TABLE I-1 Quantifiable Environmental Impacts and Cost | | Alternative 1
Continued Tank
Farm Operation | Algubease 1 Glass Shipped to Offsite Repository | ternative 2 Subcase 2 Glass in SRP Surface Storage | Subcase 3
Glass in
SRP
Bedrock | Alternative 3
Liquid in
SRP
Bedrock | |--|---|---|--|---|--| | Occupational Radiation Exposures Based on SRP Experience, man-rem ² | 360 | 3,800 | 2,700 | 2,400 | 42 | | Offsite Population Dose risk, man-rem $^{b}\cdot$ | 1,400 | 650 | 220 | 340 | 62,000 | | Offsite Population Dose Risk, man-rem $^{\mathcal{C}}$ | 24,000 | - | - | - | - ' | | Offsite Population Dose Risk, man-rem $^{\mathcal{d}}$ | 2,300 | 650 | 340 | 340 | 140,000 | | Non-nuclear Accidental Fatalities
from Construction and Operations | 17.1 | 6.5 | 6.6 | 6.2 | 2.2 | | Budgetary Cost, millions of 1980 dollars $^{\varrho}$ | 510 | 3,600 | 3,750 | 3,610 | 755 | a. Campaign totals for all workers. TABLE I-2 Summary of Difficult-to-Quantify Factors | | Alternative 1
Continued Tank
Farm Operation | Subcase 1
Glass Shipped
to Offsite
Repository | lternative 2
Subcase 2
Glass in
SRP Surface
Storage | Subcase 3
Glass in
SRP
Bedrock | Alternative 3
Liquid in
SRP
Bedrock | |---|---|--|---|---|--| | Relative Degree of Action required by Future Generations | High | Low | Moderate | Low | Low | | Relative Compliance with Public Expectations | Low | Hi gh | Moderate | Righ | Moderate | | Conformance with Policies of
S. C. and Ga. State Governments | Low | High | Moderate | Low | Low | | Conformance with NRC
Regulations for Commercially-
Generated Waste | Low | High | Moderate | High | Low | | Potential for Regrets if Future
Economics or Technology
Indicate a Better Method ^Q | Low | High | Moderately
High | High | High | | Likelihood of Successful
Attainment of Required
Implementation Technology | Highest | High | Higher | Moderate | Moderate | | Effect on Implementation Date
Relative to Alternative 2 | Shortens | - | None | Lengthens | Lengthens | | Requires Additional Manage-
ment of Decontaminated Salt | No | Yes | Yes | Yes . | No | a. This factor involves both the ease of retrievability from the storage or disposal site and the ease of separating the radioactive constituents from the waste form. b. Consequences times probabilities, summed over all events and integrated for 300 years. c. Assuming tanks are abandoned after 100 years, according to proposed EPA criterion. d. Integrated for 10,000 years. e. Includes capital and operating costs. TABLE IV-1 Average Chemical Composition of Fresh SRP High-Level Waste | Concent | ration | |------------|---| | Molar | g/L | | 3.3 | 281 | | <0.2 | <14 | | 0.5 | 59 | | 1 | 40 | | 0.1 | 11 | | 0.3 | 43 | | 0.07 | 7.5 | | 0.02 | 1.7 | | 0.002 | 0.5 | | 0.13^{a} | 7.8 | | | Molar 3.3 <0.2 0.5 1 0.1 0.3 0.07 0.02 0.002 | lpha. Assuming an average molecular weight of 60. TABLE IV-2 Average Radionuclide Composition of Fresh a SRP High-Level Waste | Radionuclide | Activity, Ci/gal | Radionuclide | Activity, Ci/gal | |--------------------------------------|--------------------|---------------------|----------------------| | ^{9 5} Nb | 105 | ^{2 4 1} Am | 1 × 10 ⁻³ | | ¹⁴⁴ Ce- ¹⁴⁴ Pr | 68 | ^{9 9} Tc | 5 × 10-4 | | ⁹⁵ Zr | 60 | ^{2 39} Pu | 3 × 10 ⁻⁴ | | ⁹ ¹ Y | 47 | ¹⁵⁴ Eu | 1 × 10 ⁻⁴ | | ⁸⁹ S r | 36 | ^{9 3} 2r | 1 × 10 ⁻⁴ | | ^{1 4 1} Ce | 12 | ^{2 40} Pu | 6×10^{-5} | | 1 4 7 Pm | 12 | ^{1 3 5} Cs | 4 × 10 ⁻⁵ | | ^{10 3} Ru | 10 | 126 Sn - 126 Sb | 1×10^{-5} | | 106 Ru- 106 Rh | 4 | ⁷⁹ Se | 1×10^{-5} | | ⁹⁰ Sr | 3 | ^{2 3 3} U | 2×10^{-6} | | ^{1 37} Cs | 3 | 129 I | 1 × 10 ⁻⁶ | | ¹²⁹ Te | 2 | ^{2 3 9} U | 6 × 10 ⁻⁷ | | ^{1 2 7} Te | 2 | ¹⁰⁷ Pd | 5×10^{-7} | | ¹³⁴ Cs | 1 | ^{2 3 7} Np | 4×10^{-7} | | 15 1 Sm | 8×10^{-2} | ¹⁵² Eu | 2×10^{-7} | | ^{2 3 8} Pu | 1×10^{-2} | ^{2 4 2} Pu | 6 × 10 ⁻⁸ | | ^{2 4 1} Pu | 2×10^{-3} | ¹⁵⁸ Tb | 6 × 10 ⁻⁸ | | ² 4 4 Cm | 1×10^{-3} | ^{2 35} U | 3 × 10 ⁻⁸ | a. After reprocessing fuel that has been cooled six months after discharge from reactor. See Table IV-6 for the average radionuclide concentration of reconstituted SRP high-level waste in 1985. TABLE IV-3 Average Radionuclide Composition of SRP High-Level Sludge | Time After
Irradiation, years → | Radionuclid | e Activity, C | i/gal
10 | | Radionuclid | e Activity, C | i/gal
10 | |--------------------------------------|------------------------|------------------------|------------------------|--------------------------|------------------------|------------------------|------------------------| | 144Ce-144Pr | 4.5×10^{2} | 1.3 x 10 ¹ | 1.5 x 10 ⁻¹ | ^{2 4 1} Am | 1.1 x 10 ⁻² | 1.1 x 10 ⁻² | 1.1 x 10 ⁻² | | ⁹⁵ 2r | 9.6×10^{1} | 1.8 x 10 ⁻⁵ | a | ^{9 9} Tc | 4.3 x 10 ⁻³ | 4.3×10^{-3} | 4.3×10^{-3} | | 94 Y | 7.6 x 10 ¹ | 2.5 x 10 ⁻⁶ | а | ²³⁹ Pu | 3.5×10^{-3} | 3.5 x 10 ⁻³ | 3.5 x 10 ⁻³ | | ⁸⁹ Sr | 4.4 x 10 ¹ | а | а | ¹⁵⁴ Eu | 1.1 x 10 ⁻³ | 8.3 x 10 ⁻⁴ | 5.5 x 10 ⁻⁴ | | ^{9 5} Nb | 6.0 x 10° | а | а | ⁹³ Z r | 8,6 x 10 ⁻⁴ | 8.6 x 10 ⁻⁴ | 8.6 x 10 ⁻⁴ | | 141Ce | 3.0 x 10° | a | α | ^{2 4 0} Pu | 6.4 x 10 ⁻⁴ | 6.4 x 10 ⁻⁴ | 6.4 x 10 ⁻⁴ | | 147 _{Pm} | 1.0×10^{2} | 3.6 x 10 ¹ | 9.7 x 10° | ^{1 3 5} Cs | 2.2 x 10 ⁻⁵ | 2.2 x 10 ⁻⁵ | 2.2 x 10 ⁻⁵ | | ¹⁰³ Ru | 5.2 x 10° | а | α | 126Sn-126Sb | 1.1 x 10 ⁻⁴ | 1.1 x 10 ⁻⁴ | 1.1 x 10 ⁻⁴ | | ¹⁰⁶ Ru- ¹⁰⁵ Rh | 2.4×10^{1} | 1.6 x 10° | 5 x 10 ⁻² | ⁷⁹ Se | l.0 x 10 ⁻⁴ | 1.0 x 10 ⁻⁴ | 1.0 x 10 ⁻⁴ | | ⁹⁰ Sr | 3.0×10^{1} | 2.8×10^{1} | 2.4×10^{1} | 2 3 3 U | 2.1 x 10 ⁻⁵ | 2.1 x 10 ⁻⁵ | 2.1 x 10 ⁻⁵ | | ¹³⁷ Cs | 1.6 x 10° | 1.5 x 10° | 1.3 x 10° | 129 I | 9.4×10^{-6} | 9.4 x 10 ⁻⁶ | 9.4 x 10 ⁻⁶ | | ¹²⁹ Te | 9.4×10^{-1} | a | a | ^{2 3 8} U | 6.4 x 10 ⁻⁶ | 6.4 x 10 ⁻⁶ | 6.4 x 10 ⁻⁶ | | ¹²⁷ Te | 6.4 x 10° | 5.9 x 10 ⁻⁴ | а | 10 ⁷ Pd | 4.4 x 10 ⁻⁶ | 4.4 x 10 ⁻⁶ | 4.4 x 10 ⁻⁶ | | ¹³⁴ Cs | 8.7 x 10° | 2.3 x 10° | 4.2 x 10 ⁻¹ | ²³⁷ Np | 3.9 x 10 ⁻⁶ | 3.9 x 10 ⁻⁶ | 3.9×10^{-6} | | ^{1 5 1} Sm | 7.5 x 10 ⁻¹ | 7.3×10^{-1} | 7.0 x 10 ⁻¹ | ¹⁵² Eu | 1.7 x 10 ⁻⁶ | 1.3 x 10 ⁻⁶ | 1.0 x 10 ⁻⁶ | | 238 _{Pu} | 1.1 x 10 ⁻¹ | 1.1 x 10 ⁻¹ | 1.1 x 10 ⁻¹ | ^{2 4 2} Pu | 6.2 x 10 ⁻⁷ | 6.2 x 10 ⁻⁷ | 6.2 x 10 ⁻⁷ | | ²⁴¹ Pu | 2.4×10^{-2} | 2.0 x 10 ⁻² | 1.6 x 10 ⁻² | ¹⁵⁸ Tb | 6.0 x 10 ⁻⁷ | 6.0 x 10 ⁻⁷ | 6.0 x 10 ⁻⁷ | | ^{2 4 4} Cm | 1.3 x 10 ⁻² | 1.1 x 10 ⁻² | 9.5×10^{-2} | ^{2 3 5} U | 2.7 x 10 ⁻⁷ | 2.7 x 10 ⁻⁷ | 2.7×10^{-7} | a. Value <1 x 10⁻⁷. TABLE IV-4 Average Radionuclide Composition of SRP High-Level Supernate | Time After | Padiomelid | e Activity, C | i /aa7 | | Kadionyalid | e Activity, C | i /aa1 | |--|-------------------------|------------------------|------------------------|--------------------------------------|------------------------|------------------------|------------------------| | Irradiation, years → | 1 | 5 | 10 | | 1 | 5 | 10 | | 144Ce-144Pr | 2.6 | 7.4 x 10 ⁻² | 8.7 x 10 ⁻⁴ | ²⁴¹ Am | 3.6 x 10 ⁻⁶ | 3.6 x 10 ⁻⁶ | 3.6 x 10 ⁻⁶ | | ⁹⁵ Zr | 2.7 | 5.0×10^{-7} | a | ^{9 9} Tc | 2.5 x 10 ⁻⁵ | 2.5 x 10 ⁻⁵ | 2.5 x 10 ⁻⁵ | | ⁹¹ Y | 1.7×10^{-1} | 5.7×10^{-9} | а | ^{2 3 9} Pu | 1.1 x 10 ⁻⁶ | 1.1 x 10 ⁻⁶ | 1.1 x 10 ⁻⁶ | | ⁸⁹ Sr | 1.0×10^{-1} | а | а | 154 _{Eu} | 