

U.S. Department of Energy
Categorical Exclusion for Advanced Nuclear Reactors
Written Record of Support
February 2, 2026

The DOE NEPA Implementing Procedures (June 30, 2025)¹ state that, “[t]o establish or revise a categorical exclusion, DOE must determine that the category of actions normally does not significantly affect the quality of the human environment (42 U.S.C. § 4336e(1)). In making this determination, DOE shall: (1) [d]evelop a written record containing information to substantiate its determination; (2) [c]onsult with CEQ on its proposed new or revised categorical exclusion, including the written record, for a period not to exceed 30 days prior to providing public notice as described in subparagraph (3); and (3) [p]rovide public notice in the Federal Register of DOE’s establishment or revision of any categorical exclusion, including the address of the website where the written record is available (energy.gov/nepa).” (DOE NEPA Implementing Procedures (June 30, 2025), Section 5.1(a)).

Pursuant to Section 7 of Executive Order 14299, *Deploying Advanced Nuclear Reactor Technologies for National Security*, DOE is adding the following new categorical exclusion to Appendix B of the DOE NEPA implementing procedures available at <https://www.energy.gov/nepa>:

B5.26 Advanced nuclear reactors

Authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors, provided DOE determines that:

- (1) the project’s attributes, including potential fission product inventory, fuel type, reactor design, and operational plans, reduce sufficiently the risk of adverse offsite consequences from the release of radioactive or hazardous materials, and
- (2) the project demonstrates that any hazardous waste, radioactive waste, or spent nuclear fuel generated by the project can be managed in accordance with applicable requirements.

For the purposes of this category, a project may include multiple reactors within a nuclear facility.

The explanation below serves as DOE’s written record to explain the basis for the new categorical exclusion:

DOE’s mission includes advancing nuclear energy science and technology, and meeting U.S. energy, environmental, national security, and economic needs. To advance the state of advanced nuclear reactor technology, DOE resolves technical challenges by evaluating

¹ <https://www.energy.gov/nepa/articles/doe-nepa-implementing-procedures-june-2025>

reactor designs and enabling reactor developers to integrate this technology into end-user applications for deployment and use.

Advanced nuclear reactors have key attributes such as safety features, fuel type, and fission product inventory that limit adverse consequences from releases of radioactive or hazardous material from construction, operation, and decommissioning. Although past advanced reactor projects have been for solely experimental, testing, and demonstration purposes, the advanced fuel forms, inherently safe designs, and inventories of potential fission products associated with these reactors indicate that reactors in this category developed for additional purposes, such as power production and industrial applications, are also appropriate for this categorical exclusion.

The potential significance of environmental impacts from advanced nuclear reactors is primarily related to local environmental conditions rather than the status of the proposed site for the reactor (greenfield/undisturbed versus previously disturbed and developed area). One example is the presence of environmentally sensitive resources within the reactor location.

Adverse consequences of the construction phase of advanced nuclear reactors are primarily related to the extent of land disturbance necessary to construct the facility footprint and are analogous to construction of non-nuclear industrial facilities. DOE will consider the construction impacts in accordance with applicable requirements (such as land use and zoning requirements) in the proposed project area and the “integral elements” that apply to all categorical exclusions as described in DOE’s NEPA implementing procedures.

Fission product inventory is the primary factor in the source term that determines the potential radiological risk to the public and environment in the event of an accident. DOE is responsible for ensuring the fission product inventory is calculated and the potential accident consequences are known. This information is included with the plans submitted from the vendor to DOE. The inventory establishes the upper bound for accident consequences. Adverse consequences are limited by adherence to DOE nuclear safety requirements as described in 10 CFR Part 830, Nuclear Safety Management and DOE documented safety analysis requirements, including that mitigated off-site dose consequence for credible design basis accidents shall not exceed 25 roentgen equivalent man (rem). For example, DOE Standard for Documented Safety Analysis for DOE Reactor Facilities (DOE-STD-1237-2021) provides an acceptable methodology for the requirements in 10 CFR Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Safety basis as defined in 10 CFR 830.3 “means the documented safety analysis and hazard controls that provide reasonable assurance that a DOE nuclear facility can be operated safely in a manner that adequately protects workers, the public, and the environment.” The DOE Standard applies to DOE reactors as defined by 10 CFR Part 830, Nuclear Safety Management. The DOE definition of reactors in 10 CFR Part 830 is relatively broad and includes “research, test, and power reactors, and critical and pulsed assemblies

