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Executive Summary 

Currently, the modeling of grout waste forms (or other structural grouts) varies by site and application. 

The modeling currently used for grout at the Hanford Site [e.g., grouted secondary waste for the 

Integrated Disposal Facility (IDF) or tank closure] is simplistic due to prior limitations on data and 

computing power. Due to these limitations, modeling projections related to the properties and aging of the 

grout may be unnecessarily conservative and drive overprediction of the loss of material integrity or 

release of contaminants from grouts (e.g., radionuclides such as Tc-99 and I-129, regulated metals such as 

Cr, and chemical toxins such as nitrate). In the current modeling approach for the IDF and tank closure, 

physical and chemical changes to the grout are handled via step function changes, resulting in overly 

conservative sensitivity cases. In turn, these unrealistically conservative results could limit evaluations of 

opportunities to implement grout in the mission or require extensive research and development or risk 

mitigation that may not be needed. Continued conservative analyses of grout will limit the projected 

benefits in mission cost, duration, vitrification total operating efficiency, worker safety, and long-term 

environmental management from the expanded use of grout in the Hanford mission.  

The Hanford Grout Modeling Framework being developed in this project will be composed of the 

equations and algorithms used to predict waste form behavior in performance assessments. These 

equations include numerical representations of the aging mechanisms and processes identified in the 

conceptual model to compare against measured datasets in controlled lab conditions, field experiments, 

and analogues. The Hanford Grout Modeling Framework will contain both the primary waste form 

release calculations and supporting modeling techniques to build the technical underpinning of grout 

performance. Components of the Hanford Grout Modeling Framework will be supported by a database of 

Hanford- and waste-relevant datasets that is being developed in this project and will be made available 

online for future efforts. 

This report summarizes the work performed in Year 1 of the “Developing a Hanford Grout Modeling 

Framework” project, funded by the Laboratory Program Office within the U.S. Department of Energy’s 

Office of Environmental Management. The initial effort was a team workshop to develop the conceptual 

models for the three main applications of grout at Hanford and a work plan. That workshop and 

associated information are summarized elsewhere.1 

The Year 1 development of the Hanford Grout Modeling Framework laid the groundwork for forming the 

full system tool and provided substantial advancement of new tools for modeling grout. Based on 

conceptual models of the three main applications of grout at Hanford, i.e., liquid waste immobilization, 

solid waste stabilization/encapsulation, and tank closure as well as the main processes and mechanisms 

that control grout properties during aging were identified. Five original themes were defined to support 

the development of the Hanford Grout Modeling Framework, and the associated subtasks were initiated 

during Year 1. The significant developments in each of the subtasks presented in this report are as 

follows. 

• Theme 1 Task 1 – Hanford Mineral Network: A main component of the Hanford Grout Modeling 

Framework was developed in which the mineral composition of grouts is now defined using a 

geochemical speciation model. A software link between exascale Subsurface Transport Over 

Multiple Phases (eSTOMP) and LeachXS - ORCHESTRA (LXO) was developed to facilitate this 

information transfer. 

 
1 Asmussen, RM. 2024. Summary of Developing a Hanford Grout Modeling Framework Initial Workshop. 

PNNL-36945. Pacific Northwest National Laboratory, Richland, WA. 
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• Theme 1 Task 2 – Geochemical Modeling of Reactive Grout Phases: Predictive dissolution models 

developed originally for glass waste forms have been successfully applied to predict the early-life 

dissolution of blast furnace slag, showing promise for a tool to predict long-term dissolution of key 

reactive phases in the grout microstructure. 

• Theme 2 Task 1 – Integration of Variably Saturated Flow Modeling to eSTOMP: This task 

demonstrated that previous predictions of moisture pathways and transport times in the IDF using 

variably saturated flow modeling can be replicated in eSTOMP. These calculations will provide a 

technical basis for selecting appropriate reaction times in the Hanford Grout Modeling Framework. 

• Theme 2 Task 2 – Integration of Variably Saturated Flow Modeling to Field Experimental Data: 

This task was a first step in validating the Hanford Grout Modeling Framework against field data by 

comparing moisture content model predictions to measurements in the Hanford field lysimeter test. 

• Theme 3 Task 1 – Application of Geochemical Speciation Modeling to Other Hanford Grout 

Examples: This task further evaluated geochemical speciation models for predicting the behavior of 

grout components and contaminants. This tool was previously demonstrated with a single grout 

formulation and this demonstration has now shown success with other Hanford grouts. This tool will 

be a key component in predicting the chemical state of the grout. 

• Theme 3 Task 2 – Integration of Key Aging Processes as Spatial Evolution in eSTOMP: This task 

demonstrated, for the first time, the use of a reactive transport representation of oxidation of grout in 

a Hanford disposal environment, laying the groundwork to capture spatial and dynamic aging 

processes in the Hanford Grout Modeling Framework. 

• Theme 3 Task 3 – Contaminant Interactions with Microbial Processes: This task developed an 

approach in eSTOMP to represent microbial conversions in grout leachates in disposal conditions 

using nitrate as an example. 

• Theme 4 Task 1 – Peridynamic Modeling: This task successfully built, for the first time, a 

peridynamic model of a Hanford-relevant grout (using tank concrete as an example) and compared 

failure predictions to experimental data. The peridynamics model is being developed as a tool to 

predict cracking in grout in service. 

• Theme 4 Task 2 – Maturation of Mesoscale Models for Hanford Grout: This task built, for the first 

time, a Hanford-relevant mesoscale model of silver zeolite solid waste in a grout waste form to 

model silver migration in the grout matrix. This model will be expanded to contaminant migration 

and physical evolution. 

• Theme 5 Task 1 – Grout Database: An online hosting tool was developed for a database of 

Hanford-relevant grout data, and populating with data has been ongoing.  
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Acronyms and Abbreviations 

AI artificial intelligence 

API Application Programming Interface 

ARP American Rock Products 

ASPHC asphalt concrete 

ASTM American Society for Testing and Materials 

BFS blast furnace slag 

CDF cumulative distribution function 

CoPC contaminant of potential concern 

CRESP Consortium for Risk Evaluation with Stakeholder Participation  

CS Cast Stone 

DO dissolved oxygen 

DOE U.S. Department of Energy 

DOI digital object identifier 

DP densely packed 

E elastic modulus 

EFRC Energy Frontier Research Center 

EPA U.S. Environmental Protection Agency 

eSTOMP exascale Subsurface Transport Over Multiple Phases 

FA fly ash 

FFTW Fastest Fourier Transform in the West 

FIB focused ion beam 

GCL geosynthetic clay liner 

GDB grout database 

H2C Hanford Tank Waste Operations and Closure 

HD_BACKF high-density backfill 

HDF5 Pandas Hierarchical Data Format version 5 

HL hydrated lime 

IDF Integrated Disposal Facility 

L/S liquid-to-solid (mass) ratio 

LAW low-activity waste 

LD_BACKF low-density backfill 

LLM Large Language Model 

LP loosely packed 

LSP liquid-solid partitioning 

LXO LeachXS - ORCHESTRA 

MC moisture content 
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ML machine learning 

NNLEMS Network of National Laboratories for Environmental Management and 

Stewardship 

OCR Optical Character Recognition 

OPC ordinary Portland cement 

OSTI Office of Science and Technology Information 

PA performance assessment 

PD peridynamics 

PDF probability density function 

PHREEQC PH-Redox-Equilibrium in C 

PNNL Pacific Northwest National Laboratory 

ppt precipitate 

PW pore water 

QA quality assurance 

RCRA Resource Conservation and Recovery Act 

SEM scanning electron microscope 

SQL Structured Query Language 

SRNL Savannah River National Laboratory 

SRS Savannah River Site 

TCLP Toxicity Characteristic Leaching Procedure 

UCF University of Central Florida 

VSF variably saturated flow  

VU Vanderbilt University 

W1 grout waste form within eSTOMP oxidation model 

WRA water-reducing additive 

WTP Waste Treatment and Immobilization Plant 

XML Extensible Markup Language 

XRD X-ray diffraction 
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1.0 Introduction 

This report summarizes the work performed in Year 1 of the “Developing a Hanford Grout Modeling 

Framework” project, funded by the Laboratory Program Office within U.S. Department of Energy (DOE) 

Office of Environmental Management. The initial effort was a team workshop to develop the conceptual 

models for the three main applications of grout at Hanford and a work plan. That workshop and the 

associated information are described elsewhere (Asmussen 2024). Based on the work plan in Asmussen 

(2024), efforts have been ongoing across five themes in the project. This report covers the project 

background and technical developments for data in each theme and how these fit the target development 

of the Hanford Grout Modeling Framework.  

1.1 Project Summary 

Cementitious and other ambient-temperature-formed solidification technologies (e.g., geopolymers) play 

a key role in the nuclear waste management strategies pursued across the globe. These materials are 

commonly referred to as “grout” within the DOE complex – a term originating from efforts in 

hydrofracture injection of salt waste mixed with cement and other additives at the Oak Ridge Reservation 

in the 1960s, in a process similar to borehole “grouting” (Haase et al. 1987). Within the DOE complex, 

there is extensive experience using grout for solidification of alkaline salt wastes, other liquid wastes, 

spent solid wastes, tank closure, and facility decommissioning (Lorier and Langton 2019; Bates 2022). At 

the Hanford Site, grout was the treatment technology originally planned for tank waste using vault 

designs similar to the Saltstone Disposal Units at the Savannah River Site (SRS) (van Beek and Wodrich 

1990).  

With the revision to the Tri-Party Agreement in 1993, the focus of grout usage at Hanford shifted to 

supporting the vitrification mission by grouting the liquid and solid secondary wastes generated by the 

process. The need for supplemental treatment capacity to complete the low-activity waste (LAW) mission 

and recent alternative treatment evaluations have renewed efforts to evaluate and consider grout for 

LAW. Additionally, upon completion of tank retrieval, it is presumed that grouting will be used for 

closure of the tanks at Hanford, although this is still pre-decisional. Evaluating the benefits and impacts of 

the various applications of grout at Hanford requires a uniform, and technically defensible, modeling 

approach. 

Currently, the modeling of grout waste forms (or other structural grouts) varies by site and application. 

The modeling used for grout at the Hanford Site [e.g., grouted secondary waste for the Integrated 

Disposal Facility (IDF) or tank closure] is simplistic due to prior limitations on data and computing 

power. Due to these limitations, modeling projections related to the properties and aging of the grout may 

be unnecessarily conservative and drive overprediction of the loss of material integrity or release of 

contaminants from grouts (e.g., radionuclides such as Tc-99 and I-129, regulated metals such as Cr, and 

chemical toxins such as nitrate).  

The current modeling approach for the IDF and tank closure handles physical and chemical changes to the 

grout via step function changes, resulting in overly conservative sensitivity cases. These unrealistically 

conservative results could limit evaluations of opportunities to implement grout in the mission or require 

extensive research and development or risk mitigation that may not be needed. Continued conservative 

analyses of grout will limit the projected benefits in mission cost, duration, vitrification total operating 

efficiency, worker safety, and long-term environmental management from the expanded use of grout in 

the Hanford mission. Several multi-lab reviews have identified updating and harmonizing the modeling 

approach for grout materials at the Hanford Site as a significant mission need,  where time-dependent 
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processes (e.g., carbonation) that control bulk mechanisms (e.g., cracking) in grout can be accounted for  

(Asmussen et al. 2021; Bates 2022). Moreover, the Network of National Laboratories for Environmental 

Management and Stewardship (NNLEMS) Roadmap Concepts DL-3, TC-4, and TC-5 identified the need 

for improved grout modeling in performance assessments (PAs) (NNLEMS 2022). This project is using a 

multi-organization expert team to produce conceptual models for grout aging at Hanford that can be 

applied in PAs using a Hanford Grout Modeling Framework. Realizing the Hanford Grout Modeling 

Framework will require developing dynamic, reactive front conceptual models, implemented in 

computational simulations, that better represent the aging processes of the grout in service (see Figure 

1.1). The needed conceptual models have been defined for the three main applications of grout at Hanford 

and are covered in Section 1.2. 

The Hanford Grout Modeling Framework will be composed of the equations and algorithms used to 

predict waste form behavior in PAs. These equations include numerical representations of the aging 

mechanisms and processes (Section 1.2) identified in the conceptual model to compare against measured 

datasets in controlled lab conditions, field experiments, and analogues. The Hanford Grout Modeling 

Framework will contain both the primary waste form release calculations and the supporting modeling 

techniques to build the technical underpinning of grout performance. Both components of the Hanford 

Grout Modeling Framework will be supported by a database of Hanford- and waste-relevant datasets that 

will be developed and made available online for future efforts. 

The Hanford Grout Modeling Framework will facilitate more accurate performance projections of various 

grout formulations for both ongoing and future waste processing operations, enabling decision-makers to 

pursue cost- and time-effective waste disposal strategies at the site, such as whether a grout waste form 

should be disposed of off site or on site or if specific wastes should be directed to vitrification or would 

be better candidates for grouting. The project will also help guide development of future formulations by 

providing a better understanding of the long-term interactions of the multiple aging mechanisms and 

identifying what data needs to be collected on emerging grout materials while they are being developed to 

enable proper head-to-head assessments. 
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Figure 1.1. Illustrations showing the Hanford Grout Modeling Framework and the IDF disposal concept 

for liquid waste grouts (top) and Hanford Grout Modeling Framework simulations (bottom). 
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1.2 Conceptual Models Summary 

The American Concrete Institute defines durability as “the ability of a material to resist weathering action, 

chemical attack, abrasion and other conditions of service.”1 Unlike conventional concrete structures, 

waste form durability includes the material’s ability to retain contaminants of potential concern (CoPCs) 

(or in the case of tank closure grout, impede exposure of residuals to infiltrating water). A durable waste 

form retains CoPCs to limit releases at a rate that protects the surrounding environment. Aging of grout 

waste forms may degrade their properties, leading to accelerated release of CoPCs, but it could also 

improve other properties that influence the retention of CoPCs. Predicting grout behavior requires a 

comprehensive understanding of the different aging mechanisms that either impede or facilitate release of 

CoPCs. Such understanding would lead to more carefully designed waste forms and disposal strategies 

that reduce the potential for identified significant degradation processes. These time-dependent aging 

mechanisms and processes need to be captured in any long-term projection of grout performance. As 

such, the Hanford Grout Modeling Framework is being built on conceptual models that capture the key 

mechanisms and processes.  

This section presents an overview of grout aging mechanisms and processes expected to occur in the IDF 

(for both liquid waste immobilization grout, Section 1.2.1, and solid waste encapsulation, Section 1.2.2) 

or in a tank closure scenario (Section 1.2.3) that comprises the proposed conceptual models to be used in 

this project. Each brief summary lists the project theme under which the process/mechanism is being 

evaluated. The evaluation criteria and the development of these conceptual models is described in a prior 

report (Asmussen 2024). Full technical descriptions of the individual mechanisms and processes can be 

found in other reviews (Pabalan et al. 2009; Asmussen et al. 2021). For this conceptual model 

development effort, the definitions of processes and mechanisms are as follows and for further 

descriptions see Asmussen (2024).  

• Process: A material evolution or environmental interaction with the waste form matrix that triggers a 

mechanism. These interactions can be physical (e.g., freeze thaw) or chemical (e.g., oxidation) in 

nature. 

• Mechanism: Leads to a behavior or a bulk change in the waste form that is different from the 

unaltered state and projected aging. Examples include cracking or chemical changes to the 

radionuclides/CoPC. 

1.2.1 Liquid Waste Immobilization Conceptual Model 

This application of grout is for the direct stabilization (or immobilization) of liquid waste streams. Here, 

the water in the liquid waste is used to activate the dry reagents and generate a final solidified waste form. 

In the scenario considered in the Hanford Grout Modeling Framework, the resulting waste form is 

emplaced in the IDF for disposal. The key processes  to be included in a conceptual model for liquid 

waste grout are described below (in no order of priority) along with the project themes under which the 

processes will be evaluated. 

• Moisture-driven cracking: A process by which exposure of liquid waste grout to moisture 

transporting through the  disposal facility in the arid Hanford environment could lead to cracking in 

the waste form. (Theme 2 and Theme 4) 

• Dimension change: A process by which shrinkage of the waste form leads to cracking. (Theme 4) 

 
1 American Concrete Institute. 2021. Concrete Terminology. CTI-21. Available at: 

https://www.concrete.org/store/productdetail.aspx?ItemID=CT21 

https://www.concrete.org/store/productdetail.aspx?ItemID=CT21
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• Early exposure conditions: Prior to burial in the IDF, a liquid waste grout will experience various 

environmental factors, including exposure to O2 and CO2 (depending on the configuration and 

packaging for processing, curing and disposal), which can alter the initial condition of the material 

prior to burial. (Theme 3) 

• Carbonation: A mechanism by which the pH of the grout waste form decreases with time, driving 

mineralogical and physical changes in the waste form. (Theme 3) 

• Ca leaching: A mechanism by which the network comprising the waste form matrix begins to 

change due to the flux of Ca and other components out of the waste form. This mechanism is linked 

to carbonation. (Theme 1 and Theme 2) 

• Mineral growth: Natural aging and contact with infiltrating water can drive mineralogical changes in 

the waste form that can be deleterious or beneficial to contaminant retention within a liquid waste 

grout. This process includes delayed ettringite formation. (Theme 1) 

• Moisture transport: The distribution of infiltrating water into the disposal facility and its behavior 

upon contacting a liquid will factor heavily in the aging processes and leaching of liquid waste 

grouts and needs to be accurately represented in the disposal facility and in the near field around the 

grout. (Theme 2) 

• Oxidation: Liquid waste grouts rely on maintaining reducing conditions in the waste form to limit 

the release of many contaminants and radionuclides. Therefore, the rate of oxidation of the material 

is key to predicting long-term behavior. (Theme 3) 

• Radionuclide/contaminant leaching: The release of contaminants and radionuclides from liquid 

waste grouts can be dictated by the physical properties and localized chemistry within the waste 

form, and these factors need to be captured in a conceptual model. (Theme 3) 

Secondary processes that will be considered in the project are as follows. 

• Early exposure conditions (e.g., temperature): Prior to burial in the IDF, a liquid waste grout may 

experience environmental changes and freeze-thaw cycles in the open atmosphere, which could 

cause cracks in the material. (Theme 4) 

• Phase segregation: Some liquid waste grouts (e.g., those prepared as geopolymers) may experience 

phase segregation or crystallization over time. (Theme 1) 

• Sulfate attack: A mechanism by which infiltrating sulfate can lead to expansion, cracking, and 

deterioration of a liquid waste grout due to mineral conversions. This mechanism is relevant to high-

sulfate waste streams to be immobilized as grout. (Theme 1, Theme 3, and Theme 4) 

• Microbial: The Hanford backfill and subsurface are home to microbes that can impact contaminant 

transport. While material degradation of liquid waste grouts via microbial activity is unlikely, 

microbial activity can play a crucial role in determining contaminant transport in the near and far 

fields. It is unknown if the presence of organics or admixtures can drive enhanced activity. 

(Theme 3) 

• Environmental conditions: While direct effects of evolving climate conditions cannot be predicted, 

sensitivity cases in modeling efforts should always be considered to identify impacts of possible 

environmental changes (e.g., higher infiltration rates). (Theme 2) 

1.2.2 Solid Waste Encapsulation Grout Conceptual Model 

This application of grout is for the encapsulation (either microencapsulation/stabilization or 

macroencapsulation) of waste particulate or bulk solids, Figure . Here, a slurry is prepared and then 
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introduced to the solid waste. The grout isolates the contaminated solid waste from infiltrating water and 

in some cases enhances binding of any contaminants released from the solids. The scenario considered in 

the Hanford Grout Modeling Framework emplaces the waste in the IDF for disposal. The grout 

formulations of interest in this work are ultra-high performance grout (Nichols et al. 2021), paste, and 

mortar. The processes identified by the project team to be most relevant to the performance of solid waste 

encapsulation are described below and were supported by a recent review of this class of grout (Asmussen 

et al. 2021). The testing theme under which the process will be evaluated is listed as well. 

 

Figure 1.2. Schematic showing the two types of encapsulation used for solid waste grouts. 

• Moisture-driven cracking: A mechanism by which the effects of moisture transport on disposal in 

the arid Hanford environment could lead to cracking in a solid waste encapsulation grout, including 

the hydration of unreacted cement. (Theme 2) 

• Dimension change: A mechanism by which shrinkage of the waste form leads to cracking or the 

volume of the encapsulated solid changes over time. (Theme 4) 

• Early exposure conditions: Prior to burial in the IDF, a solid waste grout will experience various 

environmental factors, including exposure to O2 and CO2 (depending on the configuration and 

packaging for processing, curing, and disposal), which can alter the initial condition of the material 

prior to burial. (Theme 3) 

• Carbonation: A mechanism by which the pH of the liquid waste grout waste form can decrease with 

time, driving mineralogical and physical property changes in the waste form. (Theme 3) 

• Ca leaching: A mechanism by which the network comprising the waste form matrix begins to 

change due to leaching of the constituent phases. This mechanism is linked to carbonation. 

(Theme 3) 

• Mineral growth: Natural aging and contact with infiltrating water can drive mineralogical changes 

within the waste form that can be deleterious or beneficial to contaminant retention within a solid 

waste encapsulation grout, including delayed ettringite formation. (Theme 1) 

• Moisture transport: The distribution of infiltrating water into the disposal facility and its behavior 

upon contacting a liquid will factor heavily in the aging processes and leaching of solid 

encapsulation grouts. (Theme 2) 

Secondary processes that will be considered in the project are as follows. 
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• Early exposure conditions (e.g. temperature): Prior to burial in the IDF, a solid waste encapsulation 

grout may experience environmental changes and freeze-thaw cycles in the open atmosphere, which 

could cause cracks in the material. (Theme 4) 

• Oxidation: Some solid waste encapsulation grouts are designed with reducing conditions in the 

waste form; however, reduction is not a primary retention mechanism in these systems. (Theme 3) 

• Radionuclide/contaminant leaching: The release of contaminants and radionuclides from solid 

waste encapsulation grouts is more strongly influenced by the physical properties of the grout than 

by leaching from the solid waste material itself. Cracking would be a primary driver of 

radionuclide/contaminant transport. (Theme 3) 

• Microbial: The Hanford backfill and subsurface are home to microbes that can impact contaminant 

transport. While material degradation of solid waste encapsulation grouts via microbial activity is 

unlikely, microbial activity can play a crucial role in determining contaminant transport in the near 

and far fields. It is unknown if the presence of organics or admixtures can drive enhanced activity. 

(Theme 3) 

• Environmental conditions: While direct effects of evolving climate conditions cannot be predicted, 

sensitivity cases in modeling efforts should always be considered to identify impacts of possible 

environmental changes (e.g., higher infiltration rates). (Theme 2) 

1.2.3 Tank Closure Grout Conceptual Model 

This pre-decisional application of grout involves the bulk filling of retrieved tanks for closure. Here, the 

grout is poured into the tank following retrieval and rests on top of any solid residuals in the tank. The 

grout provides structural fill to the tank void space and limits ingress of water to the residuals, which in 

turn can limit release of contaminants and radionuclides to the subsurface. Figure 1.3 presents a schematic 

of a closed tank farm. The processes and mechanisms identified by the project team to be most relevant to 

the performance of tank closure grout are described below the figure and were influenced by a prior 

review on closure grout (Pabalan et al. 2009). The testing theme under which the process will be 

evaluated is listed as well. 
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Figure 1.3. Schematic showing a closed tank farm at Hanford (Mehta et al. 2016). 