6.7×10^{-6} | 4.8 x 10 ⁻⁶ | 3.2×10^{-6} | | ^{9 8} Nb | 1.7 x 10 ⁻¹ | а | а | ⁹³ Zr | 2.4 x 10 ⁻⁵ | 2.4 x 10 ⁻⁵ | 2.4×10^{-5} | | 1ª1Ce | 1.7×10^{-1} | а | а | ^{2 4 0} Pu | 2.1×10^{-7} | 2.1 x 10 ⁻⁷ | 2.1×10^{-7} | | 147 _{Pm} | 6. I x 10 ⁻¹ | 2.1 x 10 ⁻¹ | 5.7×10^{-2} | 1 3 5 _{Cs} | 4.6×10^{-5} | 4.6 x 10 ⁻⁵ | 4.6 x 10 ⁻⁵ | | ^{1 0 3} Ru | 1.4×10^{-1} | а | а | ¹²⁶ Sn- ¹²⁶ Sb | 6.1 x 10 ⁻⁷ | 6.1 x 10 ⁻⁷ | 6.1×10^{-7} | | ¹⁰⁶ Ru- ¹⁰⁶ Rh | 6.7×10^{-1} | 4.3×10^{-2} | 1.4 x 10 ⁻³ | ⁷⁹ Se | 6.0 x 10 ⁻⁷ | 6.0 x 10 ⁻⁵ | 6.0×10^{-7} | | ⁹ Sr | 6.8×10^{-2} | 6.2×10^{-2} | 5.5×10^{-2} | ^{2 3 3} U | 7.1 x 10 ⁻⁹ | 7.1 x 10 ⁻⁹ | 7.1 x 10 ⁻⁹ | | ^{1 3 7} Cs | 3.3 | 3.1 | 2.7 | 129 _[| 5.5×10^{-8} | 5.5 x 10 ⁻⁸ | 5.5 x 10 ⁻⁸ | | ¹²⁹ Te | 5.5×10^{-3} | а | a | 3 8 U | 2.1 x 10 ⁻⁹ | 2.1 x 10 ⁻⁹ | 2.1 x 10 ⁻⁹ | | ^{1 2 7} Te | 3.8 x 10 ⁻² | 3.4 x 10 ⁻⁶ | а | ¹⁰⁷ Pd | 2.6 x 10 ⁻⁶ | 2.6 x 10 ⁻⁸ | 2.6 x 10 ⁻⁸ | | ¹³⁴ Cs | 5.1 x 10 ⁻² | 1.3×10^{-2} | 2.4×10^{-3} | ²³⁷ Np | 1.3 x 10 ⁻⁹ | 1.3 x 10 ⁻⁹ | 1.3×10^{-9} | | ¹⁵¹ Sm | 4.4 x 10 ⁻³ | 4.3 x 10 ⁻³ | 4.1×10^{-3} | 152 _{Eu} | 1.0 x 10 ⁻⁸ | 7.8 x 10 ⁻⁹ | 6.0×10^{-9} | | ²³⁸ Pu | 3.8 x 10 ⁻⁵ | 3.7×10^{-5} | 3.5×10^{-5} | ^{2 4 2} Pu | а | а | а | | ^{2 - 1} Pu | 8.1 x 10 ⁻⁶ | 6.7×10^{-6} | 5.4×10^{-6} | ¹⁵⁸ Tb | а | а | а | | ² | 4.5 x 10 ⁻⁶ | 3.8 x 10 ⁻⁶ | 3.2 x 10 ⁻⁶ | ^{2 3 5} U | а | а | а | a. Value <1 x 10^{-9} . TABLE IV-5 Chemical Composition of Reconstituted SRP High-Level Waste | | Concentr | | |---------------------------------|-------------------|-----| | Constituent | Molar | g/L | | NaNO ₃ | 2.2 |
187 | | NaNO ₂ | 1.1 | 76 | | NaAl(OH)4 | 0.5 | 59 | | NaOH | 0.75 | 30 | | Na ₂ CO ₃ | 0.3 | 32 | | Na ₂ SO ₄ | 0.3 | 43 | | Fe (OH) 3 | 0.07 | 7.5 | | MnO ₂ | 0.02 | 1.7 | | Hg (OH) 2 | 0.002 | 0.5 | | Other Solids | 0.13 ^a | 7.8 | | | | | lpha. Assuming an average molecular weight of 60. TABLE IV-6 Radionuclide Content of Reconstituted SRP High-Level Waste (1985) | Radionuclide | Activity, Ci/gal | Total Activity, Ci | |--------------------------------------|------------------|---------------------| | 90Sr | 2.1 | 1.3×10^8 | | ^{1 37} Cs | 2.2 | 1.3×10^{8} | | 147 _{Pm} | 0.77 | 4.6×10^{7} | | ¹⁴⁴ Ce- ¹⁴⁴ Pr | 0.19 | 1.1×10^{7} | | ¹⁵¹ Sm | 0.07 | 4.2×10^{6} | | ¹⁰⁶ Ru- ¹⁰⁶ Rh | 0.03 | 1.8×10^{6} | | ^{2 3 9} Pu | 0.01 | 6.0×10^{5} | | ^{2 4 1} Am | 0.001 | 6.0×10^{4} | | ^{2 4 4} Cm | 0.001 | 6.0×10^{4} | | ^{2 3 9} Pu | 0.0004 | 2.4×10^4 | TABLE IV-7 Radionuclide Content of Decontaminated Salt (10-year-old waste) | | Concentration (nCi/g) | | | | | |------------------------------------|-----------------------|---------------------|--|--|--| | <u>Radionuclide</u> | Chemically Measured | Computer-Calculated | | | | | ³ H | NA^{C} | 57 | | | | | 6 0
Co | $NA^{\mathcal{C}}$ | 390 | | | | | ⁹⁰ Sr-Y ^a | 2 | 9 | | | | | ^{9 9} Tc | 125 | 220 | | | | | 106 Ru-Rh b | 287,000 | 100,000 | | | | | 129
I | NA^{C} | 0.04 | | | | | Cs-Ba | 100 | 480 | | | | | 144 Ce-Pr b | 109^d | 220 d | | | | | 1 4 7 7 2 | 100^d | 5200^d | | | | | Sm | <10 ^d | 116^d | | | | | 154
Eu | 71^d | 510^d | | | | | 238 Pu a | 9 | 0.9 | | | | | 2 3 9 9 2 | 0.3 | 0.02 | | | | | 2 4 0 0 0 | 0.3 | 0.02 | | | | | ²⁴¹ Pu ^a | 2 | 3.5 | | | | | 24 Am a | 0,5 | 0.03 | | | | a. With decontamination factors assumed Cs 10^4 , Sr 10^3 , actinides 10^2 (165 for computer-calculated concentrations). b. Decay of short-lived radionuclide may contribute to differences in computer-calculated and chemically measured concentrations. c. Not analyzed. d. Concentrations of rare-earth fission products should be reduced by a factor of 10^2 (165) during decontamination operations. TABLE IV-8 # Chemical Composition of Decontaminated, Crystallized Salt | Weight Fraction | |-----------------| | 0.458 | | 0.186 | | 0.073 | | 0.100 | | 0.078 | | 0.104 | | | (Note that the nitrate fraction decreases and the nitrite fraction increases during the early years of storage.) Research and development have not progressed to the extent that the concentration of mercury in the decontaminated salt can be determined precisely; however, the concentration is expected to be less than 4×10^{-4} grams of mercury per gram of salt. The total amount of Hg in the 16.3 million gallons (\sim 120,000 tons) of salt would then be less than 60 tons. ## 2. Alternative Storage Modes #### Store in Tanks at SRP The decontaminated salt solution is transferred to tanks outside the canyon-type solidification facility and processed through evaporators. The concentrate is transferred to decontaminated double-wall carbon steel waste tanks encased in reinforced concrete (this is the current design, or Type III, tank). The steel tanks have an expected life of 50 to 100 years, and the 2.5-ft-thick concrete encasements have an expected life of several hundred years. The concentrate is cooled to form crystallized salt. If all the solution does not crystallize when cooled, the supernate is recycled for further concentration until it does crystallize. The tanks are monitored at the same level as the current practice for SRP waste tanks. After one hundred years when the residual ⁹⁰Sr and ¹³⁷Cs in the salt have been reduced by a factor of 10 due to radioactive decay, the access ports through the tank covers will be plugged and sealed. Other protective provisions include a confinement barrier over the tanks, such as reinforced TABLE IV-9 International HLW Immobilization Status | Nation | Process | Status/Major Milestone | |----------|------------------------------------|--| | France | Borosilicate Glass - "AVM" | 0.5 ton/day hot pilot plant startup 1978-1979
Production plant startup 1982-1983 | | Germany | Borosilicate Glass | "VERA" 0.5 ton/day cold pilot plant operation considering French "AVM" process for licensing | | Eurochem | Borosilicate Glass
Metal Matrix | French "AVM" selected for production plant
VITRAMET - LOTES) Pilot Plant
VITRAMET - PAMELA) 1981-1982 | | England | Borosilicate Glass | "FINGAL-HARVEST" production plant 1990
French "AVM" under consideration | | Russia | Phosphate Glass | Cold pilot-plant work in progress | | India | Borosilicate Glass | 0.1 ton/day hot plant startup 1979-1980 | | Japan | Glass or Ceramic | Hot demonstration plant 1986 | | Sweden | Ceramic | Laboratory studies in progress | TABLE IV-10 Composition of Typical SRP Borosilicate ${ m Glass}^{a,b}$ | Calcine | Composition | Frit | Composition | |---------------------------------|-------------|-------------------|-------------| | Fe ₂ O ₃ | 42.0 wt % | SiO_2 | 52.5 wt % | | A1 ₂ O ₃ | 8.5 | B_2O_3 | 10.0 | | MnO_2 | 11.8 | Na ₂ O | 18.5 | | U3O8 | 3.9 | Li ₂ O | 4.0 | | NiO | 5.2 | Ca0 | 4.0 | | SiO ₂ | 3.8 | TiO_2 | 10.0 | | Na ₂ O | 4.7 | | | | Zeolite | 8.8 | | | | NaNO ₃ | 2.6 | | | | NaNO ₂ | 0.2 | | | | NaA10 ₂ | 0.2 | | | | NaOH | 3.9 | | | | Na ₂ SO ₄ | 1.3 | | | | | | | | $[\]alpha$. Glass will contain 28 wt % calcine. b. Average density of glass will be 2.7 g/cm³. TABLE IV-11 High-Level Nuclear Waste Immobilization Forms — Properties Comparison | Waste
Form | Devel.
