the 227 Columbia River dams were constructed. Some dams were constructed
- 35 without fish ladders and ultimately eliminated approximately half of the spawning habit available
- 36 in the Columbia System.

- 1 The Hanford Reach is approximately 51 miles long and is the only place on the upper main stem
- of the Columbia River where Chinook salmon still spawn naturally. This reach is the last free
- 3 flowing section of the Columbia River above Bonneville Dam. It produces about eighty to ninety
- 4 percent of the fall Chinook salmon run on the Columbia River.
- 5 Tribal elders say that the last runs of big salmon (Chinook) that came through the Hanford Reach
- 6 occurred in 1905. Non-Tribal Commercial fisheries on the lower Columbia are largely
- 7 responsible for the loss of the large Chinook salmon.
- 8 The Columbia River Tribes, out of a deep commitment to the fisheries and in spite of the odds,
- 9 plan to restore stocks of Chinook, Coho, Sockeye, Steelhead, Chum, Sturgeon and Pacific
- 10 Lamprey. This effort was united in 1995 under a recovery plan called the Wy-Kan-Ush-Mi Wa-
- 11 Kish-Wit (Spirit of the Salmon). Member tribes are the Nez Perce Umatilla, Warm Springs and
- 12 Yakama.
- 13 The Columbia River tribes see themselves as the keepers of ancient truths and laws of nature.
- 14 Respect and reverence for the perfection of Creation are the foundation of their culture. Salmon
- 15 are part of our spiritual and cultural identity. Tribal values are transferred from generation to
- 16 generation with the salmon returns. Without salmon, tribes would loose the foundation of their
- 17 spiritual and cultural identity.
- 18 All tribes affected by the Hanford site are co-managers of Columbia River fisheries including
- 19 assisting in tagging fry and counting redds along the Hanford Reach for the purposes of
- 20 estimating fish returns. This information is essential in the negotiation of fish harvest between
- 21 the USA and Canada as well as between Indian and non-Indian fishermen.
- 22 In many ways, the loss of salmon mirrors the plight of native people. Elders remind us that the
- 23 fate of humans and salmon are linked. The circle of life has been broken with the loss of
- 24 traditional fishing sites and salmon runs on the Columbia River.

25 Socioeconomics

26 Modern tribal economy

- 27 A subsistence economy is one in which currency is limited because many goods and services are
- 28 produced and consumed within families or bands, and currency is based as much on obligation
- 29 and respect as on tangible symbols of wealth and immediate barter. It is well-recognized in
- 30 anthropology that indigenous cultures include networks of materials interlinked with networks of
- 31 obligation. Together these networks determine how materials and information flow within the
- 32 community and between the environment and the community. Today, there is an integrated
- 33 interdependence between formal (cash-based) and informal (barter and subsistence-based)

- 1 economic sectors that exists and must be considered when thinking of economics and
- 2 employment of tribal people.³
- 3 Indian people engage in a complex web of exchanges that often involves traditional plants,
- 4 minerals, and other natural resources. These exchanges are a foundation of community and
- 5 intertribal relationships. Thus there are natural resource issues, some of which are located on
- 6 Hanford, that involve direct production that permeate Indian life. Indian people, catch salmon
- 7 that become gifts to others living near and far. Sharing self-gathered food or self-made items is a
- 8 part of establishing and maintaining reciprocal relationships. People have similar relationships
- 9 between places and elements of nature, which are based on mutual respect for the rights of
- 10 animals, plants, places and people.
- 11 Use of the Hanford site and surrounding areas by tribes was tied primarily to the robust
- 12 Columbia River fishery. Past social activities of native people include gatherings for such
- 13 activities like marriages, trading, feasts, harvesting, fishing, and mineral collection. Tribal
- 14 families and bands lived along the Columbia either year round or seasonally for catching, drying
- 15 and smoking salmon. The reduction of salmon runs, loss of fishing sites due to dam
- 16 impoundments and Hanford land use restrictions have contributed to the degradation of the
- 17 supplies necessary for this gifting and barter system of our tribal culture.
- 18 The future of salmon and treaty-reserved fisheries will likely be determined during the life of the
- 19 GTCC waste. With the tremendous efforts to recover salmon (and other fish species) by tribes,
- 20 government agencies, and conservation organizations, Tribal expectations are that these species
- 21 will be recovered to healthy populations.
- 22 If aquatic species were to recover, the regional economy and tribal barter economy would likely
- 23 greatly increase in the Hanford area. These fish returns and the associated social and economic
- 24 potential should be considered within the lifecycle of a GTCC waste repository.

25 **Direct Production**

- 26 Direct production by tribes is part of the economy that needs to be represented, especially
- 27 considering the Tribe's emphasis on salmon recovery. This type of individual commerce in
- 28 modern economics is termed and calculated as "direct production". The increase in direct
- 29 production would be relational to the region's salmon recovery, yet there is no economic
- 30 measure (within the NEPA process) to account for this robust element of a traditional economy.
- 31 In a traditional sense, direct production is a term of self and community reliance on the
- 32 environment for existence as opposed to employment or modern economies. Direct production is
- 33 use of salmon and raw plant materials for foods, ceremonial, and medicinal needs and the
- 34 associated trading or gifting of these foods and materials. Direct production needs to be

³ http://arcticcircle.uconn.edu/NatResources/subsistglobal.html

- understood, and should include elements like: use of plant foods, ceremonial plants, medicinal
- 2 plants, beadwork, hide work, tule mats and dried salmon.
- An example of this economy would be the documented number of Native Americans that fished
- 4 at Celilo Falls; as many as 1500 fisherman assembled at the site not far from Hanford during the
- 5 peak fishing seasons. Trading between and among tribes include but are not limited to items like
- 6 dentalia shells, mountain sheep horns, bows, horses, baskets, tule mats, art, bead work, leather
- 7 and raw hide, and buffalo robes.

8 Environmental Justice

- 9 President Clinton signed Executive Order 12898 to address Environmental Justice issues and to
- 10 commit each federal department and agency to "make achieving Environmental Justice part of its
- 11 mission." (Environmental Biosciences Program 2001). According to the Executive Order, no
- 12 single community should host disproportionate health and social burdens of society's polluting
- 13 facilities. Many American Indians are concerned about the interpretation of "Environmental
- 14 Justice" by the U.S. Federal Government in relation to tribes. By this definition, tribes are
- 15 included as a minority group. However, the definition as a minority group fails to recognize
- 16 tribes' sovereign nation-state status, the federal trust responsibility, or protection of treaty and
- 17 statutory rights of American Indians. Because of a lack of the these details, tribal governments
- 18 and federal agencies have not been able to develop a clear definition of Environmental Justice in
- 19 Indian Country, and thus it is difficult to determine appropriate actions.
- 20 American Indian and Alaskan Natives use and manage the environment holistically; everything
- 21 is viewed as living and having a spirit. Thus, many federal and state environmental laws and
- 22 regulations designed to protect the environment do not fully address the needs and concerns of
- 23 American Indian and Alaskan Natives. Land based resources are the most important assets to
- 24 tribes spiritually, culturally and economically.

25 Land Use

- 26 The Nez Perce Tribe recommends that DOE continue efforts to identify special places and
- 27 landscapes with spiritual significance. Newly identified sites would be added to those already
- 28 requiring American Indian ceremonial access and needing long-term stewardship.
- 29 Native people maintain that aboriginal and treaty rights allow for the protection, access to, and
- 30 use of resources. These rights were established at the origin of the Native People and persist
- 31 forever. There are sites or locations within the existing Hanford reservation boundary with tribal
- 32 significance that are presently restricted through DOE's institutional controls and should be
- 33 considered for special protections or set aside for traditional and contemporary ceremonial uses.
- 34 Sites like the White Bluffs, Gable Mountain, Rattlesnake Mountain, Gable Butte, and the islands
- 35 on the river are known to have special meaning to Tribes and should be part of the discussion for
- 36 special access and protection. These locations should be placed in co-management with DOE,
- 37 FWS and the Tribes for long-term management and protection.

1 Tribal Access

- 2 In the Regulatory Section there are several federal regulations, policies, and executive orders that
- 3 define tribal access that override institutional controls of the CLUP or the CCP when risk levels
- 4 are acceptable for access. The following is a brief summary of those legal references:
- 5 According to the American Indian Religious Freedom Act, tribal members have a protected right
- 6 to conduct religious ceremonies at locations on public lands where they are known to have
- 7 occurred before. There has been an incomplete effort to research the full extent of tribal
- 8 ceremonial use of the Hanford site.
- 9 Executive Order 13007 supports the American Religions Freedom Act by stating that Tribal
- 10 members have the right to access ceremonial sites. This includes agencies to maintain existing
- 11 trails or roads that provide access to the sites.
- 12 DOE managers that are considering the placement of GTCC waste at Hanford must evaluate any
- potential impact to ceremonial access as part of their trust responsibility to Tribes.
- 14 There are locations that have specific protections due to culturally significant findings, burial
- 15 sites, artifact clusters, etc. These types of areas are further described under the Cultural
- 16 Resources Sections. As decommissioning and reclamation occurs across the Hanford site, any
- 17 culturally significant findings will continue to expand the list of sites and their locations with
- 18 special protections that override existing land use designation as outlined in the CLUP or other
- 19 documents.

20 Comprehensive Land Use Plan (CLUP):

- 21 The present DOE land use document for Hanford, called the Comprehensive Land Use Plan
- 22 (CLUP), has institutional controls that limit present and future use by Native Americans. DOE
- 23 plans to remove some institutional controls over time as the contamination footprint is reduced as
- 24 a result of instituting the 2015 vision along the river and also the proposed cleanup of the 200
- 25 area. With removal of institutional controls, the affected tribes assume they can resume access to
- 26 usual and accustomed areas.
- 27 Future decisions about land transfer must consider the implications for Usual and Accustomed
- 28 uses (aboriginal and treaty reserved rights) in the long-term management of resource areas.
- 29 The 50-year management time horizon of the CLUP does create permanent land use
- 30 designations. On the contrary, land use designations or their boundaries can be changed in the
- 31 interim at the discretion of DOE and/or Hanford stakeholders. The CLUP is often misused by
- 32 assuming designations are permanent. Also, it is important to not that the interim land use
- 33 designations in the CLUP cannot abrogate treaty rights. That requires an act of Congress.

34 Hanford National Monument

- 35 A Presidential Proclamation established the Hanford Reach National Monument (Monument)
- 36 (Presidential Proclamation 7319) and it directed the DOE and the U.S. Fish and Wildlife Service

- 1 (FWS) jointly manage the monument. The Monument covers an area of 196,000 acres on the
- 2 Department of Energy's (DOE) Hanford Reservation. DOE permits and agreements delegates
- authorities to FWS for 165,000 acres. The DOE directly manages approximately 29,000 acres,
- 4 and the Washington Department of Fish and Wildlife currently manages the remainder
- 5 (approximately 800 acres) through a separate DOE permit.
- 6 The Monument is co-managed by the FWS and the DOE; each agency has several missions they
- 7 fulfill at the Hanford Site. The FWS is responsible for the protection and management of
- 8 Monument resources and people's access to Monument lands under FWS control. The FWS also
- 9 has the responsibility to protect and recover threatened and endangered species; administer the
- 10 Migratory Bird Treaty Act; and protect fish, wildlife and Native American and other trust
- 11 resources within and beyond the boundaries of the Monument.
- 12 The FWS developed a comprehensive conservation plan (CCP) for management of the
- 13 Monument as part of the National Wildlife Refuge System as required under the National
- 14 Wildlife Refuge System Improvement Act. The CCP is a guide to managing the Monument lands
- 15 (165,000 acres). It should be understood that FWS management of the Monument is through
- 16 permits or agreements with the DOE.
- 17 Tribes participated in the development of the CCP with regard to protection of natural and
- 18 cultural resources and tribal access. Based on the Presidential Proclamation that established the
- 19 Hanford Reach National Monument, Affected tribes assume that all of Hanford will be restored
- 20 and protected:⁴

21 Operable Units (OUs)

- 22 Hanford has delineated contamination areas called operable units (OUs) both subsurface
- 23 contamination OUs and surface contamination OUs. When describing the affected environment
- 24 for land use it is essential to reference this information that should be presented in the soils and
- 25 groundwater sections. By understanding the types and extent of surface and subsurface
- 26 contamination will give better understanding of the CLUP landuse designations. For example,
- 27 the proposed GTCC site at Hanford lies somewhere in or near the 200 ZP-1 groundwater OU.
- 28 This OU has contamination from uranium, technetium, iodine 129 and other radioactive and
- 29 chemical constituents.

⁴ FR Volume 36--Number 23: 1271-1329; Monday, June 12, 2000

1 Transportation

2 Traditional transportation:

- 3 Indian people have been traveling this homeland to usual and accustomed areas for a very long
- 4 time. Early modes of transportation began with foot travel. Domesticated dogs were utilized to
- 5 carry burdens. Dugout canoes were manufactured and used to traverse the waterways when the
- 6 waters were amiable. Otherwise, trails along the waterways were used. The arrival of the horse
- 7 changed how people traveled. Numerous historians note its arrival to the Columbia Plateau in
- 8 the late 1700's but they are mistaken. The arrival of the horse was actually a full century earlier
- 9 in the late 1600's. Its acquisition merely quickened movement on an already extant and heavily
- 10 used travel network. This travel network was utilized by many tribal groups on the Columbia
- 11 Plateau and was paved by thousands of years of foot travel. Early explorers and surveyors
- 12 utilized and referenced this extensive trail network. Some of the trails have become major
- 13 highways and the Columbia and Snake Rivers are still a crucial part of the modern transportation
- 14 network.
- 15 The Middle Columbia Plateau of the Hanford area is the crossroads of the Columbia Plateau
- 16 located half way between the Great Plains and the Pacific Northwest Coast. In this area major
- 17 Columbia River tributaries the Walla Walla, Snake, and Yakima Rivers flow into this section of
- 18 the main stem Columbia River. These rivers formed a critical part of a complex transportation
- 19 network north, south, east, and west through the region including the Columbia River through
- 20 the Hanford site. The slow water at the Wallula Gap was one of the few places where horses
- 21 could traverse the river year round. The river crossing at Wallula provided access to a vast web
- 22 of trails that crossed the region. Portions of these trails are known to cross the Hanford site.

23 Present Transportation:

- 24 There are two interstate highways that near the site [Interstate 90 (I-90) and Interstate 84 (I-84)].
- 25 There are estimates of as many as 12,000 shipments of GTCC waste that would need to be
- 26 delivered to Hanford by rail, barge or highway. The Nez Perce Tribe believes that decision-
- 27 making criteria need to be presented in the EIS to clarify how rail, barge or highway routing will
- 28 be determined. Treaty resources and environmental protections are important criteria in
- 29 determining a preferred repository location. The public needs to be assured that the public health
- 30 and high valued resources like salmon and watersheds are going to be protected.
- 31 Northwest river systems have received significant federal and state resources over recent decades
- 32 in an attempt to recover salmon and rehabilitate damaged watersheds. DOE needs to describe
- 33 how public safety, salmon and watersheds "fit" into the criteria selection process for determining
- 34 a GTCC waste site and multiple shipping options. The protection and enhancement of existing
- 35 river systems are critical to sustaining tribal cultures along the Columbia River.

- 1 The interstate highway system is a primary transportation corridor for shipping nuclear waste
- 2 through the states of Oregon, Washington, and Idaho. Waste moving across these states will
- 3 cross many major salmon bearing rivers that are important to the Tribes. Major rail lines also
- 4 cross multiple treaty resource areas.

5 Cultural Resources

- 6 From a tribal perspective, all things of the natural environment are recognized as a cultural
- 7 resource. This is a different perspective from those who think of cultural resources as artifacts or
- 8 historic structures. The natural environment provides resources for a subsistence lifestyle for
- 9 tribal people. This daily connection to the land is crucial to Nez Perce culture and has been
- 10 throughout time. All elements of nature therefore are the connection to tribal religious beliefs.
- 11 Oral histories confirm this cultural and religious connection.
- "According to our religion, everything is based on nature. Anything that grows or lives,
- like plants and animals, is part of our religion..." Horace Axtell (Nez Perce Tribal Elder).

14 Landscape and Ethno-Habitat

- 15 For thousands of years American Indians have utilized the lands in and around the Hanford Site.
- 16 Historically, groups such as the Yakama, the Walla Walla, the Wanapum, the Palouse, the Nez
- 17 Perce, the Columbia, and others had ties to the Hanford area. "The Hanford Reach and the
- 18 greater Hanford Site, a geographic center for regional American Indian religious activities, is
- 19 central to the practice of the Indian religion of the region and many believe the Creator made the
- 20 first people here (DOI 1994). Indian religious leaders such as Smoholla, a prophet of Priest
- 21 Rapids who brought the Washani religion to the Wanapum and others during the late 19th
- 22 century, began their teachings here (Relander 1986). Prominent landforms such as Rattlesnake
- 23 Mountain, Gable Mountain, and Gable Butte, as well as various sites along and including the
- 24 Columbia River, remain sacred. American Indian traditional cultural places within the Hanford
- 25 Site include, but are not limited to, a wide variety of places and landscapes: archaeological sites,
- 26 cemeteries, trails and pathways, campsites and villages, fisheries, hunting grounds, plant
- 27 gathering areas, holy lands, landmarks, important places in Indian history and culture, places of
- 28 persistence and resistance, and landscapes of the heart (Bard 1997). Because affected tribal
- 29 members consider these places sacred, many traditional cultural sites remain unidentified."
- 30 NEPA 18 4.6.1.2 (p. 4.120).

31 Viewshed

- 32 The Nez Perce Tribe utilizes vantage points to maintain a spiritual connection to the land.
- 33 Viewsheds must remain in their natural state, they tend to be panoramic and are made special
- 34 when they contain prominent uncontaminated topography. The viewshed panorama is further
- 35 enhanced by abrupt changes in topography and or habitats.
- 36 Nighttime viewsheds are also significant to indigenous people who still use the Hanford Reach.
- 37 Each tribe has stories about the night sky and why stars lie in their respective places. The

- 1 patterns convey spiritual lessons via oral traditions. Often, light pollution from neighboring
- 2 developments diminishes the view of the constellations. It is getting difficult to find places to
- 3 simultaneously relate the oral traditions and view the corresponding constellations.
- 4 There are several culturally significant viewsheds located on the Hanford site. The continued use
- 5 of these sites brings spiritual renewal. Special considerations should be given to tribal elders and
- 6 youth to accommodate traditional ceremonies.

Salmon

- 8 Salmon remain a core part of the oral traditions of the tribes of the Columbia Plateau and still
- 9 maintains a presence in native peoples' diet just as it has for generations. Salmon are recognized
- 10 as the first food at tribal ceremonies and feasts. One example is the ke'uyit, which translates to
- 11 "first bite." It is a ceremonial feast that is held in spring to recognize the foods that return to take
- 12 care of the people. It is a long-standing tradition among the people and it is immersed in prayer
- 13 songs and dancing. Salmon is the first food that is eaten by the attendants. Extending gratitude to
- 14 the foods for sustaining the life of the people is among the tenets of plateau lifestyle. Nez Perce
- 15 life is perceived as being intertwined with the life of the Salmon. A parallel can be seen between
- 16 the dwindling numbers of the Salmon runs and the struggle of native people (Landeen and
- 17 Pinkham 1999).

18 Waste Management

- 19 The Nez Perce Tribe will continue to work with DOE via its cooperative agreement on cleanup
- 20 issues to ensure that treaty rights and cultural and natural resources are being protected and that
- 21 interim cleanup decisions are protective of human health and the environment.

22 Cumulative Impacts

- 23 Within this EIS process, a cumulative risk assessment needs to be developed for the Hanford
- 24 option. This risk assessment needs to utilize the existing Hanford Tribal risk scenarios (CTUIR,
- 25 Yakama Indian Nation, DOE default), and include existing Hanford risk values to determine
- 26 cumulative impacts.
- 27 Institutional control boundaries need to be clearly displayed in a map, showing the GTCC
- 28 proposed repository and the extent it will add to the size, scope, and timeframe of limiting
- 29 access. For tribal people, a 10,000-year repository extends institutional controls without
- 30 reasonable compensation or mitigation.

References

2

- 3 Benton County, 2009. Benton County Hazard Mitigation Plan Section 4.3 Windstorms.
- 4 http://www.bces.wa. gov/windstorms.pdf. (Accessed June 18, 2009)
- 5 Columbia Basin Fish and Wildlife Authority. 2009. 2008 Status of Fish and Wildlife Resources
- 6 in the Columbia River Basin. Columbia Basin Fish and Wildlife Authority, Portland, Oregon.
- 7 Campbell, N.P., Ring, T., Repasky, T.R., 1995. 1994 NEHRP Grant Earthquake Hazard Study
- 8 in the Vicinity of Toppenish Basin, South Central Washington, United States Geologic Survey
- 9 NEHRP Award Number 1434 94 G-2490.
- 10 Greider, 1993.
- 11 Harper, B. L. and Harris, S. G. 1999. A "Reference Indian" for use in Radiological and Chemical
- 12 Risk Assessment, CTUIR.
- 13 Harpe, B. L. and Harris, S. G. 2000. Using Eco-Cultural Dependency Webs in Risk Assessment
- 14 and
- 15 Characterization." Environmental Science and Pollution Research, 7(Special 2): 91-100
- 16 Harris, 1998. Harris, S.G. and Harper, B.L. "A Native American Exposure Scenario." Risk
- 17 Analysis, 17(6): 789-795.
- 18 Hicks, 2004. Marmes Rockshelter: A Final Report on 11,000 Years of Cultural Use. Pullman:
- 19 Washington State University.
- 20 Hunn, E. 1990. Nichi-Wana: The Big River: Mid-Columbia Indians and Their Land. Seattle:
- 21 University of Washington Press.
- 22 Repasky, T.R., Campbell, N.P., and Busacca, A.J., 1998, "Earthquake Hazards Study in the
- 23 Vicinity of Toppenish Basin, South-Central Washington" United States Geologic Survey
- 24 NEHRP Award Number 1434-HQ-97-GR-03013.
- 25 Relander, 1986. Drummers and Dreamers. Seattle: Northwest Interpretive Association.
- 26 Roberts, 1998. The Holocene: An Environmental History. Malden, MA: Blackwell Publishing.
- 27 Landeen, D. and Pinkham, 1999. Salmon and His People

28

Appendix A

2 Legal Framework

TREATY RIGHTS AND OBLIGATIONS

4

5 The Nez Perce Tribe is a sovereign government whose territory comprises over 13 million acres

- 6 of what are today northeast Oregon, southeast Washington, and north-central Idaho. In 1855 the
- 7 Nez Perce Tribe entered into a treaty with the United States, securing, among other guarantees a
- 8 permanent homeland, as well as fishing, hunting, gathering, and pasturing rights. (Treaty with
- 9 the Nez Perces, June 11, 1855; 12 Stat. 957).

10

- 11 Since 1855, many federal and state actions have recognized and reaffirmed the Tribe's treaty-
- 12 reserved rights. The Tribe's treaty-reserved interests in the Hanford Reach area inform its
- 13 legal relationship with the United States. Aboriginal rights provided in the 1855 Treaty extend to
- 14 areas of land in Idaho and surrounding states, including the Columbia, Snake, and Salmon River
- 15 regions, which may be impacted by DOE activities. Because these rights are of enormous
- 16 importance to the Tribe 's subsistence and cultural fabric, the ecosystems that support fish and
- 17 wildlife (including both flora and fauna) must remain undamaged and productive. DOE
- 18 recognizes the existence of reserved treaty rights and is committed to identifying and assessing
- 19 impacts of all DOE activities to both on and off-reservation lands.

20

- 21 The Nez Perce Tribe has the responsibility to protect the health, welfare, and safety of its
- 22 members, and the environment and cultural resources of the Tribe. Therefore, activities (such as
- any release of hazardous/radioactive substances to the air, water, or soil column) related to the
- 24 Hanford operations and cleanup should avoid endangering the Tribe 's environment and culture,
- 25 or impairing their ability to protect the health and welfare of Tribal members.

26

27 The Nez Perce Tribe Treaty of 1855

- 28 The Nez Perce Tribe Treaty of 1855 promulgated articles of agreement between the United
- 29 States and the Tribe. The Treaty is superior to any conflicting state laws or state constitutional
- 30 provisions under the Supremacy Clause of the U.S. Constitution (Art. VI. cl. 2).

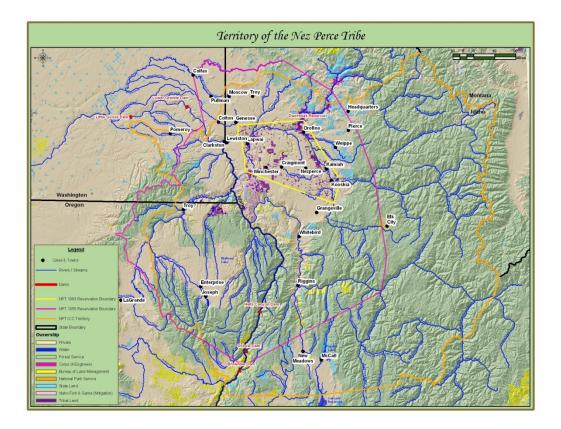
31

- Under the Treaty of 1855, the Tribe ceded certain areas of its aboriginal lands to the United
- 33 States and reserved for its exclusive use and occupation certain lands, rights, and privileges; and
- 34 the United States assumed fiduciary responsibilities to the Tribe.

- Rights reserved under the Treaty of 1855 include those found in Article 3 of the
- 37 Treaty, "The exclusive right of taking fish in all the streams where running
- 38 through or bordering said reservation is further secured to said Indians; as also
- 39 the right of taking fish at all usual and accustomed places in common with
- 40 citizens of the Territory; and of erecting temporary buildings for curing, together

with the privilege of hunting, gathering roots and berries, and pasturing their horses and cattle upon open and unclaimed land."

4


5

1

6

The reserved rights to the aforementioned areas are a fundamental concern to the Nez Perce Tribe. The fish, roots, wild game, religious sites, and ancestral burial and living sites remain integral to the Nez Perce culture. The Tribe expects, accordingly, to be the primary consulting party in all federal actions related to Hanford that stand to affect or implicate the Tribe's treatyreserved or cultural interests.

10 11

12

13

Treaty Reserved Resources

14 15

Treaty reserved resources situated on and off the Reservation (hereinafter referred to as "Tribal Resources") include but are not limited to:

16 17 18

19

Tribal water resources located within the Columbia, Snake, and Clearwater River Basins including those water resources associated with the Tribe's usual and accustomed fishing areas and Tribal springs and fountains described in Article 8 of the Nez Perce Tribe Treaty of 1863;

20 21 22

23

24

Fishery resources situated within the Reservation, as well as those resources associated with the Tribe's usual and accustomed fishing areas in the Columbia, Snake, and Clearwater River Basins;

Areas used for the gathering of roots and berries, hunting, and other cultural activities within open and unclaimed lands including lands along the Columbia, Clearwater, and Snake River Basins;

5 6

Open and unclaimed lands which are or may be suitable for domestic livestock grazing;

7 8

Forest resources situated on the Reservation and within the ceded areas of the Tribe;

9

Land holdings held in trust or otherwise located on and off the Nez Perce Reservation in the States of Idaho, Oregon; and Washington;

12

Culturally sensitive areas, including, but not limited to, areas of archaeological, religious, and historic significance, located both on and off the Reservation.

15

FEDERAL RECOGNITION OF TRIBAL SOVEREIGNTY

1617

- 18 A unique political relationship exists between the United States and Indian Tribes, as defined by
- 9 treaties, the United States Constitution, statutes, federal policies, executive orders, court
- 20 decisions, , which recognize Tribes as separate sovereign governments.
- 21 As a fiduciary, the United States and all its agencies owe a trust duty to the Nez Perce Tribe and
- 22 other federally-recognized tribes. See United States v. Cherokee Nation of Oklahoma, 480 U.S.
- 23 700, 707 (1987); United States v. Mitchell, 463 U.S. 206, 225 (1983); Seminole Nation v. United
- 24 States, 316 U.S. 286, 296-97 (1942). This trust relationship has been described as "one of the
- 25 primary cornerstones of Indian law," Felix Cohen, Handbook of Federal Indian Law 221 (1982),
- and has been compared to one existing under the common law of trusts, with the United States as
- 27 trustee, the tribes as beneficiaries, and the property and natural resources managed by the United
- 28 States as the trust corpus. See, e.g. Mitchell, 463 U.S. at 225.

29

- 30 The United States' trust obligation includes a substantive duty to consult with a tribe in decision-
- 31 making to avoid adverse impacts on treaty resources and a duty to protect tribal treaty-reserved
- 32 rights "and the resources on which those rights depend." Klamath Tribes v. U.S., 24 Ind. Law
- 33 Rep. 3017, 3020 (D.Or. 1996). The duty ensures that the United States conduct meaningful
- 34 consultation "in advance with the decision maker or with intermediaries with clear authority to
- 35 present tribal views to the ... decision maker." Lower Brule Sioux Tribe v. Deer, 911 F. Supp
- 36 395, 401 (D. S.D. 1995).

- 38 Consistent with the United States' trust obligation to Tribes, Congress has enacted numerous
- 39 laws to protect Tribal resources and cultural interests, including, but not limited to the National
- 40 Historic Preservation Act (NHPA) of 1966; the Archaeological Resources Protection Act of
- 41 1979; the Native American Graves Protection and Repatriation Act (NAPRA) of 1990; and the
- 42 American Indian Religious Freedom Act (AIRFA) of 1978.

Executive Orders

- 2 **Executive order, 13007**, May 24, 1996. Updated April 30, 2002.
- 3 Section 1. Accommodation of Sacred Sites. (a) In managing Federal lands, each executive branch
- 4 agency with statutory or administrative responsibility for the management of Federal lands shall,
- 5 to the extent practicable, permitted by law, and not clearly inconsistent with essential agency
- 6 functions, (1) accommodate access to and ceremonial use of Indian sacred sites by Indian
- 7 religious practitioners and (2) avoid adversely affecting the physical integrity of such sacred
- 8 sites. Where appropriate, agencies shall maintain the confidentiality of sacred sites.
- 9 This Executive Order directs Federal land-managing agencies to accommodate Native
- 10 Americans' use of sacred sites for religious purposes and to avoid adversely affecting the
- 11 physical integrity of sacred sites. {267} Some sacred sites may be considered traditional cultural
- 12 properties and, if older than 50 years, may be eligible for the National Register of Historic
- 13 Places. Thus, compliance with the Executive Order may overlap with Section 106 and Section
- 14 110 of NHPA. Under the Executive Order, Federal agencies managing lands must implement
- 15 procedures to carry out the directive's intent. Procedures must provide for reasonable notice
- where an agency's action may restrict ceremonial use of a sacred site or adversely affect its
- 17 physical integrity. {268} Federal agencies with land-managing responsibilities must provide the
- 18 President with a report on implementation of Executive Order No. 13007 one year from its
- 19 issuance.
- 20 Executive Order No. 13007 builds upon a 1994 Presidential Memorandum concerning
- 21 government-to-government relations with Native American tribal governments. The
- 22 Memorandum outlined principles Federal agencies must follow in interacting with federally
- 23 recognized Native American tribes in deference to Native Americans' rights to self-governance.
- 24 {269} Specifically, Federal agencies are directed to consult with tribal governments prior to
- 25 taking actions that affect federally recognized tribes and to ensure that Native American
- 26 concerns receive consideration during the development of Federal projects and programs. The
- 27 1994 Memorandum amplified provisions in the 1992 amendments to NHPA enhancing the rights
- 28 of Native Americans with regard to historic properties.