• Thermally driven cracking: A process by which the thermal history of the existing concrete 

structures or thermal history of the grout upon emplacement leads to changes in the initial condition 

of the structures, including extreme heat events. (Theme 4) 

• Steel corrosion: A process that involves the imbedded steel rebar in the tank superstructure 

corroding, leading to changes in the immediate vicinity of the rebar. This process can also apply to 

the steel infrastructure (e.g., risers, pipes) within the closed tank. (Theme 4) 

• Carbonation: A mechanism by which the pH of the emplaced grout or concrete structure can 

decrease with time, driving mineralogical and physical property changes in the matrix. (Theme 2 and 

Theme 3) 

• Ca leaching: A mechanism by which the network comprising the grout matrix begins to change due 

to leaching of the constituent phases. This mechanism is linked to carbonation. (Theme 3) 

• Moisture transport: The distribution of infiltrating water into the closed tank and its behavior upon 

contacting the closure will factor heavily in the aging processes and migration toward residuals. This 

process includes any hydraulic head that may be present during emplacement. (Theme 2) 

• Radionuclide/contaminant leaching: The release of contaminants and radionuclides from the 

residuals (or, if any inventory is present in the concrete superstructure, from waste leaks) is a key 

driver in closure PAs. The release is dictated by both the initial condition of the 

radionuclides/contaminants and the interfacial behavior between the grout and residuals. (Theme 3) 

Secondary mechanisms that will be considered in the project are as follows. 

• Oxidation: Oxidation is relevant in tank closure only if an amendment (e.g., Fe) is placed in the first 

layer of grout to interact with residuals and impede release. (Theme 3) 
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• Microbial: The Hanford backfill and subsurface are home to microbes that can impact contaminant 

transport. While material degradation of solid waste encapsulation grouts via microbial activity is 

unlikely, microbial activity can play a crucial role in determining contaminant transport in the near 

and far fields. It is unknown if the presence of organics or admixtures can drive enhanced activity. 

(Theme 3) 

• Environmental conditions: While direct effects of evolving climate conditions cannot be predicted, 

sensitivity cases in modeling efforts should always be considered to identify impacts of possible 

environmental changes (e.g., higher infiltration rates). (Theme 2) 

1.3 The Hanford Grout Modeling Framework 

Based on the conceptual models, the Hanford Grout Modeling Framework will be constructed to 

(1) define how to best represent the numerical equations for target processes/mechanisms in reactive 

transport simulations of grout at Hanford and (2) mature emerging techniques that could further improve 

the framework. The existing exascale Subsurface Transport Over Multiple Phases (eSTOMP) software is 

envisioned to carry out the Hanford Grout Modeling Framework simulations, with supporting 

information from other software where needed.  

As discussed previously, it is imperative to capture time and spatially dependent processes that impact 

both the properties of the grout and contaminant release. The proposed construct of the Hanford Grout 

Modeling Framework is designed to capture these dynamic processes (and their causes) by accurate 

projections of near-field disposal conditions. The Hanford Grout Modeling Framework is proposed to 

have the following components and functions (presented in the order in which the simulations will be 

performed). The theme (Section 1.4) under which work is being performed is given in parentheses. 

1. Initial Condition 

a. Mineral network: The mineral network of the grout will be defined initially using 

mineral networks calculated with geochemical speciation modeling (ORCHESTRA) that 

were confirmed using analysis of leaching data (LeachXS, LXO). (Meeussen, 2003) The 

databases of cement mineral phases (e.g., CEMDATA-18) will be used in the 

determinations. Evolution of the cured grout between post-burial and first exposure to 

infiltrating water will be determined using CemGEMS1. (Theme 1)  

b. Reduction capacity: Defined using current calculation methods based on experimental 

data and pre-burial conditions. (Theme 3) 

c. Porosity/tortuosity: Defined using LXO-derived tortuosity numbers. (Theme 3) 

2. Water transport: The rate at which water, and associated components like O2 and CO2, arrives at 

and contacts the grout will be determined in eSTOMP using calculations that were originally 

defined in variably saturated flow (VSF) models. (Theme 2) 

3. Water ingress: The rate at which water moves into the grout and the rate at which associated 

components diffuse/migrate into the grout will be determined in eSTOMP. This step will 

determine the initial chemical conditions at different spatial points in the grout (from outer wall to 

interior). (Theme 2) 

4. Mineral evolution: Based on the water and component ingress to the grout, at discrete spatial 

units of the grout, eSTOMP will provide information to LXO, and LXO will return the mineral 

condition based on the current chemistry. (Theme 1) 

 
1 https://cemgems.org 
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5. Contaminant evolution: Based on the water and component ingress to the grout, at discrete 

spatial units of the grout, eSTOMP will provide information to LXO, and LXO will return the 

chemical conditions of the contaminant(s) of interest. This step would dictate the availability of a 

species to migrate in/out of the grout. (Theme 3) 

6. Diffusion: eSTOMP will calculate the migration of contaminant(s) through diffusive release into 

the near field. (Theme 2) 

7. Transport from grout: The near-field transport through the disposal site will be defined using 

variably saturated flow modeling. This simulation step includes maturing approaches for 

microbial conversions in the near and far field. (Theme 2 and Theme 3) 

8. Material evolution: Based on the evolving conditions in the grout and near field, the physical 

state of the material can be projected. This projection will be done using peridynamics (PD) 

modeling to predict fracturing of the material (Theme 4) and geochemical speciation modeling 

for other conditions (Theme 3). 

This project is also maturing emerging modeling capabilities that could inform portions of the grout 

modeling framework or provide expanded toolsets to represent key processes. 

1. Dataset expansion: Building tools to replicate experimental conditions in representative Hanford 

conditions, with a primary focus on the Hanford field lysimeter test. (Theme 2) 

2. Microstructure evolution: Components of the grout matrix will continually react with time, 

dictating chemical and mineral makeup. Models can be developed to evaluate the evolution of 

individual components of the grout that can contribute to chemical and physical changes. These 

predictive tools are based on models developed for waste glasses. (Theme 1) 

3. Mesoscale processes: Linking chemical and mechanical processes in grout has long been a goal 

of the cement research community and can be achieved by linking mechanisms at the sub-

microscale to bulk material processes. Mesoscale models may be developed to bridge these scales 

and accurately account for transport behavior, physical state changes, and individual phase 

evolution. (Theme 4) 

4. Experimental data availability: To support this and future modeling efforts using the Hanford 

Grout Modeling Framework, a centralized database of Hanford-relevant grout properties 

collected to date will be highly beneficial. An online database is being developed, and the 

centralized data could enable future evaluations for property trends using machine learning (ML) 

techniques. (Theme 5) 

1.4 Project Format 

The development of the Hanford Grout Modeling Framework is supported by five individual themes, 

each containing different subtasks with specific focus areas. The themes were developed based on 

specific targets identified within the conceptual models.  

• Theme 1 – Grout Mineralogy: Grouts are composed of complex mineral assemblages that dictate 

many key performance properties of the material. During their lifetimes, these mineral assemblages 

evolve through continued hydration processes, conversion to other phases, or dissolution based on 

environmental exposure. These mineral growth and conversion processes are integral to determining 

the properties of grouts during their service and disposal lifetimes. As such, tracking this continued 

evolution was identified as a key component of the Hanford Grout Modeling Framework. In current 

Hanford grout modeling, the mineral assemblages are based on the initial cured compositions 

(i.e., early life from X-ray diffraction, XRD, where a majority of the composition is an amorphous 

fraction), and within the model these phases can only dissolve through kinetic reactions.  
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The thermodynamic databases used to assign these reaction rates and properties in current Hanford 

modeling are not designed for cementitious materials. As such, Theme 1 aims to update the handling 

of mineral evolutions in Hanford grout modeling. There are two tasks within this theme. The first 

task is focused on developing a software construct to inform dynamic mineral evolution in grout by 

informing the reactive transport models using a geochemical speciation modeling approach, which 

itself is supported by mineral databases designed specifically for cementitious systems. The second 

task is focused on developing dissolution and reaction models for the individual components of 

grouts (e.g., slag) based on previously developed geochemical tools designed for the long-term 

reactions of glass.  

• Theme 2 – Moisture Driven Processes: A significant limitation of the modeling of grout currently 

applied at Hanford is the lack of dynamic processes occurring within the grout and disposal facility. 

The rate of these dynamic processes (e.g., carbonation, oxidation, contaminant transport) is dictated 

directly by the transport of key environmental species (e.g., CO2 , O2) to and from the grout. After 

burial, the primary exposure route to environmental conditions is the transport of infiltrating water to 

the grout. As such, it is crucial to realize the behavior of infiltrating water and moisture in a 

predictive model. This theme was developed to capture contemporary approaches to moisture 

transport into the Hanford Grout Modeling Framework. A specific focus will be placed on moisture 

behavior both in the disposal facility and around waste forms coupled with the rates of key processes 

(e.g., oxidation, carbonation) in confined porous geometries of grout. 

• Theme 3 – Dynamic Modeling of Processes Impacting Contaminant and Radionuclide Behavior: 

Crucial to the performance modeling of grout is being able to predict the release of contaminants and 

how the evolution of conditions in the material dictates the release. This theme was defined to 

capture contemporary approaches for representing the processes and chemistry responsible for 

controlling contaminant release from grout. This theme encompasses tasks focused on processes 

within the grout dictated by evolving chemistry, modeling of key aging processes (oxidation, 

carbonation), and significant subsurface processes (microbial behavior). 

• Theme 4 – Chemo-mechanical Links to Grout Properties: As grouts age, bulk material properties 

change due to the evolution of hydration products and interactions with the near-field environment. 

Changes in bulk properties can directly impact the release behavior of contaminants from the grout 

and are caused by coupled chemical and mechanical processes within the grout waste form. Hence, 

linking chemo-mechanical processes to grout properties has important implications for grout waste 

form durability. Cracking remains the prominent mechanism that can drive failure of grout and can 

be caused by several processes. Yet, predicting and representing cracking in grouts remains a 

challenge and is rarely pursued for grouts used in waste management applications. This theme was 

designed to mature emerging approaches to capture the rate and extent of cracking in grout and to 

develop chemo-mechanical links at the mesoscale. 

• Theme 5 – Grout Database: This theme will assemble a central resource for Hanford grout 

properties from reports and the peer-reviewed literature and prior reports. The database will be based 

on an in-progress online database of glass properties. An online interface similar to the glass 

database interface will be used. The goals of this effort are to provide a centralized reference for 

grout data to support modeling efforts, identify significant data gaps for key processes that require 

further research and development, and potentially develop ML assessments for predictions of grout 

properties. This theme will also encompass experimental efforts to fill data gaps that have already 

been identified in analysis of the accumulated datasets.  

• Theme 6 – (New) Assembling the Hanford Grout Modeling Framework: This theme will begin in 

Year 2 by assembling the simulation approach to house the Hanford Grout Modeling Framework. 

The effort will initially use eSTOMP with callouts to other models (e.g., LXO) where appropriate.  
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2.0 Theme 1: Grout Mineralogy 

This section presents overviews of the two tasks performed in Theme 1 during Year 1 of the project. 

Task 1 is focused on developments toward a dynamic mineral network within reactive transport software. 

Task 2 highlights the success of applying predictive dissolution models for glass materials toward 

common reagents in grout. 

2.1 Theme 1 Task 1: Hanford Mineral Network 

2.1.1 Team Members 

Yilin Fang (Pacific Northwest National Laboratory, PNNL), Chen Gruber (Vanderbilt University, VU). 

2.1.2 Background 

This task has focused on updating the handling of mineral phases within grout modeling in 

Hanford -specific systems. The current approach to representing the mineral assemblages within grouts is 

to measure the composition in early age (immediately after curing) with XRD. Table  presents an example 

of mineral compositions proposed to be used in modeling as reported in Appendix C of the Liquid 

Secondary Waste Data Package (Cantrell et al. 2016) in support of the 2018 IDF PA (USDOE 2018). 

Only five phases were reported based on the XRD measurements, and the majority (>58%) of the grouts 

was reported as an undefined amorphous phase. Based on the grout selected, these mineral phases at the 

reported amounts are input to reactive transport models to define the grout composition. The reactions of 

the phases are controlled by a thermodynamic database from Lawrence Berkeley National Laboratory 

designed specifically for subsurface sediments. These reactions are not representative of the expected 

evolution of the grout’s mineral assemblages. Some of the most crucial phase evolutions in grouts 

correspond to the formation of calcium-sodium-(alumino)-silicate hydrate (C-N0(A)-S-H) phases; 

however, these phases are indistinguishable from the “amorphous” fraction. As such, there is a significant 

need to accurately represent these mineral transformations in the Hanford Grout Modeling Framework. 

To achieve this development in the Hanford Grout Modeling Framework, there is a need to define the 

thermodynamic and chemical properties of assigned mineral phases and move toward an equilibrium 

phase-based approach, where appropriate. First, the CEMDATA-18 database (Lothenbach et al. 2019) – 

which was developed specifically for hydrated Portland, calcium aluminate, calcium sulfoaluminate, and 

blended cements, as well as for alkali-activated materials – will be used instead of the contemporary 

databases used in Hanford modeling. CEMDATA-18 enables predictions of phase transitions through an 

equilibrium approach to capture the actual mineral assemblages in grout. Doing this requires integrating 

reactive transport and geochemical speciation models. This tool will be a primary component of the 

Hanford Grout Modelling Framework and will be used directly in future simulations.  
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Table 2.1. Example grout properties provided for liquid secondary waste grout in the Liquid Secondary 

Waste Data Package that supported the 2018 IDF PA. Taken from Table C.1 of Cantrell et al. 

(2016). 

Test 

Batch # 

MC 

(%)(a) 

Dry Solids 

Fraction 

  XRD Analysis (wt%)(b)   

Ettringite Portlandite Calcite Larnite Hydrocalumite Quartz Amorphous 

1 27.13 0.729 12 11 9.0 4.2 - 3.0 61 

2 25.03 0.750 9.8 14 6.9 4.5 6.1 - 58 

3 25.14 0.749 14 11 6.8 4.4 - - 64 

4 30.63 0.694 9.3 12 6.8 4.9 - - 66 

5 29.42 0.706 9.4 12 3.3 6.4 5.4 - 63 

6 29.74 0.703 17 9.7 5.4 4.5 - - 63 

7 25.48 0.745 9.7 15 7.2 4.9 5.5 0.3 58 

8 29.79 0.702 16 10 9.9 5.1 - 0.9 58 

9 27.89 0.721 11 9.1 5.8 2.4 - 0.4 71 

10 27.52 0.725 16 8.1 6.8 3.7 - 0.6 65 

11 30.44 0.696 15 - 4.5 4.1 - 2.0 75 

12 29.63 0.704 14 - 3.7 2.4 - 1.5 78 

13 26.64 0.734 12 - 4.2 2.0 - 4.1 78 

14 25.77 0.742 8.9 14 8.6 4.6 2.8 1.3 60 

15 24.99 0.750 19 8.9 5.7 6.5 - - 60 

16 25.43 0.746 16 11 4.6 4.0 - 0.4 63 

17 26.66 0.733 13 7.9 4.1 3.9 - 0.6 70 

18 26.46 0.735 13 7.8 4.0 4.1 - 1.2 70 

19(c) 26.21 0.738 13 9.5 - 5.3 - - 72 

20(c) 29.74 0.703 15 8.0 - 4.4 - - 73 

21(c) 31.21 0.688 12 - - 3.7 - 1.8 82 

MC = moisture content 

Chemical formulas of minerals: ettringite [Ca6Al2(SO4)3(OH)12•26H2O], portlandite [Ca(OH)2], calcite [CaCO3], 

larnite [Ca2SiO4], hydrocalumite [Ca4Al2(OH)12(OH)2•6H2O)], and quartz [SiO2] 

Non-radiological grout monoliths (T19, T20, and T21) 

2.1.3 Technical Approach 

The approach taken to integrate a representative and evolving mineral network in the Hanford Grout 

Modeling Framework has focused on developing a comprehensive modeling framework that integrates a 

reaction solver in eSTOMP to simulate flow and reactive transport in the near-field region of grout waste 

forms. The solver can be used to define the mineral assemblages using CEMDATA-18 based on the key 

environmental conditions within the grout and near field. Although ORCHESTRA provides a useful basis 

for comparison, it only simulates equilibrium reactions, meaning that additional work would be required 

to incorporate kinetic reactions into the Hanford specific applications. To overcome this limitation, the 

batch reaction solver was developed to capture both kinetic and equilibrium reactions within a single 

framework.  

To establish confidence in the eSTOMP solver, a benchmarking exercise was performed against an 

equilibrium reaction solver, ORCHESTRA (Meeussen 2003). This benchmarking exercise was performed 

using an in-house code, herein referred to as BIOGEOCHEM, that can simulate equilibrium mineral 

phases within grout modeling. As an intermediate step, eSTOMP was coupled directly with 
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ORCHESTRA (using a C++ version of ORCHESTRA) to provide an additional layer of benchmarking, 

allowing testing and validation of not only the eSTOMP reaction solver but also the transport modeling. 

This intermediate benchmarking will help identify any potential issues or discrepancies between eSTOMP 

and ORCHESTRA/LEACHXS. As eSTOMP is written in FORTRAN90, the team wrote a custom 

wrapper for eSTOMP to use ORCHESTRA as its reaction solver. 

2.1.4 Results to Date 

The initial comparison test case of the eSTOMP batch solver involved a reaction network of 269 species 

and 241 reactions. Twenty-seven of the species are minerals or are related to solid solutions specific to 

grouts as defined in CEMDATA-18. Note, the project team excluded surface complexation reactions in 

BIOGEOCHEM; these reactions were included in the corresponding ORCHESTRA model. The results of 

predicted concentrations from the minerals over a pH range showed good agreement with those obtained 

from ORCHESTRA, Figure . While some deviations were observed, mainly driven by solid-solution 

relationships, the predictions within the range of pH values expected in grout waste forms (pH >7) were 

strong, as shown in Figure for selected species. There are discrepancies in Na and Fe results between 

ORCHESTRA and BIOGEOCHEM (but not excluded in the ORCHESTRA model). The numerical 

experiments reveal that Fe is highly sensitive to speciation reactions, suggesting that the exclusion of 

surface complexation reactions in BIOGEOCHEM may contribute to the observed discrepancy. However, 

the exact cause of the difference in Na, which could also be attributed to incomplete reaction mechanisms 

in BIOGEOCHEM, has not been identified to date. Further investigation is needed to resolve these 

discrepancies. 

 

Figure 2.1. Select examples of the comparison between the expected dissolved components controlled by 

mineral assemblages in grout as predicted by the BIOGEOCHEM (blue) and ORCHESTRA 

(red). 

Additional effort was made to develop a direct call-out between eSTOMP and ORCHESTRA through a 

wrapper in eSTOMP. Figure  shows a screenshot of the wrapper functions that were developed for the 

integration. Initial tests showed that the code was implemented correctly and that eSTOMP could feed 

input to ORCHESTRA as well as get output from ORCHESTRA to be used in transport simulations. This 

development will support benchmarking of the eSTOMP batch solver and will be integral to capturing 
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other key aging mechanisms and contaminant behavior within eSTOMP under work performed in Theme 

3. 

 

Figure 2.2. Screenshot of the wrapper written in eSTOMP to facilitate direct call-out to ORCHESTRA to 

collect geochemical information on mineral compositions and behavior. 

2.1.5 Path Forward and Integration 

This task achieved two main successes in Year 1: (1) development of a batch solver for mineral 

assemblage assessments and (2) integration of the reactive transport eSTOMP software with the 

geochemical speciation modeling in ORCHESTRA. If issues with numerical solver convergence are 

encountered during simulations of the Hanford Grout Modeling Framework in the future, there are now 

two reaction solver options to overcome such challenges. The solver will be used going forward in 

predictions of the evolution of mineral phases in full-system simulations of grout in Hanford. The call-out 

between eSTOMP and ORCHESTRA will serve as a key component of the Hanford Grout Modeling 

Framework, allowing other geochemical speciation information to be pulled into the reactive transport 

simulations.  

Year 2 of this task will have three focus areas.  

• Subtask 1.1.1: First, further benchmarking, calibration, and validation will be performed against 

experimental data sets for various grouts and analogue systems. This effort will include defining the 

mineral networks for other grouts – specifically, ultra-high performance grout, ordinary portland 

cement (OPC) with reductants, and geopolymers (Gong and Pegg 2022). 

• Subtask 1.1.2: Spatial calculations within the grout will be crucial to developing the full Hanford 

Grout Modeling Framework. This task will incorporate this functionality into eSTOMP specific to 

mineral evolution at different positions within the waste forms. This effort will integrate across 

Themes 2, 3, and 6 (new). 

• Subtask 1.1.3: This subtask will evaluate the mineral reaction network for the near-field region of 

grout waste forms in the IDF or closed tanks. This effort will ensure accurate representation of the 

minerals in the grout and near field. 
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2.2 Theme 1 Task 2: Geochemical Modeling of Reactive Grout 
Phases 

2.2.1 Team Members 

Sebastien Kerisit (PNNL), Matt Asmussen (PNNL) 

2.2.2 Background 

Unreacted reagents are commonly found in grout waste forms, and their continued hydration can drive 

mineral changes and impact contaminant release. The evolution of one reagent, blast furnace slag (BFS), 

is of particular interest. BFS is a supplementary cementitious material that is involved in the core 

hydration reactions forming the solidified grout. Most importantly for waste form applications, BFS 

provides reduction capacity to suppress the release of redox-sensitive contaminants and radionuclides 

(e.g., Cr and Tc). BFS is an amorphous material (glassy) that is ground for use in the cement industry but 

retains its glassy features. Following the initial hydration processes generating the grout, unreacted BFS 

particles that remain in the cured material can continually react over disposal timeframes and replenish 

the species responsible for maintaining a reducing environment (e.g., Fe(II), sulfide). However, little is 

known about the rate at which this process can occur.  

This task focuses on a novel approach of applying glass dissolution models developed for Hanford to 

predict slag dissolution rates within cured grout waste forms. Identifying and building tools to assess the 

dissolution and reduction release rates of supplementary cementitious materials will help support 

predictive capability for oxidation rates of grout waste forms. This effort also lays the foundation for a 

new tool to predict the rates of reaction and hydration of various supplementary cementitious materials 

and other additives relevant to grout waste forms. This tool will support the Hanford Grout Modeling 

Framework by providing input to the full simulations. 

2.2.3 Technical Approach 

A slag dissolution model was developed for use in geochemical calculations that simulate the aqueous 

concentrations of dissolved slag components in static dissolution tests. The model parameters were varied 

to optimize agreement with the measured aqueous concentrations of key elements such as Ca, Al, S, and 

Si as a function of time. Experimental data from static dissolution tests was used to determine the best-fit 

model parameters. This section describes the slag dissolution model, the approach used to perform the 

geochemical calculations, and the model parameters. 

2.2.3.1 Slag Dissolution Model 

The model used in this work is composed of two coupled processes: dissolution and alteration/hydration. 

Dissolution: This process is modeled by the following dissolution rate equation, which describes the slag 

dissolution rate, rdiss, as a function of distance from equilibrium: 

𝑟diss = 𝑘0
diss𝑎

H+
−𝜂

exp (
−𝐸𝑎

𝑅𝑇
) [1 − (

𝑄

𝐾
)] Eq. 2.1 

where rdiss is the slag dissolution rate (molslag m−2 s−1), 𝑘0
diss is the intrinsic rate constant (molslag m−2 s−1), 

aH+ is the hydrogen ion activity (unitless), η is the pH power law coefficient (unitless), Ea is the activation 
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energy (J mol−1), R is the ideal gas constant (8.314 J K−1 mol−1), T is the temperature (K), Q is the ion 

activity product for slag (unitless), and K is the equilibrium constant for slag (unitless).  