Status | Process
Complexity | Process
Flexibility | Waste
Loading | Dispersion
Impact Resis. | Long-Term
Stability | Fire
Resistance | Leachability
100°C 350°C | |-------------------------------------|------------------|-----------------------|------------------------|---|-----------------------------|------------------------|--------------------|-----------------------------| | Calcine | Available | Low | Excellent | High | Very Low | High | Poor// | P001// 1900f | | Rich Clay | Available | Low | Excellent | Low | Low | 18/1 | Proor// | Medium Poor | | Normal Concrete | Available | Medium | Excellent | Medium | Medium | Medium | Poor// | Medium Poor | | Hot, Pressed Concrete | 5 years | Hìngh | Excellent | Wediam | High | Medium | Medibon | Good Poor | | Pelletized Calcine | 5 years | Hilgh | Excellent | Medium | Medium | Medium | Medium | Good Poor | | Glass | Available | High | Excellent | Medium | High | High | Excellent | Excellent 96øf | | Clay Ceramic | 5 years | Hìgh | Poor | Medium | High | Medium | Medium | Good Poor | | Supercalcine | 15 years | Very High | Poor | High | Very High | High? | Best | Best Poor | | Synroc | 15 years | High | Poor | Very Low | Very High | High ? | Best | Best Good | | Glass Ceramic | 15 years | Very High | Poor | Medium | High | High | Excellent | Excellent | | Pellet in Metal Matrix | 5 years | Yery High | Good | Kow// | Very High | High | P90t//) | Excellent Poor | | Coated Supercalcine in Metal Matrix | 15 years | Highest | Poor | Medium | Very High | High ? | Excellent | Best Poor | | Cermet | 10 years | Highest | Poor | Medium | High | High | Excellent | Excellent Poor | | r | | | | (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | · | | 777777 | 777 | Most Attractive Untermediate Least Attractive TABLE IX-1 Summary of Long-Term and Short-Term Costs and Nuclear Risks | | | Alternative 2 | | | | |---|---|--|--|---|---| | | Alternative 1
Continued Tank
Farm Operation | Subcase 1
Glass Shipped
to Offsite
Repository | Subcase 2 Glass in SRP Surface Storage | Subcase 3
Glass in
SRP
Bedrock | Alternative 3
Liquid in SRP
Bedrock | | Short-Term Risks,
man-rem | 0 ^a | 4.60 x IO ³ | 2.57×10^3 | 2.57×10^3 | 2.19 x 10 ² | | Long-Term Risks, $^{\dot{b}}$ man-rem | 1.76×10^{3}
$2.40 \times 10^{4} f$ | 1.30 x 10 ² | 2.91×10^2 | 1.30×10^2 | 6.2 x 10 ⁴ | | Short-Term Costs, ^c millions of 1980 dollars | 0^{α} | 3600 | 3750 | 3610 | 755 | | Long-Term Costs, b, c
millions of 1980 dollars | 510 ^d
3060 ^e | 175 | 175 | 175 | 175 | a. Short-term risks are defined to be those that are incurred from activities addition to preparing the waste as salt cake and sludge in modern tanks, because such activities are common to all alternatives. Short-term costs are treated similarly. b. Long-term risks and costs are integrated for 300 years. c. *All costs are in undiscounted 1980 dollars. Discounting of long-term costs would reduce their magnitudes to negligible fractions of short-term costs for any alternative. d. This is enough for one cycle of tank replacement, and is more than enough to establish a trust fund for perpetual tank replacement. e. This is enough to replace tanks every 50 years during the 300-year period, undiscounted. f. These are risks if tanks are abandoned after 100 years with probability of 1.0. (Am EPA proposed criterion indicates that administrative control should not be relied upon for more than 100 years.) TABLE V-1 SRP Whole Body Occupational Exposure Experience | | Number of
Employees | Total
Exposure, | Average Exposure
per Monitored | Maximum
Individual | |------|------------------------|--------------------|-----------------------------------|-----------------------| | Year | Monitored | rem | Employee, rem | Exposure, rem | | 1965 | 4977 | 2340 | 0.47 | 2.9 | | 1966 | 5032 | 2074 |
0.41 | 3.4 | | 1967 | 5041 | 2604 | 0.52 | 3.0 | | 1968 | 4875 | 2412 | 0.49 | 3.3 | | 1969 | 4705 | 2758 | 0.59 | 3.2 | | 1970 | 4626 | 2353 | 0.51 | 3. 7 | | 1971 | 4836 | 2401 | 0.50 | 3.3 $(24.8)^{\alpha}$ | | 1972 | 5210 | 1711 | 0.33 | 3.4 | | 1973 | 5005 | 1488 | 0.30 | 2.7 | | 1974 | 5138 | 1367 | 0.27 | 3.1 | | 1975 | 5263 | 1161 | 0.22 | 2.7 | Average over Period 0.42 TABLE V-1A SRP Reprocessing Area Whole Body Occupational Exposure Experience | | Number of
Employees | Total
Exposure, | Average Exposure
per Monitored | Maximum
Individual | |------|------------------------|--------------------|-----------------------------------|-----------------------| | Year | Monitored | rem | Employee, rem | Exposure, rem | | 1965 | 1501 | 916 | 0.61 | 2.8 | | 1966 | 1497 | 928 | 0.62 | 3.1 | | 1967 | 1489 | 980 | 0.66 | 3.0 | | 1968 | 1454 | 829 | 0.57 | 2.9 | | 1969 | 1441 | 994 | 0.69 | 2.9 | | 1970 | 1378 | 868 | 0.63 | 2.6 | | 1971 | 1567 | 815 | 0.52 | 2.8 | | 1972 | 1756 | 685 | 0.39 | 2.9 | | 1973 | 1613 | 742 | 0.46 | 2.7 | | 1974 | 1674 | 720 | 0.43 | 2.9 | | 1975 | 1781 | 570 | 0.32 | 2.7 | | | Average | avan namiad | 0.54 | | Average over period 0.54 $[\]alpha$. Higher value indicated by initial monitoring but not substantiated by subsequent investigation. TABLE V-2 Occupational Radiation Exposures Based on SRP Experience | | Operation
Removal | nal Modules, rem/y | year in maximum ye | ear | Total per | Total for | |--|----------------------|--------------------|--------------------|---------|----------------------|-------------------------------| | Alternative | from
Tanks | Processing | Transportation | Storage | Maximum Year,
rem | Campaign,
rem ^a | | Alternative 1 - | | | | | | | | Continue storage in tanks | 5.0^b | Not applicable | Not applicable | 7.6 | 1.26×10^{1} | 3.56×10^{2} | | Alternative 2, Subcase 1 - | | | | | | | | Process to glass; ship to offsite geologic disposal $^{\mathcal{C}}$ | 4.2 | 2.31×10^2 | 1.40×10^2 | 0 | 3.75×10^2 | 3.75 × 10 ³ | | Alternative 2, Subcase 2 - | | | | | | | | Process to glass; surface storage at $SRP^\mathcal{C}$ | 4.2 | 2.31×10^2 | Not applicable | 6.7 | 2.42×10^2 | 2.64×10^{3} | | Alternative 2, Subcase 3 - | | | | | | | | Process to glass; disposal
in SRP bedrock cavern [©] | 4.2 | 2.31×10^2 | Not applicable | 0 | 2.35×10^{2} | 2.35×10^{3} | | Alternative 3 - | | | | | , | | | Slurry liquid waste into
SRP bedrock cavern | 4.2 | Not applicable | Not applicable | 0 | 4.2 | 4.2 × 10 ¹ | | | | | | | | | lpha. See Tavle V-4 and text for campaign times. b. This exposure occurs only when waste is reconstituted and transferred from an old tank to a new tank and during tank decontamination. c. These numbers were developed specifically for glass waste forms, but should be quite similar for most of the other immobilization forms being investigated. TABLE V-3 Occupational Radiation Exposures Based on DOE Standards | | | | Modules, rem/year | dules, rem/year | | | Total for | | |-----|--|------------------------|------------------------------|--------------------|------------------------|------------------------|-------------------------------|--| | | Alternative | Removal
from Tanks | as Processing Transportation | | Storage | per Year,
rem | Campaign,
rem ^a | | | | Alternative 1 -
Continue storage in tanks | 5.95 × 10 ¹ | Not applicable | Not applicable | 9.04 × 10 ¹ | 1.50×10^2 | 4.24×10^{3} | | | | Alternative 2, Subcase 1 - | | | | | | | | | | Process to glass; ship to offsite geologic disposal $^{\mathcal{C}}$ | 5.00 × 10 ¹ | 2.75×10^3 | 1.40×10^2 | 0 | 2.94×10^{3} | 2.94 × 10 ⁴ | | | | Alternative 2, Subcase 2 - | | | | | | | | | V-9 | Process to glass; surface storage at SRP ^C | 5.00 × 10 ¹ | 2.75 × 10 ³ | Not applicable | 7.97 × 10 ¹ | 2.88 × 10 ³ | 3.14 × 10 ⁴ | | | | Alternative 2, Subcase 3 - | | | | | | | | | | Process to glass; disposal in SRP bedrock cavern ^c | 5.00 × 10 ¹ | 2.75 × 10 ³ | Not applicable | 0 | 2.80×10^3 | 2.80 × 10 ⁴ | | | | Alternative 3 - | | | | | | | | | | Slurry liquid waste into SRP bedrock cavern | 5.00 × 10 ¹ | Not applicable | Not applicable | 0 | 5.00 × 10 ¹ | 5.00 × 10 ² | | $[\]alpha$. See Table V-4 and text for campaign times. b. This exposure occurs only when waste is reconstituted and transferred from an old tank to a new tank and during tank decontamination. c. These numbers were developed specifically for glass waste forms, but should be quite similar for most of the other immobilization forms being investigated. TABLE V-4 Manpower and Time Requirements for Operational Modules | Operation | No. of Employees ^a | Time Required | |---|-------------------------------|-------------------------| | Tank farm surveillance and monitoring | 21 | 300 years b | | Reconstitute, transfer from old to new tank | 20 | 6 months ^c . | | Decontaminate old tank | 31 | 6 months c | | Remove 60 million gallons