29

Executive Order 11593

31

- 32 Section 1. Policy. The Federal Government shall provide leadership in preserving, restoring and
- 33 maintaining the historic and cultural environment of the Nation. Agencies of the executive
- 34 branch of the Government (hereinafter referred to as "Federal agencies") shall (1) administer the
- 35 cultural properties under their control in a spirit of stewardship and trusteeship for future
- 36 generations, (2) initiate measures necessary to direct their policies, plans and programs in such a
- 37 way that federally owned sites, structures, and objects of historical, architectural or
- 38 archaeological significance are preserved, restored and maintained for the inspiration and benefit
- 39 of the people, and (3), in consultation with the Advisory Council on Historic Preservation (16
- 40 U.S.C. 4701), institute procedures to assure that Federal plans and programs contribute to the

preservation and enhancement of non-federally owned sites, structures and objects of historical, architectural or archaeological significance.

The Executive Order requires Federal agencies to administer cultural properties under their control and direct their policies, plans, and programs in such a way that federally owned sites, structures, and objects of historical, architectural, or archeological significance were preserved, restored, and maintained. {250} To achieve this goal, Federal agencies are required to locate, inventory, and nominate to the National Register of Historic Places all properties under their jurisdiction or control that appear to qualify for listing in the National Register. {251} The courts have held that Executive Order No. 11593 obligates agencies to conduct adequate surveys to locate "any" and "all" sites of historic value, {252} although this requirement applies only to federally owned or federally controlled properties. {253} Moreover, the Executive Order directs agencies to reconsider any plans to transfer, sell, demolish, or substantially alter any property determined to be eligible for the National Register and to afford the Council an opportunity to comment on any such proposal. {254} Again, the requirement applies only to properties within Federal control or ownership. {255} Finally, the Executive Order requires agencies to record any listed property that may be substantially altered or demolished as a result of Federal action or

assistance and to take necessary measures to provide for maintenance of and future planning for

Executive Order 13175, November 6, 2000

historic properties. {256}

Executive Order 13175 establishes regular and meaningful consultation and collaboration with tribal officials in the development of Federal policies that have tribal implications, to strengthen the United States government-to-government relationships with Indian tribes, and to reduce the imposition of unfunded mandates upon Indian tribes. The executive Order applies to all federal programs, projects, regulations and policies that have Tribal Implications.

E.O. further provides that each "agency shall have an accountable process to ensure meaningful and timely input by tribal officials in the development of regulatory policies that have tribal implications." According to the President' April 29, 1994 memorandum regarding Government-to-Government Relations with Native American Tribal Governments, federal agencies "shall assess the impacts of Federal Government plans, projects, programs, and activities on tribal trust resources and assure that Tribal government rights and concerns are considered during the development of such plans, projects, programs, and activities." As a result, Federal agencies must proactively protect tribal interest, including those associated with tribal culture, religion, subsistence, and commerce. Meaningful consultation with the Nez Perce Tribe is a vital component of this process.

On November 5, 2009 President Obama issued a Presidential Memorandum for the Heads of Executive Departments and Agencies. That Memorandum affirms the United States' government-to-government relationship with Tribes, and directs each agency to submit to the Office of Management and Budget (OMB), within 90 days and following consultation with tribal

1 governments, "a detailed plan of actions the agency will take to implement the policies and 2 directives of Executive Order 13175."

3

U.S. Department of Energy American Indian Policy

- 5 On November 29, 1991, DOE announced a seven-point American Indian Policy, which
- 6 formalizes the government-to-government relationship between DOE and federally recognized
- 7 Indian Tribes. A key policy element pledges prior consultation with Tribes where their interests
- 8 or reserved treaty rights might be affected by DOE activities. The DOE American Indian Policy
- 9 provides another basis for the Cooperative Agreement. The Cooperative Agreement will also
- 10 serve as an Office of Environmental Management Implementation Plan for the DOE American
- 11 Indian Policy regarding interactions with the Nez Perce Tribe.

12

13

14 THE ROLES OF THE NEZ PERCE TRIBE AT HANFORD

- 15 The Tribe has a duty to protect its reserved treaty rights and privileges, environment, culture, and
- 16 welfare as well as to educate its members and neighboring public to its activities. The Tribe
- 17 assumes many different roles. It is a governmental entity with powers and authorities derived
- 18 from its inherent sovereignty, from its status as the owner of land, and from legislative
- 19 delegations from the Federal government. The Tribe exercises its powers and authority to serve
- 20 its members and to regulate activities occurring within the reservation. The Tribe is also a
- 21 cultural entity and is accordingly charged with the responsibility of protecting and transmitting
- 22 that culture which is uniquely Nez Perce. The Tribe is also a beneficiary within the context of
- 23 federal trust relationship with, and obligations to Indian Tribes. The Tribe is a trustee
- 24 responsible for the protection and betterment of its members and the protection of its and their
- 25 rights and privileges. The Tribe is also party to treaties between itself and the United States
- 26 government.

2728

Nez Perce and DOE Relationship

30

29

- 31 The relationship between the Tribe and DOE is defined by the trust relationship that exists
- 32 between the Federal government and the Tribe, by treaty, federal statute, executive orders,
- 33 administrative rules, caselaw, DOE's American Indian Policy, and by the mutual and generally
- 34 convergent interests of the parties in the efficient and expeditious cleanup of the DOE weapons
- 35 complex, and by the Cooperative Agreement. The structured relationship embodied by the
- 36 Cooperative Agreement can best be described as a partnership grounded in the site-specific
- 37 cleanup of Hanford, and extends to all trust-related activities of the Department.

38 39

The Tribe sees itself not only as an advisor to DOE, but also as an technical resource available to assist DOE. The Tribe sees its members and employees as a source of technically trained and certified labor for environmental restoration and decontamination and decommissioning work.

41 42

1 The continuation of the Cooperative Agreement contemplates an approach that will integrate 2 these and other roles into a comprehensive Nez Perce-DOE program.

- 4 The Tribe is asked to review and comment on documents and activities by DOE implicates our
- 5 Treaty reserved rights and DOE's acknowledgement of other federal statutes, laws, regulations,
- 6 executive orders and memoranda governing the United States' relationship with Native
- 7 Americans and the Nez Perce people. Several tribal departments lend their respective technical
- 8 expertise to DOE Hanford issues and present recommendations to the Nez Perce Tribal
- 9 Executive Committee (NPTEC), for consideration and guidance. The NPTEC also may requests
- 0 formal consultation with the federal agency to discus a proposal or issue further.

Consultation with Native Americans

DOE's consultation responsibilities to the Tribe are enumerated generally in the document entitled, Consultation with Native Americans. This policy defines consultation in relevant part:

"Consultation includes, but is not limited to: prior to taking any action with potential impacts upon American Indian ands Alaska Native nations, providing for mutually agreed protocols for timely communication, coordination, cooperation, and collaboration to determine the impact on traditional and cultural lifeways, natural resources, treaty and other federally reserved rights involving appropriate tribal officials and representatives through the decision making process."

In regard to security clearance, none of the various provisions of the continuation of the Cooperative Agreement shall be construed as providing for the release of reports or other classified information designated as "classified" or "Unclassified Controlled Nuclear Information" to the Nez Perce Tribe, or as waiving any other security requirements. Classified information includes National Security Information (10 CFR Part 1045) and Restricted Data (10 CFR Part 1016). Unclassified Controlled Nuclear Information is described in 10 CFR Ch. X, Part 1017.

In the event that reports or information requested under the provisions of the continuation of the Cooperative Agreement, while not "classified" or "Unclassified Controlled Nuclear Information," are determined by DOE-RL to be subject to the provisions of the Privacy Act, or the exemptions provided under the Freedom of Information Act, DOE-RL may, to the extent authorized by law, provide such reports or information to the Tribes upon receipt of the Tribe's written assurance that the Nez Perce Tribe will maintain the confidentiality of such data.

1	Greater I nan Class C Radioactive Waste Environmental Impac
2	Statement
3	
4	Pueblo Views on Environmental Resource Areas
5	
6	
7	Los Alamos Meeting of Pueblo EIS Writers
8	T = 10 0000
9	June 7 – 12, 2009
10	
11	
12	
13	Devolute Western Demonstrations
14	Pueblo Writers Representatives
15	Martin O. Hampshire Namba Bushla
16 17	Martin O. Hampshire, Nambe Pueblo
17	Ernestine Naranjo, Santa Clara Pueblo
18 19	Steven G. Rydeen, Pueblo de San Ildefonso
20	Brian A. Suazo, Santa Clara Pueblo Lee R. Suina, Pueblo de Cochiti
20 21	Kevin Tafoya, Santa Clara Pueblo
22	Georgia A. Yates-Hampshire, Nambe Pueblo
23	John W. Yates, Nambe Pueblo
24	John W. Lates, Manibe Lucito
25	
26	
27	
28	Facilitated By
29	
30	Richard W. Arnold, Pahrump Paiute Tribe
31	Richard W. Stoffle, University of Arizona
32	
33	
34	
35	
36	
37	

3 1.1 Climate

4 The Pueblo people, having lived since the beginning of time in the region of the proposed

- 5 GTCC waste disposal site, are concerned about meteorological climate shifts occurring
- 6 over hundreds of years and longer term climate changes occurring over thousands of
- 7 years. Such shifts impact vegetation. During dryer periods vegetation burns increase and
- 8 post-burn erosion is accelerated. The Cerro Grande fire (Grieggs, Ramos, and Percy
- 9 2001) increased post-fire storms' runoff flows in some drainages more than 1,000 times
- the pre-fire levels (United States Department of Energy [DOE] 2008: 4-59). These higher
- 11 runoff flows increased erosion and moved radioactive and hazardous materials
- 12 downstream towards the Pueblo people.

13

- 14 During warmer periods, more intense rainfall episodes occur and less snow falls in
- 15 winter, thus increasing erosion. Tree ring data document shifts in annual rainfall between
- 16 1523 and today, with a rainfall high in 1597 of 40 inches to a low in 1685 of 2.4 inches
- 17 (Sean Rev 4.0: 2008 2-12).

18

- 19 During the Holocene, major shifts occurred in this region, and the GTCC disposal is to be
- 20 evaluated for a duration of 10,000 years. These climate shifts are both culturally
- 21 important to the Pueblo people who conduct ceremonies to balance climate and pertinent
- 22 to the consideration of GTCC proposal.

23

- 24 1.2 Existing Air Emissions
- 25 Contaminated air emissions either from fugitive dust, violent storms, dust devils,
- 26 emission stacks, bomb testing, burn pits, or from the Cerro Grande fire have spread to
- 27 surrounding Pueblo lands and communities. A Santa Clara Pueblo wind monitor
- 28 meteorological station recorded a wind of 70 miles per hour. Dust devils have been
- 29 recorded by LANL at 73 miles per hour. Santa Clara, Pueblo de San Ildefonso, Pueblo de
- 30 Cochiti, and Jemez perceive that they have received contaminated ash and air from the
- 31 Cerro Grande fire, from more than 110 historic and active LANL emission stacks, and
- 32 bomb testing detonations. Nambe, Pojoaque, and the surrounding Pueblos perceive that
- 33 they too received contaminated ash from the Cerro Grande fire. The contaminations from
- 34 these events exposed natural resource users ranging from hunters of animals to gatherers
- 35 of clay for pots. Even normal Pueblo residents were exposed in many ways from farming
- 36 to outdoor activities to everyday life.

37

- 38 The Pueblo de Cochiti is situated within Sandoval County, and emissions rates here were
- 39 not compared in the GTCC to emission rates of LANL. The Pueblo de Cochiti is located
- 40 south of LANL and adjacent to the PSD [Prevention of Significant Deterioration] Class I
- 41 Bandelier National Monument. The Pueblo de Cochiti could thus be considered a PSD
- 42 Class I area as well and all emissions pose a threat to this classification.

43

- 44 All the Accord Pueblos (Pueblo de San Ildefonso, Pueblo de Cochiti, Santa Clara, and
- 45 Jemez Pueblo) are currently conducting independent studies of air emissions from LANL.

- 1 These studies have been ongoing for about ten years. Some Pueblos have their findings
- 2 evaluated by independent laboratories. These studies are monitoring tritium, plutonium,
- 3 uranium, americium, and other radionuclides and metals. Some of the studies have
- 4 documented contaminated air emissions on Pueblo lands.

1.3 Existing Noise Environment

7

- 8 The Sacred Area is currently monitored for noise by Pueblo de San Ildefonso. Noise,
- 9 which from a Pueblo perspective is an unnatural sound, does disturb ceremony and the
- 10 place itself. Currently non-Indian voices, machinery, and processing equipment have
- 11 been recorded by Pueblo de San Ildefonso monitors as coming from Area G to the Sacred
- 12 Area.

13

14 1.4 Geology

15

- 16 The Pueblo people are aware of the occurrence of major earthquakes in the GTCC study
- area (up to 2000 have been recorded in recent times). These cause vertical displacements,
- 18 large fissures, and small fractures. Water seeps into these fissures and plant roots follow
- 19 them to great depths (up to 66 feet). Pueblo people believe that plant roots will eventually
- 20 penetrate the GTCC facility.

21 22

1.5 Minerals and Energy Resources

23

- The Pueblo people who visited the proposed GTCC disposal site note the likelihood of traditionally used minerals occurring there. They assess that this is a medium to high
- 26 probability. There is a need for a cultural mineral assessment and study to identify the
- 27 existence of minerals of cultural significance and use.

28

- 29 Although there is no current Pueblo ethnogeology studies for the LANL, one was
- 30 recently developed for Bandelier National Monument (Stoffle et al. 2007). That study,
- 31 which was approved by the participating pueblos, documented that 96 geological
- 32 resources were found to have specific uses by Pueblo people, which is estimated to be the
- 33 bulk of the occurring minerals in Bandelier NM. The following are the ten most
- 34 frequently cited mineral resources, presented in order of frequency of reference. Included
- 35 also is the number of pueblos that were documented to have used the named resource (1)
- 36 Clay 17 times mentioned for 7 pueblos; (2) Turquoise 15 times mentioned for 7 pueblos;
- 37 (3) Basalt 15 times mentioned for 5 pueblos; (4) Obsidian 9 times mentioned for 4
- 38 pueblos; (5) Gypsum 8 times mentioned for 5 pueblos; (6) Rock Crystal 8 times
- 39 mentioned for 5 pueblos; (7) Salt 7 times mentioned for 4 pueblos; (8) Mica 6 times
- 40 mentioned for 5 pueblos; (9) Sandstone 6 times mentioned for 5 pueblos; and (10)
- 41 Hematite 6 times mentioned for 4 pueblos. Just as there are certain minerals that are more
- 42 frequently documented, certain pueblos were more often the subject of observations and
- 43 ethnographies (Stoffle et al. 2007: 33).

44

45

46 1.6 Surface Water

- 2 Pueblo people know that drainages in LANL flow during major runoff and storm events.
- 3 These flows, though at times low in volume, have a potential to reach the Rio Grande and
- 4 lower water bodies. In 1996, the Pueblo of Cochiti conducted a cooperative sediment
- 5 study with LANL and the USGS in which Pre-1960s Legacy Waste was identified using
- 6 the Thermal Ionization Mass Spectroscopy (TIMS) method. This Pre-1960s Legacy
- Waste has been recorded on the up-river portion of the Cochiti Reservoir, which is on the
- 8 Rio Grande as it passes through the Cochiti Reservation.

9

- 10 There exists high potential for continuing pollution flows as indicated in the GTCC text
- 11 above, and now the Cerro Grande fire has increased the potential for constituent
- movement as indicated in the Site-Wide EIS (DOE 2008: 4-59, 4-60). Evidence of
- 13 radioactivity and hazardous waste (PCBs) movement from LANL has led to fish
- 14 consumption warnings on eating fish from the Rio Grande.

15 16

1.7 Groundwater

17 18

- 19 Pueblo people know that extensive work has been completed to map and determine flow
- 20 rates, direction, and quality of groundwater systems. There are independent studies
- 21 published which challenge these findings. These other studies maintain that monitoring at
- 22 sites is inadequate and that the drilling practices influence the results (see Bob Gilkeson
- 23 Reports).

24

- 25 Santa Clara Pueblo is concerned that their groundwater is being contaminated by LANL
- 26 especially from TA 54 waste deposits. Even though Santa Clara Pueblo is upstream
- 27 when only surface water is considered, known faults between LANL and SCP are
- 28 suspected to connect reservation groundwater and TA 54 wastes in LANL groundwater.
- 29 Current investigations by Santa Clara Pueblo science teams and funded by the Pueblo are
- 30 on-going to determine if Santa Clara Pueblo groundwater is connected through water
- 31 bearing faults.

32 33

1.8 Human Health

34

- 35 Standard calculations of human heath exposure as used for the General Public are not
- applicable to Pueblo populations. The concept General Public is an EPA term that is a
- 37 generalization that derives from studies of average adult males. Residency time for the
- 38 General Public tends to be a short period of an individual's lifetime and exposure is
- 39 voluntary. Pueblo people live here in their Sacred Home Lands for their entire lives and
- 40 will continue to reside here forever.

- 42 Pueblo people use their resources differently than average US citizens so standard dosing
- 43 rates do not apply. For ceremonial purposes, for example, water is consumed directly
- 44 from surface water sources and natural springs. Potters, for example, have direct and
- 45 intimate contact with stream and surface clay deposits. Natural pigment paints, for

example, are placed on people's bodies and kept there through long periods of time
during which strenuous physical activities opens the pores.

3

1.9 Ecology

5 6

- Pueblo People know that they have many traditional plants and animals located on and near to the GTCC proposal area. During a brief visit to the proposed GTCC site, Pueblo
- 8 near to the GTCC proposal area. During a brief visit to the proposed GTCC site, Pueble 9 EIS writers identified traditional use plants, which include medicinal, ceremonial, and
- domestic use plants. These plants were identified in a brief period and it was noted that
- 11 many plants could be identified were a full ethnobotany of the site to be conducted.
- 12 During this site visit the Pueblo EIS writers identified the presence of traditional animals,
- but noted that more could easily be identified during a full ethnozoological study.

14

- While a full list of the traditional use plants was not available at the time of this analysis, a recent study conducted on the adjacent Bandelier National Monument identified 205
- 17 Pueblo use plants there (Stoffle et al. 2007). These use plants represent 59% of the known
- 18 plants on the official plant inventory of Bandelier.

19 20

A Pueblo Writers' GTCC site visit and a draft LANL LLRW study for Area G documented the presence of the following plants:

22 23 24

Plants From LLRW Areas	Listed in Area G LLRW Study	Observed by Pueblo Writer's Group
Blue Grama (Bouteloua gracilis)	X	Р
Indian Rice Grass (Oryzopsis hymenoides)		P
Cutleaf evening primrose (Oenothera caespitosa	X	
Mullein Amaranth (Verbascum thapsus)	X	P
Indian Paintbrush (Castilleja sp.)		P
4-O'clock (Mirabilis jalapa)		P
Narrowleaf Yucca (Yucca angustissima)	X	Р
Penstemon spp.		P
Prickly Pear (Opuntia polyacantha)	X	Р
Small Barrel (Sclerocactus)		Р
Sunflower (Helianthus petiolaris)	X	P
Apache Plume (Fallugia paradoxa)	X	P
Big Sage (Artemisia tridentate)	X	P
Chamisa (Chrysothamnus nauseosus)	X	P

Four-wing Saltbush (Atriplex canescens)	X	P
Mountain Mahogany (Cercocarpus montanus)	X	
New Mexico Locust (Robinia neomexicana)	X	
Oak (Quercus spp.)	X	
Snakeweed (Gutierresia sarthrae)	X	
Squawberry (Rhus trilobata)	X	
Wax Currant (Ribes cereum)	X	
Wolfberry (Lycium barbarum)		P
One-seed Juniper(Juniperus monosperma)	X	P
Pinon Pine (Pinus edulis)	X	P
Ponderosa Pine (Pinus ponderosa)	X	P

While a full list of the traditional use animals was not available at the time of this analysis, a recent study conducted on the adjacent Bandelier National Monument identified 76 Pueblo use animals there (Stoffle et al. 2007). The use animals represent

5 76% of the animals on the official animal inventory.

7 8

5

A Pueblo GTCC site visit and a LANL LLRW study for Area G documented the presence of the following animals:

9 10

- 11 Deer
- 12 Elk
- 13 Lizards
- 14 Harvester Ants
- 15 Rattlesnake
- 16 Cicadas
- 17 Mocking Bird
- 18 Pocket Mice and Kangaroo Rats
- 19 Pocket Gophers
- 20 Chipmunks and Ground Squirrels

212223

25

26

27

Pueblo people note that LANL intends to use cover plants such as grasses on disposal pits at closure. These reseeding efforts have caused the intrusion of non-Native plants as well as the intended stabilization grasses. This is a cultural violation because the artificial intrusion of plant seed not normally found in an area is inappropriate. In addition, while grasses are the initial reseeding plants, other plants, trees and woody plants will soon establish in the soft pit closure soils putting deep roots into the disturbed subsoil.

1.10 Environnemental Justice

2

As Indian peoples culturally affiliated with land currently occupied by LANL, the Pueblo people would like to expand the definition of Environmental Justice so that it reflects the unique burdens borne by them. This definition is defined more fully below.

6

- 7 Pueblo people and their lands have been encroached upon by Europeans since the 1500s.
- 8 During this time they have experienced loss of control over many aspects of their lives
- 9 including (1) loss of traditional lands, (2) damage to Sacred Home Lands, (3) negative
- 10 health effects due to European diseases and shifting diet, and (4) lack of access to
- 11 traditional places. Negative encroachments that occurred during the Spanish period were
- 12 continued after 1849 under the United States of America's federal government. The
- 13 removal of lands for the creation of LANL in 1942 were a major event causing great
- 14 damage to Pueblo peoples. Resulting pollution to the natural environment and ground
- 15 disturbances from LANL activities constitute a base-line of negative Environmental
- 16 Justice impacts. The GTCC proposal needs to be assessed in terms how it would continue
- 17 these Environmental Justice impacts and thus further increase the differential emotional,
- 18 health, and cultural burdens borne by the Pueblo peoples.

19 20

21

22

26

27

29

30

The Congress of the United States recognized this violation of their human, cultural, and national rights when the American Indian Religious Freedom Act (AIRFA) was passed in 1978. In the AIRFA legislation Congress told all Federal agencies to submit plans which would assure they would no longer violate the religious freedom of American Indian peoples (Stoffle et al. 1990). Subsequent legislation like the Native American Graves Protection and Repatriation Act (NAGPRA) (1990) and Executive Order 13007 – Sacred Sites Access (1996) have further defined their rights to Sacred Home Lands and traditional resources. The Federal Government also has a Trust Responsibility to American Indian peoples which is recognized in the DOE American and Alaska Native policy (http://www.em.doe.gov/pages/emhome.aspx). Environmental Justice is one point of analysis where these concerns can be expressed by Pueblo peoples and the obligations addressed by Federal Agencies during the NEPA EIS process.

31 32 33

35

37

Pueblo people believe that their health has been adversely affected by LANL operations including different types of cancers. These concerns were publicly recorded in videos produced with Closing the Circle grants provided by the National Park Service and the DOE (Pueblo de San Ildefonso 2000; Santa Clara 2001). Documentation of these adverse health affects is difficult because post-mortem analysis is not normal due to cultural rules regarding the treatment of the deceased and burial practices.

38 39 40

1.11 Land Use

- There are two major power transmission lines, the Norton and Reeves Power lines, which exist on both mesas that are considered by the proposed GTCC (see DOE 2008: 4-136, 4-137). One line goes through GTCC Zone 6 and the other through GTCC North Side and North Side Expanded. These major district power lines occupy the centers of both mesas
- and greatly reduce the potential areas of the GTCC. Along both lines are a series of

Pueblo archaeology sites, which are currently signed as restricted access areas protected under the National Historic Protection Act.

3

1.12 Transportation

5

6 Pueblo people note that all waste shipments move by highway. There are no local 7 railroads. Pueblo people believe that GTCC waste shipments will adversely impact 8 natural resources, reservation communities, tribal administration activities, public 9 schools, day schools, and businesses located along Highway 502 and Highway 84/285.

10

- 11 The Pueblo of Nambe is located on Highway 84/285 between the Pueblos of Pojoaque
- 12 and Tesuque. The Pueblo of Nambe is located on the Rio Nambe, which joins the Rio
- 13 Grande a few miles downstream. The Rio Nambe is the major water source for the
- 14 Pueblo. Nambe Falls is on the reservation is an eco-tourism destination. Also on the
- 15 reservation is Nambe Lake, which is used for irrigation of fields (crops) and recreation.
- 16 Nambe has established several businesses on Highway 84/285, such as the Nambe Pueblo
- 17 Development Corporation, Nambe Falls Travel Center, Hi-Tech, and many more
- businesses are planned for this location. New businesses include a water bottling factory,
- 19 a housing complex, and solar and wind energy projects.

20

- The Pueblo of Nambe raises the issue of security. The Pueblo government wants to know when radioactive waste is being transported past the reservation lands. We have a "need"
- 23 to know" and this information should be provided to appropriate tribal authorities such as
- 24 First Responders and Emergency Managers. The tribes with Indian Land on
- 25 transportation routes should be funded by the DOE to train their own radiation monitor
- 26 teams, to maintain capability for their own safety and to protect sovereign immunity of
- 27 Native American Tribes as independent Nations within the United States. This would
- 28 enable tribes to be effective participants in handling hazards and threats as mandated by
- 29 US. Department of Homeland Security in the "Metrics for Tribes" to be compliant with
- 30 NIMS. Tribes should be able to participate in the preparations of waste materials for
- 31 transportation at DOE sites. This participation/observation would give Tribes confidence
- 32 that proper packing techniques and guidelines are adhered to. Currently Tribes are
- 33 expected to "trust" that State and Federal authorities are doing this phase properly. The
- 34 Indian people will feel more comfortable if we have some role in observing the
- 35 process/procedures particularly if our observers are properly trained to understand the
- 36 scientific reasons associated with packaging methodology.

- The Pueblo of Nambe wants to monitor the transportation of GTCC materials in the same
- way that transuranic waste is monitored on its route from LANL to WIPP site at
- 3 Carlsbad.

- The Pueblo of Santa Clara is traversed by NM 30. Near this road are tribal residential
- 6 areas, tribal businesses, schools, and economic developments. This highway is not an
- 7 alternate route for radioactive waste hauling. A violation of this rule occurred in 2006
- 8 when three semi-trailer trucks loaded with radioactive soils from LANL were seen using
- 9 NM30 as a short-cut route (they should have remained on NM 502) Drivers had
- disregarded tribal regulations. A tribal representative caught up with them nearby and
- 11 recorded the violation.

12

- 13 Other Pueblo people have business and tribal resources along potential transportation
- 14 routes. The Pueblo de San Ildefonso, for example, is concerned about radioactive waste
- transportation along Highway 502. The Totavi Business Plaza, is an area that was 15
- 16 traditionally occupied, and is now a restaurant and gas station and may be a location for
- 17 new tribal housing. The Pueblo de San Ildefonso youth attend a Day School, a District
- High School, Middle School, and Elementary Schools along 502. Pojoaque has a
- 19 business park and two gas stations along 502 and 84/285 as well as their youth attend
- 20 these schools.

21 22

1.13 **Cultural Resources**

23 24

- 25 Pueblo oral histories document that they have lived in and used the entire area of LANL
- including the GTCC proposed site since the beginning of time. Because of this Pueblo 26
- 27 people are the descendants of the people who have lived here throughout time and
- included time periods referred by LANL archaeologists by the terms (1) Paleo-Indian, (2)
- Archaic, (3) Ancestral Pueblo, (4) American Indian, and (5) Federal Scientific Laboratory
- 30 (See DOE 2008). Pueblo people lived in the area before the Ancestral Pueblo period,
- which is dated at 1600AD. Pueblo people continue to know about and value lands,
- natural resources, and archaeological materials located on LANL. Pueblo people continue
- 33 to desire and have a culturally important role and responsibilities in the management of
- 34 all of these traditional lands.

35

- 36 Recent cultural resource surveys have been conducted on LANL, which have identified
- 37 some sites that were not identified when LANL was established after 1943. Pueblo
- 38 people believe that these sites are connected with other much larger sites that were
- destroyed when the LANL facility was built and operated. The Pueblo people express
- 40 concern that many early LANL developments destroyed culturally significant sites and
- 41 that no effort has been made to conduct ceremonies that may alleviate the violations
- 42 association with site destruction.

43

- 1 A known Sacred Area, primarily identified with Pueblo de San Ildefonso, is located on
- 2 the next mesa to the north of the proposed GTCC waste site. It is spiritually connected to
- 3 the surrounding area and is not bounded any federal boundaries. It is recognized as a
- 4 Sacred Area on old USGS quads. The Sacred Area is continually monitored by Pueblo de
- 5 San Ildefonso to constantly check on its cultural integrity. It has visual, auditory, and
- 6 spiritual dimensions. Pueblo de San Ildefonso air quality program consistently monitors
- 7 for tritium releases, which derive from nearby area G on TA 54 on LANL. Winds blow
- 8 across this area from the Southwest from LANL on to the Sacred Area. The Cerro Grande
- 9 fire brought ash debris which contained radionuclides to the Sacred Area. The Sacred
- 10 Area is thus believed to have been contaminated by the ash from Cerro Grande fire. Dust
- 11 contaminated from ongoing operations from area G has blown into the Sacred Area.