Alteration/Hydration: This process is modeled by a time-dependent rate, ralt, to form an altered/hydrated 

slag overlayer. The altered slag dissolves according to the same dissolution rate equation and with the 

same parameters as the pristine slag (Eq. 2.1). The altered slag is represented as an oxide of aluminum, 

calcium, and silicon. The altered slag is formed by alteration of the pristine slag whereby some fractions 

of Al, Ca, and Si in the pristine slag are retained. Simplifying the composition of the pristine slag to the 

Al, Ca, and Si oxide components, the chemical reaction for slag dissolution can be written as: 

Al𝑎Ca𝑏Si𝑐O𝑥 (s) + 𝑦 H2O(aq) ↔ 𝑎 Al
3+

(aq) + 𝑏 Ca2+
(aq) + 𝑐 H4SiO4 (aq) + 𝑧 OH-

(aq) Eq. 2.2 

where a, b, and c are the stoichiometric coefficients of the Al, Ca, and Si oxide components. Similarly, 

the chemical reaction for dissolution of the altered slag can be written as: 

Al𝑎×𝑟𝑓Al
Ca𝑏×𝑟𝑓Ca

Si𝑐×𝑟𝑓Si
O𝑥′ (𝑠) + 𝑦′ H2O(aq)

↔ 𝑎 × 𝑟𝑓Al Al
3+

(aq) + 𝑏 × 𝑟𝑓Ca Ca2+
(aq) + 𝑐 × 𝑟𝑓Si H4SiO4 (aq) + 𝑧′ OH-

(aq) 
Eq. 2.3 

where 𝑟𝑓Al, 𝑟𝑓Ca, and 𝑟𝑓Si are the Al, Ca, and Si retention factors, which vary from 0 (fully dissolved) to 1 

(fully retained). The alteration reaction forms n mol of altered slag for n mol of pristine slag consumed 

(Eq. 2.2 and Eq. 2.3): 

Al𝑎Ca𝑏Si𝑐O𝑥 (s) + (𝑦 − 𝑦′) H2O(aq)

↔ Al𝑎×𝑟𝑓Al
Ca𝑏×𝑟𝑓Ca

Si𝑐×𝑟𝑓Si
O𝑥′ (𝑠) + 𝑎 × (1 − 𝑟𝑓Al) Al

3+
(aq)

+ 𝑏 × (1 − 𝑟𝑓Ca) Ca2+
(aq) + 𝑐 × (1 − 𝑟𝑓Si) H4SiO4 (aq) + (𝑧 − 𝑧′) OH-

(aq) 

Eq. 2.4 

The alteration/hydration reaction is modeled using a time-dependent kinetic rate equation: 

𝑟alt = 𝑘0
alt ×

1

𝑡𝑝
 Eq. 2.5 

where 𝑘0
alt is the alteration empirical rate constant (molslag m−2 s−1), t is time (s), and p is the time power 

coefficient (unitless). 

The pristine slag is consumed by dissolution and alteration/hydration: 

𝑟p = 𝐴p𝑟diss + 𝐴p𝑟alt Eq. 2.6 

whereas the altered slag is consumed by dissolution and formed by alteration/hydration: 

𝑟a = 𝐴a𝑟diss − 𝐴p𝑟alt Eq. 2.7 

where rdiss and ralt are defined in Eq. 2.1 and Eq. 2.5, respectively, and Ap and Aa (m2) are the surface 

areas of the pristine and altered slags, respectively, and are defined as: 

𝐴p = 𝑆𝑆𝐴 × 𝑛p × 𝑀𝑊p Eq. 2.8 
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and 

𝐴a = 𝑆𝑆𝐴 × 𝑛a × 𝑀𝑊a Eq. 2.9 

where SSA (m2 g−1) is the slag specific surface area (assumed to be the same for the pristine and altered 

slags); np and na (molslag) are the number of moles of pristine and altered slags (na is zero at the start of 

each calculation), respectively; and MWp and MWa (gslag molslag
−1) are the molecular weights of the 

pristine and altered slags, respectively. 

Additionally, the aqueous speciation of dissolved slag components is modeled using a thermodynamic 

database of equilibrium constants. The thermodynamic database, thermo.com.V8.R6.230, is used for the 

equilibrium constants of all aqueous species. 

2.2.3.2 Geochemical Calculations 

The geochemical calculation software PHREEQC (PH-REdox-EQuilibrium in C) (Parkhurst and Appelo 

2013) was employed to model the dissolution of several slags in static dissolution tests. The geochemical 

calculations reproduced the conditions of the static dissolution tests reported by Zhang et al. (2022b), 

Trivelpiece and Hsieh (2021), and Asmussen et al. (2015). The temperatures were 20 °C, 22 °C, and 

50 °C for the tests of Zhang et al. (2022), Trivelpiece and Hsieh (2021), and Asmussen et al. (2015), 

respectively. The initial amount of slag and the solution volume were set to reproduce the respective 

liquid-to-solid mass ratios of 1,000, 100, and 10. A logarithmic-based integration timestep was used in the 

calculations: 10 × 10−6 h, 9 × 10−5 h, 9 × 10−4 h, 9 × 10−3 h, 9 × 10−2 h, 9 × 10−1 h, x × 1 h, where x was 79, 

239, and 71 for the calculations of the tests from Zhang et al. (2022), Asmussen (2014), and Trivelpiece 

and Hsieh (2021), respectively, and an additional 53 steps with 1-d intervals were used for the last of the 

three sets of tests. The slag compositions were those reported by Zhang et al. (2022) for M16, A3, A16, 

CS2, and S; Westsik et al. (2013) for NW slag; and Trivelpiece and Hsieh (2021) for BFS. 

2.2.3.3 Model Parameters 

The molecular weights of the pristine and hydrated slags were those calculated using the atomic weights 

listed in thermo.com.V8.R6.230. The specific surface areas (Table 2.3) were those reported by Zhang et 

al. (2022) for M16, A3, A18, CS2, and S and by Westsik et al. (2013) for NW slag. For BFS used by 

Trivelpiece and Hsieh (2021), an approximate value of 1 was used based on the values reported by Zhang 

et al. (2022). The parameters 𝑘0
𝑑𝑖𝑠𝑠, η, and Ea in Eq. 2.1 (Table 2.3) were calculated using composition–

parameter correlation models developed from dissolution tests performed in dilute conditions with the 

stirred-reactor coupon analysis method for a matrix of 24 enhanced waste glasses. The parameters K, 

𝑘0
𝑎𝑙𝑡, p, rfAl, rfCa, and rfSi were used as free parameters of the fits. 

2.2.4 Results to Date 

The slag dissolution model was applied to three datasets that span a wide range of slag compositions and 

test conditions. These datasets were selected because they provided data amenable to geochemical 

modeling, namely, solution chemistry data as a function of time. The dissolution test data from Zhang et 

al. (2022) was obtained for five slags (labeled M16, A3, A18, CS2, and S; see Table 2.2 for 

compositions) at 20 °C, a liquid-to-solid mass ratio (l/s) of 1,000, and in a 0.14 M NaOH solution 

(pH = 13.2) with samplings up to 72 h. The high liquid-to-solid mass ratio, high pH, and short sampling 

times mean that this dataset probes the early dissolution of slags in dilute conditions. Al, Ca, and Si 

concentrations calculated using the model parameters in Table 2.3 are compared to measured 

concentrations in Figure 2.3.  
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The forward-rate model parameters (𝑘0
𝑑𝑖𝑠𝑠, η, and Ea), which were predicted using composition–parameter 

correlation models rather than fit to experimental data, successfully reproduced the initial rise in Al, Ca, 

and Si concentrations within approximately the first 10 hours. The concentrations at later times, which are 

mostly controlled by the alteration rate, ralt, were well reproduced with empirical rate constants, 𝑘0
𝑎𝑙𝑡, 

ranging from 3×10−8 to 3×10−7 molslag m−2 s−1 and time power coefficients, p, from 0.25 to 0.40. Most 

retention factors were low and ranged from 0.3 to 0.4, as expected based on the dilute conditions of the 

tests. Two slags (M16 and A18) had high Al retention factors (0.74 and 0.71, respectively). As indicated 

by Zhang et al. (2022), these two slags had high combined Al2O3 and MgO contents and CaO/SiO2 mass 

ratios greater than 1. One slag (CS2) had a high Ca retention factor (0.79) and was the slag with the 

lowest CaO/SiO2 mass ratio. These correlations between slag composition and model parameters indicate 

that additional slag dissolution test data would allow the development of composition–parameter 

correlation models. 
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Table 2.2. Compositions (in mole fractions) of the slags considered in this work. 

Slag Al2O3 CaO Fe2O3 K2O MgO MnO MnO2 Na2O P2O5 SO3 SiO2 SrO TiO2 

M16 0.08568 0.35288 0.00124 0.00129 0.23144 0.00131 0.00000 0.00206 0.00000 0.00007 0.31872 0.00000 0.00531 

A3 0.02037 0.42234 0.00025 0.00000 0.15127 0.00000 0.00000 0.00000 0.00000 0.00007 0.40570 0.00000 0.00000 

A18 0.10915 0.40227 0.00153 0.00266 0.12114 0.00233 0.00000 0.00365 0.00000 0.00023 0.35060 0.00000 0.00644 

CS2 0.10198 0.30381 0.00133 0.00206 0.14572 0.00163 0.00000 0.00304 0.00000 0.00061 0.43306 0.00000 0.00677 

S 0.07989 0.40005 0.00135 0.00178 0.12070 0.00254 0.00000 0.00000 0.00000 0.00697 0.37757 0.00000 0.00916 

BFS 0.07907 0.45218 0.00153 0.00239 0.09828 0.00077 0.00063 0.00000 0.00003 0.02489 0.33572 0.00038 0.00412 

NW 0.07618 0.47000 0.00295 0.00000 0.06026 0.00000 0.00207 0.00000 0.00000 0.04713 0.34100 0.00041 0.00000 

Table 2.3. Test conditions and model parameters derived in this work. Parameters 𝑘0
diss and 𝑘0

alt are in molslag m−2 s−1, SSA is m2 g−1, Ea is in kJ 

mol−1, and the remaining parameters are unitless. 

Slag l/s T (°C) pH0 SSA 𝑘0
𝑑𝑖𝑠𝑠 η Ea log K 𝑘0

𝑎𝑙𝑡  p rfAl rfCa rfSi 

M16 1,000 20 13.2 0.96 2.178×105 0.404 98.1 -8.5 3.0×10−7 0.40 0.74 0.36 0.37 

A3 1,000 20 13.2 1.09 1.852×103 0.334 82.3 -14.2 1.0×10−7 0.25 0.35 0.35 0.37 

A18 1,000 20 13.2 0.90 6.190×105 0.561 112.4 -13.7 3.0×10−8 0.40 0.71 0.49 0.37 

CS2 1,000 20 13.2 1.08 1.383×105 0.582 114.6 -12.6 7.0×10−8 0.30 0.30 0.79 0.10 

S 1,000 20 13.2 0.94 9.305×104 0.489 103.0 -12.2 8.0×10−8 0.25 0.30 0.60 0.30 

NW 100 22 7 3.03 6.834×104 0.463 100.2 -12.0 7.5×10−8 0.50 - 0.68 0.73 

NW 100 22 10 3.03 6.834×104 0.463 100.2 -12.0 7.5×10−8 0.50 - 0.68 0.73 

NW 100 22 13 3.03 6.834×104 0.463 100.2 -12.0 7.5×10−7 0.50 - 0.99 0.94 

BFS 10 50 7 1.00 9.143×104 0.472 100.1 -11.2 1.5×10−5 0.85 1.00 0.90 1.00 

BFS 10 50 12.5 1.00 9.143×104 0.472 100.1 -10.8 1.0×10−5 0.85 1.00 1.00 1.00 

BFS 10 50 >13 1.00 9.143×104 0.472 100.1 -10.8 1.0×10−4 0.85 0.91 1.00 1.00 
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Figure 2.3. Measured and calculated concentrations of Al, Ca, and Si and pH as a function of time for the 

static dissolution of five slags at 20 °C, l/s = 1,000, and 0.14 M NaOH. Measured 

concentrations are from Zhang et al. (2022). 

The dissolution test data from Asmussen et al. (2015) was obtained for one slag (labeled NW; see Table 

2.2 for composition) at room temperature, a l/s value of 100, and with samplings up to 10 d. The lower 

liquid-to-solid mass ratio and longer sampling times than used by Zhang et al. (2022) mean that this 

dataset probes the intermediate slag dissolution regime. Ca, S, and Si concentrations calculated using the 

model parameters in Table 2.3 are compared to measured concentrations in Figure 2.4 for the three initial 

pH values. The same model parameters gave good agreement with the experimental data obtained at 

pH0 = 7 and 10. The results obtained at these two initial values were similar because the slag is a source 

of alkalinity and the pH of a solution in equilibrium with the slag would be higher than either of the initial 

pH values. At a higher initial pH of 13, the log K and p parameters remained the same but 𝑘0
𝑎𝑙𝑡 increased 

by one order of magnitude, consistent with an expected high rate of alteration in highly alkaline 

conditions. The Ca and Si retention factors also increased, indicating a greater extent of slag 

transformation into alteration products. 
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Figure 2.4. Measured and calculated concentrations of Ca, Si, and S and pH as a function of time for the 

static dissolution of NW slag at room temperature, l/s = 100, and three initial pH values. 

Measured concentrations are from Asmussen et al. (2015). 

The dissolution test data from Trivelpiece and Hsieh (2021) was obtained for one slag (labeled BFS; see 

Table 2.2 for composition) at 50 °C, a l/s value of 10, and with samplings up to 56 d. The higher 

temperature, lower liquid-to-solid mass ratio, and longer sampling times than in the other two datasets 

mean that this dataset probes the later slag dissolution regime. XRD analysis of the slag reported in 

Trivelpiece and Hsieh (2021) indicated the presence of gypsum (CaSO4⸱2H2O). Therefore, a small 

amount of gypsum was assumed to be present initially and to rapidly dissolve. If it is assumed that K and 

S are not retained in the hydrated slag particles or in secondary phases, the excess S release relative to K 

can be attributed to gypsum. This amount was small (1 wt%) and consistent across the three conditions 

considered in this work, supporting this assumption.  

Figure 2.5 compares the Al, Ca, K, Na, S, and Si concentrations calculated using the parameters in Table 

2.3 to the values reported by Trivelpiece and Hsieh (2021) for tests performed in deionized water, at an 

initial pH of 12.5, and in a 2 M NaOH solution. Similar to the modeling results obtained with the NW 

slag, 𝑘0
𝑎𝑙𝑡 was similar for the tests in deionized water and at pH0 = 12.5 but increased by one order of 

magnitude for the test in 2 M NaOH solution. The parameter p was independent of test conditions, as 

found for the NW slag, and was higher than for the other two datasets, consistent with the higher reaction 

progress probed in these tests. The Al, Ca, and Si retention factors were very high, often reaching 1, 

indicating extensive slag hydration and transformation into secondary phases. 
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Figure 2.5. Measured and calculated concentrations of Al, Ca, K, Na, S, and Si and pH as a function of 

time for the static dissolution of a BFS at 50 °C, l/s = 10, and three test conditions (deionized 

water, pH0 = 12.5, and 2 M NaOH). Measured concentrations are from Trivelpiece and Hsieh 

(2021). 

In summary, a model of slag dissolution in aqueous conditions has been developed based on existing 

glass corrosion models. The model combines a linear rate law for dissolution with a time-dependent 

hydration/alteration rate. Model parameterization was performed using three datasets that covered a range 

of slag compositions reacted at multiple temperatures, liquid-to-solid ratios (L/S), and pH values and that 

spanned several dissolution regimes (early, intermediate, and late dissolution regimes). The model 

accounts for the observed initial rapid dissolution followed by long-term slow alteration and can serve as 

a source term for reduction capacity in large-scale models of cementitious waste form disposal. 

2.2.5 Path Forward and Integration 

The work performed in Year 1 and described above focused on developing and parameterizing a 

dissolution model for slag in aqueous conditions, i.e., in isolation and outside of a grout environment. 

With this tool developed, in Year 2 the project team will investigate the broader applicability of this 

approach. 

• Subtask 1.2.1: This subtask will focus on the long-term dissolution of slag particles in grout in terms 

of both how grout impacts slag dissolution and how slag dissolution influences grout mineralogical 

evolution and the release of redox-sensitive contaminants and radionuclides. Time-dependent 

solution chemistry data from the literature and from this project will be collected for slag-containing 

grout samples for model evaluation. The formation of secondary phases, specifically calcium silicate 

hydrates, will be modeled using the CEMDATA18 database (Lothenbach et al. 2019). This effort 

will also use data from a separate Laboratory Policy Office project led by Savannah River National 

Laboratory (SRNL) to characterize slag particles in cured grout. This subtask will provide 

information on reaction rate times for long-term slag dissolution in cured grout. 
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• Subtask 1.2.2: The slag dissolution model developed in Year 1 can serve as a point source term in 

higher-scale models, such as the mesoscale model described in Section 5.2 that treats the interplay 

between diffusion and particle dissolution in an inhomogeneous microstructure of particles inside a 

grout matrix. Integration of the slag dissolution model into a mesoscale model will be validated 

against time sequences of electron micrographs of cross sections of reacted slag particles. By linking 

these two modeling tools, local models of long-term reactivity of key phases on grouts can be 

developed. 

• Subtask 1.2.3: BFS is one of several conventional supplementary cementitious materials alongside 

fly ash (FA), silica fume, and calcined clays or other additives such as iron oxides. In Year 2, the 

project team will apply the geochemical modeling approach described in this section to the 

dissolution of other materials where data is available. The team will first perform a literature review 

to identify and collect FA dissolution data amenable to geochemical modeling, specifically, time-

dependent solution chemistry data. The team will seek datasets that vary dissolution conditions 

(temperature, pH, L/S, reaction time, etc.) and FA composition. Following the approach used to 

correlate the parameters of a dissolution model for Hanford glass, the team will combine the 

dissolution model parameters derived in Year 1 for BFS and in Year 2 for FA to develop 

composition–parameter correlation models that can be used to predict dissolution model parameters 

of supplementary cementitious materials, and thus their long-term dissolution, solely based on 

material composition.
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3.0 Theme 2: Dynamic Modeling of Moisture Driven 
Processes 

This section presents overviews of the two tasks performed in Theme 2 during Year 1 of the project. 

Task 1 integrated moisture transport predictions in disposal environments using variably saturated flow 

modeling (VSF) into the reactive transport simulations used at Hanford. Task 2 was focused on assessing 

the ability of VSF to simulate experimental conditions within the Hanford field lysimeter test, in 

preparation to use the lysimeter data to verify the Hanford Grout Modeling Framework. 

3.1 Theme 2 Task 1: Integration of Variably Saturated Flow Modeling 
to eSTOMP (IDF simulations) 

3.1.1 Team Members 

Xuehang Song (PNNL), Jiannan Chen (University of Central Florida, UCF). 

3.1.2 Background 

This task was focused integrating recent developments of VSF developed by the University of Central 

Florida into the existing eSTOMP construct used at Hanford. The current approach at Hanford assumes a 

constant infiltration rate that is not affected by seasons or position in the IDF/subsurface. The VSF that 

has been developed proposes that, within the IDF or in a closed tank scenario, there will be large 

variations in the degree of saturation across the IDF. This means that the water flux near individual waste 

forms will vary based on their position within the IDF, and the release of contaminants from the grout (or 

rate of processes such as oxidation) will vary spatially. In other words, the current projections using 

constant infiltrating and wetting are overly conservative. This task was used to benchmark between the 

VSF and eSTOMP. The information produced will be a core component of the Hanford Grout Modeling 

Framework to provide information on the amount of water reaching the grout and degree of surface 

exposure to it. 

3.1.3 Technical Approach 

This study employed a 2-D near-field hydrology model developed using eSTOMP to evaluate unsaturated 

flow dynamics in the IDF. The model assesses infiltration, cover degradation, and liner performance, 

providing a basis for an eventual 3-D vadose zone flow and transport model as part of the Hanford Grout 

Modeling Framework. To extend the analysis, sensitivity simulations were conducted, incorporating 

495 cases that explore varying infiltration rates, degradation scenarios, and spatial variability in waste 

package placement in the IDF. An alternative scenario was also developed to examine the impact of 

complete degradation of the IDF cover, where all infiltration discharges at sump locations. Additionally, 

particle tracking simulations were performed across all cases to analyze flow pathways and travel times. 

This approach quantifies preferential flow patterns, retention zones, and travel time variability, informing 

contaminant transport assessments and model resolution considerations. 

The following sections detail the baseline model, sensitivity and alternative conceptual models, particle 

tracking methodology, results, and future integration with reactive transport modeling efforts. 
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3.1.3.1 Near-Field Hydrology Model Base Case 

The near-field hydrology model is a 2-D cross-sectional representation of the IDF (Figure ) developed 

using eSTOMP to simulate unsaturated flow dynamics and evaluate the impact of infiltration scenarios, 

cover degradation, and liner performance (USDOE 2016). The model assesses water redistribution within 

and around the IDF, particularly in the vadose zone, and serves as a precursor for a 3-D vadose zone flow 

and transport model. 

The model domain represents an east-west cross-section of the IDF, perpendicular to the north-south-

oriented sump lines. The computational grid is discretized into elements with nominal dimensions of 

1.25 × 0.25 m, allowing for a detailed representation of the engineered barriers and natural subsurface 

features. The model includes key components such as the Resource Conservation and Recovery Act 

(RCRA) Subtitle C barrier, the liner system [geomembrane and geosynthetic clay liner (GCL) composite], 

and the waste disposal layers, consisting of four lifts of waste package containers, each 2.3 m high, 

separated by 1-m-thick compacted backfill layers. Hydraulic properties for the different material layers 

were assigned based on onsite characterization data, with a focus on capturing the influence of 

low-permeability asphalt and GCL layers, sandy soil backfill, and the drainage layer. Initial conditions 

assume an intact cover and liner system, with minimal infiltration into the waste layers. The model 

accounts for long-term degradation by increasing the permeability of the asphalt and GCL layers after 500 

years, which affects infiltration rates and water redistribution patterns. 

This near-field hydrology model captures the movement of water through the surface barrier, backfill, and 

liner system within the IDF. As a flow model rather than a contaminant transport model, it evaluates 

water movement and its interaction with the waste forms. Key outputs include the spatial and temporal 

distribution of water flow rates within the IDF, the extent of contact with immobilized LAW glass and 

cementitious waste forms, and the water flow rate through the liner system to the vadose zone, which 

serves as recharge input for the vadose zone flow and transport model. 
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Figure 3.1. Model domain for near-field hydrology model base case, representing the 2-D cross-section of 

the IDF. This model includes the engineered barrier system, waste disposal layers, and liner 

system. (a) Full model domain. (b) Enlarged view of the upper layers (blue box in a), 

highlighting the engineered barrier and liner system. (c) Enlarged view of the side wall and 

facility bottom (purple box in a), showing details of the waste disposal layers and surrounding 

materials. 

3.1.3.2 Alternative Conceptual Models for Near-Field Hydrology: Sensitivity and Cover 
Degradation 

In the 2018 IDF PA (USDOE 2018), a sensitivity analysis examined the impact of different degradation 

scenarios on water flow within the IDF by conducting a series of restart simulations with varying 

assumptions about the integrity of the cover and liner system. The initial steady-state simulation 
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established baseline conditions, where the IDF trench and surface barrier were represented by a 

high-permeability uniform fill material, while the liner system maintained its present configuration. 