from present tanks, transfer
to new processing building | 10 | 10 years | | Process 60 million gallons to glass, 10-year time | 550 | 10 years | | Transport glass offsite | 1100^{d} | 10 years | | Air-cooled vault surveil-
lance and monitoring | 21 | 300 years b | | Offsite salt cavern or SRP bedrock surveillance and monitoring | 5 | 300 years | a. Include direct supervision but not indirect overhead. b. Occupational exposures would be negligible after this time. See text. c. These operations were assumed to be required once every 50 years for each tank for 300 years. See text. d. This case represents truck shipment of the glass form over a distance of 3000 miles from SRP. Other cases are detailed in Reference 4. e. These numbers were developed specifically for glass waste forms, but should be quite similar for most of the other immobilization forms being investigated. . TABLE V-5 Non-Nuclear Occupational Injuries During Construction of New Facilities lpha | Alternative | Construction of
Processing
Facilities | Fabrication of
Transportation Casks
and Vehicles | Construction of
Storage
Facilities | Total for
Campaign | |--|---|--|--|-----------------------| | Alternative 1 - | | | | | | Continue storage in tanks | Not applicable | Not applicable | 1600 ^b
17 | 1600
17 | | Alternative 2, Subcase 1 - | | | | | | Process to glass; ship to offsite geologic disposal $^{\mathcal{C}}$ | 460
5 | 39
0.5 | 28
0.4 | 530
5.9 | | Alternative 2, Subcase 2 - | | | | | | Process to glass; surface storage at SRP | 460
5 | Not applicable | 130
1.4 | 590
6.4 | | Alternative 2, Subcase 3 - | | | | | | Process to glass; disposal
in SRP bedrock cavern ^o | 460
5 | Not applicable | 88
1.1 | 550
6.1 | | Alternative 3 - | | | | | | Slurry liquid waste into
SRP bedrock cavern | Not applicable | Not applicable | 180
2.2 | 180
2.2 | $[\]alpha$. Two annual numbers are given in each column for each alternative: top numbers are major injuries; bottom numbers are deaths. b. These include construction of new tanks every 50 years during the 300-year period. c. These numbers were developed specifically for glass waste forms, but should be quite similar for most of the other immobilization forms being investigated. TABLE V-6 Non-Nuclear Occupational Injuries During the Operating Campaign $^{\alpha}$ | | Operation | al Modules | | | | | |--|---------------------------------------|-------------------------|-------------------|----------------------------|--------------------------|------------------------------------| | Alternative | Removal
from
Tanks | Processing | Transportation | Storage | Total
per Year | Total for
Campaign ^b | | Alternative 1 - | | | | | | | | Continue storage in tanks | 5.5 ^c
0.0047
0.00059 | Not
applicable | Not
applicable | 3.0
0.0027
0.00034 | 8.6
0.0074
0.00093 | 1160
1.03
0.13 | | Alternative 2, Subcase 1 - | | | | | | | | Process to glass;
ship to offsite
geologic disposal ^e | 1.5
0.0013
0.00016 | 80.5
0.078
0.0089 | d
1.6
0.052 | 0.58
0.00051
0.00006 | 83
1.7
0.061 | 990
16
0.63 | | Alternative 2, Subcase 2 - | | | | | | | | Process to glass;
surface storage at SRP ^e | 1.5
0.0013
0.00016 | 80.5
0.078
0.0089 | Not
applicable | 2.3
0.0021
0.00026 | 84
0.081
0.0093 | 1500
1.3
0.17 | | Alternative 2, Subcase 3 - | | • | | | | | | Process to glass; disposal
in SRP bedrock cavern ^e | 1.5
0.0013
0.00016 | 80.5
0.078
0.0089 | Not
applicable | 0.58
0.00051
0.00006 | 83
0.080
0.0091 | 990
0.87
0.11 | | Alternative 3 - | | | | | | | | Slurry liquid waste into
SRP bedrock cavern | 1.5
0.0013
0.00016 | Not
applicable | Not
applicable | 0.58
0.00051
0.00006 | 2.1
0.0018
0.00022 | 190
0.16
0.021 | a. Three annual numbers are given in each column for each alternative: top numbers are minor injuries; middle numbers are major injuries; bottom numbers are deaths. b. See Table V-4 and text for campaign times. c. These include reconstituting waste and transferring to new tanks every 50 years and decontamination of old tanks. d. Transportation accident data were taken from Reference 8. e. These numbers were developed specifically for glass waste forms, but should be quite similar for most of the other
immobilization forms being investigated. | | Occurrences per Millio
Man-Hours | | | |------------------------|-------------------------------------|--------|--| | | Major
Injuries | Deaths | | | Mining Caverns | ` 25 | 0.31 | | | Casks and Vehicles | 26 | 0.32 | | | All Other Construction | 16 | 0.17 | | # ${\tt Construction\ Time\ and\ Manpower\ Estimates}$ | Construction Operation | Man-Hours Required (millions) | |-----------------------------------|---| | Processing Facilities | 29 | | Transportation Casks and Vehicles | 1.5 | | Set of 24 New Tanks | 17 One set every 50 years for 300 years | | Air-Cooled Surface Storage Vault | 8.1 | | Mining Bedrock Cavern (Liquid) | 7.2 | | Mining Bedrock Cavern (Glass) | 3.5 | | Mining Offsite Salt Cavern | 1.1 | TABLE V-8 $\text{Injury Rates During Routine Operations}^{\alpha}$ | Occurrences | per Million | Man-Hours | |-------------------|-------------------|-----------| | Minor
Injuries | Major
Injuries | Deaths | | 50 | 0.044 | 0.0055 | α. Based on SRP operating experience over the ten-year period 1967-1976.⁹ TABLE V-9 DOE Radiation Exposure Limits to Offsite Individuals, mrem | Type of Exposure | Maximum
Individual
Exposure ^a | Exposure to
Average
Individual | |------------------|--|--------------------------------------| | Whole Body | 500 | 170 | | Gonads | 500 | 170 | | Bone Marrow | 500 | 170 | | G. I. Tract | 1500 | 500 | | Bone | 1500 | 500 | | Thyroid | 1500 | 500 | | Other Organs | 1500 | 500 | | | | | $[\]alpha$. These individuals are assumed to be at the site boundary under conditions of maximum probable exposure. TABLE V-10 $\label{table V-10}$ Typical State and Federal Air and Water Quality Standards $^{\alpha,12,13}$ | Pollutant | Limiting
Concentration | Comment | |--------------------------|----------------------------|---| | SO ₂ | $80 \mu g/m^3$ | Ambient air, South Carolina | | SO ₂ | $43 \mu g/m^3$ | Ambient air, Georgia | | SO ₂ | 1300 μg/m³ | One-hour, air, South Carolina | | SO ₂ | 715 μg/m³ | One-hour, air, Georgia | | SO ₂ | 3.5 lb/l0 ⁶ Btu | Air emission, South Carolina | | Particulates (Fly Ash) | 0.6 lb/10 ⁶ Btu | Air emission, South Carolina | | $NO_{\mathbf{X}}$ | $100 \mu g/m^3$ | Ambient air, South Carolina and Georgia | | H ₂ S | 10 ppm, 8 hr | Air, detectable effects | | Non-Methane Hydrocarbons | 130 μg/m³ | Three-hour, air, South Carolina | | Sulfate | 250 ppm | Drinking water standard, Federal | | Chloride | 250 ppm | Drinking water standard, Federal | | Nitrate · | 10 ppm | Drinking water standard, Federal | | Barium | 1 ppm | Drinking water standard, Federal | | Iron | 0.3 ppm | Drinking water standard, Federal | | Boron | 1 ppm | Drinking water standard, Federal | | Zinc | 5 ppm | Drinking water standard, Federal | | Chromium | 0.05 ppm | Drinking water standard, Federal | | Manganese | 0.05 ppm | Drinking water standard, Federal | | Arsenic | 0.05 ppm | Drinking water standard, Federal | | Mercury | 0.002 ppm | Drinking water standard, Federal | | Copper | 1 ppm | Drinking water standard, Federal | | Pheno1 | 0.001 ppm | Drinking water standard, Federal | | | | | lpha. The above listing is not meant to imply that all the chemicals would be released from the waste management facilities. TABLE V-12 Summary of Exposure Risks for Alternative 1 - Storage of Waste as Sludge and Dump Salt Cake in Onsite Waste Tanks (Present SRP Waste Management Technique) | Event | Maximun
Individual
Dose, rem | Population Dose
for Maximum Year,
man-rem | Probability,
Events/year | Maximum Risk,