- 13 Although four American Indian pueblos, called by LANL the Accord Tribes: Santa Clara
- 14 Pueblo, Pueblo de San Ildefonso, Jemez Pueblo, and Pueblo de Cochiti have been singled
- 15 out during the GTCC consultation process as being both nearby and culturally connected
- 16 with LANL, there is a widely recognized undestanding that other American Indian tribes
- 17 are also culturally connected with LANL. These include but are not limited to (1) all 8
- 18 northern pueblos including San Juan O'Hkayowingee, Nambe O-weenge, Pojoaque,
- 19 Picuris; (2) Jicarilla Apache; (3) southern Pueblos like Santo Domingo; and (4) western
- 20 pueblos like Zuni and Hopi. Important LANL actions like the GTCC EIS undergoing a
- major analysis should include all the culturally connected (affiliated) American Indian
- 22 tribes.

23

- 24 The LANL NAGPRA consultation report includes the following statement "It is noted
- 25 that since around 1994, LANL has consistently consulted with five tribes on issues
- 26 relating to cultural resources management, or at least have informed them of proposed
- 27 construction projects and other issues surrounding cultural resources management at
- 28 LANL." These include the "Accord Pueblos" of San Ildefonso, Santa Clara, Cochiti, and
- 29 Jemez, each of which has signed agreements with LANL, along with the Mescalero
- 30 Apache Tribe. In addition, the Pueblo of Acoma and the Jicarilla Apache Nation have
- 31 been recognized as having an active interest in cultural resources management at LANL.
- 32 A draft version of that NAGPRA report was subsequently also sent in January 2002 to all
- 33 New Mexico Pueblos and to the Pueblos of Hopi in Arizona and Ysleta del Sur in Texas,
- 34 as well as to the Jicarilla Apache Nation, the Mescalero Apache Tribe, the Navajo
- 35 Nation, and the Ute Mountain and Southern Ute Tribes. The pueblo writers find the
- 36 patterns of consultation by LANL to be confusing and not clearly grounded in a formal
- 37 policy based on an agreed to Cultural Affiliation study.

38

- 39 Meaning of Artifacts, Places, and Resources There is a general pueblo concern for pre-
- 40 agricultural period Indian artifacts and the places where they were left. These include the
- 41 role of ceremony itself as an act of sanctifying places, such as has been conducted and
- 42 occurred near Sacred Area over the past thousands of years. Pueblo people believe they
- have been in the area since the beginning of time. This connection back in time thus
- 44 connects them to all places, artifacts, and resources in the area.

1.14 Waste Management

3 4

The Pueblo people would like to point out a direct conflict in current LANL policy and the GTCC proposal. Today LANL is officially remediating contaminated areas. These actions result in the waste being moved to new sites such as WIPP. Some of this may be transported past Pueblo communities and economic business along transportation routes. LANL has already agreed to remove radioactive waste from Area G to WIPP. Currently LANL is shipping most kinds of radioactive and TRU waste off-site (DOE 2008: 4-160).

10 LANL is snipping most kinds of radioactive and TRU waste off-site (DOE 2008: 4-160 11 This current LANL policy is in conflict with the GTCC proposal, which would place

12 radioactive waste and TRU waste on LANL and near Area G. In addition, the Pueblos

13 along the transportation routes will now be exposed twice – once to current LANL waste

14 leaving for elsewhere like the WIPP site, and secondly to new GTCC waste shipments

15 that are arriving from elsewhere.

spiritual integrity of the Sacred Area.

16

17 The Pueblo people note that one of the potential GTCC sites, indicated as Zone 4, that is 18 being considered in the EIS appears to have been withdrawn (June 2009) from

19 consideration for GTCC waste because LANL is continuing to dispose of LLRW waste

20 there (DOE 2008: 4-151). This is LLRW that has been or will be produced by LANL.

These additional LANL wastes add to perceived contamination risks by the Pueblo people.

23 24

25

26

The Pueblo people note that the potential site for the GTCC waste disposal is already leaking radioactive contaminants around the perimeter of Area G and DARHT (DOE 2008: 4-32). GTCC waste could only increase the contamination of this area and add to the off-site flow of contaminants.

272829

30

33

37

38

39

There is a known Sacred Area on the next ridge next to the existing LANL Area G radioactive waste isolation facility and also across from the proposed GTCC site. This Sacred Area is spiritually connected to the surrounding area and is not bounded any federal boundaries (it is even recognized as a sacred area on old USGS quads). Area is constantly monitored by Pueblo de San Ildefonso to check on its integrity. The Sacred Area has visual, auditory dimension, which are consistently monitoring for tritium from nearby areas. Winds blow across this area. The Cerro Grande fire brought ash debris, which contained radionuclides to the Sacred Area, thus the area is believed to have been contaminated by the ash from Cerro Grande fire. Radioactive Dust has blown away from Area G and has been recorded near Sacred Area. The Pueblo de San Ildefonso and other pueblo people believe that locating a GTCC facility in this area will further diminish the

40 41

- 1 Radioactivity studies using the TIMS (Thermo Ionization Mass Spectrometry) method
- 2 have been fingerprinted and thus identified the source (1996) of radioactivity found in the
- 3 sediments of Cochiti Reservoir as coming from LANL. This is a major concern for the
- 4 Cochiti people. Storm and snow run off bring LANL radioactivity downstream to places
- 5 where clay is deposited. There has even been a 100-year runoff event since the Cerro
- 6 Grande fire. Automated recorders have documented radioactivity being recently brought
- 7 down as far as the Pueblo de San Ildefonso. Jemez Pueblo potters also express concerns
- 8 they these radioactive movement will impact them when they dig through these deposits
- 9 while collecting clay for pottery and minerals for other uses.

1.15 Cumulative Impacts from the GTCC Proposed Action at LANL

12 13

- 14 Pueblo people express a concern that negative *stigmas* have been attached and will
- 15 continue to be attached to their Sacred Home Lands, the natural resources from these
- 16 lands, their businesses, and even themselves. The concept of having something, some
- 17 place, or some people stigmatized is well documented in the NEPA-based literature
- 18 (Grieggs, Ramos, and Pearcy 2001; Gregory, Flynn, and Slovic 1995; Messer et al. 2006;
- 19 Metz 1994; Slovic, Flynn, and Gregory 1994). Projects having a significant potential for
- 20 causing harm are recognizing as having the potential of attaching negative evaluations to
- 21 the places, people, and resources near where they are located. This has been especially
- 22 true of hazardous and radioactivity related projects.

23

- 24 The Pueblo people believe that the presence and activities of LANL has caused a variety
- 25 of negative stigmas, which Pueblo people constantly attempt to address. All of the
- 26 Accord Pueblos received Federal Closing the Circle grants to both document and address
- 27 tribal concerns about what LANL has caused. Both NPS and DOE funds were provided
- 28 to the Accord Pueblos to videotape oral histories regarding what impacts Indian people
- 29 perceive that the establishment and operation of LANL have had on traditional
- 30 environmental uses, cultural activities, and spiritual life
- 31 (http://www.nps.gov/history/hps/HPG/Tribal/index.htm). One set of these impacts can be
- 32 termed *stigmas*.

33

- 34 Since 1943, when LANL was established, these former pristine Pueblo lands have been
- 35 disturbed and polluted. This process began immediately during the development of the
- 36 atomic bomb when sub-critical explosions and radioactive materials processing released
- 37 radioactivity and mixed wastes. During this period waste disposal was weakly regulated
- 38 with many disposal sites being poorly documented and contained. The Center for Disease
- 39 Control is currently reconstructing waste releases during this early period of LANL
- 40 operations in order to determine whether or not a Dose Reconstruction Study should be
- 41 formally conducted for LANL (http://www.lahdra.org). Public perceptions of the LANL
- 42 area as being polluted have grown through time. Recently studies have added to rather
- 43 than reduced this perception.

44

- Pueblo people document existing and potential kinds of stigmas. Some Pueblos sponsor
- 2 elk hunting for fundraisers. Recent newspaper discussions of radioactivity being present
- 3 in area plants, water, and animals have caused, according to Pueblo accounts, reduced
- 4 participation in such hunts. One tribal fishing lake was identified in a newspaper account
- 5 as having radioactive fish, which greatly reduced fishing at that lake. Food pollution fears
- 6 are widely documented. Tribal members also express concerns about using animals.
- 7 Many Pueblos are moving towards commercial sales of garden products, which are
- 8 marketed as local Indian-produced organic products. Concerns were expressed that were
- 9 contaminated clay to be used by a Pueblo potter and the pot subsequently found to be
- 10 contaminated that this event could greatly reduce all area pottery sales. Other Pueblo
- 11 people with commercial businesses along highways are concerned that radioactive waste
- 12 transportation accidents could reduce customer's willingness to stop at tribal businesses.
- 13 Even Pueblo people themselves believe that there are polluted areas which they currently
- 14 not do not visit because of their concern for contamination.

Pueblo people believe that the existing background of awareness of contamination would be increased were the public to become aware that GTCC wastes were being transported to and deposited at LANL.

19 20 21

22

23

24 Gilkeson, Robert
 25 2004 Groundwater Contamination in

2004 Groundwater Contamination in the Regional Aquifer Beneath the Los Alamos National Laboratory. Los Alamos New Mexico.

References

26 27

29

28 Grieggs, A., O. Ramos, Jr., and C. Pearcy (eds.)

2001 Cerro Grande: Canyons of Fire, Spirit of Community. Los Alamos, NM: Regents of the University of California, Los Alamos National Lab.

30 31

32 Gregory, Robin; Flynn, James; Slovic, Paul

1995 Technological Stigma. American Scientist 83: 220-3.

33 34

35 Los Alamos Historical Document Retrieval and Assessment Project

2009 Electronic Document. http://www.lahdra.org, last accessed October 5, 2009.

36 37

38 Messer, Kent, William Schulze, Katherine Hackett, Trudy Cameron, and Gary

39 McClelland

40 2005 Can Stigma Explain Large Property Value Losses? The Psychology and
41 Economics of Superfund. Environmental & Resource Economics 33: 299–
42 324.

43

44 Metz, William C.

45 1994 Potential Negative Impacts of Nuclear Activities on Local Economies: Rethinking the Issue. *Risk Analysis* 14(5): 763-770.

1				
2				
3	Pueblo de	San Ildefonso		
4	2000	Closing the Circle: Pueblo de San Ildefonso Oral History Project. Pueblo de		
5		San Ildefonso.		
6				
7	Santa Clara Pueblo			
8	2001	As We See It Now: The Voice of Santa Clara Pueblo. Santa Clara Pueblo.		
9				
0	Slovic, Paul, James Flynn, and Robin Gregory			
1	1994	Stigma Happens: Social Problems in the Siting of Nuclear Waste Facilities.		
12		Risk Analysis 14(5): 773-777.		
12 13				
14				
15	Dumbaulo	1		
16	2007	Bandelier National Monument A Study of Natural Resource Use among		
17		Culturally Affiliated Pueblo Communities. Prepared for Bandelier NM.		
18		Tucson, AZ: Bureau of Applied Research in Anthropology, University of		
19		Arizona.		
20				
21	United States Department of Energy			
22	2008	Site Wide Environmental Impact Assessment for the Continued Operation of		
23		Los Alamos National Laboratory, Los Alamos, New Mexico. DOE/EIS 0380.		
24		• • • • • • • • • • • • • • • • • • • •		

Umatilla Input from NEPA Analysis for CTUIR at Hanford

<u>Note to EIS preparers.</u> The following information is intended to supplement the Hanford NEPA boilerplate¹ by adding tribal perspectives. This material evolved significantly from the materials submitted by the GTCC Tribal Writers group, but has not been reviewed by them. For questions, please call Stuart Harris (541-966-2400) or Barbara Harper (541-966-2804).

A. CTUIR Introduction to Affected Resources

A.1 History and Standing

For at least 12,000 years, the Columbia River Plateau has supported the survival and thriving for many indigenous peoples. The Columbia River flows through what was a cultural and economic center for the Plateau communities. The indigenous communities were part of the land and its cycles, and it was part of them. The land and its many entities and attributes provided for all their needs: hunting and fishing, food gathering, and endless acres of grass on which to graze their horses, commerce and economy, art, education, health care, and social systems. All of these services flowed among the natural resources, including humans, in continuous interlocking cycles. These relationships form the basis for the unwritten laws or *Tamanwit* that were taught by those who came before, and are passed on through generations by oral tradition in order to protect those yet to arrive. The ancient responsibility to respect and uphold these teachings is directly connected to the culture, the religion, and the landscape along the Columbia Plateau. The cultural identity, survival, and sovereignty of the native nations along the Columbia River and its tributaries are maintained by adhering to, respecting, and obeying these ancient unwritten laws here in this place along the N'Chi Wana, or Big River.

In contemporary times, Indian life along the Columbia River and its tributaries continues to be based on the responsibility to manage modern daily affairs and environmental management practices in a manner consistent with the ancient teachings. This responsibility is to protect, preserve, and enhance this earth including the air, water, and ground, and all that grows and lives here. In order to fulfill this responsibility, the native sovereign nations need cold, clean, uncontaminated water; clean, clear uncontaminated air; uncontaminated soil; clean, vibrant, and uncontaminated biological resources; clean, uncontaminated, and wholesome foods; and clean, uncontaminated, and healthful medicines.

¹ Duncan, J.P. (ed.)(2007) Hanford Site National Environmental Policy Act (NEPA) Characterization. PNNL-6415 Rev. 18.

A.1.1 Treaties of 1855

In 1855, representatives of the U.S. Government signed treaties with representatives from many of the different Indian groups in the southern Plateau. The Indian groups ceded ownership of huge tracts of land to the federal government in return for promises food, education, health care, and other services, and retained the perpetual right to fish, hunt, erect fish-curing structures, gather food, and graze stock throughout the region, including the area in and around Hanford. Through the Treaties, the native nations sought to protect their homeland and food gathering rights within the traditional use areas necessary to sustain their citizens, preserve their cultural, subsistence, and ceremonial practices, and ensure the survival of future generations. The Treaties are legal contracts binding the native sovereign nations and the United States of America, and bring forth Federal fiduciary and trusteeship responsibilities to protect these interests.

A.1.2 Nuclear Waste Policy Act of 1982 and Tri-Party Agreement of 1989

The Nuclear Waste Policy Act of 1982 recognized the three native nations (the Confederated Tribes of the Umatilla Indian Reservation, the Yakama Nation, and the Nez Perce Tribe) as "affected Indian Tribes" at Hanford because they have "federally defined possessory or usage rights to other lands outside of the reservation's boundaries arising out of congressionally ratified treaties" and could be "substantially and adversely affected by the locating of such a facility." (Title 42, Chapter 108).

In 1989, the cleanup of the Site began with the Hanford Federal Facility and Consent Order, also known as the Tri-Party Agreement, which is the legal framework for cleanup of the Site. Through the original NWPA designation, these three native sovereign nations were recognized as having vital interests in the cleanup process. In 1992, cooperative agreements between the U.S. DOE-Headquarters and the three affected tribes were agreed upon to enable tribal participation in Hanford cleanup issues and decisions, protection of cultural resources, and (more recently) to engage in natural resource injury assessment and restoration activities as Natural Resource Trustees.

A.1.3 Policy on American Indian and Alaskan Native Tribal Government (2000) and DOE Order 1230.2 (1992).

In this policy DOE formalized its commitment to meeting its government-to-government relationships. The most important doctrine derived from this relationship is the trust responsibility of the United States to protect tribal sovereignty and self-determination, tribal lands, assets, resources, and treaty and other federally recognized and reserved rights. These aspects carry through the evaluation of affected resources.

A.1.4 Framework to Provide Guidance for Implementation of US DOE's Policy (2007) and DOE Oder 144.1

This framework enhances DOE's government-to-government working relationship with Indian Nations. DOE offices of EM, NE, SC, and NNSA will work to foster the

- government-to-government relationship with Indian Nations impacted by its activities
- and to maintain DOE'S trust responsibilities including: (a) protecting tribal people
- and tribal resources from EM, NE, SC, or NNSA actions that could harm their health,
- safety, or sustainability; and (b) protecting cultural and religious artifacts and sites on
- lands managed by DOE. DOE will endeavor to protect natural resources which
- include plants, animals, minerals, and natural features that have religious significance
- to Indian tribes and/or are held in trust by the Federal Government. The aspects of
- health and resource protection carry through the evaluation of affected resources.

10

A,2 The Fiduciary Trust Relationship

11 12 13

15

16 17

"The Federal Government has enacted numerous statutes and promulgated numerous regulations that establish and define a trust relationship with Indian tribes. The United States continues to work with Indian tribes on a government-to-government basis to address issues concerning Indian tribal self-government, tribal trust resources, and Indian tribal treaty and other rights" (Executive Order 13175, 65 Fed. Reg. 67249 (November 9, 2000)).

18 19 20

The Ninth Circuit has underscored the importance of trust responsibility for all agencies:

21 22

23

24

25

"We have noted, with great frequency, that the federal government is the trustee of the Indian tribes' rights, including fishing rights. See, e.g., Joint Bd. of Control v. United States, 862 F.2d 195, 198 (9th Cir. 1988). This trust responsibility extends not just to the Interior Department, but attaches to the federal government as a whole."

26 27 28

Tribal trust law is most well developed in the arena of trust property and money². Indian Trust assets include, but are not limited to money, lands, rights, and water. The federal Indian trust doctrine is considered the "cornerstone" of federal Indian law.

30 31 32

33

34

35

36

See Dep't of the Interior v. Klamath Water Users Protective Ass'n, 532 U.S. 1, 11 (2001) ("The fiduciary relationship has been described as 'one of the primary cornerstones of Indian law,' and has been compared to one existing under a common law trust, with the United States as trustee, the Indian tribes or individuals as beneficiaries, and the property and natural resources managed by the United States as the trust corpus.").

37 38 39

40

41 42 The courts have made it clear that certain kinds of Indian property and monies are held by the United States in trust. In such cases, the government must assume the obligations of a fiduciary or trustee. The courts have imposed trust duties with respect to tribal funds. Additionally, as the Indian Claims Commission noted, "the fiduciary obligations of the United States toward restricted Indian reservation land, including minerals and timber,

are established by law and require no proof." Blackfeet and Gros Ventre Tribes of

² http://www.msaj.com/papers/43099.htm

- 1 *Indians*, 32 Ind. Cl. Comm. 65, 77 (1973). As a general matter, the United States must
- 2 properly manage and, protect such resources as: tribal land, *United States v. Shoshone*
- 3 Tribe of Indians, 304 U.S. 111 (1938); Lane v. Pueblo of Santa Rosa, 249 U.S. 110
- 4 (1919); tribal minerals, Navajo Tribe of Indians v. United States, 9 Cl. Ct. 227 (1985); oil
- 5 and gas, Navajo Tribe of Indians v. United States, 610 F.2d 766 (Ct. Cl. 1979); grazing
- 6 lands, White Mountain Apache Tribe v. United States, 8 Cl. Ct. 677 (1985); water, Id.,
- 7 and timber, *United States v. Mitchell*, (*Mitchell II*), *supra*.

10

11

12

"An Indian Trust Asset (ITA) is defined by the Bureau of Reclamation (Reclamation) as a legal interest in an asset that is held in trust by the U.S. Government for Indian Tribes or individual Tribal members. Examples of ITA's include water rights, lands, minerals, hunting and fishing rights, money, and claims."

13 14 15

16

17

18

Fiduciary trustee must always act in the interests of the beneficiaries (*Covelo Indian Community v. FERC*, 895 F.2d 581 (9th Cir. 1990 at 586). A trustee is obligated to not waste the trust asset. The Trust responsibility means that the federal government needs to be on the side of the Tribes. The federal government must act on behalf of the tribe, and is not supposed to treat tribes as stakeholders to be considered.

19 20 21

The Supreme Court, in defining the trust responsibility, has held that:

22 23

24

25

26

[The federal government] has charged itself with moral obligations of the highest responsibility and trust. Its conduct, as disclosed in the acts of those who represent it in dealing with the Indians, should therefore be judged by the most exacting fiduciary standards. *Seminole Nation v. United States*, 316 U.S. 286, 296-97 (1941).

272829

30

31

United States v. White Mountain Apache Tribe, 537 U.S. 465, 475 (2003) recognizes that the fundamental common law duty of a trustee is to maintain trust assets. Fort Mojave Indian Tribe v. United States, 23 Cl. Ct. 417, 426 (Cl. Ct. 1991) found the federal trust duty to protect Indian water rights because "the title to plaintiffs' water rights constitutes the trust property which the government, as trustee, has a duty to preserve."

33 34

The same trust principles that govern private fiduciaries also define the scope of the federal government's obligations to the Tribe. *See Covelo Indian Community v. F.E.R.C.*,

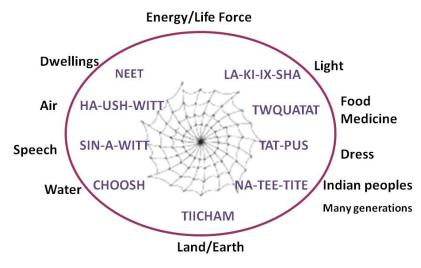
- 37 895 F.2d 581, 586 (9th cir. 1990). These include: 1) preserving and protecting the trust
- 38 property; 2) informing the beneficiary about the condition of the trust resource; and 3)
- 39 acting fairly, justly and honestly in the utmost good faith and with sound judgment and
- 40 prudence. See Assiniboine and Sioux Tribes v. Board of Oil and Gas Conservation, 792
- 41 F.2d 782, 794 (9th Cir. 1986); *Trust*, 89 C.J.S. §§ 246-62. Additionally, a long line of
- cases imposes a trust duty of protection on agencies when their off-reservation actions threaten the use and enjoyment of Indian land. *See, e.g., Northern Cheyenne Tribe v.*
- 43 threaten the use and enjoyment of Indian land. See, e.g., Northern Cheyenne Tribe v. 44 Hodel, 851 F.2d 1152 (9th Cir. 1988); Joint Tribal Council of Passomoquaddy Tribe v.
- 45 *Morton*, 528 F.2d 370, 379 (1st Cir. 1975).

³ http://www.ose.state.nm.us/water-info/AamodtSettlement/Appendix21.pdf

In addition to the fiduciary trust obligations of the federal government to the Hanford tribes, the Confederated Tribes of the Umatilla Indian Reservation, Yakama Nation, and the Nez Perce Tribe are recognized by the federal government as trustees of the natural resources at Hanford.⁴

"The concept of natural resource trustees is derived from the public trust doctrine. This ancient principal of law provides that governments hold certain property and natural resources in trust for the benefit of the public. Furthermore, the governments have the duty and authority to protect and preserve such property and resources for public uses."

Both CERCLA and OPA define "natural resources" broadly to include "land, fish, wildlife, biota, air, water, ground water, drinking water supplies, and other such resources..." Both statutes limit "natural resources" to those resources held in trust for the public, termed Trust Resources. While there are slight variations in their definitions, both CERCLA and OPA state that a "natural resource" is a resource "belonging to, managed by, held in trust by, appertaining to, or otherwise controlled by" the United States, any State, an Indian Tribe, a local government, or a foreign government [CERCLA §101(16); OPA §1001(20)].


In summary, it is the opinion of the CTUIR and the Indian Writer's Group that the "reference location" for the GTCC disposal at Hanford involves a Trust Resource under natural resource trusteeship rules, and has associated obligations of the federal fiduciary trustee (the federal government) to the Tribes, and of the natural resource trustees (Tribes, states, and federal government) to each other and their constituencies.

A.3 Regional and Sitewide Tribal Context

The natural law, or Tamanwit, teaches that American Indian people are not separate from the environment. A tremendous amount of tribal knowledge is contained and taught through oral traditions. Some stories and oral histories contain factual information, while others contain social principles and cultural values. Traditional environmental knowledge reflects tribal science and keen observation, sometimes expressed as accurate explanations of environmental processes, and sometimes expressed in symbolic terms. These teachings have been built over thousands of years, and teach each generation how to live and behave to sustain themselves and the community. This lifestyle is resilient, having persisted through floods, droughts, cataclysms, upheavals, and warfare.

http://www.hanford.gov/?page=292&parent=291

⁵ http://www.epa.gov/superfund/programs/nrd/primer.htm

3 F

Figure. Depiction of CTUIR Tamanwit, the Natural Law.

Native American ties to the environment are much more complex and intense than is generally understood by risk assessors (Harris 1998). All of the foods and implements gathered and manufactured by the traditional American Indian are interconnected in at least one way, but more often in many ways. Everything is woven together in a web that extends across space-time. To many American Indians, individual and collective well-being is derived from membership in a healthy community that has access to, and utilization of, ancestral lands and traditional resources, so that they may fulfill their part of the natural cycles and their responsibility to uphold the natural law. Adverse impacts to one resource ripple through the entire web and through interconnected biological and human communities. Therefore, if the link between a person and his/her environment is severed through the introduction of contamination or physical or administrative disruption, natural resource service flows may be interrupted, the person's health suffers, and the well being of the entire community is affected.

B. CTUIR Affected Resources – Features, Attributes, Goods, and Services

4

B.1 Climate and Ethnohistory

- 6 People have inhabited the Columbia Basin throughout the entire Younger Dryas era
- 7 (from 10,000 years ago to the present). Several even earlier archaeological sites are
- 8 known. Mammoth and bison harvest sites are found throughout the Columbia Plateau.
- 9 As the temperatures rose throughout this period, the Pleistocene lakes began to shrink and
- 10 wither away into alkali basins. The post-glacial grasslands of the Great Basin and
- 11 Columbia Basin were replaced by desert grasses, juniper, and sage, and megafauna
- 12 likewise decreased through ecological and hunting pressure. The glaciers in the Cascades,
- 13 Wallowa and Steens mountains rapidly disappeared.⁶
- 14 After about 5400 B.P. increasing precipitation and rising water tables were apparent
- 15 again on both sides of the Cascades. Pollen history indicates continual short, sharp
- 16 climatic shifts that, directly (e.g., soil moisture) or indirectly (e.g., fire and disease),
- 17 produced rapid changes in the Northwest's vegetation. The plants and animals were now
- 18 modern in form. Hunters switched to deer, elk, antelope and small game such as rabbits
- 19 and birds. Fishing also became important along the coastal streams and in the Columbia
- River system, with an increasing emphasis on the annual runs of the salmon even though
- 21 salmon runs date considerably farther back. ⁶

22

23 The human ethnohistory in the Columbia Basin is divided into cultural periods that

- parallel the climatic periods and represent cultural adaptations to changing environmental
- 25 conditions. Throughout this entire period the oral history continually added information
- 26 needed for survival and resiliency as the climate fluctuated. The oral history of local
- 27 native people is consistent with contemporary scientific and historic knowledge of the
- region and validates the extreme climate changes that have occurred in the region over
- 29 thousands of years. Cameron (2008)⁷ examined archaeological, ethnographic, paleo-
- 30 environmental, and oral historical studies from the Interior Plateau of British Columbia,
- Canada, from the Late Holocene period, and found correlations among all four sources of
- 32 information.

33

- 34 Tribal stories tell of eruptions, volcanoes, great floods, and animals now extinct. Indian
- 35 people on the Columbia Plateau have stories about the world being destroyed by fire and
- 36 water. Some of these were directly experienced, for example, the Mazama eruption

http://www.wac6.org/livesite/precirculated/1803 precirculated.pdf;

Mehringer, P.J. (1996) "Columbia River Basin EcosystemsL Late Quaternary.

http://www.icbemp.gov/science/mehringe.pdf.

⁶ http://www.oregon-archaeology.com/archaeology/oregon/;

⁷ Camerion, I (2008) "Late Holocene environmental change on the Interior Plateau of Western Canada as seen through the archaeological and oral historical records." World Archaeological Congress 6, Dublin, Ireland.

- 1 6,800 years ago, and the last of the Missoula floods 13,000 years ago. A major landscape
- 2 feature at Hanford, Gable Mountain or Nookshia (Relander1986: 305), is remembered
- 3 when it rose out of the flood waters. Older events were accurately inferred from geologic
- 4 features and then taught, either as literal explanations of the physiography or in symbolic
- 5 terms as stories or fables (i.e., taking the opportunity to teach a beneficial eco-behavioral
- 6 lesson).
- 7 Large scale manipulation of plants and animals through fire as a tool to reduce plants tied
- 8 up in climax vegetation and to increase valued plant (and animals that depended on them)
- 9 started perhaps 3500-3000 years ago, particularly in moister areas where burning out
- 10 climax vegetation reduced the biomass tied up in cellulose (trees), and increased the
- 11 diversity of the natural habitat. Important species such as elk, camas (a root food),
- tarweed (a seed food) and oak were enhanced with periodic burning. Other plants used
- 13 for food, medicine, and fiber also increase in relative abundance with the use of fire.
- 14 Climate change that will occur over the next 10,000 years will inevitably draw on
- 15 knowledge from the past, whether the climate becomes wetter or drier. Evaluation of
- 16 future climate scenarios will need to include as much variation as occurred in the last
- 17 10,000 years.

B.2 Air Quality

20 21

The importance of clean fresh air is often overlooked in NEPA analysis. For example, while wind and fire are part of the natural regime, and an intact soil surface with a cryptogam crust in the desert reduces dust resuspension during wind events.

242526

27

While chemical and radioactive air emissions are relatively low at Hanford presently, the extensive cleanup and construction activities on Hanford contribute to blowing dust, increased traffic, diesel emissions, deposition or re-deposition of radionuclides, and generation of ozone, particulate matter, and other air pollutants with unknown human and environmental health effects. Viewshed and haze are also affected.

31 32

B.3 Physical Resources

333435

37

38

It is well known that environmental attributes or qualities such as wilderness, solitude, peace, calm, quiet, and darkness are important to individual species that need large undisturbed habitat as well as to humans who value those experiential qualities⁸. These qualities are very fragile, and once lost are hard to recover. A single light at night breaks the quality of darkness, just as the first drop of contamination changes the quality of water from pure to impure. CTUIR recommends that more attention be paid to the value of unfragmented and undisturbed shrub steppe habitat and natural resources.

⁸ http://findarticles.com/p/articles/mi_m1145/is_n8_v29/ai_15769900/; http://findarticles.com/p/articles/mi_m1145/is_n8_v29/ai_15769900/

B.3.1 Quiet

Noise can affect living organisms in the ecosystem through interruption of reproductive cycles and migration patterns, and driving away species that are sensitive to human presence. Non-natural noise can be offensive while traditional ceremonies are being held. The noise generated by the Hanford facility may presently create noise interference for ceremonies held at sites like Gable Mountain and Rattlesnake Mountain by interrupting the thoughts and focus and thus the spiritual balance and harmony of the community participants of a ceremony (Greider 1993)⁹.

B.3.2 Darkness

Light at night affects nocturnal animals such as bats, owls, night crawlers and other species. Night light also has known affects on diurnal creatures and plants by interrupting their natural patterns. Light can affect reproduction, migration, feeding and other aspects of a living organism's survival. Light at night also disrupts the quality of human experience, including star gazing and cultural activities. Extensive light pollution is already being produced from by the Hanford site.