Subsequent simulations explored different durations of intact cover and liner conditions (100, 500, and 

1,000 years), with degradation events triggering new transient simulations extending to 10,000 years. 

These cases helped assess how changes in barrier integrity over time influence water redistribution, 

recharge rates, and potential waste form interactions. 

Building on these PA sensitivity analyses, this model expands the approach by incorporating a broader 

range of infiltration scenarios, degradation assumptions, and spatial variability in waste package 

placement, enabling a more comprehensive evaluation of long-term water movement within and beyond 

the IDF. Table 3.1 summarizes the sensitivity analysis cases, where five different infiltration rates 

(ranging from 0.9 to 33 mm/yr) are evaluated across nine degradation scenarios, with 11 realizations per 

case, resulting in a total of 495 simulations. The degradation cases, presented in Table 3.2, account for 

different assumptions about the timing of the asphalt and GCL layer degradation, with variations in the 

assumptions about when these low-permeability barriers will fail. 

Table 3.1. Sensitivity analysis cases for infiltration rates, degradation scenarios, and randomized 

placement of waste packages. 

Factor Values 

Infiltration rate (mm/yr) 0.9, 1.7, 3.5, 5.0, 33 (5 values) 

Degradation year (yr) 9 cases (see below) 

Randomized realizations Baseline + 10 realizations (11 total) 

Table 3.2. Degradation scenarios for asphalt and GCL in sensitivity analysis. 

Case Index Asphalt (yr) GCL (yr) 

1 100 500 

2 100 1,000 

3 100 2,000 

4 500 500 

5 500 1,000 

6 500 2,000 

7 1,000 1,000 

8 1,000 2,000 

9 2,000 2,000 

To evaluate the impact of spatial variability in waste package placement on near-field hydrology and 

subsequent contaminant migration, nine randomized realizations were generated by perturbing waste 

package locations within the IDF model domain. Figure 3.2 presents three example realizations from 

these nine cases. Incorporating these perturbations into the analysis provides insights into the sensitivity 

of water flow and release patterns to small-scale variations in waste configuration, complementing the 

broader sensitivity studies on infiltration rates and degradation scenarios.  
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Figure 3.2. Model domain illustrating spatial variability in waste package placement within the IDF 

system. (a) Full model domain with a representative waste arrangement. (b) Variations in 

waste placement, demonstrating the perturbations considered in the analysis. 

In addition to the sensitivity model, an alternative test model was developed to examine the effects of 

enhanced cover degradation and preferential flow pathways on near-field hydrology. In this scenario, all 

cover layers above the asphalt concrete (ASPHC) layer are assumed to be fully degraded, leading to 

altered water redistribution patterns and reduced travel time. A uniform infiltration rate of 3.3 mm/yr is 

applied to the top boundary of the model domain to represent long-term recharge conditions (indicated by 

the top arrows in the model domain). Unlike the sensitivity model, this alternative model assumes that all 

discharge is directed toward the two bottom sump locations, as shown by the black arrows at the bottom 

of the model domain, Figure 3.3. This conceptualization explores potential changes in water flow 

behavior and their implications for vadose zone transport and contaminant migration. 
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Figure 3.3. Model domain for the alternative conceptual model, where all cover layers above the asphalt 

concrete (ASPHC) layer are degraded and a 3.3-mm/yr infiltration condition is applied to the 

top boundary. Water flow is assumed to be discharged exclusively at the two bottom sump 

locations, indicated by the black arrows. 

3.1.3.3 Alternative Conceptual Models for Near-Field Hydrology: Particle Tracking 

To investigate the hydrological behavior of water entering the IDF and its interaction with waste 

packages, a custom particle tracking algorithm was developed to analyze flow paths and travel times. This 

approach provides a computationally efficient method to evaluate water movement patterns and residence 

times, offering insights into how infiltration, cover degradation, and engineered barriers influence 

near-field hydrology. Unlike full reactive transport modeling, particle tracking focuses solely on 

advective transport, enabling a detailed examination of flow dynamics and potential contaminant 

transport pathways. This algorithm allows benchmarking comparisons between eSTOMP and VSF 

modeling. 

The particle tracking analysis is based on a cell-centered steady-state velocity field derived from 

eSTOMP flow simulations and interpolated onto a face-centered grid to improve numerical accuracy. 

Particles are released at the top boundary of the IDF model, following the infiltration pathways, and 

tracked forward in time through engineered barriers, waste disposal regions, and the liner system. The 

particle movement is governed by the advection equation: 

𝑑𝑥

𝑑𝑡
= 𝑣𝑥(𝑥, 𝑧),

𝑑𝑧

𝑑𝑡
= 𝑣𝑧(𝑥, 𝑧) Eq. 3.1 

where (𝑥, 𝑧) represents the particle position at time 𝑡, and 𝑣𝑥(𝑥, 𝑧), 𝑣𝑧(𝑥, 𝑧) are the interpolated velocity 

components at that location. The velocity field is obtained from a steady-state flow simulation, ensuring 

consistency between flow predictions and transport pathways. 

To solve this system, the project team employed explicit time integration with an adaptive time step ∆𝑡, 

determined based on the local velocity and grid resolution: 

∆𝑡 = 𝐶 ∙ 𝑚𝑖𝑛 (
∆𝑥

|𝑣𝑥| + 𝜖
+

∆𝑧

|𝑣𝑧| + 𝜖
) Eq. 3.2 
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where 𝐶 is a Courant-like safety factor (set as 0.1) and 𝜖 is s a small constant to prevent division by zero. 

This approach ensures that particles remain within stable velocity regions while capturing fine-scale 

variations in flow paths. 

To ensure accurate particle tracking, the velocity field is interpolated using “RegularGridInterpolator” in 

Python, providing a smooth and continuous representation across the model domain. Particles are 

initialized at the top surface, aligning with infiltration zones to reflect natural recharge conditions. 

No-flow boundaries are enforced by setting velocity components to zero at impermeable barriers, 

preventing unphysical movement through restricted regions. Discharge locations are predefined at the 

sump points or the bottom of the model domain, where flow exits the system. 

By computing particle trajectories and travel times, this analysis identifies preferential flow pathways, 

evaluates water retention zones, and examines the effects of cover and liner degradation on water 

movement. The results provide more insights into near-field hydrology, providing a foundation for future 

contaminant transport modeling and improving the assessment of long-term water flow behavior within 

the IDF system. 

3.1.4 Results to Date 

This section presents the results of flow and transport simulations conducted for the IDF. The analysis 

examines how infiltration, cover degradation, and waste package configurations influence moisture 

distribution and water movement within the system. These results provide insights into water retention 

zones, preferential flow paths, and travel time variability, which are critical for understanding long-term 

hydrological behavior and informing future assessments of contaminant transport. The following 

subsections detail the moisture content distribution and particle tracking results, highlighting key trends 

and differences across the scenarios evaluated.  

3.1.4.1 Moisture Content Distribution 

Moisture content distributions were analyzed across all model cases to evaluate water infiltration and 

redistribution within the IDF system. Figure 3.4 presents three representative cases under a uniform 

3.5-mm/day infiltration rate: (a) the baseline case, where waste packages follow a structured arrangement; 

(b) a case with randomly placed waste packages, introducing spatial variability in waste distribution; and 

(c) the alternative test, which assumes full degradation of cover layers above the asphalt and concentrated 

discharge at the sump locations. These cases illustrate the differences in moisture accumulation and 

preferential flow patterns arising from variations in waste package configurations and cover integrity.  
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.  

Figure 3.4. Spatial distribution of saturation after degradation of both the cover and liner for three 

representative model cases under a 3.5-mm/day infiltration rate through the IDF. The results 

are shown in a cross-section: (a) baseline case, (b) randomized waste package placement, and 

(c) alternative test model.  

Key observations from the results include: 

• Overall, the three cases exhibit a similar saturation pattern, with consistent saturation levels within 

the same material types across different cases. 

• Saturation levels are highest within the waste containers, reflecting the low hydraulic conductivity of 

the waste material and higher matric suction in the waste form, which restricts water movement. 
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• The spatial distribution of saturation is more variable in the randomized waste package placement 

case compared to the baseline case. The introduction of randomized waste placement increases 

spatial heterogeneity, suggesting that variability in waste package configuration can influence 

near-field hydrology by altering localized retention and flow patterns. 

• In the alternative case, the degradation of the cover and liner, combined with concentrated discharge 

at the sump locations, results in a more direct and uniform infiltration pattern. 

• The benchmark of eSTOMP and VSF models showed consistently agreement by the impact of waste 

emplacement on the hydrological conditions, including water flow patterns and degree of saturation, 

in the IDF.  

3.1.4.2 Particle Tracking Results 

Particle tracking simulations were conducted for all model cases to analyze flow paths and travel times. 

Figure  presents three representative examples under a uniform 3.5-mm/day infiltration rate: (a) the 

baseline structural arrangement, (b) randomized waste package configuration, and (c) the alternative test 

with degraded cover conditions. For the baseline and randomized waste package models, 10,483 

numerical particles were introduced at the top boundary, while the alternative model used 8,902 particles 

due to its modified domain configuration. Particle path lines are color-coded by travel time, providing a 

visual comparison of flow behavior across different scenarios. 
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Figure 3.5. Particle tracking results for three representative model cases under a 3.5-mm/day infiltration 

rate through the IDF shown in a cross-scetion: (a) baseline case, (b) randomized waste 

package placement, and (c) alternative test model. Particle pathlines are colored by travel 

time, illustrating differences in water flow behavior across the three models. 

Key observations from the results include: 

• Travel times are generally longer in the center of the facility model, where flow pathways are more 

constrained. 

• Particles passing through waste packages exhibit significantly longer travel times due to the low 

hydraulic conductivity of the waste material. 

• Randomized waste package placement introduces greater flow path complexity, particularly in the 

central region of the domain, compared to the baseline case. 

• The alternative model produces more uniform and shorter travel paths, reflecting its simpler domain 

configuration and more direct flow paths toward the sump locations. 
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• Numerical discretization artifacts in the baseline model create stepwise travel paths and localized 

irregularities in particle trajectories. 

• The benchmarking of eSTOMP and VSF models demonstrated consistency in the spatial variation of 

water flow and saturation, as well as agreement on the spatial distribution of residence time in 

modeling the disposal conditions at the IDF.  

By summarizing the travel times of particles that passed through the waste package, a probability 

distribution of particle travel times is obtained, as shown in Figure . The figure presents distributions for 

the baseline case, the randomly placed waste package case, and the alternative test model, corresponding 

to the three cases discussed earlier. In each panel, the shaded blue region represents the histogram of 

travel times, while the red line is the fitted probability density function (PDF) and the green dashed line 

represents the cumulative distribution function (CDF). The dashed vertical lines highlight the 10th, 50th 

(median), and 90th percentiles, providing a quantitative measure of travel time variability across different 

model configurations. 

 

Figure 3.6. Probability distribution of particle travel times for three model cases: (a) baseline case, 

(b) randomized waste package placement, and (c) alternative conceptual model. The shaded 

blue region represents the histogram of particle travel times, while the red line is the fitted 
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probability density function (PDF) and the green dashed line represents the cumulative 

distribution function (CDF). The dashed vertical lines highlight the 10th, 50th (median), and 

90th percentiles, providing insight into the distribution spread and variability across different 

model configurations. 

The alternative test model exhibits a more compact and left-skewed distribution, indicating shorter and 

more uniform travel times, while the baseline and randomized placement cases show broader distributions 

with extended tails, suggesting greater heterogeneity and longer retention times. These distributions serve 

as a basis for further comparative analysis, with a summary of all results provided in Table . 

Table 3.3. Summary of particle travel time percentiles for different model cases. 

Model Case 

Infiltration 

Rate  

(mm/yr) 

10th 

Percentile 

25th 

Percentile 

50th 

Percentile 

(Median) 

75th 

Percentile 

90th 

Percentile 

Base case 

0.9 3,985 5421 6,955 125,52 78,368 

1.7 2,041 2,270 2,757 4,424 9,096 

3.5 1,016 1,115 1,302 1,657 2,363 

5.0 724 803 937 1,191 1,641 

Randomized 

waste package 

placement case 

0.9 4,049-4,208 4,992-5,297 6,330-6,589 11,020-12,319 79,827-93,125 

1.7 1,991-2,044 2,215-2,256 2,518-2,585 3,393-3,564 7,063-8,347 

3.5 985-10,09 1,085-1,102 1,220-1,239 1,457-1,507 2,097-2,195 

5.0 711-726 791-802 885-902 1,043-1,074 1,403-1,483 

Alternative 

model case 
3.5 645 847 1,031 1,285 1,811 

These results highlight the travel times of soil moisture within the IDF, being on the order of 1,000 years 

from top to bottom. This timescale is consistent with variably saturated flow modeling developed by the 

UCF team, who conducted particle tracking simulations at several locations in a model similar to the 

alternative case in this study. In their simulations, particles placed near the middle of the slope, 

approximately 150 m in the x-direction in the eSTOMP model domain, reached the leachate sump in 

approximately 1,111 years. Correspondingly, the simulation from the alternative case in this study yielded 

a median travel time of 1,051 years. These two models show strong agreement, reinforcing the reliability 

of the predicted travel times. These timescales will introduce evaluations of flow times vs. reaction times 

of key process drivers in the Hanford Grout Modeling Framework.  

3.1.5 Path Forward and Integration 

• Subtask 2.1.1: The travel time estimation provides a fundamental understanding of moisture 

transport timescales in the near-field hydrology model. In the second year, collaboration with the 

reactive transport modeling team will integrate reaction and transport timescales to identify the 

limiting factors in waste package degradation and reactions. Parameters such as Damköhler numbers 

will be derived to evaluate the relative importance of reaction kinetics and transport processes in 

controlling waste package behavior. This will allow calculations of distribution of performance in 

the disposal facility 

• Subtask 2.1.2: The results indicate that the current PA model domain may still be too coarse to fully 

capture the hydraulic property contrasts between waste packages and backfill materials. This 

limitation could lead to an underestimation of travel times and overly conservative transport 

predictions. To address this, model resolution tests can be conducted, or small-scale, high-resolution 
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particle tracking simulations can be performed to refine the estimates and improve the representation 

of flow dynamics in the near-field system. This will include updating, if needed, mass transfer 

coefficients in backfill and local equilibrium impacts.  

• Subtask 2.1.3: As highlighted in recent studies, the pre-burial and pre-closure conditions can have 

the most significant impacts on changes to the condition of grout waste forms (Zheng et al. 2022a). 

This task will develop moisture transport models for these timeframes to allow improved 

representation of grout prior to closure. 

3.2 Theme 2 Task 2: Integration of Variably Saturated Flow Modeling 
to Field Experimental Data 

3.2.1 Team Members 

Jiannan Chen (UCF) 

3.2.2 Background 

This component of the overall effort in Theme 2 was focused on preparing VSF models to replicate 

moisture transport in a field lysimeter test currently ongoing at Hanford (Meyer et al. 2024). The 

lysimeter test is providing crucial data to verify predictive corrosion models for glass and grout waste 

forms. This task is providing a tool to ensure accuracy of all conditions within the lysimeter in future 

benchmarking studies. This task is structured around two main objectives: (1) understand the hydrological 

behavior of the backfill surrounding the waste forms by developing and calibrating numerical models and 

(2) establish hydrological boundary conditions for modeling contaminant release. These conditions are 

crucial for simulating the release of contaminants from both cementitious and glass waste forms. 

Field tests on the hydrological behavior of the IDF backfill provide essential data on the early-stage 

performance of waste form materials, including key properties such as leaching rates and temperature. 

However, evaluating the large-scale and long-term behavior of the IDF requires numerical simulations. 

Sensitivity analyses are necessary to predict IDF performance over extended disposal timeframes that far 

exceed those that can be performed experimentally. Benchmarking the model against lysimeter field tests 

will improve the understanding of soil hydrological behavior, enhancing the accuracy of material 

properties and boundary conditions used for long-term, large-scale predictions. Ultimately, this task will 

contribute to the long-term environmental management of the IDF and support validation of predictions 

made using the Hanford Grout Modeling Framework.  

3.2.2.1 Summary of Field Test Setup and Methodology of Hanford Lysimeters 

The field lysimeter test has been in progress at the IDF Test Platform near the Hanford Site’s 200 West 

Area since 2019 (Meyer et al. 2024). This facility comprises 14 cylindrical drainage lysimeters, each 2 m 

in diameter and 3 m in height, alongside an underground gallery that provides lateral access to the 

lysimeters. The lysimeters are categorized based on the type of waste they contain and the rate of 

irrigation applied. Specifically, three lysimeters are filled with cementitious waste forms, and three others 

contain glass waste forms. Two lysimeters, devoid of waste, function as controls. An automated irrigation 

system controls the water flow within these lysimeters. The test targets three irrigation rates: 50, 20, and 

5 cm/yr (Figure 3.7). 

Pan lysimeters are installed beneath each waste form to collect the water that drains through the soil. 

Drainage is also collected at the base of each lysimeter through a 0.3-meter layer of primarily pea gravel, 

channeled via a pipeline. Because the control lysimeters do not contain waste forms, they lack pan 
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lysimeters. The backfill soil was sourced from the IDF excavated soil. In the lysimeters containing 

cementitious waste forms (15 cm in diameter and 19 cm in height; 10 cm in diameter and 19 cm in height) 

and glass waste forms (8 cm in diameter and 15 cm in height), these materials are positioned at depths of 

1.25 and 2 m below the lysimeter surface, respectively. 

To evaluate the spatial-temporal hydrological and thermal behaviors of the backfill soils, a sensor 

network has been integrated into the lysimeters. This network records moisture content (via neutron probe 

testing), soil suction (via tensiometers), drainage (via tipping buckets gauge), and soil temperature (via 

thermistors). The soil surface is maintained approximately 25 cm below the top of each lysimeter to 

ensure adequate space for irrigation. A fiberglass cover has been installed atop the lysimeters to minimize 

evaporation, which has not yet been factored into the modeling. 

 

Figure 3.7. Lysimeter configurations at the IDF Test Platform and the detailed waste forms and sensor 

network in the lysimeter. Co-disposal lysimeters were not installed. 

3.2.3 Technical Approach 

The primary goal of implementing the UCF/CRESP benchmark model for the lysimeter field test is to 

generate field-scale hydrological parameters that are pertinent to the long-term performance of waste 

forms while minimizing uncertainties.  

To meet these objectives, a 3-D representation of the lysimeter field test was created using the SEEP/W 

code (Seequent, Calgary, Alberta, Canada) to model variably saturated flow within the lysimeter. The 

primary method for modeling moisture transport in soil involves assessing liquid transport driven by 

water pressure gradients, which follows Richard’s equation (Richards 1931) as shown in Eq. 3.3. 
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Additionally, the soil-water characteristic curve, as proposed by van Genuchten (1980) and outlined in 

Eq. 3.4, provides the necessary hydraulic properties for calculating unsaturated hydraulic conductivity, 

detailed in Eq. 3.5. 

 
𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
[Kw(φ)(𝜕ℎ 𝜕𝑧⁄ + 1)] Eq. 3.3 

θw = θr + 
θs- θr

[1+(α'φ)n]m Eq. 3.4 

𝐾(𝜑) = 𝐾𝑠𝑎𝑡 +
{1 − (𝛼′𝜑)𝑛−1[1 + (𝛼′𝜑)𝑛]−𝑚}2

[1 + (𝛼′𝜑)𝑛]𝑚/2
 Eq. 3.5 

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
[Kw(φ)(𝜕ℎ 𝜕𝑧⁄ + 1)] Eq. 3.6 

where, K(φ) is the unsaturated hydraulic conductivity, θr is the residual water content (m³/m³), θs is the 

saturated water content (m³/m³), Ksat  is the saturated hydraulic conductivity (m/s), and α, n, and m are the 

fitting parameters related to the van Genuchten soil water characteristic curve.  

The irrigation schedule, hydraulic properties of the backfill, backfill density, volumetric water content, 

soil temperature, soil suction, sensor outputs, and drainage data from the lysimeters collected from 2021 

to 2024 were used to model the lysimeters and benchmark the results. Table 3.4 provides a 

comprehensive summary of the data available for model calibration, which includes measurements of 

volumetric water content, saturated hydraulic conductivity, dry bulk density, porosity, van Genuchten 

parameters, drainage, matric suction, soil temperature, and particle size distribution. 

Table 3.4. Current data inventory for lysimeter modeling. 

Data 2021 2022 2023 2024 

Irrigation 

Rate 50 cm/yr, 20 cm/yr, and 5 cm/yr 

Frequency 
1 hour per 7-day week (50 cm/yr and 20 cm/yr) 

1 hour every two weeks (5 cm/yr) 

Date and Time N/A 

Volumetric water content  Quarterly measurements (neutron probe) 

Material 

properties 

Hydrological Obtained from bulk and repacked samples 

Density Obtained from core samples 

Thermal Estimated based on mineralogy and porosity 

Drainage N/A Hourly 

Temperature N/A Hourly 

Other data 
Suction N/A Hourly 

TDR N/A Hourly 

This dataset was sourced from a PNNL report on the lysimeter study (Meyer et al. 2024), with 

supplemental data from 2024 provided by PNNL which will be available in the 2025 revision of Meyer et 

al (2024). The measurements of drainage, soil temperature, and soil suction are continuous, while the 

volumetric water content is assessed quarterly (in February, May, August, and November) using a neutron 

probe. This approach ensures a robust dataset for calibrating and validating the hydrological models. 



PNNL-37528 

Theme 2: Dynamic Modeling of Moisture Driven Processes 3.16 
 

3.2.3.1 Model Domains, Material Properties, and Boundary Conditions 

The geometry and hydraulic properties of the backfill and waste forms within the lysimeters were 

instrumental in constructing the 3-D numerical model. This model was calibrated using data from the 

control lysimeter D4, which operates under a 50-cm/yr irrigation rate. This calibration process helped 

identify potential field uncertainties. Subsequent modeling efforts incorporated the waste forms to analyze 

water flow patterns around the waste forms. The lysimeters are cylindrical, measuring 2 m in diameter 

and 3 m in height. Their bottom drainage consists of a 0.3-meter-thick layer, which includes a 1-in. sand 

layer topped by a 1-in. pea gravel layer. The initial compaction density and volumetric water content of 

the compacted backfill, essential for establishing the initial conditions of the model, were derived from 

the lysimeter study report (Meyer et al. 2024). Core samples used in the calibration were obtained from 

depths of 65, 148, and 242 cm from the lysimeter surface, as shown in Figure . 

 

Figure 3.8. Geometry, boundary, and initial conditions of the 3-D lysimeter model. 

An evenly distributed infiltration boundary was applied at the top of the model to simulate irrigation at a 

rate of 50 cm/yr, administered weekly based on the established irrigation frequency. The hydraulic 

boundary condition at the model’s base was set to a constant head at the drainage pipe, facilitating 

effective drainage at the bottom of the lysimeter while maintaining retained moisture near the drainage 

layer. A no-flow boundary condition was designated for the vertical edges and the base of the model to 

mimic the impermeable nature of the container material. Figure  illustrates the model’s geometry, 

boundary conditions, and initial conditions. 