and any assembly that is designed to perform subcritical experiments that could potentially reach criticality.” The DOE Standard is intended to be technology-neutral (i.e., its applicability is independent of the specific type of technology used in the reactor facility). These regulations apply to DOE facilities; other agencies that may seek to adopt this categorical exclusion under NEPA section 109 may voluntarily require compliance with these standards or otherwise explain how other applicable standards provide the same safety assurances. Beyond these requirements, DOE has also established policies (DOE P 420.2 and DOE P 420.3) stating that the design goal for new nuclear facilities, including offsite facilities authorized by DOE, is that the worst-case design basis accident will be 5 rem at the facility’s public access boundary.

Advanced reactor projects in this category typically employ inherent safety features and passive safety systems, in addition to well-established fuel, coolant, and structural materials that support their associated DOE safety design basis. Performance of these systems, fuels, and materials has been verified to provide reasonable assurance of adequate protection to the public, workers, and environment. New reactor designs and their associated fuels ensure containment of radionuclides in the event of an accident. Operational periods for these projects will be bounded by the potential fission product inventory and will vary depending on the design and fuel type.

Following reactor critical operations, an advanced nuclear reactor may undergo a decommissioning process where the reactor would be deactivated and breached to facilitate removal and disposal of components and fuel. This process is not expected to result in radioactive material contamination of the reactor facility, as advanced nuclear reactors are designed so that radioactive material remains contained. All waste generated during the decommissioning process would be disposed of in accordance with applicable requirements.

Advanced reactor projects in this category will have a plan supporting spent nuclear fuel storage and disposition following shutdown and decommissioning of the reactor. The plan for spent nuclear fuel will ensure compliance with applicable requirements.

DOE has authority to conduct and authorize reactor activities in furtherance of DOE’s research and development, national security, and other missions, in accordance with the Atomic Energy Act of 1954, Energy Reorganization Act of 1974, and Department of Energy Organization Act. Most DOE nuclear facilities and programs are exempt from U.S Nuclear Regulatory Commission (NRC) licensing and regulation. Under 42 U.S.C. § 2140, no NRC license is required for “the construction or operation of facilities under contract with and for the account of the [DOE].” Although DOE-authorized nuclear reactors are generally exempt from NRC licensing, the NRC has authority to regulate and license specific DOE facilities. 42 U.S.C. § 5842 provides that notwithstanding the general exemption from NRC licensing for DOE facilities recognized by 42 U.S.C. § 2140, the NRC “shall . . . have licensing and related regulatory authority” over “demonstration nuclear reactors . . . when operated as part of the power generation facilities of an electric utility system, or when

operated in any other manner for the purpose of demonstrating the suitability for commercial application of such a reactor.”

In accordance with DOE authorities, DOE has completed three environmental assessments for DOE-authorized reactor projects since 2021, while the NRC has completed two. All resulted in Findings of No Significant Impact (FONSI) without significant potential consequences to the public, workers, and the environment (DOE/EA-2146, Final Environmental Assessment for the Microreactor Applications Research, Validation, and Evaluation (MARVEL) Project at Idaho National Laboratory; DOE/EA-2209, Final Environmental Assessment for the Molten Chloride Reactor Experiment (MCRE) Project; DOE/EA-2268, Final Environmental Assessment for the Demonstration of Microreactor Experiment (DOME) Test Bed Operations; ML2424A034, Environmental Assessment and Finding of No Significant Impact for the Construction Permits and Environmental Review Exemptions for the Kairos Hermes 2 Test reactors; ML23300A053, Environmental Assessment for the Construction Permit Application for the Abilene Christian University Molten Salt Research Reactor. In 2017, DOE completed a reauthorization of a reactor in standby status, the Transient Reactor Test Facility. DOE completed an environmental assessment and prepared a FONSI for the reauthorization (DOE/EA-1954, Environmental Assessment for the Resumption of Transient Testing of Nuclear Fuels and Materials), which also found no significant effects to the public, workers, and the environment. The conclusions reached in DOE/EA-1954 and its FONSI have held since restart of operations in 2017.

