

Microgrids

U.S. Department of Energy Electricity Advisory Committee October 20, 2011

Bob Lasseter Emeritus Professor University of Wisconsin-Madison

DER Technologies

Dispatchable Sources

- Small internal combustion-engine generator
- Small gas turbines generators
- Microturbines
- Fuel cells

Intermittent Sources

- •Wind turbines
- Photovoltaic

Storage

- •Batteries, Ultra-capacitors
- •Fly-wheels

<u>How do we deal with</u> 100,000+ DER units?

Cluster Loads & DER

(interfaced to the grid using a fast switch)

- Microgrids provide the most promising means of integrating large amounts of distributed sources into the power grid
- Microgrids open the door to significant system efficiency reliability improvements

Microgrid Drivers

Provides system approach to high penetration issues

Reduce load outages by ~ 98% (UPS like system)

Fast islanding (~1 cycle) Provides for a stiff voltage during events (SVC)

Reduced emissions and improve energy efficiencies

Effective use of Combined Heat & Power (CHP) No transmission and distribution losses Facilitates demand side management Support renewable sources

Provides higher reliability & modularity

Autonomous local control (independent of loss of central controller) Graceful degradation Minimize engineering errors/cost/and maximizes flexibility Plug-and-play & peer-to-peer models

Microgrids with Fast Controls and Communications

ssues:

- Loss of control & communication
 Extensive site engineering
 Costly heat distribution system.
- Difficult to scale

CERTS Microgrid: Autonomous components

CERTS Microgrid Concept

Each DER unit is a grid forming component (controls ac voltage and frequency).

- Autonomous load following
- Insures multi-unit stability (local voltage control)
- Autonomous load transfer from overloaded source to other sources
- Intelligent load and source shedding

The interface switch provides for autonomous islanding and resynchronizing to the network *(opens on IEEE1547 & power quality events)*

AEP/CERTS Microgrid Test Bed

Demonstrated at Site

(inverter based, no communications & no storage)

- ✓ Autonomous load following
- ✓ Seamless separation & automatic re-synchronizing with the grid.
- Autonomous load transfer from overload source to other sources
- ✓ UPS level power quality
- Stable operation for multisourced systems.

First CERTS Compliant CHP Systems

- First product to commercially offer CERTs controls algorithms for microgrid operation
- Features:
 - Low emission NG engine
 - Operated over wide speed range to optimize fuel efficiency
 - 700,000 BTUh recoverable heat
 - 82.4% (LHV) overall efficiency

TecoGen

SMUD Microgrid Project

Phase-1

- 3-100 kW InVerde systems
- Collect CCHP & UPS data over 12 months
- Feeder peak load reduction
- Test technical and operational implications of exporting power from a microgrid

Phase-2

 Add 500 kW-3hr Premium Power battery

310kW demo of CEC/DOE/CERTS Microgrid concept at SMUD's central utility plant

CERTS Microgrid Demonstration

Alameda County, Santa Rita Jail

Objective

- Demonstrate the commercial implementation of the CERTS concept
- Reduce peak electricity demand & demonstrate demand response
- Improve the security and reliability of the power supply
- Improve the fuel cell's performance

Equipment

- 4 MW-hr Lithium Ion battery
- Two 1 MW diesel generators
- Smart switch
- 1 MW fuel cell with CHP
- 1.2 MW solar on rooftops
- 12 kV feeder

DOE &CEC funded project

Military Microgrids

Fort Sill Energy Efficient Microgrid	 Hybrid CERTS Microgrid 500 kW hr battery 2-200 kW NG gen-sets 30 kW PV 2.5 kW wind
Advanced Distribution and Control for Hybrid Intelligent Power Systems:	 Meshed microgrid with a reliable wireless communication system Intelligent distributed controls to promote graceful degradation
MAXWELL Air force base	 Interconnecting two buildings Demonstrate CERTS advanced controls 2- existing MW gen-sets

AEP/CERTS

Microgrid: Mixed System

Directed connected synchronous generators

 Demonstrate that CERTS concepts can be applied to the governor and exciter of conventional machines

AC Storage

• Management of stand alone storage as a peer in the microgrid

Photovoltaic

• Investigate the use of PV as a peer in the CERTS microgrid.

3-cycle mechanical interface switch

• Lower the overall microgrid system costs through less expensive interface switches

Intelligent load and source shedding

Promote graceful degradation

Controller

PV

CHP

CHP

Storage

What is Next?

Microgrid as a Grid Resource

- Provides a standard building block for "Smart Distribution".
- Dispatchable bi-directional real & reactive power.
- Demand side management.
- Multiple points of electrical coupling.
- Islands & re-synchronizes autonomously.
- Controller interfaces with system controllers. and locally optimizes the microgrid operation.
- Can have custom features

What's next? Coupled Microgrids

15

Questions?

Bob Lasseter lasseter@engr.wisc.edu