The hydrological properties of the backfill materials and drainage layers were based on the IDF PA 

(USDOE 2018), as detailed in Table 3.5. This table includes the saturated hydraulic conductivity, van 

Genuchten parameters for soil-water characteristic curves, unsaturated hydraulic conductivity, and 

porosity of the IDF materials, as documented in the IDF PA (USDOE 2019). Although particle size, 

moisture content, bulk density, and particle size distribution were determined from core samples, the 

saturated and unsaturated hydraulic properties were derived from remolded bulk samples. Variations in 

the hydraulic properties of the backfill material may contribute to model uncertainties. Figure 3.9 
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compares the hydraulic properties of the remolded samples to those specified in the IDF PA (USDOE 

2019). The properties measured from remolded materials are highlighted in the red-shaded area, 

indicating a relatively lower porosity but comparable hydraulic conductivity at various degrees of 

saturation. 

For the numerical modeling, properties of loosely packed (LP) backfill were used to benchmark against 

the field results. Additionally, modeling with densely packed (DP) backfill was conducted to capture 

uncertainties associated with material properties. 

Table 3.5. Physical and hydrological properties of backfill and drainage materials. 

 

Hydraulic Parameter van Genuchten Parameters 

Ksat (m/s) θs θr α (kPa) n 

Densely compacted backfill (DP)(a) 4.9E-05 0.387 0.03 1.54 1.7 

Loosely compacted backfill (LP) (a) 1.7E-04 0.443 0.03 1.75 2.8 

Coarse sand(b) 1.10E-01 0.420 0 107.8 9.3 

Pea gravel(c) 2.80E-01 0.420 0 107.8 1.4 

(a) Meyer et al. (2004) 

(b) Sanford et al. (1995) 

(c) Yeh and Harvey (1990) 

  

Figure 3.9. Soil-water characteristic curve and unsaturated hydraulic conductivity function of simulated 

backfill compared with field range curves obtained from the remolded samples. 

Additional mechanisms influencing the field hydrology, such as the hysteresis of soil-waste retention and 

temperature oscillations, have been incorporated into the model. Figure 3.10 displays the hysteresis of the 

soil-water retention, which illustrates the drying and wetting cycles, alongside the measured soil 

temperatures and temperature data from the Hanford Meteorological Station. The hysteresis curve follows 

the methodology outlined by Šimůnek et al. (2006), which assumes that the van Genuchten parameter α 

during drying is twice as high as during wetting. 
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Figure 3.10. The (a) hysteresis of soil-water retention curve and (b) soil temperature variation with time 

and soil depth of the lysimeter ground surface. The air temperature within the lysimeter 

facility and the temperature measured at the Hanford Meteorological Station for the years 

2023 – 2024 are also included. 

3.2.4 Results to Date 

3.2.4.1 Water Balance of the Field Lysimeters 

The water balance evaluations of the lysimeters were conducted by integrating the irrigation rate, water 

storage, and drainage data. Evaluations focused on lysimeters irrigated at a rate of 50 cm/yr, aiming to 

assess potential evaporation loss near the lysimeter surface and the infiltration rate through the lysimeter. 

Based on the relatively low drainage observed, significant evaporation or insufficient irrigation from 

lysimeters with 20- and 5-cm/yr irrigation rates was postulated; these were excluded from the current 

model-field benchmarking. 

The analysis included lysimeters D1 (containing glass waste forms), D4 (control), and D9 (containing 

cementitious waste forms), all operating at the 50-cm/yr irrigation rate. Based on drainage data collected 

from March to December 2024, the cumulative drainage from the bottom of the lysimeter ranged from 24 

to 31 cm, equivalent to 765 to 988 L of infiltration over this period (Figure a). An increase in water 

storage up to 9 cm was also observed during this period over depth. Figure b shows the increase in water 

storage in the soil of the control lysimeter D4 from February (non-irrigation period) to November (end of 

the irrigation period), calculated at 4 cm (126 L). The estimated loss from the irrigated water totaled 456 

L, representing 30% of the irrigated water. However, several factors introduce uncertainties into the water 

balance calculations, including pump accuracy, non-uniform wetting, variations in void ratio due to the 

compaction of the backfills, and evaporation. Despite these uncertainties, the calculated annual infiltration 

rate for the lysimeter, based on the drainage data, stands at approximately 32 cm/yr. 
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Figure 3.11. (a) Cumulative drainage of the lysimeters with 50 cm/yr irrigation and (b) temporal changes 

in the water storage in the lysimeter from March to November 2024. 

3.2.4.2 Model Benchmarking with the Lysimeter Data 

The UCF/CRESP model results for volumetric water content using LP and HP backfills were compared 

with data from the control lysimeter (D4). As illustrated in Figure 3.12, the modeled and field water 

profiles generally align well in trend across depth. Results using LP backfill showed an average 

discrepancy of 36% compared to all field measurements, except for the data recorded on April 22, 2021. 

Nonetheless, both modeled and field values for volumetric water content typically ranged between 0.05 

and 0.12 cm³/cm³. 

The backfill density significantly influences the volumetric water contents, underscoring that the degree 

of compaction is a critical factor affecting the hydrological behaviors in the backfill. This is particularly 

evident in the fitting parameters of the van Genuchten curve and the saturated hydraulic conductivity. 

Notably, a minor variation between LP and HP backfill can alter the soil volumetric water content profile. 

Overall, the HP backfill produced a soil profile that was consistently wetter than the field measurements. 

Conversely, the model using LP backfill aligned more closely with the field data, although further 

refinements are needed based on the mean-field hydraulic properties detailed in Section 3.2.4.1. 

Additionally, the modeled drainage consistently exceeded that observed from the field lysimeter over 

time. Several factors may contribute to this discrepancy: (1) the model did not account for evaporation 

from the lysimeter surface; (2) the assumed 50 cm/yr of irrigation as constant infiltration throughout the 

year did not consider pump accuracy; and (3) the observed bottom drain was not consistently wet, 

particularly during non-irrigation periods. For the next UCF/CRESP model revision in Year 2, the 

calculated infiltration rate will be incorporated and boundary conditions will be adjusted to better match 

the observed drainage data. 

The volumetric water content profile for April 2022 underscores the importance of measurement timing. 

On this specific day, a visible wetting front was present in the shallow soil layer of the lysimeter, 

contrasting with other dates where the wetting front appeared deeper. This variability can be attributed to 

the non-constant irrigation schedule and irregular measurement intervals. If measurements are taken 

shortly after irrigation, the shallow soil layers may present as wetter compared to the rest of the lysimeter. 
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Because the precise timing of irrigation and measurement was not documented, the modeling for the 

specified day was calibrated to best match the observed results. 

 

Figure 3.12. Comparison of the models with two backfills (i.e., LP (black) and HP(blue)) during 

irrigation and non-irrigation periods measured in the field lysimeter test (red). 

3.2.4.3  Impact of Temperature and Hysteresis on Modeling Results 

To evaluate the impact of temperature fluctuations and soil-water retention hysteresis on modeling results, 

both factors were integrated into the UCF/CRESP model and compared with simulations that excluded 

them. The current assessment indicates that differences in volumetric water content profiles with and 

without temperature and hysteresis effects are minimal in the backfill, particularly beyond the 2.2-m 

depth, where discrepancies remain within 5% (Figure 3.13). However, hysteresis significantly influences 

volumetric water content near the bottom drainage, increasing water content in a manner consistent with 

field observations. Overall, hydraulic properties – including density, porosity, hydraulic conductivity, and 

soil-water retention – are the primary factors affecting volumetric water content, while hysteresis has only 

a localized impact near the drain. Given these findings, future Year 2 modeling efforts can simplify 

simulations by omitting temperature effects, if applicable, to conserve computational resources. Instead, 

the focus should be on accurately estimating and applying backfill hydraulic properties for improved 

modeling accuracy. 



PNNL-37528 

Theme 2: Dynamic Modeling of Moisture Driven Processes 3.21 
 

0

0.5

1

1.5

2

2.5

3
0 0.05 0.1 0.15 0.2

(a) 4-22-2021 

(Irrigation Period)

Field
Model with Hysteresis
Model with Temperature
Model without Hysteresis and Temp.

D
e
p

th
 (

m
)

VWC (cm³/cm³)

0

0.5

1

1.5

2

2.5

3
0 0.05 0.1 0.15 0.2

(b) 8-18-2021 

(Irrigation Period)

Field
Model with Hysteresis
Model with Temperature
Model without Hysteresis and Temp.

D
e
p

th
 (

m
)

VWC (cm³/cm³)

0

0.5

1

1.5

2

2.5

3
0 0.05 0.1 0.15 0.2

(c) 2-17-2022 

(Non-irrigation)

Field
Model with Hysteresis
Model with Temperature
Model without Hysteresis and Temp.

D
e
p

th
 (

m
)

VWC (cm³/cm³)  

Figure 3.13. Comparison of modeling results incorporating soil temperature variation and hysteresis on 

three selected days representing irrigation and non-irrigation periods and compared against 

measured field lysimeter data (black).  

3.2.5 Path Forward and Integration 

Year 1 saw the successful construction of a moisture tracking model in VSF for the lysimeter tests. Based 

on the results from Year 1, the proposed agenda for Year 2 includes the following subtasks: 

• Subtask 2.2.1 – Model Update and Refinement: Update the UCF/CRESP model by incorporating 

revised hydraulic properties and boundary conditions, specifically infiltration and drainage 

boundaries. These updates aim to enhance model accuracy and reduce discrepancies with field 

measurements. This applies to both the lysimeter model and supporting IDF model 

• Subtask 2.2.2 – 3-D Modeling of Lysimeters with Cementitious Waste Forms: Execute 3-D models 

on lysimeters containing cementitious waste forms, incorporating the aforementioned updates based 

on field observations. These models are intended to derive critical backfill hydrological parameters, 

such as water saturation, flux, and water residence time near the waste forms. This will also support 

the establishment of hydraulic boundaries for mass transfer modeling under both pre- and post-

closure conditions. An uncertainty analysis will be conducted to address variations in backfill 

properties, sensor accuracy, and other factors. This task would link with other mechanistic tasks to 

predict release from the grout waste forms and verify against experimental data. 

• Subtask 2.2.3 – Localized Modeling Around Waste Packages/Tank Closure: This task will build on 

existing VSF models that describe spatial transport models around grout materials. These will be 

integrated into eSTOMP as part of the Hanford Grout Modeling Framework.  
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4.0 Theme 3: Dynamic Modeling of Processes Impacting 
Contaminant and Radionuclide Behavior 

4.1 Theme 3 Task 1: Application of Geochemical Speciation 
Modeling to Other Hanford Grout Examples 

4.1.1 Team Members  

Chen Gruber (VU), Miroslava Peterson (PNNL), Joelle Reiser (PNNL), Rodney Skeen (H2C), Usama 

Zaher (H2C) 

4.1.2 Background 

Previously, a geochemical speciation model for grout was 

evaluated using a Hanford-specific test case of a Cast 

Stone (CS) formulation prepared with a liquid secondary 

waste simulant, Figure 4.1 (Chen et al. 2021). This 

previous work showed that the geochemical speciation 

model was able to replicate the release behavior of a 

multitude of elements from the grout, including Tc-99 

(Chen et al. 2021). A geochemical speciation component 

to the Hanford Grout Modeling Framework will likely 

improve the fidelity of contaminant releases, but further 

assessment against grout datasets is required. This prior 

developmental work will be expanded to assess the 

predictive capability of the geochemical speciation model 

against other Hanford grout datasets. The approach uses 

leaching data from U.S. Environmental Protection 

Agency (EPA) Method 1313 (pH dependent release, 

Liquid-Solid Partitioning as a Function of Extract pH 

Using a Parallel Batch Extraction Procedure) and EPA Method 1315 (semi-dynamic leaching, Mass 

Transfer Rates of Constituents in Monolithic or Compacted Granular Materials Using a Semi-Dynamic 

Tank Leaching Procedure) to calibrate mineral sets and a speciation model to determine the chemical 

state and subsequent leaching behavior. 

The datasets evaluated will be those reported by Um et al. (2016), who evaluated various grout 

formulations for the immobilization of secondary liquid wastes at Hanford. The reason for selecting three 

formulations from this work (T3, T6, T11) was to represent two additional formulations with the same 

simulant as the original CS data. Most importantly, the Tc-99 leaching behavior of the T3 and T6 samples 

is unique due to the inclusion of hydrated lime in the formulations. These hydrated-lime-containing 

formulations provided the lowest Tc-99 releases measured to date from a liquid waste grout (Bourchy et 

al. 2022). 

The overall goal of this task is to develop a component of the Hanford Grout Modeling Framework in 

which speciation information of specific contaminants and radionuclides can be provided dependent on 

the spatially evolving conditions within a waste form. This information can be retrieved from the 

geochemical speciation modeling software using a call-out approach similar to that being developed in 

Theme 1 Task 1 (Section 2.1). This is a significant upgrade from the current approach of using a static, 

 
Figure 4.1. Example of the predictive 

capability of the geochemical speciation 

model for the release of Tc-99 from grout. 
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experimentally estimated distribution coefficient (Kd) for specific contaminants in the grout modeling at 

Hanford. 

4.1.3 Technical Approach 

4.1.3.1 Objective 

This PNNL and CRESP collaboration is focused on understanding the strength and limitations of 

eSTOMP and LeachXS/ORCHESTRA (LXO) as platforms for providing geochemical speciation models 

in reactive transport simulations. To evaluate these impediments to construction of the Hanford Grout 

Modeling Framework, information from the geochemical speciation models in LXO is being targeted for 

incorporation into eSTOMP. To meet this functionality goal, the specific targets of the first year of effort 

were: 

1. Use LXO reactive transport geochemical speciation models to simulate EPA Method 1313 (EPA 

2017a) and EPA Method 1315 (EPA 2017b) results for the T3, T6, and T11 secondary waste 

grout samples (Um et al. 2016), including development of mineral reaction sets describing the 

liquid to solid partitioning results. 

2. Calibrate a tortuosity factor using EPA Method 1315 results for the T3, T6, and T11 samples 

using reactive transport geochemical speciation modeling. 

3. Simulate Tc geochemical speciation and observed diffusivity for T3, T6, and T11 samples. 

4.1.3.2 Sample Preparation 

Three mix designs were used for performance testing of grouted liquid secondary waste. Formulations T3 

and T6 used the same mix ratios (20 wt% lime, 35 wt% OPC, and 45 wt% BFS) at water-to-binder ratios 

of 0.5 and 0.6, respectively. Mix T11 used the same three reagents as CS from the original work, but at a 

different ratio of 20 wt% OPC, 35 wt% FA and 45 wt% BFS. These mix designs were spiked with Tc-99 

(Table 4.1). Xypex (Admix C-500, Xypex Chemical Corp) was added to reduce the porosity of the cured 

grout. Table  presents the initial chemical makeup of the grouts measured with XRD. 

Table 4.1. Liquid secondary waste grout mix designs (Um et al. 2016). 

Test # 

Simulant(a) 

(g) 

Water-to-

Dry-Mix 

Ratio Dry Blend Addition(b) Dry Materials Admix(c) WRA(d) 

TC-99(a) 

(µg/L) 

3 WTP 

(711.6) 

0.5 20%, 35%, 45% HL, OPC, BFS -- 3,030 14,800 

6 WTP 

(853.9) 

0.6 20%, 35%, 45% HL, OPC, BFS -- 3,030 15,000 

11 WTP 

(853.9) 

0.6 20%, 35%, 45% OPC, FA, BFS Xypex 3,030 15,100 

(a) See Table 3.2 in Um et al. (2016) for simulant compositions. Simulant mass (gram) used is shown in 

parenthesis. 

(b) The three dry blend materials were mixed by placing the dry ingredients into a single plastic bag and 

manipulating the bag until the dry mixture appeared to be homogeneous. 

(c) Xypex was used as additional admixture based on 5 wt% of dry mix.  

(d) Water-reducing additive (WRA): MG 3030 was used to enhance the cement rheology based on 0.6 mL of MG 

3030 per 100 g of dry mix. 

(e) Tc-99 concentration measured in each simulant before mixing with dry ingredients.  
HL = hydrated lime; total dry materials mass is 1,167 g; WTP = Waste Treatment and Immobilization Plant. 
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Table 4.2. Moisture content, dry solids fraction, and XRD analysis for mineral content (Um et al. 2016). 

Test # 

MC 

(%) 

Dry 

Solids 

Fraction 

XRD Analyses(a) 

(wt%) 

Ettringite Portlandite Calcite Larnite Hydrocalumite Quartz Amorphous 

3 25.14 0.749 14 11 6.8 4.4 -- -- 64 

6 29.74 0.703 17 9.7 5.4 4.5 -- -- 63 

11 30.44 0.696 15 -- 4.5 4.1 -- 2.0 75 

(a) Chemical formulas of minerals: ettringite [Ca6Al2(SO4)3(OH)12•26H2O], portlandite [Ca(OH)2], calcite 

[CaCl2], larnite [Ca2SiO4], hydrocalumite [Ca4Al2(OH)12(OH)2•6H2O)], and quartz [SiO2]  

MC = moisture content 

4.1.3.3 EPA Method 1313 

Um et al. (2016) provide a detailed description of the EPA Method 1313 tests done for the grout 

formulations T3, T6, and T11 hydrated lime liquid secondary waste grout samples. In summary, T3, T6, 

and T11 secondary waste grout samples were characterized using EPA Method 1313. Eluate solutions 

were prepared with a final target pH ranging from < 2 to 13 using particle-size reduced subsamples of test 

materials to approach solid-liquid equilibrium in the test. For each material (T3, T6, and T11), a set of 

parallel batch extractions of a solid material at specified end-point pH conditions were carried out at a L/S 

of 10 mL/g-dry. Dilute nitric acid and potassium hydroxide were used as reagents for adjusting solutions 

to their target pH values.  

4.1.3.4 EPA Method 1315 

EPA Method 1315 is a diffusion mass transfer rate, semi-dynamic leaching test (EPA 2017b). The test 

consists of continuous leaching of water-saturated monolithic material with periodic renewal of the eluent 

at predetermined intervals, typically for a minimum of 63 days leaching in deionized water. The 

concentration of each constituent in the eluate at each interval was used to calculate the interval mass flux 

across the exposed surface area (mg m-2 sec-1) and the cumulative mass release (mg m-2) to the eluate. 

The T3, T6, and T11 sample dimensions were 5.08 cm (2 in.) internal diameter × 10.16 cm (4-in.) high 

right-circular cylindrical forms; examples are shown in Figure 4.2. After the 28-day curing period, 

monoliths were placed in 2-L plastic buckets with lids and were fully submerged in the leaching solution. 

Leaching solution exchanges and sampling were done at fixed intervals, at cumulative leaching times of 

0.08, 1, 2, 7, 14, 28, 42, 49, and 63 days. Additional leachate exchanges and samplings were conducted at 

cumulative leaching times of 90 and 140 days, which are beyond the typical times prescribed in EPA 

Method 1315. 
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Figure 4.2. Photo of T6-1 and T6-3 monoliths tested by EPA Method 1315 (Um et al. 2016). 

4.1.3.5 Geochemical Speciation and Reactive Transport Models  

LeachXS (Van der Sloot et al. 2008) with ORCHESTRA (Meeussen 2003) embedded for geochemical 

speciation and reactive mass transport (hereafter LeachXS/ORCHESTRA, LXO) was used to develop a 

geochemical reactive transport model that considers geochemical speciation, liquid/solid partitioning, and 

multi-ionic diffusion (Meeussen 2003). Geochemical speciation modeling was used to simulate the 

equilibrium liquid-solid partitioning (LSP) of constituents obtained from EPA Method 1313 

(i.e., pH-dependent LSP model) and the mass transfer release of constituents in EPA Method 1315 

(i.e., monolith diffusion-controlled leaching model).  

The aqueous phase speciation and mineral reaction set used in modeling were from the thermodynamic 

databases minteq.v4 (Eary and Everett 1992) and CEMDATA18 (Lothenbach et al. 2019). Activity 

coefficients were calculated by adopting the approach of Samson et al. (1999) for ionic strength greater 

than the range of the extended Debye-Hückel and Davies equations. Log K values of modeled solid 

phases were calculated for 25 °C using the temperature dependency reported in the minteqv4 and 

CEMDATA18 datasets.  

A set of minerals (i.e., mineral reaction set) that may be present in the system was derived by fitting LSP 

curves of constituents as a function of pH at equilibrium. Minerals were selected based on (1) identifying 

phases from the XRD analyses (Table ) and (2) minimizing the residuals between the modeled and 

measured LSP curves by selecting phases that are likely to form under the EPA Method 1313 test 

experimental conditions (i.e., pH, temperature, and experiment duration).  
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4.1.3.6 Transport Modeling (multi-ionic diffusion) 

Two materials (T3 and T6) were conceptualized in LXO and were represented using a 1-D model 

consisting of a series of 20 concentric, well-mixed cells (Figure ). The surface area at the outermost cell is 

equal to the sum of the surface areas of faces in contact with the leaching solution. The cells are thickest 

in the interior of the conceptualized monolith and progressively become thinner in the direction of 

diffusion, where the innermost boundary is a no-flux boundary. The refresh solution is in contact with the 

external face of the outermost cell. Constituent diffusion from each cell is based on the fully explicit finite 

volume scheme described in Meeussen and Brown (2018). In all simulations, the assumptions for local 

equilibrium conditions were met, i.e., the chemical reactions within a cell were considered much faster 

than the transport between cells (Samson et al. 1999). 

A multi-ionic diffusion approach (Arnold et al. 2017) was used to model constituent specific diffusivity in 

both monolith diffusion-controlled leaching and rock-cement interface models. The approach uses free 

liquid diffusivity coefficients, Di
0, for specific constituents to calculate the diffusivity of the constituent 

on a per primary-entity (or master species) basis. When Di
0 could not be found for a particular constituent, 

the geometric mean of Di
0 per electron of all the known Di

0 values was used to calculate the Di
0 of the 

constituent. Table  summarizes the Di
0 values used for each primary entity and corresponding constituent.  
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Table 4.3. List of free liquid diffusivity coefficients (Di0) that were used in the transport models (Gruber 

et al. 2022). The uncertainty for the diffusion coefficient is 5%. 

Constituent 

Primary 

Entity 

Di
0  

(10-9 m2/s) Reference 

Al Al[OH]4
- 3.120 Mackin and Aller 1983 

As AsO4
-3 3.360(a) average 

Ba Ba+2 1.694 Vanysek 2018 

Br Br- 2.080 Vanysek 2018 

CO3
-2, DIC CO3

-2 1.846 Vanysek 2018 

Ca Ca+2 1.584 Vanysek 2018 

Cd Cd+2 1.438 Vanysek 2018 

Cl Cl- 2.032 Vanysek 2018 

Co Co+2 1.464 Vanysek 2018 

Cr CrO4
-2 2.264 Vanysek 2018 

Cu Cu+2 1.428 Vanysek 2018 

Fe Fe[OH]4
- 1.257 Arnold et al. 2017 

H+ H+ 5.273(b) Vanysek 2018 

B H2BO3
- 1.120(a) Average 

Si H2SiO4
-2 1.697 Arnold et al. 2017 

K K+ 1.957 Vanysek 2018 

Li Li+ 1.029 Vanysek 2018 

Mg Mg+2 1.412 Vanysek 2018 

Mn Mn+2 1.424 Vanysek 2018 

Mo MoO4
-2 3.968 Vanysek 2018 

NO NO3
- 1.902 Vanysek 2018 

Na Na+ 1.334 Vanysek 2018 

Ni Ni+2 1.322 Vanysek 2018 

PO PO4
-3 2.472 Vanysek 2018 

Pb Pb+2 1.890 Vanysek 2018 

SO SO4
-2 2.130 Vanysek 2018 

Sb Sb[OH]6
- 0.849 Vanysek 2018 

Se SeO4
-2 2.016 Vanysek 2018 

Sn Sn+ 2.240(a) average 

Sr Sr+2 1.582 Vanysek 2018 

Th Th+4 6.120 Yuan-Hui and Gregory 1974 

VO VO2
+ 1.120(a) Average 

Zn Zn+ 1.406 Vanysek 2018 

(a) The geometric mean of Di
0 per electron of all the known Di

0 values. 