man-rem/year | | | |---|------------------------------------|---|-----------------------------|-------------------------------|--|--| | Removal from Tanks | Not applicable | Not applicable | Not applicable | Not applicable | | | | Processing | Not applicable | Not applicable | Not applicable | Not applicable | | | | Transportation | Not applicable | Not applicable | Not applicable | Not applicable | | | | Storage | | | | | | | | Routine Releases | Negligible | 1.4 | 1.0 | 1.4 | | | | Spill during Transfer | 2.2 × 10 ⁻² | 5.3×10^2 | 5.0×10^{-3} | 2.6 | | | | Explosion | 7.8 | 3.0 × 10 ⁴ | 1.0 × 10 ⁻⁴ | 3.0 | | | | Sabotage by Dispersal | 3.3 | 2.3 × 10 ⁴ | 1.0 × 10 ⁻⁵ | 2.3×10^{-1} | | | | Sabotage by Explosion | 4.1 | 9.8×10^{3} | 1.0 × 10 ⁻⁵ | 9.8×10^{-2} | | | | Airplane Crash | 4.1 | 1.1 × 10 ⁴ | 1.0 × 10 ⁻⁵ | 1.1×10^{-1} | | | | Abandonment | 3.9×10^{-1} | 2.7 × 104 | 1.0 × 10 ⁻⁵ | 2.7×10^{-1} | | | | Time-Integrated Risk, 300 years, 1.4×10^3 man-rem ^a | | | | | | | Time-Integrated Risk, 2.3×10^{3} 10,000 years, man-rem Risk with Abandoment after $100 \ \mathrm{years}^b$ 2.4×10^{4} a. Integrated annual population risk, accounting for radioactive decay and population growth by a factor of 5. b. Population risk integrated for 300 years, if tanks are assumed to be abandoned after 100 years, in accordance with proposed EPA criterion on duration of administrative control. TABLE V-13 Summary of Exposure Risks for Alternative 2, Subcase 1 ~ Glass Stored in Offsite Geologic Storage | Event | Maximum
Individual
Dose, rem ^a | Population Dose
for Maximum Year,
man-rem | Probability,
Events/year | Maximum Risk,
man-rem/year | |--------------------|---|---|-----------------------------|-------------------------------| | Removal from Tanks | | | | | | Routine Releases | Negligible | 1.4 | 1.0 | 1.4 | | Sludge Spill | 5.0 × 10-4 | 1.5×10^{1} | 5.0×10^{-2} | 7.5 × 10 ⁻¹ | | Spill at Inlet | 1.2×10^{-3} | 3.7×10^{1} | 5.0×10^{-2} | 1.9 | | Tornado | 2.0×10^{-3} | 5.4×10^{1} | 6.0×10^{-4} | 3.2×10^{-2} | | Spill | 2.9×10^{-2} | 1.1×10^{3} | 5.0×10^{-3} | 5.4 | | Explosion | 7.8 | 3.0 × 104 | 1.0 × 10 ⁻⁴ | 3.0 | | Sabotage | 1.2×10^2 | 3.5×10^5 | 1.0×10^{-5} | 3.5 | | Below-Ground Leaks | 1.5×10^{-1} | 1.7×10^{5} | 1.0×10^{-5} | 1.7 | | Processing | | | | | | Routine Releases | 2.2×10^{-5} | 3.0 | 1.0 | 3.0 | | Process Incidents | <1.0 × 10 ⁻⁵ | 4.2×10^{-1} | 1.0 | 4.2×10^{-1} | | Sabotage | 4.2×10^{2} | 8.9 × 10 ⁴ | 1.0×10^{-5} | 8.9×10^{-1} | | Airplane Crash | 1.5×10^{-1} | 3.1×10^2 | 7.0×10^{-8} | 2.2×10^{-5} | | Transportation | | | | | | Routine Exposures | 5.0×10^{-3} | 6.3×10^{2} | 1.0 | 6.3 × 10 ¹ | | Accidents | 6.9×10^{-1} | 1.2×10^{2} | 1.3 × 10 ⁻⁴ | 1.6×10^{-2} | | Storage | | , | | | | Expected Releases | Negligible | 1.3×10^2 | 1.0 | 1.3×10^2 | | | | | | | Time-Integrated Risk, 300 years $$6.5\times10^{2}$$ man-rem D Time-Integrated Risk, 10,000 years, man-rem 6.5×10^2 $[\]alpha$. Equivalent whole body dose, rem. $[\]it b.$ Integrated annual population risk, accounting for radioactive decay and population growth by a factor of 5. TABLE V-14 Summary of Exposure Risks for Alternative 2, Subcase 2 - Glass Stored in Onsite Surface Storage Facility | Event | Maximum
Individual
Dose, rem | Population Dose
for Maximum Year,
man-rem | Probability,
Events/year | Maximum Risk,
man-rem/year | |--|------------------------------------|---|-----------------------------|-------------------------------| | Removal from Tanks | | | | | | Routine Releases | Negligible | 1.4 | 1.0 | 1.4 | | Sludge Spill | 5.0 × 10 ⁻⁴ | 1.5 × 10 ¹ | 5.0×10^{-2} | 7.5×10^{-1} | | Spill at Inlet | 1.2×10^{-3} | 3.7×10^{1} | 5.0×10^{-2} | 1.9 | | Tornado | 2.0×10^{-3} | 5.4×10^{1} | 6.0 × 10 ⁻⁴ | 3.2 × 10 ⁻² | | Spill | 2.9×10^{-2} | 1.1×10^3 | 5.0×10^{-3} | 5.4 | | Explosion | 7.8 | 3.0 × 10 ⁴ | 1.0 × 10 ⁻⁴ | 3.0 | | Sabotage | 1.2×10^2 | 3.5×10^5 | 1.0×10^{-5} | 3.5 | | Below-Ground Leaks | 1.5×10^{-1} | 1.7×10^{5} | 1.0×10^{-5} | 1.7 | | Processing | | | | | | Routine Releases | 2.2×10^{-5} | 3.0 | 1.0 | 3.0 | | Process Incidents | <1.0 × 10 ⁻⁵ | 4.2 × 10 ⁻¹ | 1.0 | 4.2×10^{-1} | | Sabotage | 4.2 × 10 ¹ | 8.9 × 10 ⁴ | 1.0 × 10 ⁻⁵ | 8.9×10^{-1} | | Airplane Crash | 1.5×10^{-1} | 3.1×10^2 | 7.0×10^{-8} | 2.2×10^{-5} | | Transportation | Not applicable | Not applicable | Not applicable | Not applicable | | Storage | | | | | | Sabotage | 1.9 | 3.8×10^{3} | 1.0×10^{-5} | 3.8×10^{-2} | | Airplane Crash | 1.5×10^{-1} | 3.1×10^2 | 7.0×10^{-8} | 2.2×10^{-5} | | Abandonment | Negligible | 0 | | 0 | | Time-Integrated Risk, 3 man-rem ^a | 00 years 2.2 × | 10 ² | | | | Time-Integrated Risk, | 3.4 > | 10 ² | | | 10,000 years, man-rem lpha. Integrated annual population risk, accounting for radioactive decay and population growth by a factor of 5. .TABLE V-15 Summary of Exposure Risks for Alternative 2, Subcase 3 - Glass Stored in SRP Bedrock | Event | Maximum
Individual
Dose, rem | Population Dose
for Maximum Year,
man-rem | Probability,
/year | Maximum Risk,
man-rem/year | |--|------------------------------------|---|------------------------|-------------------------------| | Removal from Tanks | | | | | | Routine
Releases | Negligible | 1.4 | 1.0 | 1.4 | | Sludge Spill | 5.0 × 10 ⁻⁴ | 1.5 × 10 ¹ | 5.0×10^{-2} | 7.5 × 10 ⁻¹ | | Spill at Inlet | 1.2×10^{-3} | 3.7 × 10 ¹ | 5.0×10^{-2} | 1.9 | | Tornado | 2.0×10^{-3} | 5.4×10^1 | 6.0 × 10 ⁻⁴ | 3.2×10^{-2} | | Spill | 2.9×10^{-2} | 1.1 × 10 ³ | 5.0×10^{-3} | 5.4 | | Explosion | 7.8 | 3.0 × 104 | 1.0 × 10 ⁻⁴ | 3.0 | | Sabotage | 1.2×10^{-2} | 3.5 × 10 ⁵ | 1.0 × 10 ⁻⁵ | 3.5 | | Below-Ground Leaks | 1.5×10^{-1} | 1.7×10^{5} | 1.0 × 10 ⁻⁵ | 1.7 | | Processing. | | | | | | Routine Releases | 2.2×10^{5} | 3.0 | 1.0 | 3.0 | | Process Incidents | $<1.0 \times 10^{-5}$ | 4.2 × 10 ⁻¹ | 1.0 | 4.2×10^{-1} | | Sabotage | 4.2 × 10 ¹ | 8.9 × 104 | 1.0×10^{-5} | 8.9×10^{-1} | | Airplane Crash | 1.5×10^{-1} | 3.1×10^2 | 7.0 × 10 ⁻⁸ | 2.2×10^{-5} | | Transportation | Not applicable | Not applicable | Not applicable | Not applicable | | Storage | | | | | | Expected Releases | Negligible | 1.3×10^2 | 1.0 | 1.3×10^2 | | Time-Integrated Risk, 300 man-rem ^a | years 3.4 × | 10 ² | | | | Time-Integrated Risk, | 3.4 × | 10 ² | | | ^{10,000} years, man-rem lpha. Integrated annual population risk, accounting for radioactive decay and population growth by a factor of 5. TABLE V-16 Summary of Exposure Risks for Alternative 3 — Unprocessed Waste Slurry Stored in SRP Bedrock | Event | Maximum
Individual
Dose, rem | Population Dose
for Maximum Year,
man-rem | Probability,
Events/year | Maximum Risk,
man-rem/year | |--|------------------------------------|---|-----------------------------|-------------------------------| | Removal from Tanks | | | | | | Routine Releases | Negligible | 1.4 | 1.0 | 1.4 | | Sludge Spill | 5.0 × 10 ⁻⁴ | 1.5 × 10 ¹ | 5.0×10^{-2} | 7.5 × 10 ⁻¹ | | Spill at Inlet | 1.2×10^{-3} | 3.7×10^{1} | 5.0 × 10 ⁻² | 1.9 | | Tornado | 2.0×10^{-3} | 5.4×10^{1} | 6.0 × 10 ⁻⁴ | 3.2×10^{-2} | | Spil1 | 2.9×10^{-2} | 1.1×10^{3} | 5.0×10^{-3} | 5.4 | | Explosion | 7.8 | 3.0 × 10 ⁴ | 1.0 × 10 ⁻⁴ | 3,0 | | Sabotage | 1.2×10^{2} | 3.5×10^5 | 1.0 × 10 ⁻⁵ | 3.5 | | Below-Ground Leaks | 1.5×10^{-1} | 1.7 × 10 ⁵ | 1.0×10^{-5} | 1.7 | | Processing | Not applicable | Not applicable | Not applicable | Not applicable | | Transportation | Not applicable | Not applicable | Not applicable | Not applicable | | Storage | | | | | | Expected Releases | Negligible | 1.3×10^2 | 1.0 | 1.3×10^2 | | Earthquake with
Shaft Open | 7.6×10^3 | 3.8 × 10 ⁸ | 3.3×10^{-5} | 1.3 × 10 ⁴ | | Earthquake after
Sealing | $<1.7 \times 10^2$ | 8.3×10^6 | 3.3×10^{-6} | 2.8×10^{1} | | Sabotage before Sealing | 3.0 × 104 | 1.5 × 10 ⁹ | 1.0×10^{-5} | 1.5 × 104 | | Sabotage after Sealing | 2.8×10^2 | 1.4×10^{7} | 3.3×10^{-10} | 4.6 × 10 ⁻³ | | Time-Integrated Risk, 300 man-rem ^C | years, 6.2 × | 104 | | | | Time-Integrated Risk, | 1.4 × | 10 ⁵ | | | 10,000 years, man-rem a. Integrated annual population risk, accounting for radioactive decay and population growth by a factor of 5. | INDLE V- (/ | | | | | | | | | |-------------|-----|-----------|-------|-----------|------------|-----|---------------|------| | Moderate | and | Nondesign | Basis | Accidents | Postulated | for | Repository in | Salt | | Accident Description | Sequence of Events | Safety System | Release, Ci | Probability | |---|---|---|---|----------------------------| | Canister drop in surface facility | Canister handling crane
fails
Canister breaches on | Positive latching grapple system and conservatively | 3x10 ⁻⁴ , ⁹⁰ Sr;
3x10 ⁻⁴ , ¹³⁷ Cs;
1.5x10 ⁻⁶ , ²³⁸ Pu; | 2 x 10 ⁻⁷ /yr | | | impact | sized crane | 6.0x10 ⁻⁸ , ²³⁹ Pu; to building atmosphere | | | | | Building filter
system | | | | Canister drop down mine shaft | Canistered waste shaft