Additionally, two relevant Environmental Impact Statements (EIS) have been completed for reactors receiving DOE authorization. Both resulted in Records of Decision concluding that no significant potential consequences would result to the public, workers, and the environment (DOE/EIS-0542, Versatile Test Reactor Environmental Impact Statement; DOE/EIS-0546 Construction and Demonstration of a Prototype Mobile Nuclear Microreactor (Pele EIS). These NEPA reviews have concluded that reactors bounded by using technologies that have been verified to prevent adverse offsite consequences from operational or accidental release of radioactive or hazardous materials do not significantly affect the quality of the human environment. Verification includes using technology bounded by existing analyzed NEPA reviews or having proven performance through testing (e.g., TRi-structural ISOtropic fuel qualification),² experiments (e.g., Experimental Breeder Reactor II fuel experiments),³ or reactor operations (e.g., fuel in university Training, Research, Isotopes General Atomics (TRIGA) reactors).⁴ It is noted that these EISs were prepared because there was uncertainty whether there would be significant impacts to the environmental resources analyzed, as DOE had not evaluated construction and operation of new reactors under NEPA previously.

² <https://www.nrc.gov/docs/ML2021/ML20216A453.pdf>

³ <https://www.sciencedirect.com/science/article/pii/0029549386900828>

⁴ <https://www.nrc.gov/docs/ML0504/ML050480199.pdf>

Relevant completed NEPA reviews

As described above, the following NEPA reviews have been prepared by the DOE Office of Nuclear Energy, the Department of Defense, and the U.S. Nuclear Regulatory Commission since 2021.

Versatile Test Reactor (VTR) Environmental Impact Statement (EIS) (DOE/EIS-0542) (U.S. Department of Energy, 2022)

This EIS evaluated the construction and operation of a new 300-megawatt (thermal) test reactor, as well as associated facilities that are needed for performing post-irradiation evaluation of test articles and managing spent nuclear fuel (SNF).⁵ DOE assessed the mission need for a versatile, reactor-based, fast-neutron source to serve as a national user facility. DOE determined that there is a need for a fast-neutron spectrum VTR to enable testing and evaluating nuclear fuels, materials, sensors, and instrumentation for use in advanced reactors and other purposes. The reactor would be a pool-type, sodium-cooled reactor that uses a uranium-plutonium-zirconium metal fuel. The analysis also includes the potential impacts from post-irradiation examination of test articles, management of spent fuel, and activities necessary for VTR driver fuel production.

DOE's Record of Decision states: “[t]he VTR complex would occupy about 25 acres. Additional land would be disturbed during the construction of the VTR complex for such items as temporary staging of VTR components, construction equipment, and worker parking. In total, construction activities (anticipated to last 51 months) would result in the disturbance of about 100 acres, inclusive of the 25 acres occupied by the completed VTR complex. . . . Implementation of either the INL VTR Alternative or the ORNL VTR Alternative would generally have small environmental consequences. . . . The potential radiological impacts would be small at both locations but would be smaller at the INL Site because the VTR would be further from the site boundary and the population density is lower near the INL Site than near ORNL.” Further, “[i]mplementation of the reactor fuel production options at either the INL Site or SRS would generally have small environmental consequences. At both locations, existing facilities would be modified or adapted to provide capabilities for feedstock preparation and fuel fabrication. . . . Potential radiological impacts would be small at both sites, but due to differences in population density and distribution, potential impacts would be somewhat smaller at the INL Site.”

⁵ <https://www.energy.gov/nepa/doeeis-0542-versatile-test-reactor-idaho-national-laboratory-or-oak-ridge-national-laboratory>

Microreactor Applications Research, Validation and Evaluation (MARVEL) Project (DOE/EA-2146) (U.S. Department of Energy, 2021)

DOE prepared an environmental assessment (EA) for a proposal to construct the MARVEL project microreactor inside Idaho National Laboratory's Transient Reactor Test Facility.⁶ The MARVEL design is a sodium-potassium-cooled, thermal microreactor with a power level of less than 100 kilowatts of electricity using High-Assay, Low-Enriched Uranium (HALEU).

No reasonably foreseeable significant effects on the quality of the human environment were identified and DOE issued a finding of no significant impact (FONSI) on 11/12/2021.