B.4 Geological Resources

Geological resources include soils, sediments, minerals, geological landscapes and associated features, borrow materials, gas, and petroleum.

B.4.1 Soils, Minerals

Native Peoples understand the importance of soils and minerals. Many uses of soils are included in the attached material on exposure pathways. At Hanford, material from the White Bluffs was used for cleaning hides, making paints, and whitewashing villages. Borrow material for caps, barriers, and clean fill is a particular concern, and needs to be part of each NEPA analysis.

B.4.2 Landscapes

The human aspects of Hanford landscapes are discussed briefly here. The CTUIR recommend that DOE pay more attention to landscape features and visual and aesthetic services that flow from the geologic formations at Hanford. Cultural and sacred landscapes may be invisible unless they are disclosed by the peoples to whom they are important. Tribal values lie embedded within the rich cultural landscape and are conveyed to the next generation through oral tradition by the depth of the Indian languages. Numerous landmarks are mnemonics to the events, stories, and cultural practices of native peoples. Oral histories impart basic beliefs, taught moral values and the land ethic, and helped explained the creation of the world, the origin of rituals and customs, the location of food, and the meaning of natural phenomena. The oral tradition

⁹ Greider, T (1993) Aircraft Noise and the Practice of Indian Medicine: The Symbolic Transformation of the Environment. Human Organization 52(1): 76-82.

1 provides accounts and descriptions of the region's flora, fauna, and geology. Within this 2 landscape are songs associated with specific places; when access is denied a song may be 3 lost.

4

6

8

10

13

14

"At Hanford there are three overlapping cultural landscapes that overlie the natural landscape. These are not displacements of a previous landscape by a new landscape, but a coexistence of all three simultaneously even if one landscape is more visible in a particular area. The first represents the American Indians, who have created a rich archeological and ethnographic record spanning more than 10,000 years. This is the only stretch of the Columbia River that is still free-flowing, and one of the few areas in the Mid-Columbia Valley without modern agricultural development. As a result, this is one of the few places where native villages and campsites can still be found. Still today, local American Indian tribes revere the area for its spiritual and cultural importance, as they continue the traditions practiced by their ancestors." The second landscape was created by early settlers, and the third by the Manhattan Project. Today, DOE is removing much of the visible portion of the Manhattan landscape, returning the surface of the site to a more natural state (restoration and conservation) and thus revealing the cultural landscape that remains underneath.

10

18 19 20

21

25

26

17

The Hanford Reach and the greater Hanford Site, a geographic center for regional American Indian religious activities, is central to the practice of the Indian religion of the region and many believe the Creator made the first people here. Indian religious leaders such as Smoholla, a prophet of Priest Rapids who brought the Washani religion to the Wanapum and others during the late 19th century, began their teachings here. Prominent landforms such as Rattlesnake Mountain, Gable Mountain, and Gable Butte, as well as various sites along and including the Columbia River, remain sacred. American Indian traditional cultural places within the Hanford Site include, but are not limited to, a wide variety of places and landscapes: archaeological sites, cemeteries, trails and pathways, campsites and villages, fisheries, hunting grounds, plant gathering areas, holy lands, landmarks, important places in Indian history and culture, places of persistence and resistance, and landscapes of the heart. Because affected tribal members consider these places sacred, many traditional cultural sites remain unidentified.

32 33

35

31

More generally, cultural landscapes have been defined by the World Heritage Committee as distinct geographical areas or properties uniquely representing the combined work of nature and of man. They identified and adopted three categories of landscape: the purely natural landscape, the human-created landscape, and an associative cultural landscape which may be valued because of the religious, artistic or cultural associations of the natural and/or human elements.

39 40

38

Sacred natural sites are natural places recognized by indigenous and traditional peoples as having spiritual or religious significance. They can be mountains, rivers, lakes, caves, forest groves, coastal waters, and entire islands. The reasons for their sacredness are diverse. They may be perceived as abodes of deities and ancestral spirits; as sources of healing water and plants; places of contact with the spiritual, or communication with the

_

 $^{^{10}~}http://www.hanford.gov/doe/history/?history=archaeology.$

- 1 'beyond-human' reality; and sites of revelation and transformation. As a result of access
- 2 restrictions, many sacred places are now important reservoirs of biological diversity.
- 3 Sacred natural sites such as forest groves, mountains and rivers, are often visible in the
- 4 landscape as vegetation-rich ecosystems, contrasting dramatically from adjoining, non-
- 5 sacred, degraded environments.¹¹

B.4.3 Viewsheds

8 9 10

11

- Viewscapes tend to be panoramic and are made special when they contain prominent topography. Viewscapes are tied with songscapes and storyscapes, especially when the
- 12 vantage point has a panorama composed of multiple locations from either song or story.
- 13 Viewscapes are critical to the performance of some Indian ceremonies. As told by a
- 14 Wanapum elder, within the Hanford viewshed (at an undisclosed location) is at least one
- 15 calendar wheel that guided native residents in their movements and activities. The wheel
- 16 had spokes which were duplicated at villages. At each village a white stone was placed
- 17 in the ground and atop this stood a high post. The post would cast a shadow which was
- 18 read. When it reached a certain angle, like the spoke in the wheel, the people would
- 19 respond with the proper action. The wheel was a reference point that held time schedules.
- 20 Gable Mountain is a central area which is also a point of reference for many ceremonies.
- 21 Many of the reference points that were set on the ground are organized like the stars –
- they are related in important ways that are described in detailed songs and stories.
- 23 Interruption of the vista by large facilities or bright lights impairs the cultural services
- 24 associated with the viewshed.

2526

A viewshed map is included in the Hanford NEPA boilerplate document (Duncan 2007).

2728

2930

B.5 Water

31 32

- 33 Water sustains all life. As with all resources, there is both a practical and a spiritual
- 34 aspect to water. Water is sacred to the Indian people, and without it nothing would live.
- 35 When having a feast, a sip of water is taken either first or after a bite of salmon, then a bit
- 36 of salmon, then small bites of the four legged animals, then bites of roots and berries, and
- 37 then all the other foods.

_

¹¹ Oviedo, G. (2002). member of the Task Force of Non-Material Values of Protected Areas of the World Commission on Protected Areas (WCPA), at the Panel on Religion, Spirituality and the Environment of the World Civil Society Forum, Geneva, 17 July 2002.

Stoffle, R.W., Halmo, D.B., Austin, D.E. (1998). Cultural Landscapes and Traditional Cultural Properties: a Southern Paiute View of the Grand Canyon and Colorado River. American Indian Quarterly, Vol. 21: 229-250.

Walker, D.E., 1991. "Protection of American Indian Sacred Geography," in: *Handbook of American Indian Religious Freedom*, Vecsey, C., Ed., Crossroad, New York, NY, pp. 100-115.

The quality of purity is very important for ceremonial use of water. For example, making a sweat lodge and sweating is a process of cleansing and purification. The sweat lodge should be made with clean natural materials and the water used for sweat-bathing should also be uncontaminated. The concept of sacred water or holy water is global, and often connects people, places, and religion; religions that are not land-connected may lose this concept. Additionally, concepts related to the flow of services from groundwater and the valuation of groundwater are receiving increased attention.

 Although DOE's threshold for groundwater injury may be regulatory standards based on human or biological health, perhaps the most important criterion for contamination from a tribal perspective is the first drop of contamination, which moves the water from a condition of purity to a condition of degraded. This concept sets a threshold of injury at background or the detection limit.

From the CTUIR's perspective, contamination in the groundwater at the Hanford site is the greatest long-term threat to the Columbia River. There is a tremendous volume of radioactive and chemical contamination in the vadose zone and the groundwater. The mechanics of transport of contaminants through the soil to the ground water is still largely unknown. The actual volumes of contamination within the ground water and the direction of ground water flow are not fully characterized. The uncertainly due to this lack of knowledge and the limited technical ability to remediate the vadose zone and ground water puts the Columbia River and its biota at continual risk. The tremendous importance of groundwater means that the uncertainty about present and future contamination must play a key role in the risk assessment – the severity of the consequences if groundwater and the river become more contaminated is high (risk = probability x severity).

12 Altman, N. (2002) Sacred Water: the Spiritual Source of Life. Mahwah, NJ: Hidden Spring Publ.; Marks, W.E. (2001) The Holy Order of Water. Vancouver BC: Steiner Books Inc.;

Burmil, S., Daniel, T.C., and Hetherington, J.D. (1999). Human values and perceptions of water in arid landscapes. *Landscape and Urban Planning*, 44: 99-109;

Mazumdar, S. and Mazumdar, S. (2004). Religion and place attachment: A study of sacred places. Journal of Environmental Psychology, 24: 385-397.

¹³ National Research Council (1997) Valuing Ground Water: Economic Concepts and Approaches. Washington D.C.: National Academy Press.

B.6 Biological Resources

B.6.1 Ethno-Habitat

Natural resources are integral to many traditional practices and celebrations throughout the year, many of which honor the traditional foods or First Foods. Based on the importance and many uses of the natural resources, an exposure scenario reflecting the underlying **ethnohabitat or eco-cultural system** was developed for use in dose and risk assessments at Hanford (Harper and Harris 1997; Harris and Harper 2000; CTUIR 2004)¹⁴. Ethno-habitats can be defined as the set of cultural, religious, nutritional, educational, psychological, and other services provided by intact, functioning ecosystems and landscapes. Although the concept of ethnohabitat or ethnoecology has been used various forms in anthropological disciplines for many years, it had never been used in risk assessment.

A healthy ethno-habitat or eco-cultural system is one that supports its natural plant and animal communities and also sustains the biophysical and spiritual health of its native peoples. Ethno-habitats are places clearly defined and well understood by groups of people within the context of their culture. These are living systems that serve to help sustain modern Native American peoples' way of life, cultural integrity, social cohesion, and socio-economic well-being. The lands, which embody these systems, encompass traditional Native American homelands, places, ecological habitats, resources, ancestral remains, cultural landmarks, and cultural heritage. Larger ethno-habitats can include multiple interconnected watersheds, discrete geographies, seasonal use areas, and access corridors. A depiction of the eco-cultural system for the CTUIR is shown as a seasonal round that includes both terrestrial and aquatic resources.

30 Figure. Umatilla Seasonal Round

¹⁴ Harris, S.G. and Harper, B.L. "A Native American Exposure Scenario." Risk Analysis, 17(6): 789-795, 1997; S Harris and B Harper. "Using Eco-Cultural Dependency Webs in Risk Assessment and Characterization." Environmental Science and Pollution Research, 7(Special 2): 91-100, 2000; http://www.hhs.oregonstate.edu/ph/tribal-grant-main-page.

¹⁵ Modified from the East-Side EIS of the Interior Columbia Environmental Management Plan (ICBEMP).

B.6.2 Terrestrial Resources of the Plateau Culture Area

1 2 3

An ethnoecological approach to describing terrestrial resources begins with a description of the potential natural vegetation within the Columbia Basin ecozones, and then describes the natural resource usage patterns of the Plateau Culture Area.¹⁶

6 7

8

9

All natural resources are significant to tribal culture as part of functioning ecosystems, and many are individually important as useful for food, medicines, materials, or other uses. A comprehensive list of potentially injured biota was compiled for the tribal natural resource trustees, including 13 algae species, 56 fish species, 269 bird species, 52 mammal species, 21 amphibian and reptile species, over 800 aquatic and terrestrial plant species, and dozens of orders, families, and genera of aquatic and terrestrial insects.

12 13

11

The Hanford shrub steppe is a Washington State priority habitat¹⁷ due to its large and 14 largely unfragmented nature, which is now rare. In the 1970s, the National 15 Environmental Research Park (NERP) program created seven NERPs to set aside land for 16 17 ecosystem preservation and study. The Hanford NERP, managed by the Department of Energy, includes the Fitzner/Eberhardt Arid Lands Ecology Reserve, which is the only remaining sizable remnant (312 square kilometers, 120 square miles) of the Washington 20 shrub-steppe landscape that is still in a relatively pristine condition, the industrial zone of 21 the Hanford Site, which contains nuclear production facilities in various stages of cleanup and closure, and buffer zones on the opposite shore of the Columbia River: the US Department of the Interior's Saddle Mountain Wildlife Reserve and the Washington State wildlife management area.¹⁸ Ecological functions that require this degree of intactness is make Hanford very valuable, and make contiguity, biodiversity, and attributes of a

2627

29

Based on the Presidential Proclamation that established the Hanford Reach National Monument, the CTUIR policy seeks to ensure that all of Hanford will be restored and protected:¹⁹

30 31 32

33

34

35

36

37

38

39

40

41

42

"The area being designated as the <code>Hanford Reach</code> National Monument forms an arc surrounding much of what is known as the central <code>Hanford</code> area. While a portion of the central area is needed for Department of Energy missions, much of the area contains the same shrub-steppe habitat and other objects of scientific and historic interest that I am today permanently protecting in the monument. Therefore, I am directing you to manage the central area to protect these important values where practical. I further direct you to consult with the Secretary of the Interior on how best to permanently protect these objects, including the possibility of adding lands to the monument as they are remediated."

43

similar scale very important to preserve and enhance.

¹⁶ http://www.fs.fed.us/land/pubs/ecoregions/ch48.html#342I

¹⁷ http://www.fws.gov/hanfordreach/natural-resources.html

¹⁸ http://www.pnl.gov/nerp/

¹⁹ FR Volume 36--Number 23: 1271-1329; Monday, June 12, 2000

- 1 In addition to biological resources and natural resource goods, ecological functions and
- 2 services that flow to people may be injured by contamination or physical disturbance.
- 3 For tribal members, human use services that natural resources provide include both direct
- 4 use of resources (e.g., hunting, fishing, and gathering of edible plants) and nonuse
- 5 services (e.g., spiritual identity). Because Tribal identity is so strongly defined by their
- 6 relationship to their natural environment, natural resources provide more services (on

7 average) to Tribal members than to other members of the general public.

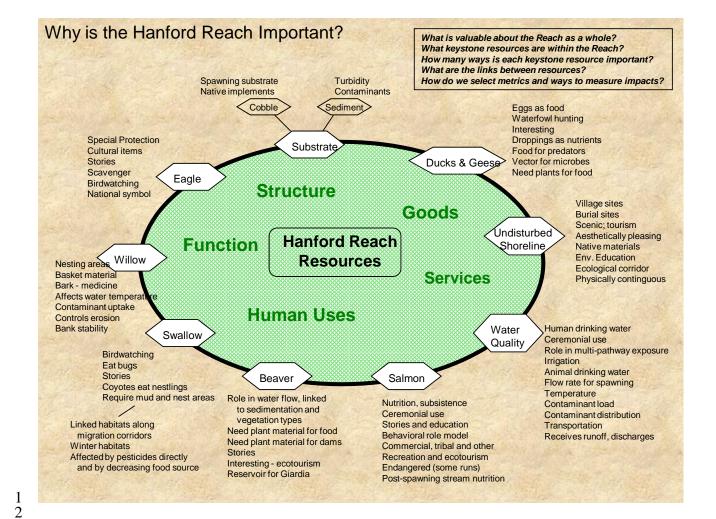
An overview of the resources that can serve as conduits of exposure to native peoples is presented in the CTUIR and Yakama Nation exposure scenarios. The CTUIR exposure factors based on natural resources is presented in the "Reference Indian" section.

B.6.3 Aquatic Resources of the Plateau Culture Area

The Columbia River, which cuts through the Hanford site, is the life blood of the region, with rich diverse fisheries delicately balanced on thriving aquatic ecosystems. The Hanford Reach is the last free-flowing segment of the Columbia River and is home of the last remaining naturally spawning fall Chinook. Ancestral CTUIR fisheries sites are located throughout the Hanford Reach. The health of the Hanford Reach is the keystone essential to the survival of Columbia Basin fisheries and CTUIR Treaty rights and resources.

Use of the Hanford site and surrounding areas by tribes was tied primarily to the robust Columbia River fishery. Past social activities of native people include gatherings for such activities like marriages, trading, feasts, harvesting, fishing, and mineral collection. Tribal families and bands lived along the Columbia either year round or seasonally for catching, drying and smoking salmon. The reduction of salmon runs, loss of fishing sites due to dam impoundments and 70 years of DOE institutional controls at Hanford have contributed to the degradation of the supplies necessary for this gifting and barter system of CTUIRculture.

Salmon remains a core part of the oral traditions of the tribes of the Columbia Plateau and it still maintains a presence in native peoples' diet just as it has for thousands of generations. Salmon is among those foods regularly recognized ceremonially. One example is the *ke'uyit* which translates to "first bite." It is a ceremonial feast that is held in spring to recognize the foods that return to take care of the people. It is a long standing tradition among the people and it is immersed in prayer songs and dancing. Salmon is the first food that is eaten by the attendants. Extending gratitude to the foods for sustaining the life of the people is among the tenets of plateau lifestyle. Life is perceived as intertwined with the life of the Salmon. A parallel can be seen between the dwindling numbers of the Salmon runs and the struggle of native people. *from Salmon and His People*²⁰


²⁰ Landeen, D. (1999) Salmon and His People: Fish and Fishing in Nez Perce Culture. Lewiston, ID: Lewis and Clark State College Press.

- The people of the Columbia River tribes have always shared a common understanding --
- that their very existence depends on the respectful enjoyment of the Columbia River
- 3 Basin's vast land and water resources. Indeed, their very souls and spirits were and are
- inextricably tied to the natural world and its myriad inhabitants. Among those inhabitants,
- none were more important than the teeming millions of anadromous fish enriching the
- 6 basin's rivers and streams. Despite some differences in language and cultural practices,
- 7 the people of these tribes shared the foundation of a regional economy based on salmon.
- 8 The Treaties of 1855 between the Tribes and the federal government explicitly reserved
- 9 the right to continue fishing forever. Over the next century, settlers encroached on most
- tribal fishing grounds, blocked access, stole nets, destroyed boats, arrested Indians, over-
- 11 fished, destroyed habitat, and built dams. In 1974 Judge George Boldt decided in *United*
- 12 States v. Washington (384 F. Supp. 312) that the "fair and equitable share" of fish for
- tribes was, in fact, 50 percent of all the harvestable fish destined for the tribes' traditional 13
- 14 fishing places. The following year, Judge Belloni applied the 50/50 standard to U.S. v.
- 15 Oregon and the Columbia River. Judge Boldt's decision also affirmed tribal rights to self-
- regulation when in compliance with specific standards. In 1988, Public Law 10-581, 16
- 17 Title IV Columbia River Treaty Fishing Access Sites, was enacted. The primary purpose
- of the legislation is to provide an equitable satisfaction of the United States' commitment 18
- 19 to provide lands for Indian treaty fishing activities in lieu of those inundated by
- 20 construction of Bonneville Dam (www.critfc.org).

- 22 Salmon will always be important and necessary for physical health and for spiritual well-
- 23 being. Tribal people continue to fish for ceremonial, subsistence and commercial
- 24 purposes employing, as they always have, a variety of technologies. Tribal people fish
- 25 from wooden scaffolds and boats, and use set nets, spears, dip nets and poles and lines.
- 26 Tribal people still maintain a dietary preference for salmon, and its role in ceremonial life 27
- remains preeminent.

28

- 29 Aquatic resources in the Hanford Reach (the area of the river flowing through the
- 30 Hanford site) include many species, including people. An illustration of resource
- 31 interconnections and services is shown in figure X.

G-109

TRANSPORTATION

2

- 3 The Middle Columbia Plateau of the Hanford area is the crossroads of the Columbia
- 4 Plateau, being located half way between the Great Plains and the Pacific Northwest
- 5 Coast. In the Hanford area major Columbia River tributaries (the Walla Walla, Snake,
- 6 and Yakima Rivers) flow into this section of the main stem Columbia River. The slow
- 7 water at the Wallula Gap was one of the few places where the river could be traversed by
- 8 horses year round including during the spring melt. The river crossing at Wallula
- 9 provided access to a vast web of trails that crossed the region.

10

- 11 This travel network was utilized by many tribal groups on the Columbia Plateau for
- 12 thousands of years of foot travel. Early explorers and surveyors utilized and referenced
- 13 this extensive trail network. Some of the trails have become major highways and rail
- 14 lines. Part of the ancient trail system, at one time called the Oregon Trail, now Interstate
- 15 84 (I-84) is a primary transportation corridor for nuclear waste enters the State of Oregon
- 16 at Ontario, Oregon. I-84 and a Union Pacific rail line also cross the Umatilla Indian
- 17 Reservation, including some steep and hazardous grades that are notorious nationally for
- 18 fog and freezing fog, freezing rain and snow.

19

- 20 Any waste traveling to Hanford will cross many major rivers that are important salmon
- 21 bearing watersheds including the Snake River, the Burnt River, the Grande Ronde River
- 22 (Tributaries of the Snake River), the Umatilla River and Columbia River main stem. All
- 23 of these river systems have threatened and endangered species issues.

2425

Consequence Evaluation

1 2

Recommendations for features and measures are presented in a format similar to the Features-Events-Processes (FEPs) method, but reflecting the tribally-important or ecocultural attributes of each resource. More detail is contained in the text of various other sections.

Resource or Topic	Features, Attributes, Functions, Goods, Services	Measures of loss or benefit (positive or negative movement; degree of movement)
Sitewide Whole	Support services for traditional lifeways; Intact webs of resources, goods, service flows.	Degree of impact (or enhancement) of traditional lifeways by cultural QALY measure (under development); Loss or recovery of individual traditional activities (hunting, gathering, fishing); Loss or recovery of access to areas or media such as groundwater; Security of protection from development or other loss of acreage, resources, or rights.
Landscape	Intact scape for places, names, songs, calendar, other services. Undisturbed physiographic profile.	Loss or preservation of future land use options. Loss or enhancement of conservation potential; Impact on physiographic profile; Loss or recovery of native scapes.
Light, Noise, other aesthetic attributes.	Quiet needed for ceremonies, experiential quality; Darkness needed for same; Buffer of solitude, isolation, safety from intrusion	Degradation or improvement in quiet during transportation and storage; Degradation or improvement in darkness at night during transport and storage; Duration of impacts (lifecycle of operation); Quality of recovery plan after operation is over.
Viewshed	Uninterrupted viewshed	Degrees in visual field without impact x volume of space with natural features; Significance of direction or features of interruption (line of sight).
Air quality, dust	Clean fresh air for life support and quality of life, without toxics, haze, or dust.	More or fewer emissions during construction, transport, operations, closure. Potential for dust resuspension during each phase. Indirect impacts from energy production, ozone emissions, diesel use. Contribution or benefit to PSD area or attainment status. Greenhouse gas emissions.
Soil,	Clean shallow and deep soil; special materials (White Bluffs);	Mass of contaminated soil x degree of exceedance of human health standards x duration of contamination; Undisturbed soil profile; Intactness of cryptogam crust. Access to special materials.
Minerals, gravel, fill, barrier material		Volume and area of clean fill; Quality of resource mitigation actions;

		Minimization of linked resource impacts.
Sediments	Clean sediment	Present or future exceedance of a standard,
		including tribal health standard;
		Function in aquatic ecosystems.
Water	Clean, clear, cold water for	Comparison to tribal standards;
, , alor	drinking, ceremonies	Gallon-years above detection limit or
	#=====================================	background.
Terrestrial Ecosystems	Large-scale ecoregion	Evaluation of NRDA impacts;
,	preservation;	Preservation of biodiversity;
	Support for tribal lifeways	Reduction in ecological stressors;
	components;	Loss or benefit in contiguity (fragmentation);
		Formal process for stressor identification;
		Identification of valued ecological
		components.
Terrestrial habitats and	Provision of goods for food,	Selection of habitat suitability index;
species	clothing, shelter, ceremonies,	Number of impacted ecological acre-years;
	mental health, peace of mind,	Consideration of tribally-important species;
	and so on.	Number of impacted cultural acre-years;
		Time to full recovery.
Aquatic Ecosystems	Large-scale ecoregion	Proximity of action to river;
	preservation;	Evaluation of NRDA impacts;
	Support for tribal lifeways	Formal process for stressor identification;
	components;	Identification of valued ecological
		components.
Aquatic habitats and	Provision of goods for food,	Impacted number of river-miles
species, shorelines	clothing, shelter, ceremonies,	Consideration of tribally-important species;
	mental health, peace of mind,	Number of impacted cultural acre-years
	and so on.	Time to full recovery
Transportation	Features and events related to	General transportation risks;
	safety and vulnerability of	Routes through tribal lands;
TT 1 1 .	adjacent areas.	Routes near critical habitats, rivers.
Hazardous substances;	Baseline (target) is lack of	Amount of hazardous material imported,
safety aspects	contamination but current condition is tremendous	generated, stored, or disposed.
	contamination.	Amount of hazardous material already on
Human Health	Target is both lack of excessive	site, both permitted and contaminated. Individual and community doses and risks
Human Health	exposure and active multi-	using Tribal scenarios,
	dimensional health promotion.	Multigenerational exposures and risk,
	difficusional ficatur promotion.	Consideration of broader health context.
Env Justice	Tribally-appropriate EJ analysis	Compliance with Treaty and Trust;
Liiv Justice	needed to understand	Presence of disadvantaged or
	disproportionate impacts.	disproportionally affected groups-Tribes;
		Eco-spatial basis for tribal EJ analysis.
Economic	Recognition of subsistence	Convention analysis for general pop;
	economy methods.	Impacts to subsistence for tribes.
Cultural Resources	Need evaluation of likelihood of	Amount of activity in TCP, archaeological
	adverse or beneficial impacts to	zone, sacred sites, and NHPA sites.
	sites, zones, districts.	,
Energy and	Need lifecycle energy and	Energy requirement
Infrastructure	infrastructure evaluation,	Infrastructure footprint
	including adequacy of closure	Replacement-mitigation of resources
	plans.	Road needs, water and sewer needs.
		Intensity of security needs
Climate-Energy Values	Targets of energy efficiency, net	Net-zero operations
	zero, sustainability, planning for	Carbon footprint

	climate change.	
Cumulative	Lifeways support	Impacts to health, ecology, cultural, socio- economic, other analyses. Space-time mapping of impacts. Lifecycle impacts and costs. Sitewide totals of hazardous materials, footprints; Impact on the ability to reach a fully restored endstate.

PLATEAU SUBSISTENCE ECONOMY

3

8

10

The eco-cultural system described in other sections includes human, biological, and physical components, and supports the flow of nutritional, religious, spiritual, educational, sociological, and economic services. No component or service is separable from any other. It is well-recognized in anthropology that indigenous cultures include networks of materials interlinked with networks of obligation and trust. Indian people engage in a complex web of exchanges that are the foundation of community and intertribal relationships. Together these networks determine how materials, services, and information flow within the community and between the environment and the community.

12 13 14

In economic terms, this system is called a subsistence economy. An explanation of "subsistence" developed by the EPA Tribal Science Council is as follows.²¹

15 16 17

18 19

20

21

22

"Subsistence is about relationships between people and their surrounding environment, a way of living. Subsistence involves an intrinsic spiritual connection to the earth, and includes an understanding that the earth's resources will provide everything necessary for human survival. People who subsist from the earth's basic resources remain connected to those resources, living within the circle of life. Subsistence is about living in a way that will ensure the integrity of the earth's resources for the beneficial uses of generations to come.

232425

As the National Park Service explains,

26 27

28 29

30

31

32

33 34

35

36 37

38 39

40

41 42

43

"While non-native people tend to define subsistence in terms of poverty or the minimum amount of food necessary to support life, native people equate subsistence with their culture. It defines who they are as a people. Among many tribes, maintaining a subsistence lifestyle has become the symbol of their survival in the face of mounting political and economic pressures. To Native Americans who continue to depend on natural resources, subsistence is more than eking out a living. The subsistence lifestyle is a communal activity that is the basis of cultural existence and survival. It unifies communities as cohesive functioning units through collective production and distribution of the harvest. Some groups have formalized patterns of sharing, while others do so in more informal ways. Entire families participate, including elders, who assist with less physically demanding tasks. Parents teach the young to hunt, fish, and farm. Food and goods are also distributed through native cultural institutions. Young hunters, gatherers, and fisherman are required to distribute their first catch or harvest throughout the community at a first feast ceremony. It is a ceremony that illustrates the young person is now a provider for his community. Subsistence embodies cultural values that recognize both the social obligation to share as well as the special spiritual

²¹ Tribal Science Council (2002). "Subsistence: A Scientific Collaboration between Tribal Governments and the USEPA." Provided by John Persell (jpersell@lldrm.org).

relationship to the land and resources. This relationship is portrayed in native art and in many ceremonies held throughout the year."²²

2 3

1

4 The terms "fish, hunt or gather" are shorthand labels that identify some of the most visible activities within this personally self-sufficient or subsistence economy, but they also include a wide range of associated activities such as preparation, processing, using or 6 7 consuming, and various traditional and cultural activities. A subsistence economy 8 includes people with a wide range of 'jobs' such as food procurement, processing, and 9 distribution; transportation (pasturing and veterinary); botany/apothecary services; administration and coordination (chiefs); education (elders, linguists); governance 11 (citizenship activities, conclaves); finance (trade, accumulation and discharge of obligations); spiritual health care; social gathering organization; and so on. The 12 categories of 'fish, hunt, and gather' each include a full cross section of these activities. 13 This is why 'hunting' is not just the act of shooting and eating an animal, but includes a 14 15 full cross-section of all the activities that a hunter-specialist does within their community.

16 17

18 19

20

21

2223

24

The natural resources that are located on Hanford are essential to this system of relationships. When access and resources needed for personal enterprise associated with salmon or any other resource are blocked, there are psychological, nutritional, monetary, social, welfare, self-esteem, and many other impacts that ripple through the entire community. This includes collection and preparation of animals, plants or other raw materials for foods, ceremonial, medicinal, beadwork, hide work, tule mats and many other items along with the associated trading or gifting. The number of individuals that participate in these personal enterprises would greatly increase if access to Hanford is regained and resources restored.

252627

30

31

33

35

37

38

The more concrete aspects of a subsistence lifestyle are important to understanding the degree of environmental contact and how subsistence is performed in contemporary times. Today, there is an integrated interdependence between formal (cash-based) and informal (barter and subsistence-based) economic sectors that exists and must be considered when thinking of economics and employment of tribal people. Today's subsistence family generates may include members engaged in both monetary and subsistent activities as wage-laborers, part-time workers, professional business people, traditional craft makers, seasonal workers, hunters, fishers, artisans, and so on. Today's subsistence utilizes traditional and modern technologies for harvesting and preserving foods as well as for distributing the produce through communal networks of sharing and bartering. This information is used when describing the lifestyle and developing the dietary and direct exposure factors in the "reference Indian" scenario.