hoist fails | Failsafe wedge type
braking system | 1.5x10 ^k , ⁹⁰ Sr;
1.5x10 ^k , ¹³⁷ Cs;
7.5x10 ¹ , ²³⁸ Pu; | 1.3 x 10 ⁻⁸ /yr | | | Canister breaches on impact | Mine exhaust filter
system | 7.5x10., 23.9 Pu;
2.9, 23.9 Pu; of
small particles to
mine atmosphere | | | Nuclear warfare | 50-megaton nuclear
weapon bursts on surface
above repository | Repository depth of 600 m | None | | | | Crater formed to 340 m with fracture zone to 500 m | | | | | Repository breach
by meteor | Meteor with sufficient
mass and velocity to form
2-km-dia crater impacts
repository area | Repository depth
of 600 m | 1.3x10 ⁶ , ⁹⁰ Sr;
1.3x10 ⁶ , ¹³⁷ Cs;
6x10 ³ , ²³⁸ Pu;
2.4x10 ² , ²³⁹ Pu; | 2 x 10 ⁻¹³ /yr | | | 2-km-dia crater extends
to waste horizon, dis-
persing 1% of waste to
atmosphere | | half to stratosphere,
half as local fallout | | | Repository breach
by drilling | Societal changes lead
to loss of repository
records and location
markers | Repository depth
of 600 m
Repository marked by | 7x10 ⁻⁷ , ⁹⁰ Sr;
7x10 ⁻⁷ , ¹³⁷ Cs;
7x10 ⁻³ , ²³⁸ Pu;
1.5, ²³⁹ Pu; | Not determined | | | Drilling occurs 1000 yr | monuments and records kept securely | distributed in | | | | after closure | Site criteria - not
desirable resources | drilling mud over 1.2 acres in the top 2 in. of soil | | | Volcanism | Volcanic activity at
repository carries
wastes to surface | Site criteria - no
history or potential
for volcanic activity | Less than accident
below | Not determined | | Repository breach
by faulting and
groundwater | Fault intersects repository | Site criteria - low
seismic risk zone | 6x10 ⁻⁴ , ⁹⁰ Sr;
6x10 ⁻⁴ , ¹³⁷ Cs; | 2 x 10 ⁻¹³ /yr | | transport | Access is created by pressure between aquifer, waste, and surface | Site criteria - minimal groundwater | 6, ²³⁸ Pu;
1.2x10 ³ , ²³⁹ Pu;
released to the | | | | Aquifer carries waste to surface | Repository depth of 600 m | groundwater 1000 yr
after mine closure | | | Erosion | Repository overburden subject to high erosion | Site criteria - low erosion rates | Less than breach by a meteor | Not determined | | | | Repository depth of 600 m | | | | Criticality | Criticality not feasible | - | _ | _ | | | | | | | TABLE V-17A Possible Exposures and Risks from Geologic Repository | Accident Description | Maximum Individual Exposure, rem (70-yr whole-body commitment) | Maximum Individual
Risk, Probability
Times Consequence,
rem/year | |--|--|---| | Canister drop down mine shaft | 1.4×10^{-5} | 1.8×10^{-13} | | Repository breach by meteor | 5.5 × 10 ⁶ | 1.1×10^{-6} | | Repository breach by faulting and flooding | 7.4 × 10 ³ | 3.0 × 10 ⁻¹¹ | | Repository breach by drilling | 1.1 × 10 ⁴ | Probability Intermediate (<5 × 10 ⁻³) | #### 4. Offsite Land Contamination Levels of radionuclide deposition that would require evacuation of people and restrictions on farming and milk production are discussed in more detail in Reference 8 and are given below in Table V-18. The deposition limits were derived from the dose criteria given in Table V-19, which are also discussed in Reference 8. TABLE V-18 Radionuclide Deposition Limits for Evacuation and Restrictions on Farming, ${\rm Ci/m^2}$ | | Evacuation | | Restrictions on Farming | | | |------------------------------------|---------------------|----------------------|-------------------------|----------------------|--| | Isotope | Direct
Radiation | Inhalation | First
Year | Long Term | | | ⁹⁰ Sr | - | 2×10^{-4} | 4×10^{-5} | 2 × 10 ⁻⁴ | | | ¹³⁷ Cs | 3×10^{-5} | 1 × 10 ⁻³ | 2×10^{-6} | 8 × 10 ⁻⁵ | | | ²³⁸ , ²³⁹ Pu | - | 1×10^{-7} | _ | - | | ### TABLE V-19 #### Radiation Dose Criteria Evacuation Limits External Irradiation 10 rem to whole body in 30 years Inhalation 75 rem to critical organ in 50 years Farming Restrictions (Short Term) ⁹⁰Sr 5 rem to bone marrow in first year^a $^{137}\mathrm{Cs}$ 5 rem to whole body in first year $^{\alpha}$ Farming Restrictions (<1 year) 90Sr (5 rem to bone marrow in 50 years)/year 137Cs (1 rem to whole body in 50 years)/year $[\]alpha$. The 50-year dose commitments due to these exposures in the first year are about 25 rem to the bone marrow from 90 Sr and 5 rem to the whole body from 137 Cs. (Almost all the dose from 137 Cs is received in the year in which it is ingested.) Only two operational modules have potential for causing off-site land contamination for any of the abnormal events considered. These two are sabotage during removal of waste from tanks (common to all three alternative plans), and sabotage during processing waste to glass (unique to Alternative 2). The consequences, if each of these events did occur, are given in Tables V-20 and V-21, respectively, in terms of land contaminated and people evacuated. TABLE V-20 Contamination Effects from Sabotage During Removal of Waste from Tanks | Distance from
Release, km | Acres Requiring
Decontamination | People Moved | |------------------------------|------------------------------------|-------------------| | 15-20 | 8.5×10^3 | 2.2×10^3 | | 20-25 | 1.1 × 10 ⁴ | 3.2×10^2 | | 25-30 | $1.3 \times
10^{4}$ | 0 | | 30-35 | 1.6×10^4 | 0 | | 35-40 | 1.8 × 10 ⁴ | 0 | | 40-45 | 2.1×10^{4} | 0 | | 45-50 | 2.3×10^{4} | 0 | | 50-55 | 2.5×10^{4} | 0 | | 55-60 | 0 | 0 | | Total Offsite | 1.3×10^5 | 2.5×10^3 | | | | | TABLE V-21 Contamination Effects from Sabotage During Waste Processing | Distance from
Release, km | Acres Requiring
Decontamination | People Moved | |------------------------------|------------------------------------|--------------| | 15-20 | 8.5×10^{3} | 0 | | 20-25 | 0 | 0 | | Total Offsite | 8.5×10^{3} | 0 | #### TABLE V-22 Dose to Individual Drinking River Water and/or Eating Fish after Runoff from Decontaminated Salt Tanks Damaged by an Earthquake $^{\alpha}$ Nitrate-Nitrite Concentrations 0.027% EPA drinking water limit Mercury Concentrations 0.13% EPA drinking water limit Individual Whole Body Dose, Drinking Water 0.17 mrem/yr Individual Bone Dose, Drinking Water 0.08 mrem/yr Individual Whole Body Dose, Eating Fish^b 11 mrem/yr Population Dose Risk over 105-Year Period^c 7.2 m 7.2 man-rem α. Assumes the amount of residual radioactivity in the tanks after decontamination is equal to or less than the radionuclide content of the salt and that 10% or less of the residual activity is transferred to the salt. Also assumes 25% of the tanks containing salt are damaged and 10% of the salt and radionuclides released from the tanks reach the river. b. Assumes this individual eats 25 pounds of fish per year. The present commercial fishing industry could supply about 200 such people. c. Based on a probability of 10⁻³/yr for an earthquake of intensity of MM IX which is required to damage the tanks containing salt. Assumes 25% of the tanks are damaged. Estimates show that 100 years are required for rainwater entering the tanks to dissolve the salt and empty the tanks. Also assumes the population drinking water and eating fish caught commercially increases by a factor of 5 during the period. be used for any purpose with a restriction which would prohibit drilling, mining, or any other action that would breach the caverns. If the alternative to continue storing high-level waste in tanks is chosen, approximately 50 acres of land will have to be committed every 50 to 100 years to build new tanks to replace the existing tanks. Presumably, however, when the tanks are emptied every 50 to 100 years, they could be decontaminated and dismantled so the site could be used for the next generation of tanks; if this can be accomplished, additional land will not have to be committed for waste tanks. | | Continue
Tank Farm
Storage | Glass Form t
Offsite
Geological | o a Federo
Onsite
Surface | <u>ll Repository</u>
Onsite
Geological | Liquid to
Bedrock | |---|----------------------------------|---------------------------------------|---------------------------------|--|----------------------| | Land, acres | 80 ^b | 100 ^C | 125 | 100 ^d | 10^{d} | | Concrete,
cubic yards × 10 ³ | 375 ^e | 100 | 125 | 125 | 25 | | Carbon steel, tons \times 10 ³ | 70 | 20 | 25 | 25 | 5 | | Stainless steel,
tons × 10 ³ | 5 | 10 | 10 | 10 | 1 | | Electricity,
