2012 Smart Grid R&D Program Peer Review Meeting

Support of Renewable and Distributed System Integration and Microgrids

Mike Hightower
Sandia National Laboratories

June 7, 2012

Support RDSI and Microgrids

Objective

To address current shortcomings of power reliability and security, Sandia is investigating advanced microgrid approaches to locate more secure and robust distributed energy generation and storage sources near loads as a way to better manage power generation and to improve overall power reliability and security. Microgrids are equally applicable to military, industrial, and utility distribution applications.

Washington Oregon Idaho Wyoming Neurada Utah Colorado California Arizona New Mexico Oklahoma Alaska Month Dakota Minnesota Wisconsin Michigan Mi

Life-cycle Funding Summary (\$K)

FY 09 to FY 11	FY12, authorized	FY13, requested	Out-year(s)
~\$2000K	\$870K	\$1000K	\$1000K

Technical Scope

Sandia's microgrid research utilizes smart grid technologies to enable distributed energy generation and storage to be operated in both 'grid-tied and 'islanded' modes. This enables energy demand/response management, increased use of distributed and renewable energy technologies, and improved cost-effectiveness, and reliability. The program leverages DoD, DOE, and industry funding to develop and evaluate smart grid technologies at DoD and other sites and testbeds.

2

Significance and Impact

- Advanced microgrids designed to operate 'grid tied' and 'islanded'
- Supports enhanced
 - Use of distributed energy and storage technologies
 - System resiliency
 - System reliability
 - System security and safety
 - Utility benefits
- Scalable implementation of Smart Grid technologies to identify benefits and issues

Advanced Microgrids – Supporting Use of Renewable, Distributed, and Smart Grid Technologies

Significance and Impact

- Consequence modeling shows that significant reliability and security improvements available with advanced microgrids
 - Automated microgrids show great flexibility control, safety, and cyber security issues are not insurmountable
 - Can improve energy reliability in remote areas and on congested feeders
- Advanced microgrids able to operate "islanded" and "grid tied" can greatly improve the ROI of distributed energy
 - Demand/response and ancillary services opportunities can be significant
 - Combined cooling, heat, and power (CCHP) have large potential
- Multiple microgrids are often the best energy reliability approach at bases (coupling/networking can be even more beneficial and cost effective)

Significance and Impact

- 250 kW 4 hr. energy battery 500 kW, 40 min power battery
- Smart Grid / SCADA integration

- PV (50 kW)
- Demand response? 100 kW Dummy load Electric Chiller/Thermal storage
- MicroGrid

Technical Approach & Transformational R&D

Reduce the "unacceptably high risk"* of mission impact from an extended electric grid outage by maintaining energy delivery

Develop and Demonstrate:

- Secure microgrid generation & distribution
- Cyber-security of electric grid
- Smart Grid technologies & applications
- Integration of distributed & intermittent renewable sources
- Demand-side management
- Improved energy system safety, security, reliability, and costeffectiveness

Results in:

- Technically sound, commercially viable secure advanced microgrid with mixed generation including renewables
- Complete DoD installation with a secure, advanced microgrid capable of islanding
- Template for mission critical asset energy security for an entire installation with cost and performance data needed to accelerate technology transition to commercial use

Technical Approach

Conceptual	Small Scale	Large Scale	Operational
Designs/Assessments	Microgrid Demos	Microgrid Demos	Prototypes
• Two more sites FY12, DoD/DOE	 Maxwell AFB – FY12, 	SPIDERS JCTD - FY11 -	• Ft. Belvoir – CCHP
 West Point - FY12, DoD 	DoD/DOE	14, DOE/DoD	DoD/DOE FY 14
 Creech AFB - FY12, DoD/DOE 	• Ft. Sill – FY11, DoD w/	• Ft Carson - FY13	Camp Smith - FY14
 Osan AFB – FY12, DoD 	SNL serving as advisor	Hickam AFB – F13	
• Philadelphia Navy Yard – FY11,	auvisoi	• Kirtland AFB- FY 14?	
DOE OE/PIDC		Coupled microgrid	
Cannon AFB – FY11, DOE OE/DoD			<u>-</u>
 Vandenberg AFB – FY11, DOE FEMP 	Washington		Maine
 Kirtland AFB – FY10, DOE OE/DoD 	Oregon	ntana North Dakota Minnesota	Vt NH.
 Camp Smith – FY10, DOE FEMP 	ldaho W	yoming	higan New York Conn. R.I.
• Ft. Bliss – FY10, DOE FEMP	Nevada	Medraska Nice at a line	Ohio Delaware
• Ft. Carson – FY10, DOE FEMP	Utah	Colorado	Virginia Virginia D.C.
 Indian Head NWC – FY09, DOE OE/DoD 	California	Missouri	North Carolina
 Ft. Devens (99th ANG) – FY09, DOE OE/DoD 	Arizona	w Mexico	South Carolina ma Georgia
Ft. Belvoir – FY09 DOE OE/FEMP	Alaska	Texas Louisiana	Florida
 Maxwell AFB – FY09, DoD/DOE 	300		
• Ft. Sill – FY08, Sandia LDRD	Hawaii	•	