(b) Di
0 of OH- used because system is alkaline. 

Tortuosity factors (𝜏), representing physical retention of constituents moving through a tortuous pore 

network, were calibrated for each cell by minimizing the sum of log-squared residuals of the predicted vs. 

the measured Na+ and K+ releases measured for the first 63 days (Skeen et al. 2025). The first exchange at 

approximately 2 hr is not included in the calibration because typically there is surface wash of soluble 

constituents (including Na+) and mold interface effects when a monolith is first submerged in the 

leachant. Tortuosity factor for the material within the matrix located deeper than the diffusion front at the 

conclusion of testing was set equal to the tortuosity factor for the most interior cell at the diffusion front. 

The dependency of the effective diffusivity on tortuosity is described by: 

 𝐷𝑖,𝑒𝑓𝑓 =  𝐷𝑖
0 ∅

𝜏2
 Eq. 4.1 
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where Di,eff is the effective diffusivity (m2 sec-1) and ∅ is the porosity (fraction). Calibration was achieved 

by minimization of residuals between the simulated and measured values. Arithmetic residuals were 

calculated as:  

∑𝑅 = 𝑙𝑜𝑔| 𝑦 − 𝑦̂|2 Eq. 4.2 

where R is the residual, y is the observed value and 𝑦̂ is the predicted or modeled value. 

 

Figure 4.3. Conceptual LXO model used for tortuosity factor calibration. 

4.1.4 Results to Date 

4.1.4.1 pH Dependent Model 

Figure  shows the results of EPA Method 1313 and the simulated LSP by LXO for a pH range 1-14 for 

the T3 and T6 samples. Despite the difference in water-to-dry-materials ratios in the mix designs, the pH 

dependency of major constituents (Al, Ca, Fe, Si, Mg, Na, and S) is almost identical for both grouts, 

indicating no significant effect on the mineral composition of the grouts. Therefore, for LSP modeling, T3 

and T6 were simulated as duplicates of the same material. The blue dashed line in the panels of Figure  

show the simulated LSP curves by LXO, and Figure  shows the corresponding simulated solid 

compositions. XRD measurements provided a upper boundary condition for the relative amounts of 

simulated solids (Table . This condition was met by results for all constituents used in the simulation. 

While the XRD data provides limited information on some of the solid material composition of the grout, 

combining EPA Method 1313 test results with LXO modeling allows for the estimation of the solid 

composition of the material, which is traditionally difficult to determine from XRD (in which materials 

that are not identified are considered to be amorphous or below detection limits) or other solid 

characterization methods. Hence, together with further simulation results, it allows the use of the 

calibrated mineral reaction set to describe how the hydrated lime secondary liquid waste grout interacts 

with the environment under wide range of pH conditions and porewater compositions.  
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Figure 4.4. Results of EPA Method 1313 tests and the modeled prediction of LSP (liquid-solid 

partitioning) curves. Red and purple dots are the experimental data of tests T3 and T6 at L/S 

10. Blue dashed lines represent the predicted LSP curves for L/S 10. 
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Figure 4.5. Predicted solids composition on unit cell basis as a function of pH for EPA Method 1313. 

4.1.4.2 Effective Diffusivity and Tortuosity Factor Modelling 

A reactive transport model was used to model the effective diffusivity of close-to-conservative 

constituents in tests of mass transfer rate tank leaching tests (EPA Method 1315). Non-binding 

constituents (e.g., sodium, potassium, nitrate, NO3) can be used to calibrate the tortuosity factor of porous 

medium as their effective diffusivity is mostly affected by concentration gradient, porosity, and tortuosity 

factor. In these simulations, values of initial porosity and porewater concentration gradients are based on 

measurements (e.g., mercury intrusion porosimetry and EPA Method 1313), making tortuosity factor the 

only unknown in the effective diffusivity equation (Eq. 4.1). Figure  shows results of EPA Method 1315 

tests for samples T3 and T6. The gray line (slope of -0.5) in each panel demonstrates the theoretical 

diffusion flux of a fully non-binding constituent. For the duration of the tests, both sodium and potassium 

exhibited close to conservative flux as being non-binding from the monolith. Hence, tortuosity factor was 

calibrated using sodium and potassium. While T3 and T6 are similar chemically, the effective diffusivity 

of T3 was higher than of T6 (for sodium and potassium),this result possibly reflecting differences in the 

physical properties of the grout samples, including structure, pore size, and pore size distribution. 
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Figure  shows results of LXO simulations for duplicate samples from EPA Method 1315 for T3 and T6 

samples. The results are presented as concentrations of sodium and potassium as a function of time. 

Tortuosity factors of hydrated lime secondary liquid waste grout T3 and T6 samples were calibrated using 

LXO. Tortuosity factors were estimated to be 40 and 61 for T3 and T6, respectively. The calibrated 

tortuosity factor range (40-61) is lower than the published range (80-150) for CS materials calibrated by 

Skeen et al. (2025). 

 

Figure 4.6. Results of EPA Method 1315 tests for duplicates of T3 and T6 samples. 
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Figure 4.7. LXO simulation results for T3 (top) and T6 (bottom) to determine tortuosity factors of these 

non-binding species. Red and purple dots are experimental data, and the blue dashed line is 

simulated concentration. 

4.1.5 Path Forward and Integration 

4.1.5.1 Year 1 Accomplishments  

The work performed in Year 1 of this task has shown the promise of geochemical speciation modeling to 

replicate leaching behavior of various grout formulations and provide calculated parameters crucial for 

grout modeling. This tool will form a key component of the Hanford Grout Modeling Framework in its 

development in Year 2. During Year 1, the following accomplishments were made in maturing the 

geochemical speciation model:  

• Results of EPA Method 1313 and 1315 tests for hydrated lime were converted to LXO database 

formats. The LXO format is planned for the presentation of leaching data relevant for Hanford grouts 

moving forward. 

• pH-dependent simulations for hydrated lime secondary liquid waste grout T3 and T6 samples were 

developed in LXO. 

• LXO simulation was used to develop and calibrate a mineral reaction set for hydrated lime secondary 

liquid waste grout T3 and T6 samples that can describe the interaction of grouts with the 

environment under a wide range of pH conditions. 
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• Mass transfer rate tank leaching simulations were developed in LXO for hydrated lime secondary 

liquid waste grout T3 and T6 samples. 

• Tortuosity factors of hydrated lime secondary liquid waste grout T3 and T6 samples were calibrated 

using LXO. Tortuosity factors were estimated to be 40 and 61 for T3 and T6, respectively. 

• No significant differences were observed in chemistry, but the water-to-dry materials ratio may 

affect physical properties as such as tortuosity factor and, therefore, affect the effective diffusivity of 

constituents in the secondary liquid grout waste. This potential effect will be studied further using 

sensitivity analyses in Year 2.  

4.1.5.2 Year 2 Plan 

The following tasks are planned for Year 2 of the project. 

• Subtask 3.1.1 – Continued Geochemical Model Development: Efforts similar to those performed 

for the T3 and T6 samples will be done for the T11 sample. Following this, the mineral reaction set 

describing Tc LSP for T3, T6, and T11 grout samples will be incorporated, along with these mineral 

sets, in mass transfer tank leaching simulations for diffusion prediction and further validation of the 

reactive constituents. The simulations performed to date will be extended beyond 63 days for 

validation of modeled monolith bulk tortuosity factor to predict “long-term” leaching behavior (in 

collaboration with H2C staff). An additional grout case will be evaluated using a dataset generated 

by PNNL and SRNL for the leaching of ultra-high performance grout. These grouts are being 

considered as waste forms for solid secondary wastes and as barriers due to their low porosity. 

• Subtask 3.1.2 – Uncertainty: This task will begin to construct the uncertainty component of the 

Hanford Grout Modeling Framework with an approach taken for the estimation of mineral network 

uncertainty by using uncertainties associated with solid phase Kf values and pH. 

• Subtask 3.1.3 – Framework Integration: This task will target development of a link between 

eSTOMP and LXO to provide geochemical speciation information in conjunction with Theme 6.  

4.2 Theme 3 Task 2: Integration of Key Aging Processes as Spatial 
Evolution in eSTOMP. 

4.2.1 Team Members 

Jacob Anderson (PNNL), Xuehang Song (PNNL), Chen Gruber (VU), Christine Langton (SRNL) 

4.2.2 Background 

In the conceptual models supporting the Hanford Grout Modeling Framework, described in Section 1.2, 

oxidation and carbonation were identified as key processes that needed to be accurately represented. 

These processes progress from the outer surface of the grout inward to the monolith as reactive species 

(e.g., carbonate, O2) are transported to the grout from the near-field environment. Currently, neither 

process is discretely determined in grout modeling at Hanford, and any changes in material properties 

induced by these processes are included as bulk step changes for the whole monolith. The parameter most 

impacted by these changes is contaminant retention, which in current modeling is represented as a static 

distribution coefficient (Kd, higher Kd is higher retention). Once the grout becomes oxidized, at some 

point Kd decreases and contaminant release increases. However, oxidation and carbonation have impacts, 

both beneficial and deleterious, on other grout properties, and this step change approach is overly 

conservative. 
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In the SRS PA, oxidation and carbonation are evaluated dynamically using information from pore volume 

exchanges. With the emergence of geochemical speciation modeling to assess the impacts of oxidation 

and carbonation on grouts (Chen et al. 2023; Gruber et al. 2022; Chen et al. 2021), contemporary tools are 

available to evaluate the progression of these processes spatially and dynamically in grouts at Hanford. 

This task is focused on remediating this significant gap in grout modeling by developing approaches to 

simulate these two processes in Hanford-relevant materials and disposal environments. This tool will be a 

direct component of the Hanford Grout Modeling Framework for evaluating how the two key processes 

affect aging. The tool will eventually function by using the reactive transport software to evaluate the 

ingress of O2/CO2 into grouts. Based on the depth, spatially dependent properties of the grout will be 

determined using geochemical speciation modeling (e.g., contaminant speciation, mineral makeup). In 

doing so, a dynamic, spatially driven model of oxidation and carbonation will be developed. 

4.2.3 Technical Approach 

eSTOMP is used for geochemical and reactive transport modeling to simulate the interactions of grout 

waste forms with the subsurface environment at Hanford. Within this task, eSTOMP simulations assessed 

the software’s ability to reconstruct oxidation processes in grout, using a similar approach to that used in 

the SRS PA (Kaplan et al. 2005). The case studies evaluated herein focused on the oxidation front’s 

progress into grout waste forms of two different sizes: a B-25 waste box and a waste burial box. The full 

input files can be found in Appendix C. Table  compares the properties of the two case studies.  

Table 4.4. Comparison of the properties of the two case studies for oxidation testing in this report. 

Property B-25 Box – 8 High Stack Burial Box – 8 High Stack 

Height (1 waste form/total) 1.19m / 14.52m 1.22m / 14.76m 

Length (1 waste form/total) 1.83m / 1.94m 2.44m / 2.55m 

Width (1 waste form/total) 1.17m / 1.28m 1.22m / 1.33m 

Density (g/cm3) 2.82 2.82 

Porosity 0.557 0.557 

Hydraulic Conductivity (cm/s) 1.54 × 10-9 1.54 × 10-9 

Surface area (m2) 11.42 14.88 

Volume (m3) 2.55 3.63 

Surface Area to Volume (m-1) 4.48 4.099 

Each input file contains detailed geochemical parameters such as waste form composition, governing 

equations, and subsurface interactions that influence oxidation and carbonation. These test cases are 

examples of how current subsurface modeling is done at Hanford without dynamic callouts. 

In Appendix C, the two input files for eSTOMP are consolidated into a table format to summarize the 

parameters used to generate a baseline grout case for oxidation. The models were initialized with a 

3.5-mm/yr infiltration rate and have identical density and porosity values for the high-density 

(HD_BACKF) and low-density (LD_BACKF) backfill while the grout (W1) is both more dense and more 

porous than the backfills. Other parameters like hydraulic conductivity, saturation functions that define 

parameters related to van Genuchten models for water retention capabilities, aqueous relative 

permeability, aqueous species, conservation equations, kinetic equations, and boundary conditions are 

considered. That is not an exhaustive list, and the rest can be found in Appendix C. 

In the simulations, the degree of oxidation is measured by the changes in reduction capacity within the 

grout. Reduction capacity is the numerical representation of the ability of a material to consume oxidants 
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and, as such, maintain existing species in reduced states (Abrahmson et al. 2022). Using these input cards, 

eSTOMP predicts the reduction capacity of certain materials and gives insight into how, when, and why 

the waste form will leach into the surrounding subsurface. The general redox equation is presented in Eq. 

4.3: 

O + e− = R Eq. 4.3 

where: 

O  = oxidizing agent, meq e− L−1 

R  = reducing agent, meq e− L−1 

e- = electron 

The progression of reduction capacity consumption was defined as follows: 

𝑂2(aq) +  R(grout) =  R𝑂2(grout) Eq. 4.4 

where: 

O2(aq) = O2 dissolved in water (meq e− g-1 of the fluid) 

R(grout)  = reduction capacity of the grout (meq e− g−1 of solid) 

RO2(grout) = oxygenated grout (meq e− g−1of solid; shown in traditional stoichiometric chemistry as a 

product of the two reactants, rather than as an oxidized species) 

The expression used to calculate the rate of oxidation (RO; meq e− g−1 yr−1) for the above reaction (Eq. 

4.3) is:  

𝑅𝑜 =  k ·  𝐶𝑂2
·  𝐶𝑅 Eq. 4.5 

where k is the oxidation rate coefficient (meq−1 e− g yr−1)), CO2 is the concentration of dissolved O2 (meq 

e− g−1), and CR is the concentration of reductant in the grout (meq e− g−1) (Kaplan et al. 2005). 

The primary goals of model development are to integrate oxidation and carbonation processes into 

eSTOMP using the methodology from SRS in Year 1 and then in Year 2 work toward creating 

communication between eSTOMP and ORCHESTRA for dynamic updates to oxidation and carbonation 

parameters. Good progress has been made running simulations in eSTOMP for multiple cases of grout 

disposal for oxidation 

4.2.4 Results to Date 

The current step change, static Kd approach limits the model’s ability to accurately predict long-term 

behavior and the impact of oxidation and carbonation. Preliminary simulations of an oxidation process of 

CS grout using the B-25 and waste burial box cases have shown that while the models run successfully 

under these static assumptions, they fail to capture the changes in the waste forms that would naturally 

occur in response to subsurface conditions. As a result, the predicted leaching rates are likely to be 

inaccurate, since dynamic changes in waste form chemistry are not considered. This highlights the need to 

incorporate dynamic processes for a more realistic representation of grout behavior in long-term disposal 

scenarios. 

Previous work was done to recreate the SRS PA waste burial method. A comparison between the SRS PA 

and the PNNL model revealed that the PNNL model predicted a reduction capacity of ~ 16% while the 
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SRS model predicted 16%. This difference could be explained by the differing amounts of salt solution 

between the models.  

Figure  shows the baseline model setup for each test case. The waste burial box has a slightly longer 

waste form than the B-25 waste box, which is the main difference between the two as both have the waste 

form surrounded similarly by low- and high-density backfill. 

 

Figure 4.8. Low- and high-density fill around the grout waste form in the B-25 waste box (left) and the 

waste burial box (right). 

Figure 4.9 and Figure 4.10 present some of the results for each test case. In most cases, box size has no 

discernable effect on the reduction capacity consumed by the salt solution and the residual reduction 

capacity. However, there is a slight decrease in the reduction capacity consumed by dissolved oxygen 

(DO). The waste burial box also seems to have more solution product, O2, slag, and slightly more O2 

product than the B-25 waste box. These findings signal that larger box size provides more byproducts 

from oxidation with comparable reduction capacity to the B-25 waste box and could be more susceptible 

to oxidation reactions because it has more solute mass present. Figure 4.11 shows the consumption of the 

reduction capacity with a 3-D visualization of the B-25 waste form. This shows the regions with higher 

consumption of reduction capacities. 

 

Figure 4.9. Total solute mass (meq e-) for the B-25 waste box (left) and the waste burial box (right). 
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Figure 4.10. Reduction capacity (%) for the B-25 waste box (left) and the waste burial box (right). 

 

Figure 4.11. B-25 waste box reduction capacity consumption. 

4.2.5 Path Forward and Integration 

The Year 1 effort has shown that eSTOMP is capable of tracking oxidation processes spatially using 

previously established approaches for saltstone. Moving forward, the task will focus on linking the 

impacts of oxidation and carbonation on grout properties through geochemical speciation modeling and 

developing models for carbonation.  

• Subtask 3.2.1 – Oxidation Modeling: This task will continue to mature the modeling of oxidation 

processes in Hanford grout. This will be done by carrying out simulations similar to those presented 

using other grout formulations. This effort will include verification modeling against experimental 

datasets (Langton and Almond 2013; Chen et al. 2023; Saslow et al. 2024). Oxidation can occur in 

both the pre-burial (air exposure) and post-burial timeframes, and both will be considered in these 

efforts. 

• Subtask 3.2.2 – Carbonation Modeling: This task will create baseline simulations for carbonation, 

similar to the approach for oxidation modeling.  

• Subtask 3.2.3 – Geochemical Based Impacts: This task will update the methods by which oxidation 

and carbonation are handled in in eSTOMP to reflect the changes that occur over time. A callout 

between LXO and eSTOMP will be developed by writing a wrapper for eSTOMP to communicate 
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with LXO and dynamically update parameters affecting oxidation and carbonation. While initial 

development has begun, there are still questions about the most effective way to implement these 

dynamic updates without complicating the model excessively. The integration of LXO will be 

explored to facilitate dynamic updates using the C++ version of LXO. LXO will serve as a control 

mechanism to interface with eSTOMP, allowing oxidation and carbonation processes to be updated 

based on geochemical calculations derived from the eSTOMP subsurface model. To incorporate 

LXO, a code wrapper is being developed to help the eSTOMP and the geochemical calculator 

communicate and exchange the needed information for these planned dynamic updates, see Figure . 

Collaboration with Theme 1 Task 1 and Theme 3 Task 1, which focuses on developing specific 

waste form materials geochemical and mineral information, will ensure that both material properties 

and environmental interactions are well-represented in the Hanford Grout Modeling Framework. 

 

Figure 4.12. High-level design for eSTOMP and ORCHESTRA interaction for dynamically updating 

oxidation and carbonation. 

4.3 Theme 3 Task 3: Contaminant Interactions with Microbial 
Processes 

4.3.1 Background 

Within the Hanford subsurface, a range of microbial processes can lead to natural attenuation of 

contaminants. One such contaminant is nitrate, a major component of LAW, which in a hypothetical 

disposal scenario of LAW grout in the IDF can contribute significantly to subsurface contamination 

(Asmussen et al. 2024). Microbial conversion rates for nitrate (and nitrite) are available from prior 

subsurface models but have yet to be linked with grout leaching behavior. This task will evaluate the 

influence of nitrate conversion on the overall impact to groundwater from a grouted inventory of LAW in 

the IDF. 
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4.3.2 Technical Approach 

A simple test model case was performed that considered nitrate transport with both linear adsorption and 

microbial reduction. These cases simulated the effects of microbial reduction on nitrate leaching using a 

previous configuration of grouted inventory of LAW in the IDF (USDOE 2018) with waste form size of a 

B-25 box with dimensions of 6 ft × 4 ft × 4 ft. Kd values are 0.372 mL/g for nitrate in the grout and 

0.0 mL/g for nitrate in the backfill. Kd was previously used to evaluate the diffusive release of nitrate 

from cementitious waste forms. Dissolved organic carbon (CH2O) is assumed to be initially present in the 

backfill. As an example, nitrate reduction reaction and rate parameters are taken from Newcomer et al. 

(2018): 

(5 + 𝛾)𝐶𝐻2𝑂 + 4𝑁𝑂3
− ↔ +4𝐻+ + 5𝐶𝑂3

−2 + 2𝑁2(𝑎𝑞) + 2𝐻2𝑂 + 𝛾𝐵𝑖𝑜𝑚𝑎𝑠𝑠 Eq. 4.6 

where  is the microbial yield, which is 0.17.  

Using dual Monod kinetics, microbial growth was specified as a function of the concentration of nutrient 

substrates (NO3
−

 and CH2O) and the concentration of microbial mass in the system. Dual-Monod 

maximum growth rate coefficients is 10-7 (MDOC MNO3
-1 Mbio-1) .  The half saturation constants of CH2O 

and NO3
− are 10-4 M and 8.064x10-6 M, respectively. Microbial biomass decay was given a constant rate 

of 10-7 s-1.  

4.3.3 Results to Date 

Initially, the concentration of CH2O was set to 1.0 mM in the backfill, and total nitrate in the waste form 

was 1 mole. Figure  compares the cumulative release of nitrate from the IDF. Microbial reduction 

decreases the amount of nitrate released from the IDF. The results are sensitive to the substrate 

concentrations and where they are located. 

 

Figure 4.13. Comparison of the model results of nitrate release within the IDF from a grouted inventory 

with and without nitrate reduction. 
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4.3.4 Path Forward and Integration 

Year 1 of this work showed that there can be an impact at the transport timescales of interest for nitrate 

remediation. Updated calculations will be performed to integrate other aspects of the Hanford Grout 

Modeling Framework once complete. Integration of the microbial process into reaction network scenarios 

will be straightforward. One significant gap in testing and validating the nitrate conversion model is the 

lack of relevant experimental data. There is currently a task funded by H2C looking at microbial 

conversion rates of nitrate and nitrite in these simulations. 
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5.0 Theme 4: Modeling of Cracking in Grout 

5.1 Theme 4 Task 1: Peridynamics Modeling 

5.1.1 Team Members 

Jessica Rimsza (Sandia National Laboratories, Sandia), Jeremy Trageser (Sandia), Mark Rigali (Sandia), 

Naveen Karri (PNNL), Jon Lapeyre (PNNL), Suraj Rahmon (PNNL) 

5.1.2 Background 

Cracking remains the prominent mechanism that can drive failure of grout and can be caused by several 

processes. Yet, predicting and representing cracking in cements in general remains a challenge and has 

rarely been pursued for grouts used in waste management applications. PD modeling has potentially 

beneficial features for the modeling of grouts used in waste disposal, such as ease of implementation and 

an intrinsic ability to represent brittle fracture, which makes this effort distinct from previously employed 

classical continuum methodologies. With the success of PD application to the aging of hardened cement 

pastes (Jones et al. 2021), this task will be focused on a novel effort integrating PD modeling into the 

prediction of physical properties of grouts used in waste management. The goal of this tool development 

is to provide predictions of the degree of cracking (and possible failure modes) of various grouts in this 

disposal/closure application. In the current modeling, the grouts can be assumed to lose all structural 

integrity in short timeframes. The goal is to develop a model with PD to predict the degree of cracking at 

certain times to define how cracking in grout is handled in the Hanford Grout Modeling Framework as a 

change in surface area and transport pathways. 

5.1.3 Technical Approach 

This task was designed with two components: (1) preparing laboratory samples with different 

formulations and exposure conditions that can provide cracking test cases for PD and (2) modeling of 

these grout samples using PD. Year 1 was focused on constructing first-of-its-kind PD modeling of 

Hanford tank floors that have experienced varied thermal histories. In Year 2, this work will target waste 

form grouts.  