MW-hr × 10 ³ | 350 ^e | 900 | 900 | 900 | 40 | | Coal, tons \times 10^3 | 150 ^e | 600 | 600 | 600 | 10 | | Cost, billions of 1980 dollars | 0.510 | 3.60 | 3.75 | 3.61 | 0.755 | $[\]alpha.$ Estimates based on experience with similar facilities; assumes 10 years of glass-forming operations. b. Assumes old tanks are dismantled after they are emptied and new tanks are built in same area. c. Glass-forming plant only; excludes land for offsite Federal repository. d. Excludes surface restriction prohibiting drilling or mining. e. Assumes replacing tanks five times in the first 300 years and maintaining surveillance for 300 years. TABLE XI-1 Radionuclide Deposition Limits for Evacuation and Restrictions on Farming, Ci/m^2 | Isotope | <u>Evacuation</u>
Direct Radiation | Inhalation | <u>Restrictions</u>
First Year | on Farming
Longer | |-----------------------|---------------------------------------|--------------------|-----------------------------------|----------------------| | ⁹⁰ Sr | - | 2 × 10-4 | 4×10^{-5} | 2 × 10 ⁻⁴ | | ¹³⁷ Cs | 3×10^{-5} | 1×10^{-3} | 2×10^{-6} | 8×10^{-5} | | ^{238,239} Pu | - | 1×10^{-7} | - | - | ### TABLE XI-2 #### Radiation Dose Criteria #### Evacuation Limits | External Irradiation | 10 rem to whole body in 30 years | |----------------------|--------------------------------------| | Inhalation | 75 rem to critical organ in 50 years | # Farming Restrictions (Short Term) | ⁹⁰ Sr | 5 | rem | to | bone | marrow | in | first | year lpha | |-------------------|---|-----|----|-------|--------|----|-------|----------------| | ¹³⁷ Cs | 5 | rem | to | whole | body | in | first | year lpha | ## Farming Restrictions (>1 year) ¹³⁷Cs (5 rem to bone marrow in 50 years)/year (1 rem to whole body in 50 years)/year a. The 50-year dose commitments due to these exposures in the first year are about 25 rem to the bone marrow from ⁹⁰Sr and 5 rem to the whole body from ¹³⁷Cs. (Almost all the dose from ¹³⁷Cs is received in the year in which it is ingested.) | Distance from
Release, km | Acres
Decontaminated | People Moved | |------------------------------|-------------------------|-------------------------| | 15-20 | 8.5×10^3 | 2.2×10^{3} | | 20-25 | 1.1×10^{4} | 3.2×10^2 | | 25-30 | 1.3×10^4 | 0 | | 30-35 | 1.6×10^{4} | 0 | | 35-40 | 1.8×10^4 | 0 | | 40-45 | 2.1×10^{4} | 0 | | 45-50 | 2.3×10^4 | 0 | | 50-55 | 2.5×10^{4} | 0 | | 55-60 | 0 | 0 | | Total Offsite | 1.3 × 10 ⁵ | 2.5×10^3 | | Cost | \$3.0 × 10 ⁷ | \$1.2 × 10 ⁷ | TABLE XI-4 Contamination Effects from Sabotage During Waste Processing | Distance from
Release, km | Acres
Decontaminated | People Moved | |------------------------------|-------------------------|--------------| | 15-20 | 8.5×10^{3} | 0 | | 20-25 | 0 | 0 | | Total Offsite | 8.5×10^{3} | 0 | | Cost | $$2.0 \times 10^{6}$ | | TABLE XI-5 Summary of Costs and Exposure Risks for Alternative 1: Storage of Waste as Sludge and Damp Salt Cake in Onsite Waste Tanks (Present SRP Waste Management Technique) | (Fresent Skr waste manageme | enc rechnique) | | | |--|---|-----------------------------|-------------------------------| | Event | Population Dose
for Maximum Year,
man-rem | Probability,
events/year | Maximum Risk,
man-rem/year | | Removal From Tanks | Not applicable | Not applicable | Not applicable | | Processing | Not applicable | Not applicable | Not applicable | | Transportation | Not applicable | Not applicable | Not applicable | | Storage | | | | | Routine Releases | 1.4 | 1.0 | 1.4 | | Spill During Transfer | 5.3×10^2 | 5.0×10^{-3} | 2.6 | | Explosion | 3.0×10^{4} | 1.0×10^{-4} | 3.0 | | Sabotage by Dispersal | 2.3 × 10 ⁴ | 1.0×10^{-5} | 2.3×10^{-1} | | Sabotage by Explosion | 9.8×10^{3} | 1.0×10^{-5} | 9.8 × 10 ⁻² | | Airplane Crash | 1.1 × 104 | 1.0×10^{-5} | 1.1 × 10 ⁻¹ | | Abandonment | 2.7 × 10 ⁴ | 1.0×10^{-5} | 2.7×10^{-1} | | Time-Integrated Risk, man-
(with abandonment) | 2.4 × 10 ⁴ | | | | Risk Value at \$1000/man-ren | \$24 | | | | Budgetary Cost, millions | | \$510 | | | Total Cost, millions | | \$534 | | | Incremental Cost-Risk, doll | (Base Case) | | | | Time-Integrated Risk, man- | 2.3×10^{3} | | | | Natural Background Exposure | ars) 1.0×10^{10} | | | | Possible Waste Management F | 0.5 | | | | Health Effects from Natural | 2,000,000 | | | | | | | | | | | | | TABLE XI-6 Summary of Costs and Exposure Risks for Alternative 2-Subcase 1: Glass Stored in Offsite Geologic Storage and Decontaminated Salt Cake Stored in Onsite Underground Waste Tanks | Event | Population Dose
for Maximum Year,
man-rem | Probability,
events/year | Maximum Riek,
man-rem/year | |---------------------------------|---|-----------------------------|-------------------------------| | Removal From Tanks | | | | | Routine Releases | 1.4 | 1.0 | 1.4 | | Sludge Spill | 1.5 x 10 ¹ | 5.0×10^{-2} | 7.5×10^{-1} | | Spill at Inlet | 3.7×10^{1} | 5.0×10^{-2} | 1.9 | | Tornado | 5.4 x 10 ¹ | 6.0×10^{-4} | 3.2×10^{-2} | | Spil1 | 1.1 x 10 ³ | 5.0×10^{-3} | 5.4 | | Explosion | 3.0 x 10 ⁴ | 1.0 × 10 ⁻⁴ | 3.0 | | Sabotage | 3.5 x 10 ⁵ | 1.0 x 10 ⁻⁵ | 3.5 | | Below-Ground Leaks | 1.7 x 10 ⁵ | 1.0 x 10 ⁻⁵ | 1.7 | | below-offculid beaks | 1.7 X 10 | 1.0 % 10 | 1.7 | | Processing | | | | | Routine Releases | 3.0 | 1.0 | 3.0 | | Process Incidents | 4.2×10^{-1} | 1.0 | 4.2 x 10 ⁻¹ | | Sabotage | 8.9 x 10 ⁴ | 1.0×10^{-5} | 8.9×10^{-1} | | Airplane Crash | 3.1×10^2 | 7.0×10^{-8} | 2.2×10^{-5} | | | | | | | Transportation | | | | | Routine Exposures | 6.3×10^{1} | 1.3 x 10 ⁻⁴ | 6.3×10^{1} | | Accidents | 1.2 x 10 ² | 2.1×10^{-5} | 1.6×10^{-2} | | Storage | | | | | Expected Releases | 1.3 x 10 ² | 1.0 | 1.3 × 10 ² | | Time-Integrated Risk, man-rem | (300 yr) | 6.5×10^{2} | | | Risk Value at \$1000/man-rem, m | illions | 0.65 | | | Budgetary Cost, millions | | \$3600 | | | Total Cost, millions | | \$3600.7 | | | Incremental Cost-Risk, dollars | /man-rem | \$132,000 | | | Time-Integrated Risk, man-rem | (10,000 yr) | 6.5×10^2 | | | Natural Background Exposure, m | | 1.0×10^{10} | | | Possible Waste Management Heal | th Effects | 0.1 | | | Health
Effects from Natural Ba | | 2,000,000 | | TABLE XI-7 Summary of Costs and Exposure Risks for Alternative 2-Subcase 2: Glass Stored in Onsite Surface Storage Facility and Decontaminated Salt Cake Returned to Onsite Waste Tanks | Event | Population Dose
for Maximum Year,
man-rem | Probability,
events/year | Maximum Risk,
man-rem/year | |---------------------------------|---|-----------------------------|-------------------------------| | Removal From Tanks | | | | | Routine Releases | 1.4 | 1.0 | 1.4 | | Sludge Spill | 1.5 x 10 ¹ | 5.0×10^{-2} | 7.5×10^{-1} | | Spill at Inlet | 3.7×10^{1} | 5.0×10^{-2} | 1.9 | | Tornado | 5.4×10^{1} | 6.0×10^{-4} | 3.2×10^{-2} | | Spill | 1.1×10^3 | 5.0×10^{-3} | 5.4 | | Explosion | 3.0×10^{4} | 1.0×10^{-4} | 3.0 | | Sabotage | 3.5×10^{5} | 1.0×10^{-5} | 3.5 | | Below-Ground Leaks | 1.7×10^{5} | 1.0×10^{-5} | 1.7 | | Processing | | | | | Routine Releases | 3.0 | 1.0 | 3.0 | | Process Incidents | 4.2×10^{-1} | 1.0 | 4.2 x 10 ⁻¹ | | Sabotage | 8.9 x 10 ⁴ | 1.0×10^{-5} | 8.9 x 10 ⁻¹ | | Airplane Crash | 3.1×10^2 | 7.0×10^{-8} | 2.2 x 10 ⁻⁵ | | Transportation | Not Applica | able | | | Storage | | | | | Sabotage | 3.8×10^3 | 1.0 x 10 ⁻⁵ | 3.8×10^{-2} | | Airplane Crash | 3.1×10^{2} | 7.0×10^{-8} | 2.2 x 10 ⁻⁵ | | Abandonment | 0 | - | 0 | | Time-Integrated Risk, man-rem | (300 vr) | 2.2 x 10 ² | | | Risk Value at \$1000/man-rem, m | • | \$0.22 | | | Budgetary Cost, millions | | \$3750 | | | Total Cost, millions | | \$3750.2 | | | rotar dose, militaris | | Ψ3/30.2 | | | Incremental Cost-Risk, dollars | s/man-rem | \$135,000 | | | Time-Integrated Risk, man-rem | (10,000 yr) | 3.4×10^{2} | | | Natural Background Exposure, m | nan-rem (10,000 yr) | 1.0×10^{10} | | | Possible Waste Management Heal | th Effects | 0.07 | | | Health Effects from Natural Ba | ckground | 2,000,000 | | TABLE XI-8 Summary of Costs and Exposure Risks for Alternative 2-Subcase 3: Glass Disposed of in SRP Bedrock and Decontaminated Salt Cake Stored in Onsite Underground Waste Tanks | Event | Population Dose
for Maximum Year,
man-rem | Probability,
events/year | Maximum Risk,