DOE's FONSI states: “[t]he risks associated with the proposed action are well-defined. Hazard evaluations are performed to support each phase of the MARVEL microreactor's design efforts. The hazard evaluation of MARVEL microreactor events and associated operations was performed for selection and evaluation of safety classification of structures, systems, and components (SSCs), SSC safety functions, and design basis accidents applicable to the MARVEL microreactor design. This approach provides reasonable assurance of meeting the requirements for protection of the public, worker, and environment for the MARVEL microreactor design.”

Molten Chloride Reactor Experiment (MCRE) Project (DOE/EA-2209) (U.S. Department of Energy, 2023)

This EA analyzed the potential environmental impacts associated with the development, construction, operation, and decommissioning of the MCRE project at the Materials and Fuels Complex located on the Idaho National Laboratory Site.⁷ The MCRE project is a 200-kilowatt thermal (kWth) nuclear reactor experiment. The preferred location for MCRE is in the NRIC Laboratory for Operation and Testing in the United States (LOTUS) testbed which will be located in the former Zero-Power Physics Reactor (ZPPR) cell at MFC. Once operating, MCRE will be the first critical fast-spectrum circulating fuel reactor, and the first fast-spectrum Molten Salt Reactor.

No reasonably foreseeable significant effects on the quality of the human environment were identified and DOE issued a finding of no significant impact (FONSI) on 10/12/2023.

DOE's FONSI states that “[i]mpacts to health and safety of workers or the public would not be significant. The estimated 2.4×10^{-3} mrem/year dose to a member of the public is significantly less than both the 10 mrem/year regulatory standard and the minor source threshold of 0.1 mrem/year. The estimated potential dose to a co-located worker of $7.62 \times$

⁶ <https://www.energy.gov/nepa/doe-2146-microreactor-applications-research-validation-and-evaluation-marvel-project-idaho>

⁷ <https://www.energy.gov/nepa/doe-2209-molten-chloride-reactor-experiment-mcre-project-idaho-falls-id>

10^{-2} mrem/year is significantly less than the 5,000 mrem/year regulatory dose standard. The estimated total effective dose to INL Site workers from project activities is within the 700 mrem/year administrative control level for INL workers. There would not be a change in the level of risk to site workers. Continued use of existing occupational health and safety programs will ensure that industry-specific standards are met. There would not be a significant hazard to the public or the environment in the event of a facility accident. Existing low-population exposures to humans from radiation for a hypothetical accident would be indiscernible from existing conditions. There would not be a change to the existing emergency management systems at INL.”

“MCRE will be designed and operated to prevent contamination of the LOTUS testbed. MCRE systems, within which are radiological constituents, will be present and will be designed so that radioactive material remains contained and does not contaminate the testbed. During the decommissioning of the reactor phase, which will of necessity require breaching these systems to facilitate removal and disposal of MCRE equipment, the INL Radiation Protection Program (RPP) will be followed, including requirements for contamination control. During decommissioning, containment devices and processes will be used to ensure that the testbed is not contaminated. In the event that off-normal situations occur in which contamination is released from primary systems/containments, a defense-in-depth (DID) approach will be used to ensure that the testbed does not become irretrievably contaminated[.]”

Demonstration of Microreactor Experiment (DOME) Test Bed Operations (DOE/EA-2268) (U.S. Department of Energy, 2025)

The EA assesses the potential environmental impacts associated with the operation of the DOME test bed facility to accommodate testing of advanced nuclear reactor designs at the Materials and Fuels Complex (MFC) at the Idaho National Laboratory site.⁸ The reactor fuel for advanced reactor experiment projects would be TRISO particle fuel at less than 20% enrichment. TRISO fuel is encapsulated and has been demonstrated to be capable of withstanding temperatures up to 3,300 °F, allowing for a reactor design that relies primarily on simple passive features and inherent physics to ensure safety.

No reasonably foreseeable significant effects on the quality of the human environment were identified and DOE issued a finding of no significant impact (FONSI) on 6/25/2025.

DOE's FONSI states: “[t]he average dose to the individual worker (involved worker) and the cumulative dose to all INL Site workers (total workers) would be below the radiological regulatory limits of 10 CFR § 835. Potential impacts to workers and public health and safety from direct radiation and radiological emissions are expected to be low. Due to the distance between the DOME test bed and the nearest public receptor, potential impacts to

⁸ <https://www.energy.gov/nepa/doe-2268-demonstration-microreactor-experiment-dome-test-bed-operations-idaho-national>

the public from the use of hazardous materials or operations is not expected. Potential impacts would be negligible. Existing low-population exposures to humans from radiation resulting from a hypothetical accident, when considering the containment structure and reactor vessel retention within the DOME test bed, would be low. The potential for an intentional destructive act to occur[—]including its exact nature, location, and consequential magnitude[—]is inherently uncertain. However, DOME test bed operations would be performed within a protected area, under a high level of security at MFC. If an intentional destructive act involving the DOME test bed occurred, the potential consequences would be dependent on the amount of fissile material in those facilities at the time of the event and would be similar to the maximum reasonably foreseeable accident.”