39 40

²² National Park Service: http://www.cr.nps.gov/aad/cg/fa_1999/Subsist.htm

²³ http://arcticcircle.uconn.edu/NatResources/subsistglobal.html

Environmental Justice Analysis

2 3

4 DOE analysis of Environmental Justice is uniformly inadequate to address Native

- American rights, resources, and concerns. At Hanford, Tribal rights, health, and 5
- resources are always more impacted than those of the general population due to the
- 7 traditional lifeways, close connections to the natural and cultural resources, and natural
- resource trusteeship. Thus, Hanford EJ analyses generally find that beneficial impacts of
- new missions, such as new jobs or more taxes, accrue to the local non-native community,
- 10 yet fail to recognize that the majority of negative impacts accrue to Native Americans,
- such as higher health risk, continuation of restricted access, lack of natural resource
- improvement, and so on. 12

13

- 14 President Clinton signed Executive Order 12898 to address Environmental Justice issues
- and to commit each federal department and agency to "make achieving Environmental 15
- Justice part of its mission." According to the Executive Order, no single community 16
- should host disproportionate health and social burdens of society's polluting facilities. 17
- 18 Many American Indians and Alaskan Natives are concerned about the interpretation of
- 19 "environmental justice communities" by the U.S. Federal Government in relation to
- 20 tribes. By this definition, tribes are included as a minority group. However, the definition
- as a minority group fails to recognize tribes' sovereign nation-state status, identify the 21
- federal trust responsibility to tribes, promote economic and social development, or
- 23 protect the treaty and statutory rights of American Indians and Alaskan Natives.

24

25 The identification of rural EJ populations, particularly Native Americans, is not always

- 26 obvious if an impacted area is not directly on a reservation. If natural resources
- appertaining to tribes are present, or if cultural resources or traditional sites within a
- ceded or usual and accustomed are affected, then an "EJ Community" is present. Further,
- Native American communities face environmental exposures that are greater than those
- faced by other EJ communities because of their greater contact with the environment that
- occurs during traditional practices and resource uses. 31

32 33

Thus, the EJ analysis begins with an identification of resources and who uses them, not with county demographics. The first step in evaluating EJ for Native Americans at

34

35 Hanford is to answer the following questions:

36 37

38

39

40

41

42

- Do tribal members live in (now or in the past), visit, or use resources from the impacted zone?
- Is the affected area within a tribal historic area, a traditional cultural property, or a tribally important landscape?
- Is the affected area linked ecologically, culturally, visually, or hydrologically to tribal or other EJ population resources or uses?
 - Is a tribe a Natural Resource Trustee of the affected resource or lands?

- 45 If the answer to any of these questions is positive (the answers are all 'yes' at Hanford),
- the EJ analysis may proceed with more detailed evaluation. 46

3

5

7

Resource identification and quantification. Likelihood that cultural resources are present within an impact zone or that the site or resource has tribal or community significance, including sacred sites, historical/archaeological sites, burial sites, and 4 sites containing important traditional foods, medicines, or cultural materials or with 6 associated cultural uses or history, or general community importance (values recreational areas, physical features by which the community identifies itself, etc.). The quantity of goods and services, or acreage, is quantified in this step.

8 9

11 12

13

14

10 Damage Potential. The probability and severity of the damage in terms of physical disturbance, existing stressors, contamination, desecration, or degradation. Predicted peak concentrations, time to impact, and resiliency of the affected system are also estimated. This is a vulnerability index that includes aspects of imminence, severity, and resiliency or reversibility. Are tribal exposure factors higher than for a rural residential population?

15 16 17

18

19

20 21

22

23

Consequence Potential. The consequences of the damage on cultural activities, resources or values. This parameter represents the combination of the first two parameters (the probability of a resource being present and the probability of damage). Consequence might be restricted access or loss of future use options, and associated impacts such as loss of place names or a cultural skill associated with loss of access, or interruption of other goods and services. It may also include how much the Trust is fulfilled or not, and the potential for multiple generations to be inequitably affected. ²⁴

24 25 26

Economic Analysis. Conventional EJ evaluates impacts to local economy and jobs. When Native American resources are impacted, the economic analysis of the subsistence economy is appropriate (see section on Subsistence Economy).

28 29 30

31

27

Equity analysis. Evaluating disproportionate impacts to Native Americans involves the following:

32 33

Are the exposures different when the tribal subsistence scenario is used as compared to the rural residential or other non-native scenario? Whose risks are highest?

35 36 37

38

34

• Are the natural resources of tribal interest more impacted than those identified by the general population? How important are those resources or places? How many ways are those resources or places important? How large is the impacted area from a tribal perspective?

39 40 41

Do disparities in impact accumulate over many generations, and do they accumulate at a higher rate in the EJ communities? Have the next seven or more generations been taken into consideration?

²⁴ Harper, B. and Harris, S. (2001) An Integrated Framework for Characterizing Cumulative Tribal Risks. Posted at www.iiirm.org.; Harper, B.L. and Harris, S.G., "Measuring Risks to Tribal Community Health and Culture," Environmental Toxicology and Risk Assessment: Recent Achievements in Environmental Fate and Transport, Ninth Volume, ASTM STP 1381, F. T. Price, K. V. Brix, and N. K. Lane, Eds., American Society for Testing and Materials, West Conshohocken, PA, 1999.

- Is the tribe already vulnerable (at risk) due to existing health disparities, economic disadvantages, higher exposure to other toxics, or existence of several dozen corisk factors (e.g., poor housing, high unemployment, etc contact authors for more details)?
 - What proportion of tribal members is affected (rather than absolute numbers of people)?
 - Is the federal fiduciary Trust obligation being met?
 - Is cultural awareness and respect shown equitably to the affected tribes as to the local civic entities?²⁵

5

6

7

8 9

11

²⁵ From: AMERIC&AN INDIAN ALASKAN NATIVE ENVIRONMENTAL JUSTICE ROUNDTABLE Albuquerque, New Mexico August 3-4, 2000; Final Report, January 31, 2001. Edited by the Environmental Biosciences Program, Medical University of South Carolina Press.

Cumulative Tribal Impacts

1 2

3 There is a growing recognition that conventional risk assessment methods do not address

- 4 all of the things that are "at risk" in communities facing the prospect of contaminated
- 5 waste sites, permitted chemical or radioactive releases, or other environmentally harmful
- 6 situations. Conventional risk assessments do not provide enough information to "tell the
- 7 story" or answer the questions that people ask about risks to their community, health,
- 8 resource base, and way of life. As a result, cumulative risks, as defined by the
- 9 community, are often not described, and therefore the remedial decisions may not be
- 10 accepted. The full span of risks and impacts needs to be evaluated within the risk
- 11 assessment framework in order for cumulative risks to be adequately characterized. This
- 12 is in contrast to a more typical process of evaluating risks to human health and ecological
- 13 resources within the risk assessment phase and deferring the evaluation of risks to socio-
- 14 cultural and socioeconomic resources until the risk management phase (National
- 15 Research Council, 1994, 1996; President's Commission, 1997).

16

17 Because many communities need more information than simply risk and dose results, the

- 18 Environmental Protection Agency developed a Comparative Risk method over a decade
- 19 ago for adding a community welfare or quality of life component (EPA, 1993). The
- 20 Comparative Risk field has been developing methods for community Quality of Life
- 21 (QOL) that combine cultural, social, and economic measures along with aesthetics and
- 22 any other factor the community identifies as important. The original Manual (EPA 1993)
- 23 and many Comparative Risk Projects across the country were developed for situations
- 24 where environmental planning and prioritization was needed. Several of the Comparative
- 25 Risk Projects have been done by or for tribes such as the Coeur d'Alene Tribe. The QOL
- 26 metrics identified in that report included the categories of Localized Effects, Economy/
- 27 Subsistence, Aesthetics, Fairness and Equity, Trends (annual and multi-year), Degree of
- 28 Uncertainty, Personal Well-Being, and Spiritual/Moral factors.

29

30 We have modified this concept to reflect traditional tribal cultural values as well as

31 secular or social community aspects that apply to suburban as well as to tribal

32 communities (Harper et al., 1995; Harper and Harris, 2000). We envisioned three or four

- 33 components to the risk assessment process: human health (using appropriate exposure
- 34 scenarios), ecological health, and socio-cultural/socio-economic health, all of which are
- 35 elements of the overall eco-cultural system (Figure).

36

37 One of the premises of cumulative impact analysis is that risks to the entire tribal

- community, not just to a maximally exposed individual, must be evaluated. It is not
- 39 necessarily true that protecting a MEI protects the entire community, or that protecting
- 40 threatened and endangered species protects an entire ecosystem. Thus, we need to define
- 41 tribal community health. John M. Last defines individual human health as "a state
- 42 characterized by anatomic integrity, ability to perform personal, family, work, and
- 43 community roles; ability to deal with physical, biological, and social stress; a feeling of
- 44 well-being; and freedom from the risk of disease and untimely death" (Last 1998). This
- 45 definition is broader than the regulatory approach which tends to equate good health with
- 46 lack of excessive exposure. Definitions of health and functionality from the public health

literature include a variety of medical and functional measures, but may not specifically
 call out the fact that the survival and well-being of every individual and culture depends
 on a healthy environment.

 When risk assessments take a public health approach to defining community and individual health, they integrate human, ecological, and cultural health into an overall definition of community health and well-being. This broader approach—used with risk assessments is adaptable to indigenous communities that, unlike westernized communities, turn to the local ecology for food, medicine, education, religion, occupation, income, and all aspects of a good life (Harris, 1998, 2000; Harper and Harris, 2000). The attributes of the eco-cultural system that support these services are described in affected resources as clean fresh air, clean cold water, unimpacted landscapes, clean

wholesome foods, clean healthful medicines, and robust thriving habitats and ecosystems.

Human Health-Related Goods and Services: This category includes the provision of water, air, food, and native medicines. In a tribal subsistence situation, the land provided all the food and medicine that was necessary to enjoy long and healthy lives. From a risk perspective, those goods and services can also be exposure pathways.

Environmental Functions and Services: Ecological risk assessment includes narrow examination of exposure pathways to biota as well as examination of impacts to the quality of ecosystems and the services provided by individual biota, ecosystems, and ecology. Broader than this, intact ecosystems provide many functions such as soil stabilization and the human services that result from them. For example, the function of erosion control or dust reduction would provide a human health service related to asthma reduction. Other environmental functions such as nutrient production and plant cover would provide wildlife services such as shelter, nesting areas, and food for people and animals, which in turn might contribute to the health of a species important to ecotourism.

 Social and Cultural Goods, Functions, Services, and Uses: This category includes many things valued by suburban and tribal communities about Introduction particular places or resources associated with intact ecosystems and landscapes. Some values are common to all communities, such as the aesthetics of undeveloped area s, intrinsic existence value, environmental education, and so on. Because social impact assessment and other aspects of community health are unfamiliar to risk assessors, several measure are suggested as follows:

- Impact on societal structure and cohesion (hours per year unavailable for social interaction through loss or reduced value of the resource or area)
- Educational opportunity (lost study areas associated with traditional stories or place names or family history or traditional practices; lost R&D opportunity)
- Integrity of cultural resources: number of sites with any disturbance or contamination, weighted by type and years of history associated with the site.
- Access to traditional lands: degree of restricted access (full restriction to any area
 or resource evidenced by institutional controls or barriers or reduced visits),
 fraction of ceremonial resources available relative to original quantity and quality
- Cultural landscape quality: proxy scale (1-10?) with elicited judgment based on original condition; total remaining landscape size without encroachments
- Degree of compliance with Treaty rights (proxy scale based on access, safety, natural and cultural resource integrity and quality, freedom from encroachments, hassle-free exercise of rights)
- Degree of Compliance with Trusteeship obligations (basis for NRDA injury, restoration costs, human use of natural resources
- Preservation of future land use and remedial options (acres of permanent losses including plumes, number of uses no longer viable, number of curies x half-life in irretrievable waste forms)
- Degree of sustainability of the resource, its degree of permanent administrative protection, and associated exercise of Treaty rights of access and use.

- 1 **Economic Goods and Services:** This category includes conventional dollar-based items
- such as jobs, education, health care, housing, and so on. There is also a parallel non-
- 3 dollar indigenous economy that provides the same types of services, including
- 4 employment (i.e., the functional role of individuals in maintaining the functional
- 5 community and ensuring its survival), shelter (house sites, construction materials),
- 6 education (intergenerational knowledge required to ensure sustainable survival
- 7 throughout time and maintain personal and community identity), commerce (barter items
- 8 and stability of extended trade networks), hospitality, energy (fuel), transportation (land
- 9 and water travel, waystops, navigational guides), recreation (scenic visitation areas), and
- 10 economic support for specialized roles such as religious leaders and teachers.

- 12 Cumulative Space-Time evaluation often leads to impacts expressed as service-acre-
- 13 years. This is the most common unit of quantification for habitat-scale natural resource
- 14 injury. In our experience, it is most logical to use cultural service-acre-years as the
- 15 ecological dimension of tribal impacts. The environmental perspective held by
- 16 indigenous communities mean that eco-spatial characteristics should be identified and
- 17 evaluated for the extent, magnitude and duration of eco-cultural impairment of each
- 18 service. In a cultural evaluation, specific cultural services associated with a site or
- 19 resource can be identified by tribal elders or other community leaders according to
- 20 general importance (thus avoiding trespass on intellectual property and proprietary
- 21 information). As a simple surrogate for many of these services, the areal extent and
- duration of contamination (i.e., outer boundary at the detection limit) can be measured
- and graded accorded to the size of the area degraded or the percent of degradation, and
- 24 the duration for which each gradation of impact persists can be estimated.

25

- 26 The functions and services provided by an intact and functioning habitat have been
- 27 receiving increased attention recently (Costanza and Folke 1997, Scott et al. 1998, Daly
- 28 1996, Daily 1997). Many of the metrics used in natural resource valuation require spatial
- 29 and temporal descriptors in addition to concentrations at individual points of compliance
- 30 because they deal with ecosystems. Many of the concerns raised as cultural risk issues
- 31 are parallel and also related to areas, ecosystems, or landscapes as well as to the duration
- 32 of the contamination or the effect. Many of the concepts used in natural resource
- 33 valuation are applicable to the evaluation of cultural risk and the culturally-related goods
- 34 and cultural services provided by a healthy environment.

35 36

REFERENCES for CUMULATIVE IMPACTS

37 38 39

Cajete, G (1999). A People's Ecology. Clear Light Publishers, Santa Fe, New Mexico.

40

- 41 President Clinton, WJ: "Federal actions to address environmental justice in minority
- 42 populations and low-income populations," 59 FR 32: 7629-7633 (Executive Order
- 43 12898; February 11, 1994).

44

- 45 Greaves, T., 1996. "Tribal Rights," Valuing Local Knowledge, Brush, S.B. and
- 46 Stabinsky, D., eds., Island Press, Washington, D.C., pp. 25-40.

- 1 S Harris. "Cultural Legacies: Challenge to the Risk Community." Plenary Address,
- 2 Society for Risk Analysis Annual Meeting, Phoenix, AZ, December 7, 1998.

- 4 S Harris and B Harper. "Using Eco-Cultural Dependency Webs in Risk Assessment and
- 5 Characterization." Environmental Science & Pollution Research, 7(Special 2):91-100,
- 6 2000

7

- 8 Harper, B.L., Bilyard, G.R., Broh, E.H., Castleton, K.J., Dukelow, J.S., Hesser, W.A.,
- 9 Hostick, C.J., Jarvis, T.T., Konkel, R.S., Probasco, K.M., Staven, L.H., Strenge, D.L.,
- 10 Thiede, M.E., and Traynham, J.C., 1995. "Hanford Risk Management Program and
- 11 Integrated Risk Assessment Program: Cost/Risk/Benefit Analyses: A K-Basin Example."
- 12 Pacific Northwest National Laboratory, Richland, WA., May 1995

13

- 14 John Last, 1998. Public Health and Human Ecology, 2nd ed. Stamford, CT: Appleton &
- 15 Lange.

16

- 17 National Research Council, 1994. Building Consensus: Risk Assessment and
- 18 Management in the Department of Energy's Environmental Remediation Program.
- 19 National Academy Press, Washington, D.C..

20

- 21 National Research Council, 1996. Understanding Risk: Informing Decisions in a
- 22 Democratic Society. National Academy of Science, Washington, D.C..

23

- 24 Presidential/Congressional Commission of Risk Assessment and Risk Management,
- 25 President's Commission: Framework for Environmental Health Risk Management (Final
- 26 Report, Volume 1 (1529 14th Street, NW, Suite 420, Washington, D.C., 1997) and
- 27 (http://www.riskworld.com).

28

- 29 U.S. Environmental Protection Agency, 1997. Exposure Factors Handbook US
- 30 EPA/600/P-95/002Fa, b, and c.

31

- 32 U.S. Environmental Protection Agency, 1993. "A Guidebook to Comparing Risks and
- 33 Setting Environmental Priorities." EPA-230-B-93-003.

34

- 35 Walker, D.E., 1991. "Protection of American Indian Sacred Geography," *Handbook of*
- 36 American Indian Religious Freedom, Vecsey, C., Ed., Crossroad, New York, NY, pp.
- 37 100-115.

38

39

Human Health Risk Assessment -- Reference Indian

2 3

Title: A "Reference Indian" for use in radiological and chemical risk assessment.

4 5

Authors: B. Harper and S. Harris (CTUIR)

6

7 Two tribal exposure scenarios have been developed for use at Hanford by the

- 8 Confederated Tribes of the Umatilla Indian Reservation (CTUIR 2004) and the Yakama
- 9 Nation (Ridolfi 2007) in Hanford risk assessments. 26 Both of these scenarios reflect
- traditional tribal uses of the lands and resources on the Hanford Site, including hunting,
- 11 fishing, gathering, and use of the sweat lodge. They are multimedia (air, dust, surface
- soil, vadose soil, surface water, groundwater, plants, and animals) and are full-time
- 13 residential scenarios. These scenarios should be used to evaluate risks to tribal members
- 14 at the location of the proposed federal and any impacted areas, i.e., 'Reference Indian'
- 15 scenarios. These scenarios can also be considered baseline and inadvertent intruder
- scenarios, as required by DOE Order 435.1.

17 18

EPA is required to identify populations who are more highly exposed; for example,

19 subsistence populations and subsistence consumption of natural resources (Executive

Order 12898²⁷). EPA is also required to protect sensitive populations. Of the

factors known to increase sensitivity include developmental stage, age (very young and very old), gender, genetics, and health status²⁹, and this is part of EPA's human health

23 research strategy.³⁰

2425

26 27 "The Superfund law requires cleanup of the site to levels which are protective of human health and the environment, which will serve to minimize any disproportionately high and adverse environmental burdens impacting the EJ community".

28

29 30

This scenario reflects an active, outdoor lifestyle with a subsistence economic base.

- 31 Subsistence food sources include gathering, gardening, hunting, pasturing livestock, and
- 32 fishing. The forager relies all or in part on native foods and medicines, while the
- 33 residential farmer relies on domesticated but self-produced foods. Thus, the CTUIR
- scenario is at the foraging end of the subsistence spectrum, while the residential farmer is
- 35 at the domesticated end of the subsistence spectrum. Both are active, outdoor lifestyles,

-

Ridolfi Inc. (2007) Yakama Nation Exposure Scenario for Hanford Site Risk Assessment, Richland, Washington. Prepared for the Yakama National ERWM Program. September.

²⁶ CTUIR (2004) Exposure Scenario for CTUIR Traditional Subsistence Lifeways. Report prepared by the CTUIR Department of Science & Engineering, October. http://www.hhs.oregonstate.edu/ph/tribal-grant/index.html.

²⁷ White House, 1994. Federal Actions To Address Environmental Justice In Minority Populations And Low income Populations; Feb. 11, 1994; 59 FR 7629, Feb. 16, 1994.

²⁸ Superfund Exposure Assessment Manual. EPA/540/1-88/001 OSWER directive 9285.5-1. U.S. Environmental Protection Agency Office of Remedial Response, U.S. Environmental Protection Agency, Washington, D.C. 1988. ²⁹ http://www.epa.gov/nheerl/research/childrens_health.html

³⁰ EPA/600/R-02/050, September 2003 (posted at http://www.epa.gov/nheerl/publications/).

³¹ http://www.epa.gov/region02/community/ej/superfund.htm

and are consistent with the reasonable maximum exposure (RME) approach to baseline risk assessment. Traditional or subsistence scenarios are similar in format to existing residential recreational, or occupational exposure scenarios, but reflect and are inclusive of tribal cultural and lifestyle activities. They are comprised of:

- 1. standard exposure pathways and exposure factors (such as inhalation or soil ingestion but with increased environmental contact rates),
- 2. traditional diets composed of native plants and animals possibly supplemented with a home garden, and
- 3. unique pathways such as the sweatlodge.

Tribal exposure scenarios pose a unique problem in that much of the specific cultural information about the uses of plants and animals for food, medicine, ceremonial, and religious purposes is proprietary. However, major activities in the generally-recognized activity categories can be described in enough detail to understand the basic frequency, duration, and intensity of environmental contact within each category and habitat.

Table 1. Major Activity Categories

Activity Type	General Description	
Hunting	Hunting includes a variety of preparation activities of low to moderate intensity.	
	Hunting occurs in terrain ranging from flat and open to very steep and rugged. It	
	may also include setting traplines, waiting in blinds, digging, climbing, etc. After	
	the capture or kill, field dressing, packing or hauling, and other very strenuous	
	activities occur, depending on the species. Subsequent activities include cutting,	
	storing (e.g., smoking or drying), etc.	
Fishing Fishing includes building weirs and platforms, hauling in lines and		
	gigging, wading (for shellfish), followed by cleaning the fish and carrying them to	
	the place of use. Activities associated with smoking and constructing drying racks	
	may be involved.	
Gathering	A variety of activities is involved in gathering, such as hiking, bending, stooping,	
	wading (marsh and water plants), digging, and carrying.	
Sweatlodge Use	Sweatlodge building and repairing is intermittent, but collecting firewood is a	
	constant activity.	
Materials and Food	Many activities of varying intensity are involved in preparing materials for use or	
Use	food storage. Some are quite vigorous such as pounding or grinding seeds and nuts	
	into flour, preparing meat, and tanning hides, Many others are semi-active, such	
	basket making, flintknapping, construction of storage containers, cleaning village	
	sites, sanitation activities, home repairs, and so on.	

Once the activities comprising a particular subsistence lifestyle are known, they are translated into a format that is used for risk assessment. This translation captures the degree of environmental contact that occurs through activities and diet, expressed as numerical "exposure factors." Direct exposure pathways include exposure to abiotic media (air, water, and soil), which can result in inhalation, soil ingestion, water ingestion, and dermal exposure. Indirect pathways refer to contaminants that are incorporated into biota and subsequently expose people who ingest or use them. There are also unique exposure pathways that are not accounted for in scenarios for the general public, but may be significant to people with certain traditional specialties such as pottery or basket

making, flint knapping, or using natural medicines, smoke, smudges, paints and dyes.

- 1 These activities may result in increased dust inhalation, soil ingestion, soil loading onto
- 2 the skin for dermal exposure, or exposure via wounds, to give a few examples. While the
- 3 portals of entry into the body are the same (primarily via the lungs, skin, mouth), the
- 4 amount of contaminants may be increased, and the relative importance of some activities
- 5 (e.g., basketmaking, wetlands gathering), pathways (e.g., steam immersion or medicinal
- 6 infusions) or portals of entry (e.g., dermal wounding) may be different than for the general population.

8 general po

9 Together, this information is then used to calculate the direct and indirect exposure factors. This process follows the general sequence:

11 12

13

14

15 16

17

- 1. Environmental setting identify what resources are available;
- 2. Lifestyle description activities and their frequency, duration and intensity, and uses of natural resources;
- 3. Diet (indirect exposure factors);
 - 4. Pathways and media;
 - 5. Exposure factors Crosswalk between pathways and direct exposure factors; cumulative soil, water and air exposures.

18 19 20

21

The basic components of the exposure scenario are given below. A great deal of peer-reviewed documentation has been provided to DOE, and the CTUIR and YN scenarios are being used at Hanford.

222324

25

26 27

28

29

30

- Soil ingestion = 400 mg/d for all age groups
- Inhalation rate = $25 \text{ m}^3/\text{d}$ for adults, with children scaled from the adult value
- Drinking water = 3L/d for adults, with children scaled from the adult value; an additional 1L is ingested during each use of the sweat lodge.
- Based on the ecological resources and on the anthropological literature, the CTUIR developed two relevant diets, one for the Columbia River regions where salmon forms a large percentage of the protein source, and one for upland and mountain areas with resident fish and spawning areas for anadromous species.

CTUIR Columbia River Diet					CTUIR Blue Mountain Diet				
Food Category	gpd	kcal/ 100g	kcal/d	Percent of calories	Food Category	gpd	kcal/1 00g	kcal/d	Percent of calories
Fish	620	175	1085	49%	Fish	142	175	249	11%
Game, large					Game, large				
and small	125	175	219	10%	and small	600	175	1050	48%
Fowl & Eggs	62	200	124	6%	Fowl & Eggs	62	200	124	6%
Bulbs (onions, other)	40	30	12	1%	Bulbs (onions, other)	40	30	12	1%
Berries, Fruits	125	100	125	6%	Berries, Fruits	125	100	125	6%
Other					Other				
vegetation					vegetation				
(lichen, pith,					(lichen, pith,				
cambium)	40	100	40	2%	cambium)	40	100	40	2%
Greens, Tea,					Greens, Tea,				
Medicines,					Medicines,				
Spices	133	30	40	2%	Spices	133	30	40	2%
Honey, Sweete	15	275	41	2%	Honey, Sweete	15	275	41	2%
Seeds, Nuts,					Seeds, Nuts,				
Grain	24	500	120	5%	Grain	24	500	120	5%
Roots, Tubers	400	100	400	18%	Roots, Tubers	400	100	400	18%
TOTALS	1584		2206		TOTALS	1584		2201	

Human Health Reference Indian ADDENDUM – SOIL INGESTION

2

5

8

9

10

11

Ingestion of soil, sediment, or dust is the result of hand-to-mouth contact, swallowing inhaled dust, mouthing of objects, and ingestion of dirt or dust on food. The recommended subsistence soil ingestion rate of 400 mg/d is based on a review of EPA guidance, soil ingestion studies in suburban and indigenous populations, military, construction and utility worker studies, and local climatic, habitat, and geologic conditions. Components of the traditional lifestyle that contribute to soil ingestion include hunting, gathering, digging roots, processing and eating wild foods, preparing and using natural materials such as basket materials, tending livestock, building and repairing sweat lodges, tending cemeteries, and social gatherings. It also considers occupational activities such as wildlife field work, construction or road work, sample collection, and cultural resource field work.

12 13

14 1.0 EPA Guidance

15 16

17

18

19

EPA reviewed studies relevant to suburban populations and published summaries in its Exposure Factors Handbook (1989, 1991, and 1997). In the current iteration of the Exposure Factors Handbook³², EPA recommends100 mg/d as a mean value for children in suburban settings, 200 mg/day as a conservative estimate of the mean, and a value of 400 mg/day as an "upper bound" value (exact percentile not specified). Most state and federal guidance uses 200 mg/d for children and 100 mg/d for adults in residential or agricultural settings.

21 22 23

24

25

27

A value for an ingestion rate for adult outdoor activities is no longer given in the 1997 Exposure Factors Handbook for adults as "too speculative." However, EPA's soil screening guidance recommends 330 mg/d for a construction or other outdoor worker. Risk assessments for construction workers typically use a rate of 480 mg/d. Some states recommend the use of 1 gram per acute soil ingestion event³³ to approximate a non-average day for children, such as an outdoor day.

28 29 30

2.0 Military Guidance

31

32 The US military assumes 480 mg per exposure event³⁴ or per field day (Technical Guide 230).³⁵

33 Department Of Defense (2002)³⁶ recommendations for certain activities such as construction,

34 landscaping, or other field activities is 480 mg/day. During deployment, DOD assumes that half

_

Environmental Protection Agency. 1997. Exposure Factors Handbook. Volumes I, II, III. U.S. Environmental Protection Agency, Office of Research and Development. EPA/600/P-95/002Fa.

³³ MADEP (1992). Background Documentation For The Development Of An "Available Cyanide" Benchmark Concentration. http://www.mass.gov/dep/ors/files/cn_soil.htm

³⁴ http://www.gulflink.osd.mil/pesto/pest_s22.htm, citing US Environmental Protection Agency, Office of Research and Development, <u>Exposure Factors Handbook, Volume I</u>, EPA/600/P-95/002a, August 1997 as the basis for the 480 mg/d.

³⁵ USACPPM TG 230A (1999). Short-Term Chemical Exposure Guidelines for Deployed Military Personnel. U.S. Army Center for Health Promotion and Preventive Medicine.

Website: http://www.grid.unep.ch/btf/missions/september/dufinal.pdf

³⁶ Reference Document (RD) 230, "Exposure Guidelines for Deployed Military" A Companion Document to USACHPPM Technical Guide (TG) 230, "Chemical Exposure Guidelines for Deployed Military Personnel", January 2002. Website: http://chppm-www.apgea.army.mil/desp/; and http://books.nap.edu/books/0309092213/html/83.html#pagetop.

of a soldier's time is spent in thes higher-contact activities. The UN Balkans Task Force assumes that 1 gram of soil can be ingested per military field day³⁷.

3

3.0 Studies in suburban or urban populations

5 6

7

8

9

10

11 12 Written knowledge that humans often ingest soil dates back to the classical Greek era. Soil ingestion has been widely studied from a perspective of exposure to soil parasite eggs and other infections. More recently, soil ingestion was recognized to be a potentially significant pathway of exposure to contaminants. Several early studies estimated intakes by children. Estimates based on observation of 'sticky sweets' (Day et al., 1975), outdoor activities (Hawley, 1985), or camping (Van Wijnen et al., 1990). Other studies used tracer elements (Binder, et al., 1986; Clausing et al., 1987; Thompson and Burmaster, 1991; Calabrese et al., 1989; Stanek and Calabrese (1995a, 1997). These studies estimated a wide range of soil ingestion rates.

13 14 15

16

Pica (ingestion of more than 5000 mg/d) is generally thought of as a pediatric condition. ATSDR estimates that between 10 and 50% of children may exhibit pica behavior at some point.

17 Regulatory guidance recommends using a soil ingestion rate of 5 or 10g/d for pica children.

18 Some examples are:

19 20

- (1) EPA (1997) recommends a value of 10g/d for a pica child.
- 21 (2) Florida recommends 10g per event for acute toxicity evaluation³⁸.
 - (3) ATSDR uses 5 g/day for a pica child³⁹.