Technical Approach & Transformational R&D

FT CARSON ADVANCED MICROGRID

- Large Scale PV (50%)
- Vehicle-to-Grid
- Only Critical Assets
- CONUS Homeland Defense Demo
- COOP Exercise
- 3MW

CAMP SMITH ENERGY ISLAND

- Entire Installation
 Smart Microgrid
- Islanded Installation
- High Penetration of Renewables
- Demand-Side Management
- Redundant Backup Power
- Makana Pahili Hurricane Exercise
- 4 MW

TRANSITION

- Template for DoDwide implementation
- CONOPS
- TTPs
- Training Plans
- DoD Adds Specs to GSA Schedule
- Transition to Commercial Sector
- Transition Cyber-Security to Federal Sector and Utilities

HICKAM AFB CIRCUIT LEVEL DEMONSTRATION

PEARL HARBOR /

- Renewables (20% PV)
- Storage Flow battery
- Energy Management
- Peak Shaving
- 1 MW

CYBER-SECURITY

Technical Accomplishments

■ From Miloitary Base Evaluations

- Advanced microgrid Concept of Operations (CONOPS) developed for broad range of microgrid sizes (FY09-FY12)
- Defined approaches and costs for addressing critical mission, priority, and non-priority loads (FY09-FY12)
- Developing training manuals and guidance on advanced microgrids evaluation and conceptual design with West Point (9/12)

From Microgrid Testing and SPIDERS program

- Four final designs to assess if major improvements in conceptual designs are needed (FY12) and assess operational issues (10/12-FY14)
- Developed microgrid cyber security strategy (FY11)
 - DoD compliant, working on CyberCOM and NSA approval
- Evaluating protective relaying design for safety (5/12)
- Integrated Dynamic Simulation Consequence modeling to enable stakeholder input for critical and priority load shedding issues (FY11)

Technical Accomplishments

From Mesa del Sol (NM)

- Small advanced microgrid performance data collection, presentation, and evaluation (5/12)
- Cyber security for commercial microgrid applications (8/12)
- All sky monitoring assessment for improved microgrid control with high penetration of PV (7/12)
- Coupled microgrid control and performance evaluation (FY12-FY13)

From Center for Energy Transformation and Innovation (VT)

- VT- 90% homes with smart meters by 2013, 90% of all energy supply will be from renewables by 2050
- Pursuing three advanced utility microgrids including Washington DC (7/12)
- Working with utilities on Smart Meter/Smart Grid interface (9/12)
- Support building Regional PV Test Center @ IBM in Burlington (10/12)

Technical Accomplishments Relative to Performance Targets

- Advanced Microgrid efforts support DOE Smart Grid longterm cost and performance goals
 - Hickum AFB demonstration in winter 2012 will have 20% renewables, flow battery, and integrated distributed generation
 - Maxwell, Hickum, and Mesa del Sol microgrids should show >98% reduction in outage times during demonstrations in FY12-FY13
 - Camp Smith and Ft. Carson demonstrations in FY13 and FY14, with high PV penetration and demand response capability should show higher than 15% load factor reduction
 - Demonstrations at Maxwell, Hickum, Ft. Carson, Mesa del Sol, and Camp Smith in FY12-FY14 will be monitored to assess SAIDI reductions

Project Team Capabilities & Funding Leverage

DoD collaboration and funding leverage

- OSD, USACOE, Military Services, DOE/FEMP technical and programmatic collaboration
- Other DOE funding for assessments \$2M
- DoD funding for assessments and SPIDERS construction-\$30M
- Sandia funding \$7M

Mesa del Sol and CETI collaboration and funding leverage

- EPRI, UNM, NM, VT, UVM, PNM, Green Mountain Power, Efficiency VT, IBM, NEDO, HECO- technical and programmatic collaboration
- NEDO funding \$30M
- VT funding \$1M
- Sandia funding \$5M
- Other DOE funding \$3M

Contact Information

Mike Hightower Distinguished Member of the Technical Staff Sandia National Laboratories 1515 Eubank SE, MS 1108 Albuquerque, NM 87123

Phone: 505-844-5499

Fax: 505-844-0968 Cell: 505-850-8630

Email: mmhight@sandia.gov