5.1.3.1 Sample Fabrication, Thermal Treatment, and Testing 

Three different cementitious mix designs were fabricated at PNNL to provide data to assess against PD 

modeling predictions. These mixtures included two conventional construction binders of an OPC concrete 

and an OPC mortar. Additionally, CS, a highly studied grout at Hanford for solidification and 

encapsulation, was fabricated to provide an initial waste form dataset. Unlike the previous two 

conventional mix designs, CS is a ternary blend of BFS, FA, and OPC at 47, 45, and 8 wt%, respectively. 

Unlike the conventional binders, the CS was mixed with a LAW simulant instead of deionized water 

(conforming to Type II reagent water in ASTM 1193-24) to fabricate a mix at a water-to-binder ratio of 

0.5. The water-to-binder ratio for the mortar and concrete was also 0.5.  

Table  collates the mix design for the concrete and mortar samples. The source for the Type I/II OPC was 

Exshaw and the coarse and fine aggregate (i.e., gravel and sand) was sourced from American Rock 

Products (ARP) in Richland, WA. The fine aggregate was dried at 110 °C in an oven before fabrication of 

concrete or mortar. The gravel was used as-is. The gravel size deviated from the original mix design in 

Daniel et al. (1982) by having a maximum diameter of 9.53 mm (3/8 in.) rather than 19.05 mm (3/4 in.); 

this is due to changes in aggregate availability. The CS mix design is reported in Table , with the cement 
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manufacturer being Exshaw while both BFS and FA were sourced by Lafarge as the NewCem product for 

the BFS and FA from a powerplant in Centralia, WA. The simulant was a highly alkaline 5.6 M Na LAW 

simulant fabricated in 2024 without hexavalent chromium [i.e., Cr(VI)] with 30% dissolved solids by 

mass.  

Table 5.1. Original and fabricated mix design for concrete and mortar samples. 

Constituent 

(source) 

Original 

Concrete 

Design(a) 

(lb/yd3) 

Concrete 

Batch 1 

(g) 

Concrete 

Batch 2 

(g) 

Mortar 

Batch 1 

(g) 

Mortar 

Batch 2 

(g) 

Mortar 

Batch 3 

(g) 

Cement (Exshaw) 494 476.16 476.75 475.64 475.69 475.68 

Sand (ARP) 1,154 1,096.38 1,096.21 1,095.10 1,095.26 1,095.56 

Gravel (ARP) 2,000 1,905.34 1,906.21 N/A 

Water 267 256.50 256.50 256.76 256.11 256.87 

Water-to-cement ratio (w/c) 0.54 0.5387 0.5380 0.5398 0.5384 0.5400 

% Fine aggregate to total aggregate 36.6 36.5 36.5 N/A 

(a) Sourced from Table 4 of Daniel et al. 1982. 

Table 5.2. Fabricated mix design for Cast Stone samples. 

Constituent Source 

Batch 1 Cast 

Stone 

(g) 

Batch 2 Cast 

Stone 

(g) 

Cement Exshaw 172.58 172.96 

Blast furnace slag Lafarge NewCem 1,020.79 1,013.56 

Fly ash Lafarge Centralia 172.58 970.04 

5.6 M Na LAW simulant FY24-5.6M LAW-COMB-02292024-1 

No Cr 

1,652.84 1,652.69 

Simulant dissolved solids (% mass) 0.3 

Water-to-binder ratio (w/b) 0.5 0.53 0.54 

The fabrication and mixing varied depending on the mix design. For the concrete samples, the cement and 

fine aggregate were mixed mechanically following ASTM C305-20, followed by hand-mixing of the 

coarse aggregate for 2 minutes. The resulting mix was placed into 50 mm ∅ × 100 mm molds and tapped 

to remove air pockets. Excess vibration was avoided to prevent segregation of the coarse aggregate. The 

same-sized molds were used for all three mixtures. Preparation of the mortar samples also followed the 

directions of ASTM C305-20. After homogenizing and mixing, the samples were poured into molds at 

half-capacity, and the molds were subsequently tapped and vibrated, followed with a second pour to fill 

the mold. After filling the mold, the samples were tapped and vibrated a second time. A total of 10 

concrete specimens (split between two batches) and 12 mortar samples (split between three batches) were 

measured. The CS samples were mixed using an overhead mixer instead of a planetary mixer. The CS dry 

mix was added to the simulant and mixed at up to 300 rpm for 15 minutes. After mixing, the CS grout 

was poured into molds and like the mortars were poured halfway, agitated to remove air bubbles, then 

poured into the mold with a second vibrating/agitation stage. Between two batches, 17 CS specimens 

were tested. The completed molds were placed into a 45-L (10-gal) bucket with a small volume of water 

to ensure a humid environment for the cementitious materials. The curing stage lasted for 28 days. 
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Comparisons of the PD modeling to the conventional mortar and CS will be available at the beginning of 

Year 2. 

After the curing and demolding stage, the mass, height, and diameter of all the monoliths were measured. 

Following these measurements, the subsequent testing for the conventional samples and CS diverged. The 

conventional concrete and mortar mixtures were divided into three groups: a room temperature group 

serving as the control, a 93 °C heat treatment, and a 149 °C heat treatment. The samples were heated at a 

rate of 1 °C/min, followed by the isothermal hold at the target temperature in a conventional oven, and 

subsequently heated for 7 days. This heat treatment was based on thermal history of tanks reported in 

Giever (2018). The highest temperature reached was within the tank center corresponding to ~149 °C 

(300 °F). An additional temperature 94 °C (200 °F) was chosen as an intermediate temperature. The heat 

rate was calculated by using the slope of tank center bottom line estimated from 1965 to 1971 (~6 years). 

The resulting heating rate was very slow, on the order of µ°C/min; therefore, a heating rate of 1 °C/min 

was chosen since higher rates may lead to spalling of the concrete or mortar. After the heating period, the 

oven was turn off and the samples were passively cooled.  

Conversely, the CS samples were tested immediately without a heat treatment. To ensure a parallel cross-

sectional area, samples were cut with a slow-speed saw followed by wet grinding with 100 grit silicon 

carbide paper. This was done before physical testing (i.e., after the heat treatment for the respective 

samples), and the height was measured for the subsequent displacement and axial engineering strain 

calculations. The room temperature and cooled concrete monoliths were tested for compressive strength 

(σ) following ASTM C39/C39M-21. The elastic modulus (E) was calculated as the slope of the elastic 

region in the stress vs. axial engineering strain (ε) curve. The reported compressive strength was the 

maximum compressive stress in the elastic region. Figure  is a representative example of a stress-strain 

curve annotated with the elastic region, the linear fit, and the reported strength. 

 

Figure 5.1. Representative compressive test curve of CS sample nine from batch one. The slope of the 

elastic region is used as the elastic modulus (E), and the reported compressive strength (σ) is 

the maximum of that elastic region. 
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Since the CS specimens were not heat treated, the dataset only contains 28-day room temperature physical 

property measurements. To provide a more robust analysis of the failure of the samples, statistical 

treatment via Weibull distribution statistics was conducted. In the context of materials, Weibull statistics 

assume that a given volume of material under a uniform stress will fail at the greatest flaw (i.e., material 

is limited by its the weakest link). For cementitious waste forms, this would provide the stress that would 

initiate a crack, reducing the transportation distance for contaminants and significantly diminishing the 

immobilization performance. The PDF and CDF of the two-parameter Weibull distribution are given by 

the following equations: 

p(σ) = (
m

σ0

) (
σ

σ0

)
m

exp [- (
σ

σ0

)
m

] Eq. 5.1 

P(σ) = 1 - exp [- (
σ

σ0

)
m

] Eq. 5.2 

Here, p(σ) is the probability of the occurrence of a specific stress (σ), whereas σ0 and m are the scale and 

shape parameters. Conversely, the CDF or P(σ) is the probability that the specific stress is greater than 

population data or, in other words, the probability of failure. The σ0 is greater than 63.2% of the 

population of stresses, whereas the latter parameter, m, represents the data scatter of the distribution so 

that a lower value of m corresponds to a broad distribution whereas a higher value represents a sharp 

transition at σ0. In material science and failure analysis fields, this term m is often referred to as the 

Weibull modulus.  

The CDF can be linearized into a two-point linear equation to estimate the two parameters: σ0 and m. This 

can be done by taking the complement of the probability of failure and the probability of success S(σ), 

and through rearranging and simplification using the properties of logarithms, Eq. 5.4 is obtained. In the 

linearized formula, the left side of the equation is treated like a dependent variable whereas the Weibull 

modulus, ln(σ), and ln(σ0) are the slope, independent variable, and x-intercept of the line, respectively. 

The term P(σi) is the probability of failure for a stress sample i, which is determined based on the 

estimator formula from ASTM C1239-13 (2024), Eq. 5.5. Here, the term N is the total number of 

specimens, each assigned a number i. The individual strengths are ordered from weakest to strongest, so 

the weakest specimen is assigned the number one whereas the greatest number is assigned the number N. 

Once the “x” and “y” data are calculated, the subsequent m and σ0 parameters can be calculated: 

𝑆(𝜎) = 1 − 𝑃(σ) = 1 − (1 − exp [− (
𝜎

𝜎0
)

𝑚

]) Eq. 5.3 

ln[− 𝑙𝑛[1 − 𝑃(𝜎)]] = 𝑚 ln(σ) − 𝑚 𝑙𝑛(σ0) Eq. 5.4 

𝑃(𝜎𝑖) =
𝑖 − 0.5

𝑁
 Eq. 5.5 

5.1.3.2 Software Development and Simulations 

PD is a relatively recent reformulation of continuum mechanics (Silling 2000). Unlike traditional methods 

where material points interact over infinitesimal distances, PD allows interactions through bonds over 

finite distances. This is exhibited in material models where the material response is described by integral 

operators rather than spatial derivatives. A major benefit of this approach is the reduction in the regularity 

requirements imposed on the solution, allowing for the natural evolution of fractures and other 

discontinuities. 
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PD has been used successfully to describe a variety of phenomena such as crack branching (Bobaru and 

Zhang 2015), sintering (Silling et al. 2017), spalling (Silling et al. 2023), and chemomechanical failure 

(Jones et al. 2021; Chen and Bobaru 2015). The aim of this project is to develop PD capabilities for 

Hanford grout applications. To facilitate the exploration and validation of relevant models, the project 

team used the massively parallel open-source PD code Peridigm, which was originally developed at 

Sandia (Parks et al. 2012; Littlewood et al. 2024). This project has yielded several important 

enhancements to Peridigm, such as the implementation of a new solver and material models. 

Many of the applications of interest at Hanford for PD require long timescales and recognize the need for 

capabilities to solve quasi-static problems. While Peridigm has built-in implicit solvers, these solvers 

currently experience significant challenges when damage is encountered and were not suitable for the test 

cases here in their current form. To address this, a dynamic relaxation solver was integrated into 

Peridigm, permitting quasi-static analysis. Several material models were also implemented into Peridigm. 

For initial validation of material models, the aim was to compare simulation results with experimental 

data. The first experiment considered involved a grout cylinder composed of coarse and fine aggregates 

(OPC concrete from the previous section) subjected to uniaxial compression. Due to the relatively small 

dimensions of the cylinders in the study, the grout was expected to behave as a quasi-brittle material. The 

team considered several existing quasi-brittle PD material models from the literature (Gerstle et al. 2005; 

Zaccariotto et al. 2015; Lai et al. 2018; Niazi et al. 2019), ultimately focusing on the bilinear model 

proposed by Zaccariotto et al. (2015) due to its simplicity, ability to match model parameters to 

commonly measured engineering quantities, and capacity to represent softening as an irreversible process 

– features not shared by all models. 

The first test case considered involved the changing properties of the concrete used in the Hanford tanks 

and any changes in properties due to the thermal history of the concrete while in service. Due to the 

environmental conditions expected in grouted material at Hanford, relevant material models must 

consider variations in material properties in response to factors such as material degradation, temperature 

variations, and heterogeneity. Previous work developed a model with this potential into Peridigm (Jones 

et al. 2021; Trageser et al. 2022; Torrence et al. 2022); however, the model did not include softening, 

making it less applicable to simulating material response in grout. Taking inspiration from Zaccariotto et 

al. (2015), softening was incorporated into the model. This enhanced model allows for parameter changes 

due to various phenomena, including temperature variation, degradation, heterogeneity, and softening, 

which are essential for accurately describing material response in grout under the desired environmental 

conditions. The corresponding material model was then implemented into Peridigm. 

5.1.4 Results to Date 

5.1.4.1 Experimental Results – Conventional Concrete  

The concrete mixing produced adequate samples. Open porosity was observed on the outside façade of all 

the samples. Size varied from “pinhole” to larger – on the order of a few millimeter – cavities. Heat 

treatment of the concrete samples appeared to have minimal effects on the specimens. Representative 

photos in Figure 5.2 of the control as well as the specimens before and after firing show the fired samples 

change color to a dull gray. No other color changes were observed, such as red/orange coloring due to 

oxidized aggregate. Additionally, no cracks after the heat treatment were observed. 
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(a) 

  

(b) (c) 

  

(d) (e) 

Figure 5.2. Photos of (a) control (i.e., non-heat treated) concrete samples, (b,c) samples before and after 

firing at 94 °C, and (d,e) samples before and after firing at 149 °C. Examples of pinhole 

porosity (solid) and larger cavities (dashed) are circled in panel (a). 

Increasing the heat treatment temperature had limited effect on the compressive strength (all three heat 

treatment temperatures exhibited similar compressive strength within the standard deviation), as shown 

with the goodness-of-fit 0.0909 R2 for a linear model, while the elastic modulus of the concrete exhibited 

a slight decrease with temperature treatment R2 0.7715, as shown  
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(a) (b) 

Figure 5.3 and tabulated in Table 5.3. This did not lead to any changes in the fracture patterns, with 

patterns 2 and 3 being prevalent in all three temperature regimes. 

Table 5.3. Summary of the concrete physical properties: 28-day avg. compressive strength, 28-day avg. 

elastic modulus, and the fracture patterns measured and observed during testing. 

Temperature 

Avg. 28-day Compressive Strength  

(MPa) 

Avg. 28-day Elastic Modulus  

(GPa) Fracture Patterns 

Control 30.28 ± 7.64 4.51 ± 1.59 2,3,2 

94 °C (200 °F) 31.58 ± 11.22 4.40 ± 1.77 2,2,4 

150 °C (300 °F) 29.84 ± 8.53 3.57 ± 1.16 3,2,2 

 

  
(a) (b) 

Figure 5.3. (a) Average 28-day compressive strength and (b) average elastic modulus of concrete as heat 

treatment temperature increases. The standard deviation is represented by the error bars. 

These results align with the scientific literature examining how heat exposure can damage concrete 

(Khoury 2000). The hydrates in concrete only begin to decompose above 100 °C and, given the 
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temperature data, the concrete likely experienced dehydration of free water and loosely bound water 

within certain hydrates such as ettringite and calcium silicate hydrate gel. However, the extent of damage 

was less than for worst-case conditions such as temperatures above 300 °C (572 °F), where catastrophic 

strength loss and explosive spalling may occur. Likewise, the lack of cracks disqualifies thermal 

expansion mismatch at 150 °C or, similarly, any volume changes due to phase changes (e.g., α-quartz to 

β-quartz). From the physical testing, three types of facture patterns were observed. Typical fracture 

pattern adapted from ASTM C39/C39M-24 are included in Figure 5.4 with corresponding examples from 

concrete specimens included in Figure 5.5.  

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 5.4. Cartoons of typical fracture patterns based on ASTM C39/C39M-24. Here, “caps” are 

secondary materials like neoprene, sulfur mortar, or high-strength gypsum plaster placed at 

the ends of samples to facilitate C39/C39M planeness requirements. These secondary 

materials were not used for these tests. Fracture is not limited to these patterns. 

Generally, the cementitious binder matrix was the source of failure rather than any large aggregate. The 

inclusion of large aggregate, while within the recommendations of ASTM C192/C192M-24 of being less 

than three times the mold diameter, appeared to affect the propagation of the crack during testing, leading 

to a mismatch in fracture pattern in the results compared to experimental results. This finding prompted 

the batching of mortar samples. These observations are used to compare against PD modeling in the 

section that follows. 



PNNL-37528 

Theme 4: Modeling of Cracking in Grout 5.9 
 

   

(a) (b) (c) 

Figure 5.5. Photographs of representative concrete specimens depicting the different fracture patterns 

from Figure 5.4. (a) Batch 1 Sample 10 fired at 94 °C pattern 2, (b) Batch 1 Sample 1 fired at 

149 °C showing pattern 3, and (c) Batch 2 Sample 2 fired at 94 °C. Patterns 2 and 3 were as 

prevalent as the resulting pattern, whereas pattern 4 only occurred once during testing. Note: 

The photo in panel (a) is rotated to better show the fracture pattern. 

5.1.4.2 Experimental Results – Conventional Mortar 

Similar to the concrete samples, there were open cavities and “pinhole” pores on the surface of the 

monoliths; however, the porosity was not as prevalent compared to the concrete samples. The coloring of 

the mortar samples varies; it was generally lighter compared to the concrete samples. After firing, 

independent of temperature, the color transformed into a uniform buff gray. No cracking was observed 

after the firing process. Figure 5.6 presents representative photographs of the control and comparison 

samples. 
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(a) 

  

(b) (c) 

  

(d) (e) 

Figure 5.6. Photos of (a) non-heat-treated mortar samples, (b,c) samples before and after firing at 94 °C, 

and (d,e) samples before and after firing at 149 °C. Examples of pinhole porosity (solid) and 

larger cavities (dashed) are circled in panel (a). 

The effect of increasing the heat treatment temperature on the mortar’s 28-day compressive strength and 

28-day elastic modulus was again limited, Table 5.4 and Figure 5.7. Other than one sample, the fracture 

patterns observed were mostly 2 and 3 (4 out of 10 and 5 out of 10, respectively). However, unlike the 

concrete sample, where increasing the temperature led to a slight decrease in performance, the mortar 

physical properties exhibited slight increases as the heat-treatment temperature increased. 
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Table 5.4. Summary of the concrete physical properties: 28-day avg. compressive strength, 28-day avg. 

elastic modulus, and the fracture patterns measured and observed during testing. Note: Two 

control specimens broke prematurely before testing. 

Temperature 

Avg. 28-day Compressive Strength  

(MPa) 

Avg. 28-day Elastic Modulus  

(GPa) Fracture Patterns 

Control 21.58 ± 6.34 2.81 ± 1.15 4,3 

94 °C (200 °F) 33.39 ± 14.96 4.56 ± 1.87 2,3,3,3 

150 °C (300 °F) 29.20 ± 3.32 3.62 ± 1.06 2,3,2,2 

 

  

(a) (b) 

Figure 5.7. (a) Average 28-day compressive strength and (b) average elastic modulus of mortar samples 

as heat-treatment temperature increases. The standard deviation is represented by the error 

bars. 

While certain factors like a more controlled mixing regime likely homogenized the mortar more than 

hand-mixing the concrete, there were likely additional factors that could have caused this difference. As 

previously seen in the concrete samples and in mortar samples in Figure 5.8, the cement matrix was the 

weaker phase regardless of temperature treatment. Many cracks deflect around the fine aggregate in 

Figure 5.8, although one crack transverses one larger aggregate. Regardless of the type of cementitious 

material, cement matrix is the “glue” that contains the fine and/or coarse aggregate to create the mortar or 

concrete composite. However, within the monolith volume, the concrete samples would be expected to 

contain a smaller volume of cement compared to the mortar due to the inclusion of coarse aggregate in the 

mix design. Therefore, if there is less cement and that cement is the weakest link, especially with 

increasing heat treatment, those effects would be magnified compared to the mortar.  
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(a) (b) (c) 

Figure 5.8. (a) Top surface of control mortar (Batch 1 Sample 2). (b) Fracture surface Batch 2 Sample 3, 

(c) Fracture surface Batch 2 Sample 1. Blue arrows show fine aggregate deflecting the 

propagation of a crack whereas green arrows show a crack traversing an aggregate. 

5.1.4.3 Experimental Results – Cast Stone  

Figure 5.9 shows a photograph of a representative CS sample (Batch 1 Sample 9) before and after 

crushing. The surface is smooth and has a gray-white color. After fracture, the green-blue color 

commonly observed in BFS-containing mixtures is observed. Literature sources have determined that 

sulfur chromophore(s) such as S3
- and S2

- significantly contribute to the blue and green coloring 

(Chaouche et al. 2017; Le Cornec et al. 2017).  

  

(a) (b) 

Figure 5.9. Representative photos of the 50 mm ∅ × 100 mm CS cylinder (a) before and (b) after type 3 

fracture. The green-blue color is commonly observed in BFS-containing mixtures. 
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The strength and elastic modulus were 8.527 MPa ± 3.744 MPa and 1.170 GPa ± 0.679 GPa, respectively. 

This is less than the conventional concrete and mortar samples. Since many samples were fabricated, 

additional failure analysis was conducted using Weibull statistics. Figure 5.10 shows the linearized data 

as well as the calculated m and σ0 values: 2.548 and 12.44 Mpa, respectively. Although the R2 value is 

near unity at 0.9523, deviation from linearity indicates different flaw populations within the tested 

samples contributing to the failure of the material.  

 
Weibull Modulus m (unitless) Scale Parameter σ0 (MPa) 

2.548 12.44 

Figure 5.10. Probability function vs. natural log of CS compressive strength (i.e., Weibull plot). The m 

and σ0 parameters (slope and x-axis intercept) were calculated from the linearized dataset. 

Seventeen samples were tested. 

These parameters were used to create the 28-day compressive strength CDF shown Figure 5.11. Within 

the population data, the average strength of failure is 11.04 MPa. The upper, median, and lower quartiles 

are 14.15, 10.77, and 7.64 Mpa, respectively, with a standard deviation of 4.66 MPa. Additionally, the 

probability failure was calculated for thresholds of interest. The Nuclear Regulatory Commission has a 

technical requirement of 3.45 MPa (500 psi), which for the CS 50 ∅ mm × 100 mm specimen had a 3.7% 

probability of failure at 28 days, whereas the IDF threshold is 0.5 MPa, which for the same samples at 28 

days had a 0.028% probability of failure.  
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Figure 5.11. Cumulative probability distribution of the tested CS specimens annotated with IDF and 

Nuclear Regulatory Commission thresholds. The inset (bottom right) is an enlarged image 

the intersection of the probability function and the regulatory thresholds. 

There are limitations to the analysis of the dataset. First, the dataset was relatively small, and this leads to 

inaccurate estimations of the true Weibull modulus. The literature varies on the number of samples 

necessary, with recommended sample sizes of 30, 60, or even 100+ for a “sufficient” experiment (Quinn 

and Quinn 2010; Nohut 2014). No attempt was made to characterize the origin of the flaw (e.g., surface 

flaw or volume flaw) that led to the failure of the material through forensic fractography. 

Finally, it is not immediately clear that a Weibull distribution would be sufficient to describe the effect of 

flaw distribution. Vu et al. (2022) showed that the Weibull distribution does NOT scale to larger volumes 

of concrete. This is likely due to differences in sample scale such as the proportion of aggregate, the 

interface between aggregate and paste, the amount of porosity, porosity connectivity, and processing 

parameters such as mixing affecting the type and distribution of flaws within their samples. While CS 

does not have aggregate, the microstructure could change due to differences in simulant concentration or 

composition. These changes can impact the activating reaction, leading to the differences in the reaction 

products and consequentially physical performance.  