With respect to decommissioning, the EA states: “[e]ach reactor may present a different design, level of use or operation, and general physics. To address the many variables of this process, a detailed decommissioning plan would be developed to explain the strategy, requirements, and roles and responsibilities for the post-experiment handling, storage, and disposal of the units as appropriate. Similarly, fuel processing procedures would be used for the storage of irradiated fuel.”

Construction and Demonstration of a Prototype Mobile Nuclear Microreactor (Pele EIS) (DOE/EIS-0546) (Department of Defense, 2022)

The Department of Defense (DoD), acting through the Strategic Capabilities Office, prepared this EIS to evaluate the potential environmental impacts of alternatives for constructing and operating a prototype mobile microreactor capable of producing 1 to 5 megawatts of electrical power (MWe).⁹ DOE (Office of Nuclear Energy), a cooperating agency in preparing DOE/EIS-0546, provided technical expertise and support to DoD. The mobile microreactor would be a small, advanced gas-cooled reactor using HALEU tristructural isotropic (TRISO) fuel. TRISO fuel is encapsulated and has been demonstrated to be capable of withstanding temperatures up to 1,800 degrees Celsius (°C) (3,300 degrees Fahrenheit [°F]), allowing for a reactor design that relies primarily on simple passive features and inherent physics to ensure safety.

DoD’s Record of Decision states “[e]xcept for the construction of two concrete pads and fencing, no land disturbing construction activities would be required for the Proposed Action. Therefore, the Proposed Action would have little or no impact on land resources, visual resources, noise, geology and soils, ecological resources, and cultural and paleontological resources. The analyses showed that there would be no significant impacts on air quality, water resources, socioeconomics, public and occupational health and safety, environmental justice, and transportation. The analysis showed that radiological and nonradiological hazard risks, as well as the associated exposures to workers and the

⁹ <https://www.energy.gov/nepa/doeeis-0546-construction-and-demonstration-prototype-mobile-nuclear-microreactor-idaho>

public, would be low and well within regulatory limits and guidelines established by the DOE and the EPA. Broadly, workers and members of the public are protected from exposure to radioactive material and hazardous chemicals by facility design and administrative procedures.”

Environmental Assessment and Finding of No Significant Impact for the Construction Permits and Environmental Review Exemptions for the Kairos Hermes 2 Test Reactors (ML2424A034; Nuclear Regulatory Commission, 2024)

NRC prepared an environmental assessment in response to an application submitted by Kairos Power, LLC (Kairos) for construction permits under Title 10 of the Code of Federal Regulations Part 50, allowing construction of two non-power test reactors, each of 35 MWt capacity, termed Hermes 2 on a 185-acre site in Oak Ridge, Tennessee.¹⁰ The site is situated in the Heritage Center Industrial Park of the East Tennessee Technology Park that was established by the City of Oak Ridge on land formerly owned by the U.S. Department of Energy (DOE) for the Oak Ridge Gaseous Diffusion Plant.

The EA states: “[t]he technology is an advanced nuclear reactor technology that leverages TRI-structural ISOtropic (TRISO) particle fuel in pebble form combined with a low-pressure fluoride salt coolant.”

The EA explains that, “[b]ased on information in the CP application, the NRC staff expects that radiological releases, doses to the public, and occupational doses would be less than the limits established for protection of human health and the environment in 10 CFR Part 20 (TN283). Based on the calculated radiological doses, the NRC staff concludes that the radiological impacts to members of the public due to normal operation of Hermes 2 would be not significant. The applicant would implement normal safety practices contained in Occupational Safety and Health Administration regulations in 29 CFR Part 1910 (TN654) to protect occupational health. Emissions would comply with the Resource Conservation and Recovery Act (TN1281), Clean Air Act (TN1141), and other environmental regulations.