23 24

22

4.0 Studies in Indigenous Populations

2425

26 27

31

Studies of soil ingestion in indigenous populations have largely centered on estimates of past exposure (or dose reconstruction) of populations affected by atomic bomb tests. Haywood and Smith (1992) estimated potential doses to aboriginal inhabitants of the Maralinga and Emu areas of South Australia by considering the number of hours per week spent in sleeping, sitting, hunting or driving, cooking or butchering, and other activities. They noted that virtually all food, whether of local origin or purchased, has some dust content by the time of consumption due to methods of preparation and the nature of the environment. They recommend a soil intake of 1 to 10 gpd. Other authors have used estimates of 0.5 or 1 gpd in other indigenous populations such as the Marshall Islanders (Sun and Meinhold, 1997; LaGoy, 1987). Simon (1998) recommended using a soil ingestion rate for indigenous people in hunters/food gathering/nomadic societies of 1g/d in wet climates and 2 g/d in dry climates, and 3 g/d for all indigenous children, and 5 g/d if geophagia is common.

38 39

These estimates are supported by studies of human coprolites from archaeological sites. For instance, Nelson (1999) noted that human coprolites from a desert spring-fed aquatic system included obsidian chips (possibly from sharpening points with the teeth), grit (pumice and quartzite grains from grinding seeds and roots), and sand (from mussel and roots consumption). Her conclusions are based on finding grit in the same coprolites as seeds, and sand in the same

³⁷ UNEP/UNCHS Balkans Task Force (BTF) (1999). The potential effects on human health and the environment arising from possible use of depleted uranium during the 1999 Kosovo conflict. www.grid.unep.ch/btf/missions/september/dufinal.pdf

Proposed Modifications To Identified Acute Toxicity-Based Soil Cleanup Target Level, December 1999, www.dep.state.fl.us/waste/quick_topics/ publications/wc/csf/focus/csf.pdf .

³⁹ For Example: El Paso Metals Survey, Appendix B, www.atsdr.cdc.gov/HAC/PHA/elpaso/epc_toc.html.

1 coprolites as mussels and roots. She concludes that "the presence of sand in coprolites containing aquatic root fibers suggests that the roots were not well-cleaned prior to consumption.

3

5.0 Geophagia

5

6 Despite the limited awareness of geophagia in western countries, the deliberate consumption of 7 dirt, usually clay, has been recorded in every region of the world both as idiosyncratic behavior of 8 isolated individuals and as culturally prescribed behavior (Abrahams, 1997; Callahan, 2003; 9 Johns and Duquette, 1991; Reid, 1992). It also routinely occurs in primates (Krishnamani and 10 Mahaney (2000). Indigenous peoples have routinely used montmorillonite clays in food 11 preparation to remove toxins (e.g., in acorn breads), as condiments or spices, or to aid digestion 12 (e.g., kaolin clay in Kaopectate) (Reid, 1992; Krishnamani and Mahaney, 2000). Callahan (2003) also suggests that certain soils may reduce parasite loads (demonstrated in monkeys) through immune enhancement, and clays with aluminum salts may have an adjuvant effect as they do in 15 commercial vaccines.

16 17

19

20

21

22

Pregnancy is the most common occasion for eating dirt in many societies, especially kaolin and montmorillonite clays in amounts of 30g to 50g a day. In some cultures, well-established trade routes and clay traders make rural clays available for geophagy even in urban settings. Clays from termite mounds are especially popular among traded clays, perhaps because they are rich in calcium (Callahan, 2003; Johns and Duquette, 1991). In countries such as Uganda where modern pharmaceuticals are either unobtainable or prohibitively expensive, ingested soils may be very important as a mineral supplement, particularly iron and calcium (Abrahams, 1997; Krishnamani and Mahaney, 2000; Johns and Duquette, 1991).

25 26

24

7.0 Data from dermal adherence

27 28 29

30

31

Dermal adherence of soil is generally studied in relation to dermal absorption of contaminants, but soil on the hands and face can be ingested, as well. Kissel, et al. (1996) included reed gatherers in tide flats. "Kids in mud" at a lakeshore had by far the highest skin loadings. Reed gatherers were next highest, followed by farmers and rugby players and irrigation installers. Holmes et al. (1999) studied a variety of occupations. Farmers, reed gatherers and kids in mud had the highest overall skin loadings, followed by equipment operators, gardeners, construction, and utility workers. Archaeologists and several other occupations had somewhat lower skin loadings.

36 37 38

39

35

Grain size affects adherence and tactile responses to ingested soil. Particles below the sand-silt size division (0.075 mm) adhering more than smaller sizes (see EPA, 1992⁴⁰ for more details). Sieving is recommended, and data for particle size <0.044 cm (RAGSe, App. C, Table C-4).

40 41 42

8.0 Data from washed or unwashed vegetables.

43

Direct soil ingestion also occurs via food, for example from dust blowing onto food (Hinton, 1992), residual soil on garden produce or gathered native plants, particles on cooking utensils, and so on. Beresford and Howard (1991) found that soil adhesion to vegetation was highly

⁴⁰ EPA (1992). Interim Report: Dermal Exposure Assessment: Principles And Applications. Office of Health and Environmental Assessment, Exposure Assessment Group. /600/8-91/011B

seasonal, being highest in autumn and winter, and is important source of deposited radionuclides to grazing animals.

9.0 Subsistence lifestyles and rationale for soil ingestion rate

The derivation of the soil ingestion rate is based on the following points:

• The foraging-subsistence lifestyle is lived in close contact with the environment.

• Plateau winds and dust storms are fairly frequent. Incorporated into overall rate, rather than trying to segregate ingestion rates according to number of high-wind days per year because low-wind days are also spent in foraging activities.

- The original Plateau lifestyle pit houses, caches, gathering tules and roots includes processing and using foods, medicines, and materials. This is considered but not as today's living conditions.
- The house is assumed to have little landscaping other than the natural conditions or xeriscaping, some naturally bare soil, a gravel driveway, no air conditioning (more open windows), and a wood burning stove in the winter for heat.
- All persons participate in day-long outdoor group cultural activities at least once a month, such as pow-wows, horse races, and seasonal ceremonial as well as private family cultural activities. These activities tend to be large gatherings with a greater rate of dust resuspension and particulate inhalation. These are considered to be 1-gram events or greater.
- 400 mg/d is based on the following:
 - 1. 400 mg/d is the upper bound for suburban children (EPA); traditional or subsistence activities are not suburban in environs or activities
 - 2. This rate is within the range of outdoor activity rates for adults (between 330 and 480); subsistence activities are more like the construction, utility worker or military soil contact levels. However, it is lower than 480 to allow for some low-contact days.
 - 3. The low soil-contact days are balanced with many 1-gram days and events (as suggested by Boyd et al., 1999) such as root gathering days, tule and wapato gathering days, pow wows, rodeos, horse training and riding days, sweat lodge building or repair days, grave digging, and similar activities. There are also likely to be many high or intermediate-contact days, depending on the occupation (e.g., wildlife field work, construction or road work, cultural resource field work).
 - 4. This rate does not account for pica or geophagy
 - 5. Primary data is supported by dermal adherence data in gatherers and 'kids in mud'. Tule and wapato gathering are kid-in-mud activities
 - 6. This rate includes a consideration of residual soil on roots (a major food category) through observation and anecdote, but there is no quantitative data.

Human Health Reference Indian ADDENDUM - INHALATION RATE

Many risk assessments use the EPA default value of 20m^3 /d (EPA 1997), which reflects contemporary lifestyles of the general population. However, EPA recognizes that inhalation rates may be higher in certain populations, such as athletes or outdoor workers, because levels of activity outdoors may be higher over long time periods. "If site-specific data are available to show that subsistence farmers and fishers have higher respiration rates due to rigorous physical

G-131

1 activities than other receptors, that data may be appropriate." 41 Such subpopulation groups are considered 'high risk' subgroups. 42

In order to develop inhalation rates more appropriate to traditional lifestyles, we evaluated the approach that uses specific activity levels to estimate short-term and long-term inhalation rates. Several examples of this approach are:

• EPA's National Air Toxics Assessment (homepage: http://www.epa.gov/ttn/atw/nata/natsa3.html) uses the CHAD database to estimate national average air toxics exposures by selecting a series of single day's patterns to represent an individual's annual activity pattern.

 The California Air Resources Board (CARB, 2000) reviewed ventilation rates for many activities in the CHAD database and concluded that 20 m³/d represents an 85th percentile of typical adult activity lifestyles reflecting 8 hours sleeping and 16 hours of light activity with little moderate or heavy activity.

• In their technical guidance document, "Long-term Chemical Exposure Guidelines for Deployed Military Personnel," the US Army Center for Health Promotion and Preventive Medicine (USACHPPM) recommended an inhalation rate of 29.2 m³/d for US Armed Service members that includes 8 hours of moderate duties.⁴³

 • EPA used 30 m³/day for a year-long exposure estimate for the general public at the Hanford Superfund site in Washington state, based on a person doing 4 hours of heavy work, 8 hours of light activity, and 12 hours resting.⁴⁴

 • The DOE's Lawrence Berkeley Laboratory also used 30 m³/d: "the working breathing rate is for 8 hours of work and, when combined with 8 hours of breathing at the active rate and 8 hours at the resting rate, gives a daily equivalent intake of 30 m³ for an adult."⁴⁵

• The Rocky Flats Oversight Panel recommended using 30 m³/d. 46

Using EPA guidance on hourly inhalation rates for different activity levels, a reasonable inhalation rate for an average tribal member's active lifestyle is an average rate of $26.2 \, \text{m}^3/\text{d}$, based on 8 hours sleeping at $0.4 \, \text{m}^3/\text{hr}$, 2 hours sedentary at $0.5 \, \text{m}^3/\text{hr}$, 6 hours light activity at $1 \, \text{m}^3/\text{hr}$, 6 hours moderate activity at $1.6 \, \text{m}^3/\text{hr}$, and 2 hours heavy activity at $3.2 \, \text{m}^3/\text{hr}$. Unlike most other exposure factors, which are upper bounds, the inhalation rate is an average rate, so to be consistent with national methodology, we have rounded the rate down to $25 \, \text{m}^3/\text{day}$.

⁴¹ EPA (OSWER) "Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities, Support Materials Volume 1: Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities" page 6-4, at (http://www.epa.gov/earth1r6/6pd/rcra_c/protocol/volume_1/chpt6-hh.pdf)

⁴² Exposure Factors Handbook, 1997, Volume 1. page 5-24

⁴³ http://www.gulflink.osd.mil/particulate_final/ particulate_final_s06.htm and http://www.gulflink.osd.mil/pm/pm en.htm.

⁴⁴ "Report of Radiochemical Analyses for Air Filters from Hanford Area" Memorandum from Edwin L. Sensintaffar, Director of the National Air and Radiation Environmental Laboratory to Jerrold Leitch, Region 10 Radiation Profram Manager

⁽http://yosemite.epa.gov/R10/AIRPAGE.NSF/webpage/Hanford+Environmental+Perspective)

^{45 (}www.lbl.gov/ehs/epg/tritium/TritAppB.html)

⁴⁶ RAC (Risk Assessment Corporation). 1999. *Task 1: Cleanup Levels at Other Sites. Rocky Flats Citizens Advisory Board, Rocky Flats Soil Action Level Oversight Panel*. RAC Report No. 3-RFCAB-RFSAL-1999' http://www.itrcweb.org/Documents/RAD-2.pdf

- 1 The estimate of the activity levels associated with traditional lifestyles is based on
- 2 anthropological studies, ethnographic literature on foraging theory and hunting-gathering
- 3 lifestyles, and confirmatory interviews with Tribal members. The inhalation rate reflects a wide
- 4 range of traditional indoor and outdoor activities, including (a) youth who are learning traditional
- 5 subsistence skills, (b) adults who hunt, gather, fish, and work in environmental management
- 6 occupations, and (c) elders who gather plants and medicines, prepare and use them, and teach
- 7 traditional activities. At present, it is not possible to extrapolate directly from the CHAD
- 8 database from window washing, for example, to hide scraping; research is underway to fill this
- 9 data gap using heart rate monitors keyed to respiration rate during specific traditional activities.

- 11 Finally, there may be some ethnic specificity in the link between metabolic and inhalation rates
- such as thrifty genotype(s) and oxidation adiposity patterns (Goran, 2000; Fox et al., 1998;
- 13 Muzzin et al., 1999; Rush et al., 1997; Saad et al., 1991; Kue Young et al., 2002), as well as
- ethnic differences in spirometry (Crapo et al., 1988; Lanese et al., 1978; Mapel et al., 1997;
- 15 Aidaraliyev et al., 1993; Berman et al., 1994). There are several stress response genes that enable
- 16 indigenous populations to respond to environmental stresses and to the rapid transition between
- 17 extremes, including feast and famine, heat and cold, disruption in circadian rhythms, dehydration,
- 18 seasonality, and explosive energy output or rapid transitions between minimum and maximum
- seasonanty, and explosive energy output of rapid transitions between infilling and maximum
- exercise and VO2_{max} (Kimm et al., 2002; Snitker et al., 1998). This may affect inhalation rate, but at present this remains a testable hypothesis.

21

22 23

INHALATION REFERENCES

24 25 26

Aidaraliyev, A.A., Maximov, A.L., & Mala, T. (1993). Physiologic adaptation changes of the "Bering Bridge" expedition participants. *Arctic Med. Res.* 52(2):55-62.

27 28

Berman, S.M., Arnall, D.A., & Cornwall, M.W. (1994). Pulmonary function test outcomes in healthy Navajo Native American adolescents. *Am. J. Respir. Crit. Care Med.* 150(4):1150-3

31

- 32 CARB, 2000. Technical Support Document for Exposure Assessment and Stochastic Analysis.
- 33 California Air Resources Board, September 2000.
- 34 http://www.oehha.ca.gov/air/hot_spots/pdf/contents.pdf (see chapter 3 for daily breathing rates).

35

Crapo, R.O., Lockey, J., Aldrich, V., Jensen, R.L., & Elliott, C.G. (1998). Normal spirometric
 values in healthy American Indians. *J. Occup. Med.* 30(7):556-60

38

- 39 EPA (1997). Exposure Factors Handbook, EPA/600/P-95/002Fa,
- 40 http://www.epa.gov/ncea/pdfs/efh/sect5.pdf

41

42 EPA (1999). *Cancer Risk Coefficients for Environmental Exposure to Radionuclides*, Federal 43 Guidance Report No. 13 (EPA/402-R-99-001).

44

45 EPA (2000) CHAD User's Guide. EPA National Exposure Research Laboratory, and associated 46 web pages, factsheets, and summaries. Homepage: http://www.epa.gov/chadnet1/

47

- Fox, C.S., Esparza, J., Nicolson, M., Bennett, P.H., Schulz, L.O., Valencia, M.E., & Ravussin, E. (1998). Is a low leptin concentration, a low resting metabolic rate, or both the expression of the
- 50 "thrifty genotype"? Results from Mexican Pima Indians. Am. J. Clin. Nutr. 68(5):1053-7

- 1 Funk, L.M., Sedman, R., Beals, J.A., & Fountain, R. (1998). Quantifying the distribution of
- 2 inhalation exposure in human populations: 2. Distributions of time spent by adults, adolescents,
- and children at home, at work, and at school. Risk Anal. 18(1):47-56

- 5 Goran, M.I. (2000). Energy metabolism and obesity. Med Clin North Am;84(2):347-62
- 6 Hartmann HM. 2002 Evaluation of risk assessment guideline levels for the chemical warfare
- 7 agents mustard, GB, and VX. Regul. Toxicol. Pharmacol. 35(3):347-56

8

- 9 Kimm, S.Y., Glynn, N.W., Aston, C.E., Damcott, C.M., Poehlman, E.T., Daniels, S.R., & Ferrell,
- 10 R.E. (2002). Racial differences in the relation between uncoupling protein genes and resting
- 11 energy expenditure. *Am. J. Clin. Nutr.* 75(4):714-9

12

- 13 Kue Young, T., Chateau, D., & Zhang, M. (2002). Factor analysis of ethnic variation in the
- 14 multiple metabolic (insulin resistance) syndrome in three Canadian populations. Am. J. Human
- 15 *Biol.* 14(5):649-58

16

- 17 Lanese, R.R., Keller, M.D., Foley, M.F., & Underwood, E.H. (1978). Differences in pulmonary
- 18 function tests among whites, blacks, and American Indians in a textile company. J. Occup. Med.
- 19 20(1):39-44

20

- 21 Mapel, D.W., Coultas, D.B., James, D.S., Hunt, W.C., Stidley, C.A., & Gilliland, F.D.(1997).
- 22 Ethnic differences in the prevalence of nonmalignant respiratory disease among uranium miners.
- 23 Am. J. Public Health 87(5):833-8.

24

Muzzin, P., Boss, O., & Giacobino, J.P. (1999). Uncoupling protein 3: its possible biological role and mode of regulation in rodents and humans. *J. Bioenerg. Biomembr.* 31(5):467-73

27

Rush, E.C., Plank, L.D., & Robinson, S.M. (1997). Resting metabolic rate in young Polynesian

29 and Caucasian women. Int. J. Obes. Relat. Metab. Disord. 21(11):1071-5

30

- 31 Saad, M.F., Alger, S.A., Zurlo, F., Young, J.B., Bogardus, C., & Ravussin, E. (1991). Ethnic
- differences in sympathetic nervous system-mediated energy expenditure. Am. J. Physiol. 261(6 Pt
- 33 1):E789-94

34

Snitker, S., Tataranni, P.A., & Ravussin, E. (1998) Respiratory quotient is inversely associated with muscle sympathetic nerve activity. *J. Clin. Endocrinol. Metab.* 83(11):3977-9

37

- 38 Steegmann, A.T., Jr, Cerny, F.J., & Holliday, T.W. (2002). Neandertal cold adaptation:
- 39 physiological and energetic factors. Am. J. Human Biol. 14(5):566-83.

40 41

SOIL REFERENCES

42

- 43 Abrahams PW (1997) Geophagy (soil consumption) and iron supplementation in Uganda.
- 44 Tropical Med Int Health 2(7):617-623

45

Beresford NA and Howard BJ (1991) Importance of soil adhered to vegetation as a source of radionuclides ingested by grazing animals. Sci Total Environ. 107:237-54.

- 49 Binder S, Sokal D and Maughan, D. (1986) Estimating soil ingestion: the use of tracer
- 50 elements in estimating the amount of soil ingested by young children. Arch. Environ.
- 51 Health.41(6):341-345.

```
1
```

- Boyd HB, Pedersen F, Cohr KH, Damborg A, Jakobsen B, Kristensen P, and Samsoe-Petersen L
- (1999). Exposure Scenarios and Guidance Values for Urban Soil Pollutants. Regul. Tox.
- Pharmacol. 30:197-208.

- Calabrese EJ, Barnes R, Stanek EJ, Pastides H, Gilbert CE, Veneman P, Wang XR, Lasztity A, and Kostecki PT (1989) How much soil do young children ingest: an epidemiologic study.
- 8 Regul Toxicol Pharmacol. 10(2):123-37.

9

10 Calabrese EJ, Stanek EJ, Gilbert CE, and Barnes RM (1990) Preliminary adult soil ingestion estimates: results of a pilot study. Regul Toxicol Pharmacol. 12(1):88-95. 11

12

13 Calabrese EJ, Stanek EJ, James RC, and Roberts SM (1997) Soil ingestion: a concern for acute toxicity in children. Environ Health Perspect. 105(12):1354-8.

15

16 Callahan GN (2003). Eating Dirt. Emerg Infect Dis [serial online] August, 2003. Available from:

17 URL: http://www.cdc.gov/ncidod/EID/vol9no8/03-0033.htm.

19 Clausing P, Brunekreef B, and van Wijnen JH (1987) A method for estimating soil ingestion by 20 children. Int Arch Occup Environ Health. 59(1):73-82.

21

- 22 Davis S, Waller P, Buschbom R, Ballou J, and White P (1990) Quantitative estimates of soil
- ingestion in normal children between the ages of 2 and 7 years: population-based estimates
- using aluminum, silicon, and titanium as soil tracer elements. Arch Environ Health. 45(2):112-25 22.

26

27 Day, JP, Hart M and Robinson MS (1975) Lead in urban street dust. Nature 253:343-345.

28

- 29 Driver J, Konz J, and Whitmyre G. (1989) Soil Adherence to Human Skin. Bull. Environ.
- 30 Contam. Toxicol. 43: 814-820.

31

32 Edwards CH, Johnson AA, Knight EM, Oyemade UJ, Cole OJ, Westney OE, Jones S, Laryea H, and Westney LS (1994) Pica in an urban environment. J Nutr.124(6 Suppl): 954S-962S

34

- 35 EPA (1997). Exposure Factors Handbook, EPA/600/P-95/002Fa,
- 36 http://www.epa.gov/ncea/pdfs/efh/front.pdf, or http://www.epa.gov/ncea/pdfs/efh/sect4.pdf

37

Hawley, JK (1985) Assessment of health risk from exposure to contaminated soil. Risk Anal. 39 5(4):289-302.

40

- 41
- Haywood SM and Smith JG. (1992) Assessment of potential doses at the Maralinga and Emu test 42 sites. Health Phys. 63(6):624-30.

43

44 Hinton TG (1992) Contamination of plants by resuspension: a review, with critique of 45 measurement methods. Sci Total Environ. 121:177-93.

46

47 Kimbrough RD, Falk H and Stehr P. (1984) Health implications of 2,3,7,8-tetrachloro dibenzo-p-48 dioxin (TCDD) contamination of residential soil. J Toxicol Environ Health 14:47-93.

- Holmes KK, Shirai JH, Richter KY and Kissel JC (1999) Field measurements of dermal loadings
- in occupational and recreational activities. Environ. Res. 80:148-157.

1 Johns T and Duquette M (1991) Detoxification and mineral supplementation as functions of 3 geophagy. Am J Clin Nutr. 53(2):448-56. Kissel JC, Richter KY and Fenske RA (1996) Field Measurement of Dermal Soil Loading Attributable to Various Activities: Implications for Exposure Assessments. Risk Anal, 7 116(1):115-125. 8 9 Kissel J, Weppner S and Shirai J (2003) Farm Exposures to Deposited Arsenic and Lead on 10 Vashon Island: Summary. Report prepared for the Department of Environmental Health, 11 University of Washington 12 13 Krishnamani R and Mahaney WC (2000) Geophagy among primates: adaptive significance and ecological consequences. Anim Behav. 59(5):899-915. 15 16 LaGoy PK (1987) Estimated soil ingestion rates for use in risk assessment. Risk Anal. 7(3):355-9. 17 Nelson WJ (1999) A Paleodietary Approach to Late Prehistoric Hunter-Gatherer Settlement-Subsistence Change in Northern Owens Valley, Eastern California: The Fish Slough Cave 20 Example. Doctoral dissertation, University of California, Daves, CA. 21 22 Reid RM (1992) Cultural and medical perspectives on geophagia. Med Anthropol. 13(4):337-23 51Reid 24 25 Simon SL (1998) Soil ingestion by humans: a review of history, data, and etiology with 26 application to risk assessment of radioactively contaminated soil. Health Phys. 74(6): 647-72 27 Stanek EJ, Calabrese EJ and Stanek EJ (2000) Daily soil ingestion estimates for children at a Superfund site. Risk Anal. 20(5):627-35. 30 31 Stanek EJ and Calabrese EJ. (1995a) Daily estimates of soil ingestion in children. 32 Environ Health Perspect. 103(3):276-85. 34 Stanek EJ and Calabrese EJ (1995b) Soil ingestion estimates for use in site evaluations based on the best tracer method. Human and Ecological Risk Assessment. 1:133-156. 35 36 37 Stanek EJ, Calabrese EJ, Barnes R and Pekow P (1997) Soil ingestion in adults--results of a second pilot study. Ecotoxicol Environ Saf. 36(3):249-57. 39 40 Stanek EJ, Calabrese EJ and Barnes RM (1999) Soil ingestion estimates for children in Anaconda 41 using trace element concentrations in different particle size fractions, Human and Ecologic Risk 42 Assessment, 5:547-558. need to get this and cite it dermal section 43 44 Sun LC; Meinhold CB (1997) Gastrointestinal absorption of plutonium by the Marshall 45 Islanders. Health Phys; 73(1): 167-75. 46 47 Thompson, K.M., and Burmaster, D.E. (1991). Parametric distributions for soil ingestion by 48 children. Risk Analysis 11:339-342. 49 50 van Wijnen JH, Clausing P and Brunekreef B (1990) Estimated soil ingestion by children.

G-136

Environ Res. 51(2):147-62.

Wanapum Overview and Perspectives 1 2 **Developed During Tribal Narrative Workshop (June 15-19, 2009)** Hanford, WA 3 January 2010 4 5 6 Wanapum Introduction 7 8 Before the Columbia, there was Chiwana. Wanapum, which means the River People, are part of the river and the land through which it flows. They are a part of the people who lived there and 10 those who continue to live along the river's shores. Coyote created the river in his efforts to care 11 for the Wanapum. The Columbia is the river of life and myth. The Wanapum people have been 12 supported by the river's bounty for thousands of years – honor the spirit of the river. Teachings 13 of the Wanapum tell all who will listen to be responsible to the land, to the creatures that live 14 within the water and on the land, to the ancestors that are buried in the land, and to those who have not yet been born. The Wanapum are the caretakers responsible for the land and passing on 15 16 the teachings of the natural world to the next generation. 17 18 The Wanapum live on the Columbia River; it has been their home from time immemorial. As 19 Indian people, they were put there to protect and preserve the land and river for themselves, their 20 children, and those not yet born. As spiritual people the Wanapum continue to practice their 21 religion. Friendly, understanding, and respectful of all people and things, the Wanapum only 22 wish to live in peace. Through strenuous and prudent efforts the Wanapum have successfully 23 built relationships with federal, state, and local agencies. The respect, trust, and mutual understanding that results from these relationships allow the Wanapum to actively participate in 25 decision-making processes that affect their responsibilities to care for all things put here by the 26 Creator. 27 28 Wanapum Background 29 30 The Wanapum made their homes along the Columbia River in an area known as the Columbia 31 Plateau. They traditionally lived in small villages. The villages included mat lodges made from 32 tules for housing and a longhouse for spiritual ceremonies. 33 34 Priest Rapids became a central location for the Wanapum because the location offered optimal 35 fishing conditions. The Wanapum traveled regularly up and down the coast of the Columbia 36 River for food and other resources. Their proximity to the river allowed the Wanapum to catch 37 plentiful salmon. The Wanapum learned the ways of the land and discovered hundreds of ways 38 to create medicines and other remedies from plants. 39 40 In 1870, an outbreak of smallpox left the Wanapum with just 300 living members. Within 30

years many of the Wanapum people became members of nearby reservations because of health,

family connections, or employment opportunities. In 1930, the Wanapum population reached an all-time low with just 30 to 50 members. The Wanapum managed to preserve their traditions throughout the 1940s.

In the decades that followed, the Wanapum experienced various impositions on their land. The construction of the Hanford Plutonium Plant and the U.S. Army Training Center took nearly 1,000 square miles of Wanapum land. The Priest Rapid Dam and the Wanapum Dam forever changed their fishing and living routines.

 The self-sufficient Wanapum chose to remain an unrecognized tribe, meaning they do not have obligations to nor receive support from the U.S. government. The Wanapum frequently join forces with other recognized tribes to further common causes. They work within their own group to preserve their own culture and traditions. The survival of the Wanapum culture is evidence of the determination and strength of the people.

Tribal Values

 In essence, tribal values are intent on protecting, preserving and perpetuating resources for the sake of traditional and cultural existence. Each resource had a time or a season on when to gather, store, and properly use. This harmony and connection to the land <u>is</u> our culture and is captured and passed down in our oral history. It is imperative that materials available for use in from Hanford for a substance lifestyle be uncontaminated. Once resources become contaminated or lost then part of our connection to the land and part of our culture is lost.

General Comments

• We assume that all of Hanford will be eventually restored and protected¹.

Any new proposals at Hanford should at a minimum utilize the "Hanford Site NEPA
Guidance Document" as a primary reference for creating any NEPA document, especially the
Affected Environment section.

• We expect to be proactively engaged by DOE during the scoping and alternatives development for Hanford proposals. Tribes are part trustees of Hanford and should be informed and have opportunity to be engaged beyond the NEPA public involvement process.

• NEPA documents at Hanford need to include sections describing Viewscapes and Soundscapes that are important to our tribal culture.

Socioeconomic Section of a NEPA EIS should be separated into sections *Social* and
 Economics.

• A GTCC repository at Hanford is a conflicting mission with present DOE cleanup efforts.

¹ FR Volume 36--Number 23: 1271-1329; Monday, June 12, 2000

1 Salmon and water are important cultural resource that are intertwined with the subsistence 2 lifestyle of affected tribes.

4 5

3

Affected Tribes and the trust responsibilities of DOE and other federal agencies (NEPA 18, section 6) need to be clearly described in the GTCC EIS. It needs to include tribal aboriginal rights, treaty rights and Executive Orders 12898, 13007, and 13175.

6 7 8

9

10

11

Climate is simply not a snapshot in time. Archeological evidence supports tribal oral history that speaks of a time when the region had extreme climate and weather changes. We have stories of volcanic activity, glacial periods, times of great floods, and what we know today. A GTCC repository should consider climate change and extreme weather changes expected 12 over 10,000 year period.

13

14 • We recommend that quiet zones and time periods should be identified for known Native American ceremonial locations on and near the Hanford Reservation. 15

16

17 • Not all ceremonial sites at Hanford have been shared with DOE beyond Gable Mountain and 18 Rattlesnake Mountain.

19

20 • Hanford in general is composed of sandy soils that do not retain water very well and 21 consideration must be made for the potential long-term moisture percolation affecting any 22 underground structure.

23

24 Some soils have medicinal purposes for healing like the White Bluffs area. Care should be taken to recognize those with such properties.

25 26

27 • Proposal of any new risk of further contamination of the Columbia River system will receive high priority review. 28

29

30 • The affected environment needs to fully describe and graphically illustrate known groundwater plumes surrounding the Area of Potential Effect (APE). Contamination in the 31 ground water is the greatest long-term threat at the Hanford site. The groundwater section 32 needs to also identify where groundwater and its contaminant are not fully characterized. 33 This uncertainly and limited technical ability to remediate the vadose zone and ground water 34 35 puts the Columbia River at increased risk.

36

37 Indian health is sustained through a balanced traditional lifestyle. Any contamination or restriction is a negative affect on tribal health. We are against adding any waste to the Hanford site that adds risk to tribal health.