man-rem/year | |-------------------------------|---|-----------------------------|-------------------------------| | Removal From Tanks | | | | | Routine Releases | 1.4 | 1.0 | 1.4 | | Sludge Spill | 1.5×10^{1} | 5.0×10^{-2} | 7.5×10^{-1} | | Spill at Inlet | 3.7×10^{1} | 5.0×10^{-2} | 1.9 | | Tornado | 5.4×10^{1} | 6.0×10^{-4} | 3.2×10^{-2} | | Spil1 | 1.1×10^3 | 5.0×10^{-3} | 5.4 | | Explosion | 3.0×10^4 | 1.0×10^{-4} | 3.0 | | Sabotage | 3.5×10^{5} | 1.0×10^{-5} | 3.5 | | Below-Ground Leaks | 1.7×10^5 | 1.0 x 10-5 | 1.7 | | D | | | | | Processing | 7 0 | 1 0 | 3,0 | | Routine Releases | 3.0 | 1.0 | | | Process Incidents | 4.2×10^{-1} | 1.0 | 4.2 x 10 ⁻¹ | | Sabotage | 8.9 x 10 4 | 1.0×10^{-5} | 8.9×10^{-1} | | Airplane Crash | 3.1×10^2 | 7.0×10^{-8} | 2.2×10^{-5} | | Transportation | Not Appli | cable | | | Storage | | | | | Expected Releases | 1.3×10^{2} | 1.0 | 1.3×10^{2} | | Time-Integrated Risk, man-ro | em (300 yr) | 3.4×10^{2} | | | Risk Value of \$1000/man-rem, | millions | \$0.34 | | | Budgetary Cost, millions | | \$3610 | | | Total Cost, millions | | \$3610.3 | | | Incremental Cost-Risk, dolla | ırs/man-rem | \$129,000 | | | Time-Integrated Risk, man-ro | em (10,000 yr) | 3.4×10^2 | | | Natural Background Exposure, | man-rem (10,000 yr) | 1.0×10^{10} | | | Possible Waste Management Ho | ealth Effects | 0.07 | | | Health Effects from Natural | Background | 2,000,000 | | TABLE XI-9 Summary of Costs and Exposure Risks for Alternative 3: Unprocessed Waste Slurry Disposed of in SRP Bedrock | Event | Population Dose
for Maximum Year,
man-rem | Probability,
events/year | Maximum Risk,
man-rem/year | |---------------------------------|---|-----------------------------|-------------------------------| | Removal From Tanks | | | | | Routine Releases | 1.4 | 1.0 | 1.4 | | Sludge Spill | 1.5×10^{1} | 5.0×10^{-2} | 7.5×10^{-1} | | Spill at Inlet | 3.7×10^{1} | 5.0×10^{-2} | 1.9 | | Tornado | 5.4×10^{1} | 6.0 x 10 ⁻⁴ | 3.2×10^{-2} | | Spil1 | 1.1×10^3 | 5.0×10^{-3} | 5.4 | | Explosion | 3.0×10^4 | 1.0 x 10 ⁻⁴ | 3.0 | | Sabotage | 3.5×10^5 | 1.0 x 10 ⁻⁵ | 3.5 | | Below-Ground Leaks | 1.7 x 10 ⁵ | 1.0 x 10 ⁻⁵ | 1.7 | | Processing | Not Applic | cable | | | Transportation | Not Applic | cable | | | Storage | | | | | Expected Releases | 1.3×10^{2} | 1.0 | 1.3×10^{2} | | Earthquake With Shaft Open | 3.8 x 10 ⁸ | 3.3×10^{-5} | 1.3 x 10 ⁴ | | Earthquake After Sealing | 8.3×10^6 | 3.3×10^{-6} | 2.8×10^{1} | | Sabotage Before Sealing | 1.5×10^9 | 1.0×10^{-5} | 1.5 x 10 ⁴ | | Sabotage After Sealing | 1.4×10^7 | 3.3×10^{-10} | 4.6×10^{-3} | | Time-Integrated Risk, man-rem | (300 yr) | 6.2 x 10 ⁴ | | | Risk Value at \$1000/man-rem, m | nillions | \$62 | ٥ | | Budgetary Cost, millions | | \$755 | | | Total Cost, millions | | \$817 | | | Incremental Cost-Risk | | -\$6500 ^{'1} | | | Time-Integrated Risk, man-rem | (10,000 yr) | 1.4 x 10 ⁵ | | | Natural Background Exposure, n | man-rem (10,000 yr) | 1.0 x 10 ¹⁰ | | | Possible Waste Management Heal | th Effects | 28 | | | Health Effects from Natural Ba | ckground | 2,000,000 | | | | | | | a. The negative value indicates this alternative is more expensive and has higher risk than Alternative 1. TABLE XI-11 Corrective Actions for Typical Events | | Type of
Corrective
Action | Cost of
Corrective
Action, \$ | |---------------------------------------|---------------------------------|-------------------------------------| | Air-Cooled Vault with Glass | | | | Sabotage with conventional explosives | A | 3×10^{6} | | Airplane crash | A | 3×10^6 | | Tank Farm | | | | Abandonment | В | 2 x 10 ⁶ | | Sabotage by spraying | A & B | 5×10^6 | | Sabotage with conventional explosives | A &.B | 5×10^6 | | Airplane crash | A & B | 5×10^6 | | Triassic Cavern | | | | Expected releases | None required | | | Explosion in cavern | None required | | | Earthquake with open shaft | D | 2.0×10^{7} | | Earthquake after sealing | С | 2.5×10^{7} | | Sabotage with conventional explosives | D | 2.0×10^{7} | | Sabotage by drilling | None applicable | | TABLE XII-1 Quantifiable Environmental Impacts | | Alternative 2 | | | | | |---|---|--|---|---|--| | | Alternative 1 Continued Tank Farm Operation | Subcase 1
Glass Shipped
to Offsite
Repository | Subcase 2
Glass in
SRP Surface
Storage | Subcase 3
Glass in
SRP
Bedrock | Alternative 3
Liquid in
SRP
Bedrock | | Occupational Radiation Exposures Based on SRP Experience, $man-rem^a$ | 360 | 3,800 | 2,700 | 2,400 | 42 | | Occupational Radiation Exposures Based on DOE Standards, man-rem $^{\alpha}$ | 4,300 | 30,000 | 32,000 | 28,000 | 500 | | Offsite Population Dose Risk, man-rem ^b (300 yr) | 1,400 | 650 | 220 | 340 | 62,000 | | Offsite Population Dose Risk, man-rem ^b (10,000 yr) | 2,300 | 650 | 340 | 340 | 140,000 | | Offsite Population Dose, man-rem (300 years) | 230,000,000 | 230,000,000 ^d | 230,000,000 | 230,000,000 | 230,000,000 | | From Natural Radiation, man-rem (10,000 years) | 7,700,000,000 | 7,700,000,000 | 7,700,000,000 | 7,700,000,000 | 7,700,000,000 | | Potential for Accidental Offsite Land
Contamination (from Sabotage), acres | 130,000 | 139,000 | 139,000 | 139,000 | 130,000 | | Non-Nuclear Accidental Fatalities
from Construction and Operations | 17.1 | 6.5 | 6.6 | 6.2 | 2.2 | | Budgetary Cost, millions of 1980 dollars | 510 | 3,600 | 3,750 | 3,610 | 755 | $[\]alpha$. Campaign totals for all workers. b. Consequences times probabilities, summed over all events and integrated for 300 years and 10,000 years. For the same time period and population as above. d. The natural radiation calculations assume the population distribution around the offsite repository would be the same as around the SRP site. This is conservative, because the offsite repository would probably be located in a sparsely populated region. TABLE XII-2 Summary of Unquantifiable Factors | | | Alternative 2 | | | | |--|---|--|---|---|-------------------------------------| | | Alternative 1 Continued Tank Farm Operation | Subcase 1
Glass Shipped
to Offsite
Repository | Subcase 2
Glass in
SRP Surface
Storage | Subcase 3
Glass in
SRP
Bedrock | Alternative 3 Liquid in SRP Bedrock | | Relative Degree of Action Required by Future Generations | High | Low | Moderate | Low | Low | | Relative Compliance with Public Expectations a | Low | High | Moderate | High | Moderate | | Conformance
with Policies of SC and GA State Governments | Low | High | Moderate | Low | Low | | Conformance with NRC Regulations for Commercially-Generated Waste | Low | High | Moderate | High | Low | | Potential for Regrets if Future
Economics or Technology
Indicates a Better Method ^b | Low | High | Moderately
High | High | High | | Likelihood of Successful Attain-
ment of Required Implementation
Technology | Highest | High | Higher | Moderate | Moderate | | Effect on Implementation Date
Relative to Alternative 2 —
Subcase 1 | Shortens | - | None | Lengthens | Lengthens | | Requires Additional Management of Decontaminated Salt | No | Yes | Yes | Yes | No | a. Based on pre-draft comments and proceedings of DOE and EPA meetings on public policy issues. Also documented in Reference 2. b. This factor involves both the ease of retrievability from the storage or disposal site and the ease of separating the radioactive constituents from the waste form. TARLE XII-3 Summary of Long-Term and Short-Term Costs and Nuclear Risks | | Alternative 1
Continued Tank
Farm Operation | Alternative 2 Subcase 1 Glass Shipped to Offsite Repository | Subcase 2
Glass in
SRP Surface
Storage | Subcase 3
Glass in
SRP
Bedrock | Alternative 3
Liquid in SRP
Bedrock | |---|--|---|---|--|--| | Short-Term Risks, man-rem | 0^{α} | 4.60×10^3 | 2.57×10^3 | 2.57×10^3 | 2.19×10^{2} | | Long-Term Risks, b man-rem | $\begin{array}{cccc} 1.76 & x & 10^{3} \\ 2.66 & x & 10^{3} \end{array}$ | 1.30 x 10 ²
1.30 x 10 ² | 2.91
1.20 x 10 ² | $1.30 \times 10^{2} \\ 1.30 \times 10^{2}$ | 6.2 x 10 ⁴
1.4 x 10 ⁵ | | Short-Term Costs, $^{\mathcal{C}}$ millions of 1980 dollars | 0^{α} | 3600 | 3750 | 3610 | 755 | | Long-Term Costs, $^b, ^c$ millions of 1980 dollars | 510 ^d e
3060
102,000 | 175 | 175 | 175 | 175 | a. Short-term risks are defined to be those that are incurred from activities additional to preparing the waste as salt cake and sludge in modern tanks, because such activities are common to all alternatives. Short-term costs are treated similarly. b. Long-term risks and costs are integrated for 300 years and for 10,000 years. c. All costs are in undiscounted 1980 dollars. Discounting of long-term costs would reduce their magnitudes to negligible fractions of short-term costs for any alternative. d. This is enough for one cycle of tank replacement, and is more than enough to establish a trust fund for perpetual tank replacement. This is enough to replace tanks every 50 years during the 300-year period or the 10,000-year period, undiscounted.