Regarding potential impacts from accidents, the EA states that, “[t]he NRC staff has conducted an independent review of the consequences of accidents and has documented it in its Safety Evaluation (NRC 2024-TN10349). To receive CPs, the Hermes 2 test reactors would have to meet NRC requirements for postulated accidents, for which potential doses at the exclusion area boundary and in the low population zone are below the dose reference values of 10 CFR Part 100 (TN282) for test reactor siting. Additionally, as another indication of the low level of environmental impacts, the nearest resident dose from accidents is also below the radiation dose limits for individual members of the public in 10 CFR 20.1301(a) (TN283).”

¹⁰ [NRC Issues Final Environmental Assessment for Kairos Power LLC's Hermes 2 Construction Permit Application | Nuclear Regulatory Commission](#)

NRC's FONSI states: “[b]ased on its determinations in the EA that the environmental impacts would be SMALL for each potentially affected resource area... the NRC staff has determined, after consideration of public comments, that the proposed action would not have a significant effect on the quality of the human environment.”

Environmental Assessment and Finding of No Significant Impact for the Construction Permit Application for the Abilene Christian University Molten Salt Research Reactor (ML23300A053; Nuclear Regulatory Commission, 2024)

NRC prepared an EA in response to the application by Abilene Christian University (ACU) for a construction permit under Title 10 of the Code of Federal Regulations (10 CFR) Part 50, authorizing the construction of a molten salt research reactor (MSRR) in the existing Gayle and Max Dillard Science and Engineering Research Center (SERC) building on the ACU campus in Abilene, Texas.¹¹

The EA states: “[r]adiological releases, doses to the public, and occupational doses would be less than the limits established for protection of human health and the environment in 10 CFR Part 20 (TN283). ACU would implement normal safety practices contained in Occupational Safety and Health Administration regulations in 29 CFR Part 1910 (TN654) to protect occupational health. Emissions would comply with the Resource Conservation and Recovery Act (TN1281), Clean Air Act (TN1141), and other environmental regulations.”

Regarding potential impacts from accidents, the EA states that: “[t]he NRC staff concludes that the potential direct, indirect, and cumulative postulated accident impacts of the proposed action would be SMALL. This conclusion is based primarily on the fact that the bounding MHA [maximum hypothetical accident] for the MSRR would not result in a dose to the public that would challenge any dose limits for individual members of the public in 10 CFR 20.1301 (10 CFR Part 20-TN283) and, therefore, adequate protection of the public health and safety would be maintained. Additionally, the MHA dose is a small fraction of the annual dose from natural background radiation.”

NRC's FONSI states: “[o]n the basis of this EA, incorporated by reference in this finding, and its determination that the environmental impacts would be SMALL for each potentially affected resource area, the NRC staff concludes that the proposed action will not have a significant effect on the quality of the human environment.”

As described above, the following NEPA review was prepared by the DOE Office of Nuclear Energy to support the reauthorization of the TREAT reactor:

¹¹ <https://www.nrc.gov/docs/ML2330/ML23300A053.pdf>

Resumption of Transient Testing of Nuclear Fuels and Materials (DOE/EA-1954) (U.S. Department of Energy, 2014)

This EA evaluates DOE activities associated with its proposal to resume testing of nuclear fuels and materials under transient high-power test conditions at the Transient Reactor Test (TREAT) Facility at the Idaho National Laboratory.¹²

DOE's FONSI states: “[t]he concentrations of radioactive emissions from normal operations and accidents were calculated by modeling, and the impacts are predicted to be negligible. Potential impacts to soil, groundwater, biological and cultural resources, sustainability, waste generation, transportation, and non-radiological air emissions were fully analyzed. The analysis demonstrated that there will be no adverse impacts from implementing the preferred alternative... Potential impacts to public and worker health and safety from normal operations and accident scenarios were analyzed. The results convey that the potential radiation doses and latent cancer fatalities are well below established standards. DOE will implement engineered and administrative controls to further ensure safety and to minimize the potential for environmental consequences from TREAT operations. The TREAT reactor is based on an inherently safe design that minimizes the potential for and impacts of reactor accidents. Design features will be augmented by operational requirements and administrative controls during reactor operations to ensure operating parameters are not exceeded during testing operations.”

¹² <https://www.energy.gov/nepa/ea-1954-resumption-transient-testing-nuclear-fuels-and-materials-idaho-national-laboratory>