39 40

38

41 "Reference Indian" scenarios should be considered in any risk assessment development. These scenarios can also be considered inadvertent intruder scenarios, as required by DOE 42 43 Order 435.1.

44

45 Biodiversity within National Monument include rare plant and wildlife species.

• We expect DOE to comply with Comprehensive Conservation Plan (CCP).

• Columbia River Tribes have created a salmon recovery plan called the Wy-Kan-Ush-Mi Wa-Kish-Wit (Spirit of the Salmon). We expect that DOE's potential placement of a repository to not conflict with elements of this Plan.

• A tribal subsistence economy needs to be described in terms of long-term "personal" enterprise. ("Personal enterprise" is the term for self and community reliance on the environment for existence as opposed to employment or modern economies.)

• The potential for large returning salmon runs should be considered part of potential changes to the economy. A goal of tribes, federal and state governments, is to dramatically improve salmon returns in the Columbia River.

• Tribal employment at Hanford and surrounding area should be part of the employment description.

Environmental justice (EJ) in Indian country needs to be better defined to clarify sovereign
 nation-state status, federal trust responsibility to tribes, and include treaty and aboriginal
 rights.

We maintain that aboriginal rights allow for the protection, access to, and use of open and
 unclaimed lands of the Hanford Reservation when human health and safety are not in
 jeopardy.

• There are sites or locations within the existing Hanford reservation boundary that should be considered for special protections or set aside for tribal ceremonial uses.

• We propose that ceremonial sites be placed in co-stewardship with DOE, USFWS and affected tribes for long-term management and protection.

 • The Comprehensive Land Use Plan (CLUP) has institutional controls (ICs) that limit present and future use by Native Americans. These ICs should be described as part of the affected environment. Any new proposals that extend, expand, or create new IC should be considered cumulative impacts to native people.

• The 50-year management time horizon of the CLUP and its land use designations are often incorrectly assumed to be permanent designations. CLUP landuse designations and their boundaries can be changed at the discretion of DOE with recommendations by Hanford stakeholders, including affected tribes.

• According to the *American Indian Religious Freedom Act*, tribal members have a protected right to conduct religious ceremonies at locations on public lands where they are known to have occurred.

• Executive Order 13007 states that Tribal members have the right to access ceremonial sites.

DOE and USFWS must maintain trails or roads that are presently providing access to known 3 ceremonial sites.

4 5

6

New culturally significant findings are required to be added to the list of sites and locations with special cultural protections that override any land use designation of the CLUP or other documents.

7 8 9

Shipment routes need to be described for proposed Hanford site. Travel routes will cross many major rivers and salmon-bearing watersheds that are important to Tribes.

10 11 12

All things of the natural environment we recognize as cultural resources. Nature provides for a subsistence live style, and thus, the daily interaction with the land is our culture, and our foundation of our religious beliefs.

14 15

13

16 Cultural Landscapes have been defined by the World Heritage Committee as distinct 17 geographical areas or properties uniquely representing the combined work of nature and of 18 man.

19

21

22

23

20 There are three overlapping cultural landscapes that overlie the natural landscape at Hanford. The first is the tribal archeological and ethnographic record spanning more than 10,000 years. The second was created by early settlers, and the third by the Manhattan Project. DOE is presently removing much of the Manhattan landscape to a more *natural* state (restoration and conservation).

24 25 26

27

28

We recognize culturally significant viewscapes as described in the Hanford Cultural Resources Management Plan. Special protections and visit considerations should be given to tribal elders and youth to maintain and accommodate educational opportunities of tribal cultural and ceremonial activities.

29 30 31

32

A proposed Repository must consider local DOE strategies of Hanford recovery, including the 200 Area 7th ROD and the 2015 Vision for the River Corridor. These long-term recovery strategies must be part of the NEPA evaluation for a repository.

33 34

35 The APE for the cultural landscape should include areas across the lower Columbia Plateau from the Wallula Gap to the Sentinel Gap. 36 37

38

There are many cemeteries, ceremonial sites, and areas of spiritual significance within the 39 Hanford Boundary. Not all sites are known to DOE.

1 2 3 4 5 6 7 8 9 10 11 12 This page is intentionally left blank. 13

APPENDIX H:

PUBLIC DISTRIBUTION FOR THE DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR THE DISPOSAL OF GREATER-THAN-CLASS C (GTCC) LOW-LEVEL RADIOACTIVE WASTE AND GTCC-LIKE WASTE

MEMBERS OF CONGRESS

U.S. House of Representatives

Georgia

The Honorable John Barrow, Georgia The Honorable Paul Broun, Jr., Georgia The Honorable Jack Kingston, Georgia

Idaho

The Honorable Raul Labrador The Honorable Mike Simpson

Nevada

The Honorable Shelley Berkley The Honorable Dean Heller The Honorable Joe Heck

New Mexico

The Honorable Martin Heinrich The Honorable Ben Lujan The Honorable Steve Pearce

Oregon

The Honorable Earl Blumenauer The Honorable Peter A. DeFazio The Honorable Kurt Schrader The Honorable Greg Walden The Honorable David Wu

South Carolina

The Honorable James E. Clyburn The Honorable Jeff Duncan The Honorable Harold Gowdy the Honorable John Mulvaney The Honorable Joe Wilson

Washington

The Honorable Jaime Herrera
The Honorable Norman D. Dicks
The Honorable Doc Hastings
The Honorable Jay Inslee
The Honorable Rick Larsen
The Honorable Jim McDermott
The Honorable Cathy McMorris Rodgers
The Honorable David G. Reichert
The Honorable Adam Smith

U.S. House of Representatives Committees

Committee on Appropriations

Committee Chair and Ranking Member

Committee on Armed Services

Committee Chair and Ranking Member

Committee on Energy and Commerce

Committee Chair and Ranking Member

Subcommittee on Energy and Environment

Subcommittee Chair and Ranking Member

Subcommittee on Energy and Water Development, and Related Agencies

Subcommittee Chair and Ranking Member

Strategic Subcommittee

Subcommittee Chair and Ranking Member

U.S. Senate

Georgia

The Honorable Saxby Chambliss The Honorable Johnny Isakson

<u>Idaho</u>

The Honorable James Risch The Honorable Mike Crapo

Nevada

The Honorable John Ensign The Honorable Harry Reid

New Mexico

The Honorable Jeff Bingaman The Honorable Tom Udall Oregon

The Honorable Jeff Merkley The Honorable Ron Wyden

South Carolina

The Honorable Jim DeMint The Honorable Lindsey Graham

Washington

The Honorable Maria Cantwell the Honorable Patty Murray

U.S. Senate Committees

Committee on Appropriations

Committee Chair and Ranking Member

Committee on Armed Services

Committee Chair and Ranking Member

Subcommittee on Clean Air and Nuclear Safety

Subcommittee Chair and Ranking Member

Committee on Commerce, Science, and

Transportation

Committee Chair and Ranking Member

Committee on Energy and Natural Resources

Committee Chair and Ranking Member

Subcommittee on Energy

Subcommittee Chair and Ranking Member

Subcommittee on Energy and Water Development

Subcommittee Chair and Ranking Member

Committee on Environment and Public Works

Committee Chair and Ranking Member

Strategic Subcommittee

Subcommittee Chair and Ranking Member

STATE GOVERNORS

Georgia

The Honorable Nathan Deal

<u>Idaho</u>

The Honorable C.L. "Butch" Otter

<u>Nevada</u>

The Honorable Brian Sandoval

New Mexico

The Honorable Susana Martinez

Oregon

The Honorable John Kitzhaber

South Carolina

The Honorable Nikki Haley

Washington

The Honorable Christine Gregoire

AMERICAN INDIAN TRIBAL LEADERS

Arizona

The Honorable Eldred Enas Chairman of the Colorado River Indian Tribes

The Honorable Tim Rogers Chairman of the Kaibab Paiute Tribe

The Honorable Joe Shirley, Jr., President Navajo Nation

California

The Honorable Melvin R. Joseph Chairman of the Lone Pine Paiute-Shoshone Tribe

The Honorable Bill Vega Chairman of the Bishop Paiute Indian Tribe

The Honorable Virgil Moose Chairman of the Big Pine Paiute Tribe of the Owens

The Honorable Dorothy Buff Chairwoman of the Fort Independence Indian Tribe

The Honorable Bill Saulque Chairman of the Benton Paiute Indian Tribe

The Honorable Joe Kennedy Chairman of the Timbisha Shoshone Tribe

The Honorable Charles Wood Chairman of the Chemehuevi Indian Tribe P.O. Box 1976 Havasu Lake, CA 92363

<u>Idaho</u>

The Honorable McCoy Oatman, Chairman Nez Perce Tribe Executive Committee

The Honorable Nathan Small, Chairman Fort Hall Business Council Shoshone-Bannock Tribes

Willie Preacher, Shoshone-Bannock Tribes

New Mexico

The Honorable Vernon M. Garcia, Governor Pueblo of Cochiti

The Honorable Joshua Madelena, Governor Pueblo of Jemez

The Honorable Perry Martinez, Governor Pueblo of San Ildefonso

The Honorable Walter Dasheno, Governor Pueblo of Santa Clara

The Honorable Ernest Mirabal, Governor Pueblo of Nambe

The Honorable George Rivera, Governor Pueblo of Pojoaque

The Honorable Frederick Vigil, Governor Pueblo of Tesuque

The Honorable Chandler Sanchez, Governor Acoma Pueblo

The Honorable John Antonio, Sr., Governor Laguna Pueblo

Nevada

The Honorable Richard Arnold Chairman of the Pahrump Paiute Tribe

The Honorable Alvin Marques Chairwoman of Ely Shoshone Tribe

The Honorable James Birchim Chairman of the Yomba Shoshone Tribe

The Honorable Virginia Sanchez
Chairman of the Duckwater Shoshone Tribe

The Honorable Darren Daboda Chairman of the Moapa Band of Paiutes

The Honorable Marcia Mahone Chairwoman of the Las Vegas Paiute Tribe

Oregon

The Honorable Elwood Patawa, Chairman Board of Trustees Confederated Tribes of the Umatilla Indian

Utah

The Honorable Jeanine Borchardt Chairwoman of the Paiute Indian Tribes of Utah

Washington

Rex Buck Wanapum People

The Honorable Harry Smiskin, Chairman Confederated Tribes and Bands of the Yakama

FEDERAL AGENCIES

Advisory Council on Historic Preservation

Mr. Reid J. Nelson, Director Office of Federal Agency Programs

Defense Nuclear Facilities Safety Board

Mr. Andrew Thibadeau, Director Division of Information Technology and Security

Department of Health and Human Services

Mr. Ed Pfister

Environmental Program Manager

Department of Homeland Security

Mr. David Reese

USM/Administrative Services/Safety and Environmental Programs

Albuquerque Regional Office

Mr. Stephen R. Spencer, Ph.D.
Regional Environmental Officer
U.S. Department of the Interior
Office of Environmental Policy and Compliance

Department of Labor

Ms. Cherie Hutchison Office of Standards, Regulations, and Variances Mine Safety and Health Administration

Environmental Protection Agency

Ms. Marthea Rountree

Director, Office Radiation and Indoor Air

Ms. Susan Bromm, Director Office of Federal Activities

Mr. Dennis Faulk Region X

Mr. Michael P. Jansky Regional Environmental Review

Ms. Dana Allen Department of Energy Reviewer

Ms. Ann McPherson Department of Energy Reviewer

Mr. Richard Campbell Manager, Hanford Project Office Ms. Teena Reichgott, Manager Environment Review and Sediment Management Office of Ecosystems, Tribal and Public Affairs

Mr. Joe Cothern NEPA Coordination Team Leader

Mr. Larry Svoboda Director, NEPA Program

Mr. Heinz Mueller Chief of NEPA Program Office

Dr. Richard Graham Department of Energy Reviewer

U.S. Department of Interior

Mr. Willie R. Taylor, Director
Office of Environmental Policy and Compliance

Mr. Marv Keller Bureau of Indian Affairs

U.S. Department of Transportation

Ms. Camille Mittelhotlz Environmental Team Leader

Department of Energy Advisory Boards and Site-

Specific Advisory Boards

Ms. Catherine Brennan
Environmental Management Advisory Board
U.S. Department of Energy

Department of Health and Human Services

Mr. Ed Pfister

Environmental Program Manager

Office of Secretary

Department of Labor

Ms. Cherie Hutchison

Office of Standards, Regulations, and Variances Mine Safety and Health Administration

National Science Foundation

Ms. Caroline M. Blanco Assistant General Counsel

Nuclear Regulatory Commission

Ms. Patrice Bubar

Environmental Protection and Performance Assessment Directorate Office of Federal and State Materials and

Environmental Management Programs

Mr. Andrew Persinko

Environmental Protection and Performance

Assessment Directorate

Office of Federal and State Materials and Environmental Management Programs

Mr. Gregory Suber

Environmental Protection and Performance

Assessment Directorate

Office of Federal and State Materials and Environmental Management Programs

Mr. James Shaffner

Environmental Protection and Performance

Assessment Directorate

Office of Federal and State Materials and Environmental Management Programs

Ms. Kellee Jamerson

Environmental Protection and Performance

Assessment Directorate

Office of Federal and State Materials and

Environmental Management Programs

U.S. Government Accountability Office

Dr. Tim Persons

U.S. Government Accountability Office

NATIONAL ORGANIZATIONS

National Governors' Association

Mr. David Quam, Director

Environmental Council of the States

Mr. Matthew C. Jones

Western Governors' Association

Mr. Rich Halvey, Program Director

Organization of Agreement States

Mr. Paul S. Schmidt, Chair

National Conference of State Legislatures

Ms. Linda Sikkema

Southern States Energy Board

Mr. Kenneth J. Nemeth. Executive Director

National Association of Attorneys General

Ms. Paula Cotter, Esq.

Energy Communities Alliance

Mr. Seth Kirshenberg, Executive Director

Government Accountability Project

Mr. Louis Clark, President

Alliance for Nuclear Accountability

Mr. Nick Roth, Program Director

Ms. Susan Gordon, Director

Blue Ridge Environmental Defense League

Ms. Louis Zeller

California Radioactive Materials Management

Forum

Mr. Keith Asmussen

Center for Community Action

Rev. Mac Legerton

Citizens for Environmental Justice

Dr. Mildred McClain, Executive Director

Committee to Bridge the Gap

Mr. Daniel Hirsch, President

Concerned Citizens for Nuclear Safety

Ms. Joni Arends, Executive Director

Edison Electric Institute

Mr. Richard Loughery

Environmental Defense Fund

Mr. Fred Krupp, President

Environmental Defense Institute

Mr. Chuck Brascious

Electric Power Research Institute

Ms. Barbara Bauman Tyran

Friends of the Earth

Mr. Erich Pica

Hanford Challenge

Mr. Tom Carpenter, Executive Director

Heart of America Northwest

Mr. Gerald Pollet

Institute for Energy and Environmental Research

Dr. Arjun Makhijani

Greenaction for Health and Environmental

Justice

Mr. Bradley Angel

Los Alamos Study Group

Mr. Greg Mello

National Audubon Society

Mr. David Henderson, Executive Director

Mr. Charles Kahle, Executive Director

National Community Action Foundation

Mr. David Bradley, Executive Director

National Congress of American Indians

Ms. Jacqueline Pata, Executive Director

National Tribal Environmental Council

Mr. Jerry R. Pardilla, Executive Director

National Wildlife Federation

Mr. Jim Lyon

Natural Resources Defense Council

Dr. Thomas B. Cochran

The Nature Conservancy

Mr. Thomas Cassidy

Ms. Kathryn Landreth

Mr. Terry Sullivan, State Director

Nuclear Energy Institute

Ms. Lisa Steward

Nuclear Watch of New Mexico

Mr. Jay Coghlan, Director

Panhandle Area Neighbors and Landowners

Ms. Doris Smith

Physicians for Social Responsibility

Mr. Will Callaway

Responsible Environmental Action League

Ms. Christine Chandler

Sierra Club

Mr. Ed Hopkins

Snake River Alliance

Ms. Beatrice Brailsford Ms. Andrea Shipley

Southwest Research and Information Center

Mr. Don Hancock

The Wilderness Society

Mr. David Albertswerth

Women's Action for New Directions

Ms. Susan Shaer

American Society of Nuclear Cardiology

Headquarters Office

4550 Montgomery Ave., Suite 780 North

Bethesda, MD 20814-3304

American Board of Nuclear Medicine

4555 Forest Park Boulevard, Suite 119

St. Louis, MO 63108-2173

DOE PUBLIC READING ROOMS

Copies of the draft EIS are available for public review at the locations listed below:

District of Columbia

U.S. Department of Energy
Freedom of Information Act Public
Reading Room
1000 Independence Avenue, SW
Room 1G–033
Washington, DC 20585
(202) 586–5955

Idaho

U.S. Department of Energy Public Reading Room 1776 Science Center Drive Idaho Falls, ID 83402 (208) 526–0833

Nevada

Nevada Site Office U.S. Department of Energy Public Reading Room 755 East Flamingo Road, Room 103 Las Vegas, NV 89119 (702) 794-5106

Amargosa Valley Library 829 E. Farm Road Amargosa, NV 89020 (775) 372-5340

Clark County Library 1401 E. Flamingo Road Las Vegas, NV 89119 (702) 507-3400

Indian Springs Library 715 Gretta Lane Indian Springs, NV 89018 (702) 879-3845

Las Vegas Library 833 N. Las Vegas Boulevard Las Vegas, NV 89101 (702) 507-3500

Pahrump Community Library 701 S. East Street Pahrump, NV 89048 (775) 727-5930

Tonopah Library PO BOX 449 Tonopah, NV 89049

New Mexico

DOE FOIA Reading Room Government Information/Zimmerman Library University of New Mexico MSC05 3020 1 University of New Mexico Albuquerque, NM 87131-0001 (505) 277-7180

Carlsbad Field Office U.S. Department of Energy WIPP Information Center 4021 National Parks Highway Carlsbad, NM 88220 (575) 234-7348 or (800) 336-9477 Carlsbad Public Library 101 South Halagueno Street Carlsbad, NM 88220 (575) 885-6776

Eunice Public Library 1039 10th Street Eunice, NM 88231 (575) 394–2336

Española Public Library 313 N. Paseo de Oñate Española, NM 87532 (505) 747-6087

Mesa Public Library 2400 Central Avenue Los Alamos, NM 87544 (505) 662-8250

Santa Fe Public Library 145 Washington Street Santa Fe, NM 87501 (505) 955-6780

Santa Fe Public Library Oliver La Farge Branch 1730 Llano Street Santa Fe, NM 87501 (505) 955-4860

New Mexico State Library 1209 Camino Carlos Rey Santa Fe, NM 87507 (505) 476-9717

Los Alamos National Library Public Reading Room P.O. Box 1663 Mail Stop M991 Los Alamos, NM 87545 (505) 667-0216

J. Robert Oppenheimer Study Ctr & Res Library Technical Area 3, Building 207 Los Alamos National Laboratory Los Alamos, NM

Oregon

Portland State University Government Information Branford Price Millar Library 1875 SW Park Avenue Portland, OR 97201 (503) 725–5874 **South Carolina**

University of South Carolina-Aiken Gregg-Graniteville Library 471 University Parkway Aiken, SC 29801 (803) 641-3320

South Carolina State Library 1500 Senate Street Columbia, SC 29211 (803) 734-8026

Washington

U.S. Department of Energy **Public Reading Room Consolidated Information Center** 2770 University Drive Room 101L Richland, WA 99352 (509) 372–7443

University of Washington Suzzallo-Allen Library

Government Publications Division

Seattle, WA 98195 (206) 543-1937

Gonzaga University Foley Center Library 101-L East 502 Boone Spokane, WA 99258 (509) 313-5931

OTHER STAKEHOLDERS

Alaska

Lands & Natural Resources Doyon, Ltd. Ron Short

Alabama

Peter Jones

Aubrey Godwin

Rob Smith

John Pronko

David Graw Darleane Hoffman

Judy Cook

Linda Daniels

Dr. Alan Pasternak

Glen Korpi

Robert Smith

Gerhard Stapfer

Mel Weingart T. Rivard

Robert Trout

Naviroze D. Amaria David Caldwell Steve Gorin

Caren Johannes Paul G. Voilleque

Geoffrey Griffith

Arizona

Joe Shirley, Jr.

California

Western Region Office of Economic Adjustment

Carl Zichella Lisa Decurtins Ted Sand

Abalone Alliance Clearinghouse

Michael S. Brandrowski

W. Curt McGee John Manchak Chuck Alley Robert Yelin

Colorado

Lisa Weers Alex Fischer Pierre Choquet Jared Newman Daniel Hester Bill Schroeder

Connecticut

Thomas LaGuardia

District of Columbia

Stacy Bleigh Tara Butler Larry Camper Mark Cohen Neil Coleman Jeff Crater Raphael Daniels Jodi Dart Sam Evans Geoff Fettus James J. Fiore John Fowler Mark W. Frei Alyssa Go Michael G. Green

Ridgeway Hall, Jr., Esq. Brian Hansen Aneglina Howard David G. Huizenga

Kevin Haggerty

Greg Choppin

Robert Bullard James Hardeman **Bobbie Paul** Lauren Travis Frank Carl

Paul Weber

Minidoka City Council John Murdock

Sheldon Kovarsky Bill L. Reynolds Jeff Sondrup

Minidoka County Commissioner

Doyle L. Braswell James McAffee Jim Morris Gordon S. Loosle William Wickberg Alton L. Hatch Keith Martindale Jeff Baldwin Wayne Brower Blaine Burkman Walter T. Greaves Eileen K. Huestis Arvid Jensen

The Honorable Dennis M. Lake

Jim McAnerew Nancy Nation

Cleone Jollev

Jacqueline Johnson

Bill Keller Santina LaValla Carolyn Lawson Eric Leeds Roger A. Lewis Alfred Meyer Cindy O'Malley Jennifer Palazzolo Jim Riccio Tom Rivers Max Shultz Glen Tait Shawn Terry Steve Usdin Jane Wittmeyer

Brian O'Connell Richard Loughery Martin Heinrich

Florida

Georgia

Deke Copenhaver David Faulk Albert Frazier, Jr. Sue Parr Camille Price

<u>Hawaii</u>

Idaho

N.K. Rogers P. Scherbinske Elzo C. White John C. Gough Albertsons Library **Boise State University**

Director of University Relations Idaho Dept. of Commerce

Idaho Power

Preston Joint School Dist. 201 Representative – Dist. 10

Stephen Affleck Hal N. Anderson James C. Baker, Ph.D. William J. Batt

Scott Bedke Fritz Bjornsen Michael Blain, Ph.D.

Susan Burch Fave Burgess Susan Burke Ann Burr Jerry Deckard Pat Ford Marcia Franklin Marie Gambles Gary Hagen Walter L. Hampson

K.T. Hanna Brad Har Toni Hardesty Ken Harris Joe Henscheid Gene Hill Jim Hogge

Tech. Svcs. Bur., Idaho Dept. of Water Resources

Loren Jalbert Steve Jess Richard Johnson Ken Kaae

Rev. Harold Kline Daryl Koch Stephanie Kukay Dr. Robert Kustra Dan Lester Lee Liberty

Chuck Link Thomas Loertscher Jerome Mapp Jim Marriott Mark T. Masarik Russ Mathews Albert McGee, Jr.

Patricia Wayland McWilliams

William P. Mech D. Melvin Terry Monasterio Brian Monson Peter Morrill

Lynn McKee

George A. Murgel Jerry Naaf

Royal G. Neher, M.D. Morlan W. Nelson Greg Nelson

The Honorable Bruce Newcomb

University News Dale Plaster Duke Russell Roger Sherman Jeff Siddoway Craig Simon E.J. Smith Bryan Smith Emerson Smock

Ray Stark The Honorable Herm Steger

Jonathan Stoke Russell W. Strawn Julie Taylor
Dr. Dale Toweill
Rochelle Trammel
Rick Tremblay
A. Vuylsteke
R. Weisenburger
Rachel Winer
Everett T. Wohlers
Liz Woodruff
Rick Yzaguirre

Mountain Home News Marianne Higginson Mr. Hopple Randy MacMillan Dennis Osman Eugene T. Pyles

KKVI-35 ABC-TV

Representative – Dist. 25

Joy Hurst Ralph West

President – Boise State University

Matt Beebe Pat Galvin Todd Lakey

The Honorable Patti Anne Lodge

Kelly Murphey Richard Schlund Robert L. Lisonbee Theodore Strickler Ivan Taylor April Mariska William Godfrey David L. Schreiber Keith Trappett Nathan Leigh Jerry Nance

The Honorable Ken A. Roberts

Tarri Leonardson
Delbert McFadden
Mark Shaltry
Kathy Skippen
Mike Ushman
Albert H. Vaughn
Richard Welch
Matt McLanim
Jack Renfrow
Buhl M.S. Library
William Feusahrens
John Tucker III

Steve Gilger

Representative – Dist. 18

Stan Baldwin Angelo Gonzales Lori Howell Roy Ivey Nathan Small Dan L. Thomas Reggie Thorpe Roger Turner

Gooding Public Library

Bill Andrew Rodger Moore Robert Muffley David Wilding

Custer County Commissioner

Mary L. Gonzales

College of Southern Idaho

Mountain Home School Dist. 193

John R. Bolliger Philip T. Homer Sarah Michael R. Keith Roark John Vladimiroff Richard E. Smith

Richard E. Smith Dale Hammond Becky Smith Ray Wolfe Harold Tolmie

Rebecca Hendryx Kenneth R. Ross

Ada County Commissioner Advanced Integrated Mgmt. Svc. Amer Falls Jnt. School Dist. 381

Blackfoot City Council Canyon View Hospital

Capitol West

College of Health Science Custer County Commissioner Northwest Nazarene College Northwind Environmental Notus School District 135

NPR NEWS 91-Boise State Radio Northwest Nazarene College Library Office of Public Affairs, PA-20 Rm. 8E-070

Office of Secretary of State Representative – Dist. 29 Representative - Dist. 5

Lisa Aldrich Lezlie Aller Steve Baker Greg Bass

Nichole Brooks

Brad Bugger
Kenneth Bulmahn
Jack Caldwell
Al Campbell
Ceri Chapple
Alex D. Creek
Alice Crockett
Wallace Cummings
Alan J. Dudziak
Phillip Fineman

Stacey Francis David Frederick Doug French

Don Fluke

Lexie French Lee Gagner Robert Gates Ray Geimer David Gianotto Ellen Gladwin

Richard L. Goodworth

Laurel Hall

Vern K. Hamilton

The Honorable John D. Hansen

Mike Hart
Kent Hastings
Roger P. Hearn
Roger Heng
Gary Higley
Stanley N. Hobson
Jean Holdren
Tim Hopkins
Dennis Hoyem
Leslie Huddleston

M.F. Huebner
Thomas G. Humphrey
Richard H. Ising
Craig Jenkins
Larry V. Jensen
Jim Johnston
Clark Jones
K.C. Jones
Doug Jorgensen
Dan Kotansky
Donn Larsen
Pamela L. Lassahn

John Lindsay
John Logan
Donald J. Mackay
Dale Manning
Whitney Marshall
Simon Martin
R.D. Maynard
George McCarty

Capt. Patrick E. McDonald

Eric McGary

Michael McKenzie-Carter

Alan Merritt
Dauchy Migel
Elton Modroo
Randall Morris
Jon Ochi
Doug Parker
R.A. Peralta
Dave Plourde
Sam Pole

Gary Rawlings Jim Reed Nelda Richards

The Honorable Mel Richardson

Norman Ricks
Bill Robertson
Sue Rush
Dave Sealander
Erik Simpson
Reuel Smith
Kim D. Smith
Jim Solecki
W.R. Sovereign
Lee Staker
John Tanner, Jr.

Felix R Van de Wiele

Jim Tibbitts

Doug Walker
Lyle West
Darrel Williams
Joy Wilson
Charles E. Wilson
James Wolski
Paul A. Worth
Keith Davis
Marilyn Brown
Dr. Bart Krawetz
John L. Ziebrath
Mud Lake City Council
Veronica Lierman

N. Bingham City Dist. Library

MWH

Ada County Commissioner

Greg Foley Vanessa Fry

Clarence Tews

The Honorable Wendy Jaquet

Mary Speck

The Honorable W. Clinton Stennett

Nampa School District 131

Ralph Campbell Jim Sorensen

The Honorable William T. Sali

Gus Spiropulos Brooklyn Baptiste Kristi Baptiste-Eke Gabriel Bohnee David Conrad Darla Jackson Dan Landeen Sandra Lilligren Patti McCormack

Wilfred Scott

Julie Simpson

Allen Slickpoo Stan Sobczyk Mike Sobotta Robert J. Sobotta John Stanfill

Lewiston Tsceminicum Library

Pocatello City Council

Eric Barker
Carl K. Kerrick
Dean Mahoney
Glen D. Morgan
Daniel T. Schenkein
Dr. Mel Streeter
Gary Lambson

The Honorable Myron Jones

Howard A. May Jim Pike

The Honorable Wayne Hall

Bert Marley G.M. Hallam Pat McGavran

The Honorable Shirley McKague The Honorable Fred Tillman

James A. Garrett Merle Smith

The Honorable Gertrude Sutton

Nez Perce Tribe Jefferson Start Ted Erdman Charles R. Hatch Leonard Johnson

The Honorable Dr. Maynard

Leland Mink Michelle Murphy

The Honorable Gary Schroeder The Honorable Tom Trail Preston High School The Honorable Jim Jones

Harry Light M.A. Bud Riddle Llovd Waters

NW Nazarene College Library

David Allen
Darrell Marks
Ross Mason
Al McGlinsky
Sandra Roe
Steve A. Schmitz
Nettie Smoot
Roberta P. Witteman
Robert Morford
V. James Wilson
Lyle J. Loosle
Conrad Michaelson

The Honorable George Vance

Larry Harper

The Honorable Stanley Williams Mini-Cassia Chamber of Commerce Representative - Dist. 20

Pocatello Chamber of Commerce Merrill Lynch Pierce Fenner & Smith Idaho State University Library

Middleton School District 134
Culligan Water Conditioning Inc.

Leonard Alex Ronald D. Balsley Raymond Burstedt Joe Campbell

The Honorable Robert Chase

Dennis Donnelly
Tom Gesell
Larry Ghan
Robbie Greene
Kenneth Harten
John Hatch
Hilde Heckler
Dr. June E. Heilman
Suzanne Hobbs
Dianne Horrocks
Edwin House

Julie Jackson Emily Jones Virginia Larson Solomon Leung

C. Gordon Lewis Michael McCury Doug Nilson Margo Proksa Al Ricken

Krys Sampson Carta Sierra J.P. Sieverson Dr. Jack Smith Stan Sorensen

Lynn Thompson Charles H. Trost

Dr. Maribeth Watwood

Stephen Weeg J.A. Welhou

Robert S. Weppner, Ph.D. Dr. Gayl Wiegand George D. Wood

The Honorable Hilde Kellogg

Dale F. McKay D. Brent Williams Arthur Hansen Robert Jones

Rexburg Chamber of Commerce Oneida County Commissioner

Edward E. Hill
Marlin Hill
Tom Kennelly
Dale Mortensen
David L. Rasmussen

The Honorable Dell Raybould McKay Library Ricks College Carolann Westenskow

Kent R. Williams

Orofino Joint School District 171 Onyx Environmental Services

Susan James Robert M. Lugar Mike Privett Paul Walker Elwood Wilson

The Honorable Joan E. Wood

Ovard Construction Thales L. Johnson Brett Olaveson Roy Smith

Owyhee County Commissioner Representative – Dist. 26 John Remsberg III

The Honorable Bert Stevenson Bingham County Commissioners

Cary Sargent

The Honorable Dick Harwood Canyon County Commissioner

Denny Hawley

The Honorable Shawn Keough MJP Risk Assessment Inc.

Charlotte Arnold Heide Riddoch

Nez Perce Tribe ERWM Manager

Wayne Waddops Max E. Rigby

Adams County Commissioner

Frank Ives Tom Glaccum Tom Morley

North Wind Environmental

Paula Caputo
Paul Randolph
Melvin J. Hansen
Paul Smith Agency
Brent Robson

Camas County Commissioner Morrison Knudson Corp Moscow-Pullman Daily News

R.C. Cooper Jo Dodds Gloria Galan Marvin Hempleman John J. Hurley Kyla Kelly Debra S. Klimes Mark Koffer Jane E. Krumm Charles Lemmon

Alan G. Chapman

Dave Lewis Dennis Maughan Michael McClymonds David R. Mead

Gerald R. Meyerhoeffer

Jan Mittleider Robert J. Mogensen Dale Pippitt Dr. Peter Rickards Ken Rickey Jerry Ridley Del Scholl Cliff Snider Graydon Stanley Chris Talkington

L. Boing

American Nuclear Society

Steve Harbur

QSA Global

Kate Roughan

American Society of Nuclear Cardiology

Dr. Vijay Sazawal

American Assoc. of Physicists in Medicine

Sydel Cavanaugh John DiMarzio

American Board of Nuclear Medicine

Alexia Lang

Montana State University Vice President for Research

Lawrence C. Farrar

David Bennert Ronald Williams

Stephen Browne

Bill Simmerman

Mukul Joisher

N.M. Environmental Dept

Chadler Sanchez Dorelen Bunting William Davidson George Goss Glenda Thompson Lee Wagner

Jim Wilson Ralph Wolter City of Ucon

City of Ucon
Thomas L. Spangler
Sherry Krulitz
Jim Vergobbi
Ronald L. Pound
William Henslee
Larry R. Manly
Gene Wisniewski

Montec Research

Power County Commissioner

Illinois

Mayor

Michael H. McCabe

Kansas

Louisiana

Peter Shinkle

Massachusetts

Thermo

Maryland

Kevin J. Kamps James Lieberman David Siefken Jack Thorpe Diane D'Arrigo

Michigan

Missouri

Council on Radionuclides & Radiopharmaceuticals

Montana

Robert Hockett Cassie Hemphill James Higgins

North Carolina

H. Jeffrey Kahle Gerry Lilly

Nebraska

New Jersey

New Mexico

Janet Greenwald Sherry Keeney Steven Little Wally Murphy

William Paul Robinson

Thomas Skibitski Trish Williams-Mello

William Grav Vernon Asbill Bill Bunten James Conca Lata Desai John Garmon Jerome Golden

Tim Hayes John Heaton WIPP Info. Center Candice Jierree Joseph Kanney Bob Kehrman

Moo Lee H. Jay Melnick Jeff C. Neal Roger Nelson Russ Patterson N.T. Rempe James Smith

Bobby St. John **Bob Tiffner** Chad Twitchell Janell Whitlock Jacob Pecos Anne Apodaca J. Michael Chavarria Marian Naranjo Paul Baca

Lorenzo Valdez Don Bratton Gay Kernan Harry Teague Carroll Leavell Raymond Gachupin Linda Anderman

Max Baker Bill Bartels Bernard Foy Barbara Judy Jason Lott

John Marin Sarah Meyer Chuck Pergler Martha Perkins Roger Snodgrass Steve Yanicak Shirley Tyler Holly Houghten

Carleton Naiche Palmer

Jean Nichlos Stuart Ingle Juan Montes Greg Kaufman Rod Adair Nora Espinoza Candy Spence Ezzell Keith Gardner **Timothy Jennings** Dennis Kintigh Harry Teague Michael Miller James Bearzi

Jeanne-Marie Crockett

Ron Curry John Denko Jon Goldstein Steve Holmes Bruce Krasnow Menice S. Manzanares Doug McClellen Matt Miller Virginia Miller Geoffrey Petrie Peggy Prince Adam Rankin Tom Ribe Alice Roos

J. Gilbert Sanchez Kathy Sanchez Jeff Tollefson Neil Weber Todd Wilson Charles Dorme

Phil Klevorick

Nevada

State of Nevada Agency for Nuclear Projects Nevada State Clearinghouse Dept of Administration Michael J. Elges

Robert R. Loux Zofia Targosz

Edwin Mueller, Director

Tom Ericksen Mark Chandler Jenny Chapman Richard Deklevel Lt. Col. Dewey Brian Dodd

C.F. Poor Patrick Putnam David S. Shafer Ron Wizelman Lynn Haarklau Eloisa Hopper Gary Hollis Ron Wenker Joni Easton Cindy Kaminski James Marble

NV Bureau of Land Management Tonopah Field Office

Nevada Department of Wildlife Tonopah Field Office

New York

Darwin John J. Michael House
Robert Santa Maria G.E. Corp Research
Amy Greer Laurence Karmel
Patricia Seppi D.J. Stroud

Alice Slater

Ohio

Robert Elliott Ohmart Vega Donald Kaufman

Oregon

Andrew Nichols Sanford Zeitz Southern Oregon State College Helen Stuart

Astoria Public Library

L. Davis Clements, Ph.D.

Aletha Bonebrake

Sherman County Commissioners

Matt McClincy Keith Harding
Brian Barry Kate McCarthy
Mary Lou Daltaso Kate Miller

Lloyd MarbetUmatilla County CommissionJeffrey HunkerJean DayAndrea Schwartz FeitLarry GivensPhyllis EricksonDonald Guenther

Phyllis EricksonDonald GuentLaura PryorLes MinthornSteve BinneyJim Coskey

Melissa Hartley

John Ringle

Kathi Futornick

American Friends Service Committee

Hanford Action of Oregon

KKSN Radio KKSN FM-AM

Louisa Hamachek KUPL Radio

David Monk Confederated Tribes of the Umatilla Indian Reservation

Valerie Ring

Northwest Labor Press Oregon Labor Press

B. Nelson

Northwest Portland Area Indian Health Board

Russell Long

Oregon Public Health Radiation Control Division

Gisela Ray Oregon Sciences University

John Selmar Rogers Cable

Ray T. Spaulding Stream Net Library Columbia River Inter-Tribal

Shannon Wells Tullius & Co., Inc.

Louis Carlson U.S. Department of Agriculture, Dept. of Soil

Ray Grace Sam Adams
Jim Stearns Pauline Anderson
M. Williams Anthony Barber
Bonnie Hays Dan Belica
Lauren Goldberg Clarissa Cooper

Susan HessDavid CowardKirby Neumann-ReaRuth CurrieRachael PecoreDavid DeckRobert ShanerJeff DouglasBrett VandenheuvelBrian Finneran

Christy Davis Lynn Ford
Mike Sherman Jim Groat

Vic ShinselRobert K. HedlundJ. WilsonDona Marie HippertGreg CuttingSteve HudsonSharon DebruskCharles Hudson

Chuck Johnson Bill Kinsella Paige Knight

Kathryn "Cherie" Lambert-Holenstein

Bruce Landrey Betty Larson Wayne Lei

Lisa Libby Sara Long Rob Lothrop Oliver Luby Paul Lumley John Marks

Vicki McConnell Bill Mead Wally Mehrens Tom Miller Michael Milstein Michael Mulrey Robert Peel John Platt

Doug Riggs Amy Ruiz Jan Secunda Dan Shaffer

John Shaw Preston Sleeger

Andy Sloop Don Steffeck J.M. Toomey Glenn Vanselow John Wecker Kate Welch

Darise Weller Ted Wheeler Doni Wilder

National Institute of Environmental Renewal

Dennis Gilbert

Richard Nieslanik

Danny Black L. Lehr Brisbin, Ph.D.

Fred Cavanaugh Ernie Chaput Peter Evans Rose O. Haves James Hendrix Fred Humes David Jameson Sidney Kerner Nick Khuen Shane Massev

Ken McLeod

Rick McLeod

Duncan Wyse Dr. Joyce R. Young Linda Nelson Michael Jones

Melissa Schukar

Oregon Department of Justice

Ben Cannon Jane Cummins Wesley Doak Ted Ferrioli Gordon Fultz George Happ Bob Jenson John Kroger Patti Milne David Nelson Ken Niles Walter Perry Greg Smith Tom Stoops

Suzanne Van Orman Dave Yaden Luana Nelson Shirley Gibbons

Columbia County Commissioners

St. Helens Public Library

Sandy Seibel William Hulse Kate Selmar John Urquhart Christine Walker Gary Bohman Malheur County Court

Patty Yraguen Sue Ryan Wes Freadman

Pennsylvania

Bernard Cohen Ron Herring William Lambert

South Carolina

Joe Ortaldo John Paveglio W. Lee Poe W. Greg Ryberg Paul Sauerborn Todd Shepley Sheron Smith James Stewart, Jr. Steve Thomas William Toole Tom Young Joe Zigler Drew Grainger E. Stevenson

Lark Jones
Edward Lemon
Marty Martin
Keith Sloan
South Carolina State Clearinghouse

Tom Clements
Scott English
Jim Hattler
David Wilson
Shelley Wilson
Monroe Kneece
Manuel Bettencourt

Brenda Tabor

R. Blundy

Todd Etheredge

Jim Hackworth
Rex Lynch
Dennis Ferguson
Mike Farmer
Donald Dunning
Ted S. Lundu
Phil Bredesen
James Clarke
Mary Parkman
Elgan Usrey

Tom Beehan Eva Butler Gary Cinder James D. Harless Randy McNally

Elizabeth Bush-Ivie Steve Douglas Susan Jablonski Michael Lauer

Representative - Dist. 15

Kenneth Alkema Brett E. Cox Dane Finerfrock Kevin Griffiths

Roger Rivera Stephen Lester David Ferris Kevin Hour

Richard Kent CH2M Hill Librarian James Downing Daphne E. Hyde Mark Yeager
James Pinkney
Vernon Dunbar
Cassie Bayer
Ginger Dickert
R.L. Geddes
Donald Smith
Brian Tucker
Sandee Wells
Ronnie Young
Ben C. Rusche
J. Roland Smith

Susan Corbett

Stanley Howard

South Dakota

Tennessee

Sue Mitchell
William E. Monroe
Norman Mulvenon
Ron Murphree
John Owsley
Elizabeth Peelle
Ellen Smith
John A. Wojtowicz
Amy Wolfe
Nithin Akuthota
Charles Callis
Renee Echols
Dr. Amy Fitzgerald
Dr. Susan Gawarecki

Texas

John Sciandra Chuck Yemington

Southwest Research Institute

Utah

Edward Jennrich Jim Johnston Chris Reno Susan Rice

Christopher Thomas

<u>Virginia</u>

Health Physics Society Neal Ouesnel

John Pantaleo

Washington

Lewis R. Ivers Rick Kester Larry Marx Jim Merritt

Paul MacBeth Terry Oxley **Bob Swope** Ken Maurer Rob Lopresti Jav McConnaughev Kiona-Benton School District Attn: Supt Stephen A. McFadden

Gale Metcalf Phillip Staats Mike York Thomas Moak Gary Petersen Lela Buck Alyssa Buck Margery Price Greg deBruler David Rowland Keith Solheim Jerry Sleater **David Templeton David Smith** D. Lindsey Hayes Dean Strawn Greg Hughes Faye Vlieger Larrabee State Park Floyd Davenport

State of Washington Military Dept. Emer. Mgmt. Div. Alvin Smith

U.S. Fish & Wildlife Service Walter & Mary Jane Loehske

Leon Sproule Dennis Carlson John Kamerrer Donna L. Powaukee Retired Federal Employees #237 Richard Sherman, Jr. James Klindworth Rosemary Sullivan

Mike Poulson Bill Williams Jim Boldt **Bob Mooney** Judy Grigg Brian Satran LeRoy Allison David Burdette Angela Buck Ralph Sharp Matthew Erlich Cindy Carter Kathy Keifer Dennis Wittem Lenora Seelatsee Adeline Fredin Richard Stevens Camille Pleasants Charles Liekweg **Todd Martin** Diane Tilstra Energy & Utilities

United Staff Nurses Union Local #141 Washington State Department of Transportation

Gloria Skinner Washington State Department of Ecology Bruce Johnson Evergreen State College

Mary Bowden Lynn Albin Harriet King Charlene Andrade KEGX FM **Bobbie Berkowitz** Columbia Communications Donald Brunell

Mid-Columbia Library Bruce Chandler William Alexander Cary Condotta Ron Asplund Jerome Delvin **Emily Bails** Randy Dorn Mike Elsen John Christenson Don Clayhold J. Gamon Peter Goldmark Larry Haler

Buddy Davis David Davis Norm Engelhard Mike Hewitt Charlene Franz William Hinkle Matt Funk Janea Holmquist Jim Honeyford Kirk Galbraith David Johnson **Bob Gear**

Norm Johnson Robert Hammond Harold Heacock **Curtis King** Brad Klippert Floyd Hodges John Martell William Lampson Dan Lathim James McIntire

Bill Thomson Robert McKenna Sandy Swope Moody Peter Collins Sharon Nelson Michael Higgins **Bob Nichols** Janet Lieberman John Riddington **Brad Owen** Maria Victoria Peeler Nancy Rising Tom Reed Alan Pettibone

Sam Reed Batelle Technical Library Gary Robertson Citizens for Medical Isotopes

Charles Ross American Federal Government Employees, Local 788

KEPR TV

Jerry Abrams

John Airoldi

Cliff Ashley

Kristen Sawin Intl Guards Union of America, Local #21

Joe Schmick Mark Schoesler Mary Selecky Jeff Serne

Washington State Department of Ecology SEPA Unit

Brad Atencio Brian Sonntag Mike Ault Gary Spargue Harry Babad Ted Sturdevant W. Bachmann, Jr. Annie Szvetecz Kim Ballinger Maureen Walsh Robert Barmettlor Brenda Becker-Khaleel Judith Warnick

Doug Wells Helen Wheatley **Bob Flores** Franklin Co. P&Z Franklin County Planning Laborers Local #348

Gary Barcom Richard Berglund Donna Campbell Annette Cary Gary Crutchfield Larry DeWitt Amanda Espinosa Ken Ferrigro Shelly Grimshaw Ed Hargrow Robert Hoffmann Carl Holder

KONA News KONA Radio News

Tom Larsen Rick Leaumont Steve Marks Louis Meissner Rick Miller Joyce Olson Dennis Parker Jim Toomey Christy Watts Mary Weiss Max Benitz Paul Warden William Budd Royston Filby

V. Lane Rawlins

Harry Bell Debbie Berkowitz Greg Berlin Joseph Bevelacqua Gordon Bilyard Robbie Bivani Kirk Boes William Borden Bill Bordew Dennis Brown Madeline Brown Melinda Brown

Kevin Bull

Paula Call

Mary Burnandt

Joe Caggiano

Patti Callender

Steve Chalk Judy Chasse Kevin Christensen Mike Connelly John Cox Ellen Dagan Suzanne Dahl **David Dalton** Cherri DeFigh-Price Greg DeWeese Brian Dixon Kevin Ekstrom William Elkins Richard Engelmann Leif Erickson Dennis Faulk

Francisco Figueroa

Mike Finton
David Flodin
Bryan Foley
Earl Fordham
John Fox
Vicky Freedman

Colleen French
Steve Gajewski
Rick Garza
Ray Giddings
Roger Gordon
Dib Goswami
Jane Hagarty
Glenn Hammond
Boyd Hathaway
Jane Hedges

Michael Henderson Paul Hernandez Tammie Holm Lori Huffman Cindy Johnson Scott Keller Ellen Kennedy Nancy Kintner-Mey

Dick Heggen

Nancy Kintner-Meyer

Susan Kreid Hans Kwast Pam Larsen Li-Yin Lin Larry Lockard Julie Longenecker Charles Lopresti Catherine Louie Gwen Luper Jeff Lyon

Michelle Mandis Lisa Matis

Dan McCann Jim McKinley Bill McMahon Andrea McMakin Nina Menard

Lorelee Mizell

Matt Moeller
Emmett Moore
Gary Muth
Robert Nielson
Erik Olds
Jennifer Ollero
Brian Opitz
Paul Pak
Dan Parker
Janice Parthree
Valarie Peery
Tom Post

Ross Potter

John Price Fred Raab David Reeploeg Edward Revell Jay Rhodes Elizabeth Rochette

Gene Schreckhise
Steven Sharpe
Kim Simmons
Deborah Singleton
Ron Skinnarland
Paul Stansbury
Richard Steele
Clifford Stephan
Sheila Sullivan
Alex Teimouri
Andrew Templeton

Paul Thorne

Harold Tilden

Debbie Trader Gary Troyer Lee Tuott Jim Watts Regan Weeks Stephen Weil Dawn Wellman Dick Whitehurst Mark Williams Steve Wisness Jerry Yokel John Zachara Jami Zeisloft Roger Hartwig Rudy Plager Jeffrey Stevens Micki Harnois

Herrera Environmental Consultants

KING TV News KIRO Newsradio Seattle Scientific Shannon & Wilson Inc. University of Washington

Jess Abed

Will Abercrombie
Marcia Bailey
Dave Bartus
Carl Behnke
George Bergantz
Eric Blumhagen
Lucy Bodilly
Aubrey Bouman
Arline Bovee
David Buecker
Paul Bulson
Lloyd Burgess
Kathleen Casey

Chuck Clarke Dan Clayton

Bob Cooper

Janet Frisch

Barbara Glasser

Scott Handley

Charlotte Denniston
Jeanne Desozier
Michael Dunn
David Dunning
John Ferguson
Martin Fleck

Daniel Hassler Heart of America NW

Joseph Hull Jordana Jiles Eleanor Johnson Anne Johnston Bob Karotko

Jennifer L. Kauffman

Michael Kern Larry Lange Steve Leahy Chris Legeros Ann Lesperance

Craig Lorch
Richard Martin
Theogene Mbabliye
Richard McCann
Ron McGaha
Robert McMillan

J. Milner Daniel Peterson

Mike Meleady

Linda Meyer

Amanda Rehr Dave Rice Rick Robinson Keith A. Rose

Bill Ross Jeanie Sedgely Pat Serie D. Taylor Janice Thomas Carla Thompson

Phil Thompson Shandra Tietze Lisa Van Dyk

Janine M. VanSanden Sarah Washburn Charles Weems Shannon Wilson Kristi Branch Eric Egbers Scott Gaulke David Anderson Phyllis Yoshida

J.F. Bloss & Associates

Economic Development Council

Grange Insurance Group
Kim Hostart Comp
KXLY TV News

Plant World
Thomas Barbieri
Brian Benzel
Richard Boutz
Chris Carlson
David Clack
Bernard Coughlin
Ted Danek
Hugh Davis

Damon Delistraty
Pamela DeRusha
Karen Dorn Steele
James Emacio
Sharon Fairchild
Dennis Fiess
Frank Forrest
Bradley Frazier
Mary Gulledge-Bates

Rich Hadley
Jim Hammond
Barry Hicks
William Hyslop
Fred Jacot
Scott Jones
Peter Joss, D.D.S.
Sharon King
Fred King
Larry Kissler

Steve Laney, M.D., M.P.H.

Clifford Ligons
Jim Lynch
Mel McKerlie
Dave Moershel
Marion Moos
Charles Murphy
Donald Ott
Jan Patricio
Donnie Patterson
Ronald Payton
Linda Pierce
John Powers, Jr.
Thomas Quigley
JoAnne Rehberg

Michael Reilly
David Roseleip
Nancy Ross
Ned Rumpeltes
Mary Ann Sanger
Ron Schmidt
Larry Soehren

Jerry Stephenson Mark Sterk

Marilvnn Thoredson Robin Toth Keith Trefry Mary Verner J. Welsh Lucinda Whaley

Thomas White Michael Wilson Doug Robinson Gregory Stover Susan Graham

Pablo Garcia Tom Gehlen Carol Stone Barry Bede Mark Crisson Connie McHugh

Erling Mork Andrew Thatcher Leah Aleck Bill Beckley Jeffery Bill

Rose George Donald Isadore, Jr. Sam Jim. Sr. Patrice Kent Dana Miller

Patrick Oshie Carroll Palmer Kristina Proszek

Marlene Shavehead Russ Dean

Jim Russell

Kris Kelly-Watkins Dean Mitchell Ed Rav Myles Asper Russell Jim

Clark County Public Utility U.S. Army Corps of Engineers

Clark Public Utilities John Bakewell

Dvija Michael Bertish

William Lorenz

Richard Laudon

Mayor – City of Kimberly

H.L. Jensen

Mark Boldt

Cathryn Chudy Pat Doncaster

Patricia Giles

Donna Heath Paul Huebschman

Will Lutgen Tom Mielke

Steve Stuart Rod Swanson Blair Wolfley

Leslie Zega USACE Chief, Natural Resources Management

Duane Cole Richard Coonfare Dan Johnson Don Lovell

Lonnie E. Mettler Pete Reid Mark Miller Barbara Partridge James Divine Barbara Harper Barbara Hayser Dale Jackson

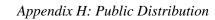
Wade Riggsbee David Weiser Jill Arens Martha Bennett Stafford Hansell Gerald Hess

KIMA TV News Dick Anderwald Doug Chapin Barbara Clarkson

Ted Clausing Robert Danielson **Thomas Durant** Dave Elder

John Fitzpatrick Jerry Kelso Jeff Tayer Don Thompson

Dick Zais


Wisconsin

Tom Cleeremans

Wyoming

Tom Patricelli Robert Wikoff Richard Albrecht

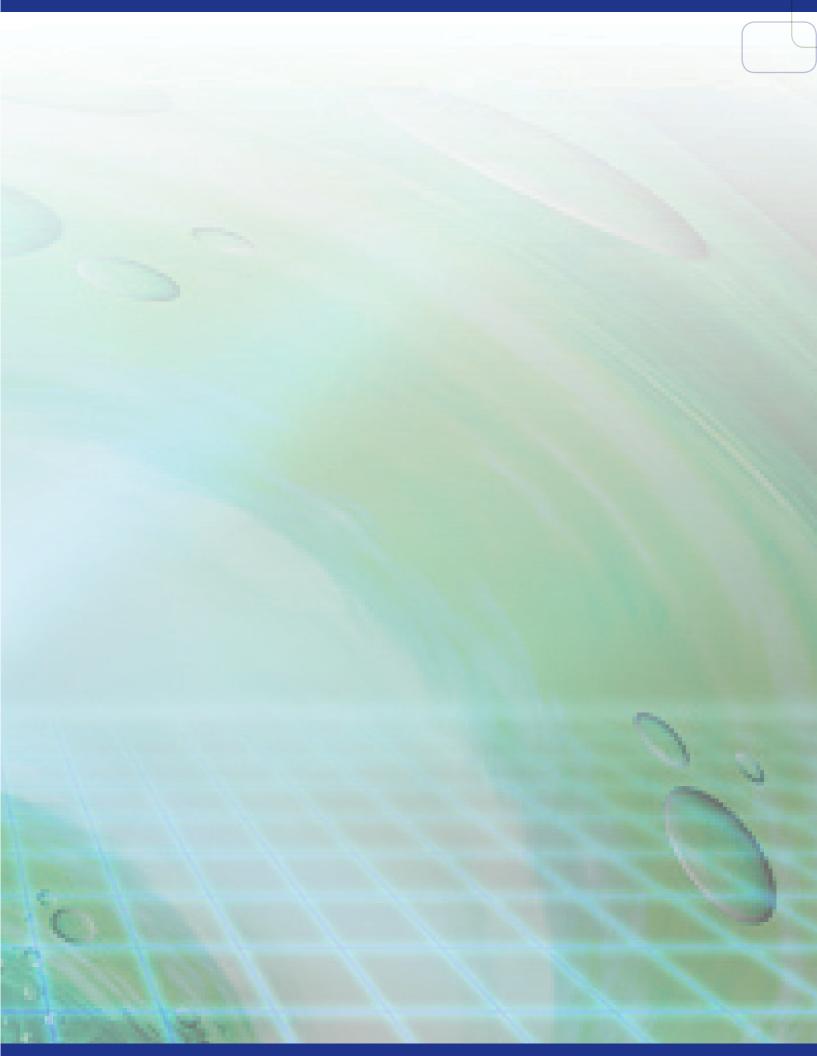
This page is intentionally left blank.

1 2 3 4 5

APPENDIX I:

LIST OF PREPARERS

Name	Education/Expertise	Contribution
U.S. Department of Energy		
George Dixon	M.S., Environmental Health Science; 33 years of experience in environmental assessment and waste management	DOE Senior Technical Advisor
Arnold Edelman	M.A., Physical Geography/ Geomorphology; 37 years of experience in multimedia environmental regulation, pollution prevention, waste management, environmental management, safety and health	DOE Document Manager
Christine Gelles	B.A., Literature, Philosophy, Communications; 17 years of experience in environmental management policy and oversight; 6 years of experience in radioactive waste management strategy and policy development	DOE Senior Manager
James Joyce	B.S., Geological Engineering; 22 years of experience in environmental remediation, waste management, and program and project management	DOE Project Manager
Argonne National Laboratory		
Timothy Allison	M.S., Mineral and Energy Resource Economics; M.A., Geography; 26 years of experience in regional analysis and economic impact analysis	Socioeconomics, environmental justice
Georgia Anast	B.A., Mathematics/Biology; 20 years of experience in environmental assessment	Quality assurance coordinator
Bruce Biwer	Ph.D., Chemistry; 19 years of experience in environmental assessment and transportation risk analysis	Transportation, accidents, facility design, inventory database


Name	Education/Expertise	Contribution
Brian Cantwell	B.S., Forestry, 26 years of experience in cartography and GIS	Environmental justice maps and tables
Young-Soo Chang	Ph.D., Chemical Engineering; 21 years of experience in air quality and noise impact analysis	Climate, air quality, noise
Shih-Yew Chen	Ph.D., Nuclear Engineering; 24 years of experience in environmental assessment, waste and risk analysis	Senior technical advisor
Jing-Jy Cheng	Ph.D., Polymer Science and Engineering; 19 years of experience in computer model development and applications for human health and ecological risk assessments	RESRAD model, human health impacts
Deborah Elcock	B.A., Mathematics; M.B.A.; 21 years of experience in regulatory analysis	Applicable laws, regulations, and other requirements
Stephen Folga	Ph.D., Gas Engineering; 13 years of experience in technology assessment and waste management	Technology assessment, accident assessment, resource materials
Elizabeth Hocking	J.D.; 18 years of experience in environmental and energy policy analysis	Applicable laws, regulations, and other requirements
Timothy Klett	M.S., Computer Science; 9 years of experience in software development and data management	Inventory database
Mary Moniger	B.A., English; 30 years of experience in editing and writing	Lead technical editor
Michele Nelson	Certificate of Design; 32 years of experience in graphic design	Graphics
Daniel O'Rourke	M.S., Industrial Archaeology; 16 years of experience in cultural resource management, 10 years in historical property issues	Cultural resources
Terri Patton	M.S., Geology; 19 years of experience in environmental research and assessment	Geology, water resources; cumulative impacts

Name	Education/Expertise	Contribution
John Peterson	M.S., Nuclear Engineering; Certified Health Physicist (CHP); 31 years of experience in nuclear engineering and health physics	Technical coordinator, waste inventory, human health impacts
Mary Picel	M.S., Environmental Health Sciences; 23 years of experience in environmental assessment, risk assessment, and waste management	Project manager, document manager, human health impacts, waste management, cumulative impacts
Albert Smith	Ph.D., Physics; 34 years of experience in environmental assessment	Climate, air quality, noise
David Tomasko	Ph.D., Civil Engineering; 28 years of experience in hydrogeology and fluid mechanics	Water resources
William Vinikour	M.S. and B.S., Biology with environmental emphasis; 34 years of experience in ecological research and environmental assessment	Ecology, land use

This page is intentionally left blank.

1 **APPENDIX J:** 2 3 CONTRACTOR DISCLOSURE STATEMENT 4 5 6 Argonne National Laboratory is the contractor assisting the U.S. Department of Energy 7 (DOE) in preparing the environmental impact statement (EIS) for the disposal of greater-than-8 Class C (GTCC) low-level radioactive waste and GTCC-like waste. DOE is responsible for 9 reviewing and evaluating the information and determining the appropriateness and adequacy of 10 incorporating any data, analyses, or results in the EIS. DOE determines the scope and content of 11 the EIS and supporting documents and will furnish direction to Argonne, as appropriate, in 12 preparing these documents. 13 14 The Council on Environmental Quality's regulations (40 CFR 1506.5(c)), which have been adopted by DOE (10 CFR Part 1021), require contractors who will prepare an EIS to 15 16 execute a disclosure specifying that they have no financial or other interest in the outcome of the 17 project. The term "financial interest or other interest in the outcome of the project" for the 18 purposes of this disclosure is defined in the March 23, 1981, "Forty Most Asked Questions 19 Concerning CEQ's National Environmental Policy Act Regulations," 46 Federal Register 20 18026–18028 at Questions 17a and 17b. Financial or other interest in the outcome of the project 21 includes "any financial benefit such as promise of future construction or design work on the 22 project, as well as indirect benefits the consultant is aware of (e.g., if the project would aid 23 proposals sponsored by the firm's other clients)," 46 Federal Register 18026–18038. 24 25 In accordance with these regulations, Argonne National Laboratory hereby certifies that it 26 has no financial or other interest in the outcome of the project. 27 28 29 Certified by: 30 31 32 33 34 John D. Ditmars 35 Name 36 37 Interim Director, Environmental Science Division Title 38 39 Jan. 18, 2011 40 Date 41 42

1 2 3 4 5 6 7 8 9 10 11 12 13 This page is intentionally left blank. 14