5.1.4.4 Computational Results 

With the implementation of the necessary solver and material model capabilities into Peridigm, the next 

phase of the project focused on describing material response in grouts. PNNL conducted several 

experiments to be used for validation of material models of interest. These results are presented in Section 

5.1.3.1. The observations of lab samples under compression can be compared to the predictions of failure 

pattern in Peridigm. 

The simulations were conducted with Peridigm, which uses a meshless discretization of the domain. An 

example discretization of the domain can be seen in Figure . A no-slip boundary condition where the caps 

come into contact with the grouted cylinder was applied. The bottom cap is stationary while the top cap 
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compresses the cylinder up to an engineering strain of 0.01. The team explored a wide range of parameter 

permutations, such as percentage of aggregate packing as well as varying material parameters, as some 

uncertainty exists, particularly for the interface between aggregates and grout. 

 

 

(a) Discretization for the uniaxial 

compression geometry 

(b) Cross-section of the discretization for 

the uniaxial compression geometry 

Figure 5.12. Discretization for the uniaxial compression test geometry with 20% aggregate packing. 

Qualitatively, some of the expected behavior is observed. For instance, in Figure a, the characteristic x 

pattern appears, which is often seen in uniaxial compression tests when the material is more 

homogeneous. The larger aggregates used in the experiment do play a significant role in the resulting 

fracture patterns. In particular, from Figure b, Figure c, and Figure d, it was observed that the 

configuration of aggregates may prevent deeper penetration of the fracture into the cylinder, which is 

what was seen in the experimental results, see Figure 5.5a-c, where much of the damage is concentrated at 

the surface of the cylinder rather than the interior. These differences will be refined in Year 2. 

    

(a) 5% aggregate 

packing. 

(b) 10% aggregate 

packing. 

(c) 15% aggregate 

packing. 

(d) 20% aggregate 

packing. 

Figure 5.13. Fracture pattern cross-section for various aggregate packings. 
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From a more quantitative perspective, the damaged bonds in the system will also show when damage 

initiates in the simulations. Figure  compares the percentage of broken bonds to the engineering strain. 

Interestingly, the aggregate packing percent did not appear to play a large role in the initialization of 

damage. The amount of aggregates did, however, slow the accumulation of damage in the structure, 

allowing a larger strain before complete failure. The engineering strain at failure is reasonable when 

compared to experimental results where the engineering strain was observed between 0.007 and 0.0015. 

Small perturbations to the strength of the interface between the grout and aggregate did not yield 

significantly different results. The configuration of the aggregates was seen as far more important in 

determining the resulting fracture network and strength of the cylinder. 

 

Figure 5.14. Comparison of percent of broken bonds in the cylinder against the engineering strain for 5%, 

10%, 15%, and 20% aggregate packings. 

5.1.5 Path Forward and Integration 

5.1.5.1 Experimental Path Forward and Integration 

In Year 2, additional samples will be evaluated and compared against PD modeling. Both OPC mortar 

bars will be characterized that will are likely a better representation of the PD model since the fine 

aggregate is expected to cause less deviation than the larger gravel. Likewise, the ASTM mixing method 

and equivalent sample distribution is expected to limit any differences between batches and heat 

treatments. The CS samples will be tested to measure strength and elastic modulus without any heat 

treatment and provide data for a waste form case in the PD models. Unlike the conventional binders, the 

large number of samples can provide insight into the average performance of the CS monolith.  
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5.1.5.2 Computational Path Forward and Integration 

Year 1 efforts were primarily focused on model selection and validation as well as code development. 

Although early results look promising, model validation is still ongoing.  

• Subtask 4.1.1 – Continued Validation: The data PNNL is generating for mortar cylinders is 

expected to be easier to replicate with PD simulations due to the reduced dependence on aggregate 

configuration. Once the model is further validated, material response will be explored in relation to 

perturbations of material parameters due to environmental changes, loading conditions, and 

geometry. 

• Subtask 4.1.2 – Waste Form PD Modeling: Year 2 efforts will shift toward PD modeling of grout 

waste forms. Model validation with material degradation present is of particular interest. There is 

also strong interest in leveraging other modeling efforts within the team, particularly the mesoscale 

modeling from Section 4.2. The PD framework is especially well-suited for upscaling from other 

material models such as those found in molecular dynamics (Seleson et al. 2009; You et al. 2022). It 

is anticipated that the mesoscale models will provide valuable insights and contribute to an improved 

PD model of grout waste forms. 

5.2 Theme 4 Task 2: Maturation of Mesoscale Models for Hanford 
Grout 

5.2.1 Team Members 

Shenyang Hu (PNNL), Yulan Li (PNNL) 

5.2.2 Background 

As grouts age, there are spatial changes in the bulk material properties due to natural evolution of 

hydration products and interactions with the near-field environment. These bulk properties can directly 

impact the migration behavior of contaminants within the porous network of the grout. As such, one key 

grout property is porosity, which dictates the flow of water within the grout and associated diffusion of 

aqueous species. While geochemical speciation modeling (Theme 3 Task 1) can derive properties such as 

tortuosity changes, the micro-scale features of the porous grout network (e.g., connectivity) are not 

replicated. As such, a gap remains between the grout’s chemo-mechanical processes occurring on the 

microscale and the bulk properties. This task aims to begin to bridge this fundamental gap in grout 

modeling by developing mesoscale models of a Hanford grout system and assessing a migratory process 

in this network.  

Mesoscale modeling holds promise for investigating the microstructural processes within grouts that 

combine to dictate bulk material behavior. Prior development of mesoscale models occurred in the Center 

for Hierarchical Waste Form Materials Energy Frontier Research Center (EFRC) (Li et al. 2022a; zur 

Loye et al. 2018), where the aim was to develop advanced nuclear waste form materials through advanced 

synthesis, characterization, and multiscale modeling. Within this EFRC, a generic mesoscale model of ion 

exchange and leaching in multiphase porous structures was developed, as shown in Figure . The 

mesoscale model takes into account multi-physics coupling such as ion diffusion, interface reaction, 

porous media flow, elastic and electric interactions, phase transition, and microstructure evolution in a 

representative volume using a grout base case (geopolymer / zeolite particle composites) (Li et al. 2022b). 

During grout waste form aging, similar physics are expected, including diffusion in porous structures, 

microstructure change associated with oxidation and carbonation, deformation and cracking due to phase 

transition-induced volume change, leaching, and interface reaction (Li et al. 2022a). This multi-physics 
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coupling may be key to linking chemo-mechanical processes within the grout to bulk properties, 

providing technical defense-in-depth for the processes captured in the Hanford Grout Modeling 

Framework.  

The mesoscale modeling outputs are (1) the time and spatial evolution of species concentrations, stresses, 

and microstructures; (2) the effect of evolving microstructures on leaching kinetics; and (3) the effect of 

evolving microstructures on material properties such as effective diffusivity. These results can be directly 

compared with microstructures and material properties obtained from experiments. The mesoscale 

simulations can also generate a huge amount of virtual data on material performance and property 

degradation.  

 

Figure 5.15. A mesoscale model of adsorption and/or desorption in porous structures during batch and 

column processes (Li et al. 2022a; Proust et al. 2024). (a) Scanning electron micrograph 

(SEM) of LTA-zeolite particles, (b) optical images of salt inclusion single crystals, (c) 

focused ion beam (FIB)-TEM image of geopolymer-based waste-form materials, (d-e) effect 

of microstructures on radionuclide absorption. 

The mesoscale models developed in this work are first of their kind for contaminant behavior in grout 

waste forms. The results presented utilize the best available data from the literature, but material-specific 

data will replace specific inputs in future iterations. The target of this tool would be a complementary 

approach to the Hanford Grout Modeling Framework that can link chemo-mechanical processes.  

5.2.3 Technical Approach  

The target system to develop the first Hanford-based mesoscale grout models was a grouted solid 

secondary waste, specifically a silver mordenite (AgM) particle stabilized in the CS formulation (Fujii 

Yamagata et al. 2022). This system is of interest as it has been reported that during leaching, the Ag 
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contained on the zeolite migrates through the grout matrix, providing a “barrier” against iodine migration 

through the matrix and out of the waste form. However, there are no modeling estimates of this process 

based on the fundamental physics and chemistry, and as such, this presents an opportunity to develop a 

mesoscale model.  

Figure  illustrates the microstructure and elemental distribution in the CS matrix with AgM granule 

particles (Fujii Yamagata et al. 2022). Figure e shows that Ag dissolved from AgM particles has very 

inhomogeneous distribution. Ag segregates mostly at the interface between AgM and CS; and Ag 

concentration in the unreacted FA and BFS particles is very low. The inhomogeneous Ag distribution 

indicates inhomogeneous electrochemical potential as well as inhomogeneous reaction/dissolution rate in 

this multiphase microstructure. The goal of this effort is to develop a mesoscale model that accounts for 

the effect of inhomogeneous microstructures on the kinetics of dissolution, diffusion, reaction and 

precipitation; improve the understanding of the physics and kinetics behind the microstructure and 

property evolution; identify when approximating grout as a homogeneous material fails; and determine 

the relationship between microstructures and properties such as effective diffusivity for macroscale grout 

performance models. 

 

Figure 5.16. (a-d) SEM backscattered electron images of microstructures at magnification levels in the 

CS matrix with AgM granules. (a) CS matrix with AgM particles; (b) the yellow arrow 

points to the AgM-CS interface; (c) enlarged image of the AgM particle with mesoscale 

pores and AgM polycrystalline grains; (d) enlarged image of porous CS with macroscale 

pores, FA, and BFS particles; the red arrow points to a spherical FA particle while the 

dashed yellow arrow to a BFS particle; and (e) elemental energy dispersive X-ray 

spectroscopy dot map near the interface between an AgM granule and CS shown in (c).  

5.2.3.1 Description of Mesoscale Model 

Based on the microstructure shown in Figure , the mesoscale model of Ag dissolution considers the 

primary microstructure features, including the average sizes of AgM, FA, and BFS particles; their volume 

fractions; and the porosity in the CS matrix and AgM particles. The model assumes five phases co-exist: 

AgM, FA, BFS, porous CS matrix, and Ag precipitate (ppt). In the framework of a mesoscale phase-field 

approach (Chen 2002; Li et al. 2017), two sets of field variables are used to describe the temporal and 

spatial evolution of chemistry and microstructures. One set of field variables is the concentration of 

diffusive species, and the other set is about the order parameters. The concentration field 𝑐𝑖(𝒓, 𝑡), 𝑖 =
𝐴𝑔+, 𝐴𝑔, and pore water (PW) describe the evolution of Ag+ ion, Ag0, and groundwater concentrations, 

respectively. The order parameter field 𝜂𝑝(𝒓, 𝑡), 𝑝 = 𝐴𝑔𝑀, 𝐹𝐴, 𝐵𝐹𝑆, porous 𝐶𝑆, and  𝐴𝑔 ppts describe the 

morphology evolution of different phases, respectively. 𝒓 = (𝑥, 𝑦, 𝑧) and t are the spatial coordinate and 
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time, respectively. In the model, the lattice of AgM phase is taken as the reference, i.e., the Ag 

concentration is 𝑐𝐴𝑔+(𝒓, 0) = 0.5 inside AgM at initial stage. The equilibrium concentrations of Ag and 

Ag ion and PW in different phases are denoted as 𝑐𝑝,𝑖
𝑒𝑞

,  𝑝 = AgM, FA, BFS, porous CS, and Ag ppts, 𝑖 =

𝐴𝑔+, 𝐴𝑔, and PW. For example, in AgM particles, the equilibrium concentrations are 𝑐
𝐴𝑔𝑀,𝐴𝑔+
𝑒𝑞

=

0.5, 𝑐𝐴𝑔𝑀,𝐴𝑔
𝑒𝑞

, and  𝑐𝐴𝑔𝑀,𝑃𝑊
𝑒𝑞

, respectively. In Ag ppts, the equilibrium concentrations are 

𝑐
𝐴𝑔,𝐴𝑔+
𝑒𝑞

, 𝑐𝐴𝑔,𝐴𝑔
𝑒𝑞

, and  𝑐𝐴𝑔,𝑃𝑊
𝑒𝑞

, respectively. 𝑐𝑝,𝑖
𝑒𝑞

 are thermodynamic properties of phases that depend on 

local environment or experimental conditions such as temperature, pH, Eh, and chemistry. The measured 

sorption and desorption coefficients 𝑘𝑑 in batch experiments can be used to calculate the equilibrium 

concentrations (Fujii Yamagata et al. 2022). The order parameter field 𝜂𝑝(𝒓, 𝑡) is equal to 1 inside the 

phase 𝑝 and to 0 outside the phase 𝑝, while it varies smoothly from 0 to1 across the interface.  

The microstructure evolution is driven by the minimization of the total free energy of the system. The 

governing equations of the non-conserved order parameters 𝜂𝑝(𝒓, 𝑡) and the conserved concentration 

𝑐𝑖(𝒓, 𝑡) follow the Allen-Cahn equations and Cahn-Hilliard equations (Cahn 1961; Allen and Cahn 1979), 

respectively. 

𝜕𝜂𝑝

𝜕𝑡
= −𝐿𝑝

𝛿𝐹

𝛿𝜂𝑝
= −𝐿𝑝 (𝜅𝑝∇2𝜂𝑝 + 𝑚[𝜂𝑝

3 − 𝜂𝑝 + 𝜂𝑝 ∑ 𝜆𝑞𝑝𝜂𝑞
2

𝑞≠𝑝 ] + ∑
𝜕ℎ𝑞(𝜼)

𝜕𝜂𝑝
𝑓𝑞(𝒄)𝑞 ),                                                                                        

𝑝 = 𝐴𝑔𝑀, 𝐹𝐴, 𝐵𝐹𝑆, porous CS and 𝐴𝑔 precipitate 
Eq. 5.6 

𝜕𝑐𝑖

𝜕𝑡
= −∇ ⋅ 𝑱𝑖 = ∇ ⋅ (𝑀𝑖∇

𝛿𝐹

𝛿𝑐𝑖
) = ∇ ⋅ [𝑀𝑖∇(𝜇𝑖)] + 𝑅̇𝑖,𝑟𝑒𝑎𝑐𝑡 + 𝑅̇𝑖,𝑑𝑖𝑠𝑜𝑙, 

 𝑖 = 𝐴𝑔+, 𝐴𝑔, and 𝐺𝑊 
  Eq. 5.7 

where 𝐹  is the total free energy of the system, 𝜇𝑖is the chemical potential of species i with the unit of 

[J/m3]. 𝑓𝑝(𝒄) is the chemical free energy density of phase 𝑝 with the unit of [J/m3]. 𝑅̇𝑖,𝑟𝑒𝑎𝑐𝑡 is the 

reaction rate for the reaction 𝐴𝑔+ + 𝑃𝑊 →  𝐴𝑔. 𝑅̇𝑖,𝑑𝑖𝑠𝑜𝑙is the dissolution rate for the dissolution reaction 

𝐴𝑔 → 𝐴𝑔+ + 𝑒. 𝐿𝑝 is the interface mobility. 𝑀𝑖  is the mobility of species 𝑖.  

The total free energy 𝐹 of the system is formulated as a functional of the order parameter field 𝜼 =

{𝜂𝑝(𝒓, 𝑡)} and concentration field 𝒄 = { 𝑐i(𝒓, 𝑡)} as: 

𝐹(𝜼, 𝒄) = ∫ [𝑓𝑖𝑛𝑡𝑓(𝜼) + 𝑓𝑏𝑢𝑙𝑘(𝜼, 𝒄)]𝑑𝑉
⬚

𝑉

 Eq. 5.8 

where 𝑉 is the volume of the simulation domain. 𝑓𝑖𝑛𝑡𝑓(𝜼)  and 𝑓𝑏𝑢𝑙𝑘(𝜼, 𝒄) are the interfacial free energy 

density and bulk chemical free energy density, respectively. The interfacial free energy density and the 

bulk chemical free energy density are expressed by the phase field variables as (Moelans et al. 2008; 

Moelans 2011):  

𝑓𝑖𝑛𝑡𝑓(𝜼) = 𝑚𝑓0(𝜼) + ∑
𝜅𝑝

2
 (∇𝜂𝑝)2

𝑝 , 𝑓0(𝜼) = ∑ (
𝜂𝑝

4

4
−

𝜂𝑝
2

2
+

1

2
∑ 𝜆𝑝𝑞𝑞≠𝑝 𝜂𝑝

2𝜂𝑞
2)𝑝 +

1

4
 Eq. 5.9 

𝑓𝑏𝑢𝑙𝑘(𝜼, 𝒄) = ∑ ℎ𝑝(𝜼)𝑓𝑝(𝒄𝒑)𝑝 ,  ℎ𝑝(𝜼) =
𝜂𝑝

2

∑ 𝜂𝑞
2

𝑞
 Eq. 5.10 

𝑓𝑝(𝒄𝒑) = ∑
1

2
𝐴𝑝,𝑖(𝑐𝑝,𝑖 − 𝑐𝑝,𝑖

𝑒𝑞
)

2

𝑖

 Eq. 5.11 
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where ℎ𝑝(𝜼) is a shape function that presents the volume fraction of each phase at point 𝒓. 𝜅𝑝 is the 

gradient coefficient with unit of [J/m], and 𝑚 is the energy density coefficient with the unit of [J/m3]. 𝜆𝑝𝑞 

is a dimensionless model parameter. 𝒄𝒑 is the concentration field 𝒄𝒑 = {𝑐p,i(𝒓, 𝑡)} in phase 𝑝. Any 

complicated chemical free energy functional 𝑓𝑝(𝒄𝒑) valid in the thermodynamic database could be used. 

For simplicity, a parabolic function of species’ concentration 𝒄𝒑is employed in the current model. The 

concentration variables at point 𝒓 is the summation of that in different phases as: 

𝒄 = ∑ ℎ𝑝(𝜼)𝒄𝒑

𝑝

 Eq. 5.12 

It is assumed that 𝑓𝑝(𝒄𝒑) satisfies the following relationship (i.e., having the same chemical potential of 

species 𝑖 in different phase 𝑝 and 𝑞 ): 

𝜕𝑓𝑝(𝒄𝒑)

𝜕𝑐𝑝,𝑖
=

𝜕𝑓𝑞(𝒄𝒒)

𝜕𝑐𝑞,𝑖
= 𝜇𝑖 ,     𝑝 ≠ 𝑞 Eq. 5.13 

All these coefficients or parameters (𝜅𝑝, 𝑚, 𝜆𝑝𝑞 , 𝐴𝑝,𝑖 𝑎𝑛𝑑 𝑐𝑝,𝑖
𝑒𝑞

) can be determined by the thermodynamic 

properties, including common tangent, equilibrium concentrations, interfacial energy, interface thickness 

of any two different phases, the energy barriers of phase transition, and driving forces of phase 

nucleation. 

5.2.3.2 Inhomogeneous Thermodynamic and Kinetic Properties  

The thermodynamic and kinetic properties of species 𝑖 in the CS should be inhomogeneous due to the 

inhomogeneous microstructures. For instance, the mobility of PW in porous CS and meso-pores inside 

the AgM particle might be much greater than that in FA, BSF, and AgM grains. Species’ mobility might 

be different in different phases. The chemical potential of species at the interface might be different from 

that inside bulk phases because the interface defects may affect the formation energy. The reaction and 

dissolution rates might also be spatially dependent. With the order parameters 𝜼, two shape functions 

ℎ𝑝(𝜼) and 𝑔𝑝𝑞(𝜼) are used to define the phase 𝑝 and the interface between phase 𝑝 and 𝑞. ℎ𝑝(𝜼) is 

defined in Eq. 5.10. 𝑔𝑝𝑞(𝜼) is defined as 𝑔𝑝𝑞(𝜼) = 2(1 − 𝜂𝑝
2 − 𝜂𝑞

2), which is zero inside phase 𝑝 and 

phase 𝑞 and varies from 0 to 1 to 0 across the interface. With the mixture rule (Kim 2007), the 

inhomogeneous thermodynamic and kinetics properties in the multiphase materials can be described by: 

𝑀i = ∑ 𝑀𝑝,𝑖ℎ𝑝(𝜼) + ∑ ∆𝑀𝑝𝑞,𝑖𝑔𝑝𝑔(𝜼)

𝑝≠𝑞𝑝

 Eq. 5.14 

𝐷i = ∑ 𝐷𝑝,𝑖ℎ𝑝(𝜼) + ∑ ∆𝐷𝑝𝑞,𝑖𝑔𝑝𝑔(𝜼)

𝑝≠𝑞𝑝

 Eq. 5.15 

𝜇𝑖 = ∑ 𝜇𝑝,𝑖ℎ𝑝(𝜼) +

𝑝

∑ 𝜇𝑝𝑞,𝑖𝑔𝑝𝑞(𝜼)

𝑝≠𝑞

 Eq. 5.16 

𝑅̇𝑖,𝑟𝑒𝑎𝑐𝑡 = ∑ 𝑟𝑝,𝐴𝑔+(𝑐𝑝,𝐴𝑔+ − 𝑐
𝑝,𝐴𝑔+
𝑒𝑞

𝑝 )(𝑐𝑝,𝑃𝑊 − 𝑐𝑝,𝑃𝑊
𝑒𝑞

)ℎ𝑝(𝜼)                                                                    

         + ∑ ∆𝑟𝑝𝑞,𝐴𝑔+(𝑐𝑝,𝐴𝑔+ − 𝑐
𝑝,𝐴𝑔+
𝑒𝑞

𝑝≠𝑞 )(𝑐𝑝,𝑃𝑊 − 𝑐𝑝,𝑃𝑊
𝑒𝑞

)𝑔𝑝𝑞(𝜼) 
Eq. 5.17 
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𝑅̇𝑖,𝑑𝑖𝑠𝑜𝑙 = ∑ 𝑟𝑝,𝐴𝑔(𝑐𝑝,𝐴𝑔 − 𝑐𝑝,𝐴𝑔
𝑒𝑞

𝑝

)ℎ𝑝(𝜼) + ∑ ∆𝑟𝑝𝑞,𝐴𝑔(𝑐𝑝,𝐴𝑔 − 𝑐𝑝,𝐴𝑔
𝑒𝑞

𝑝≠𝑞

)𝑔𝑝𝑞(𝜼) Eq. 5.18 

where 𝜓𝑝,𝑖 is the property of species 𝑖 inside phase 𝑝, and ∆𝜓𝑝,𝑖 is the increment of property at the 

interface between species 𝑝 and 𝑞. In  geochemical models (Fang et al. 2003; Chen et al. 2021, the 

reactions are assumed to reach equilibrium immediately, i.e., the reaction rates are infinite. In Eq. 5.17 

and Eq. 5.18, 𝑟𝑝,𝐴𝑔+ is the reaction rate coefficient for the reaction 𝐴𝑔+ + 𝑃𝑊 → 𝐴𝑔 in phase 𝑝, 𝑟𝑝,𝐴𝑔 is 

the reaction rate coefficient for the reaction 𝐴𝑔 → 𝐴𝑔+ + 𝑒 in phase 𝑝, and ∆𝑟𝑝𝑞,𝐴𝑔+ and ∆𝑟𝑝𝑞,𝐴𝑔 describe 

the inhomogeneous reaction rates at the interface. The reaction rate (Eq. 5.17 and Eq. 5.18) depends on 

local concentration and microstructure. The reaction rates could be modified by adding local fields such 

as local pH and Eh.  

5.2.3.3 Nucleation Scheme  

Ag ppts are described by the order parameter 𝜂𝐴𝑔(𝒓, 𝑡) and the concentration 𝑐𝐴𝑔,𝑖(𝒓, 𝑡). At the initial 

stage, 𝜂𝐴𝑔(𝒓, 0) = 0 is assigned, which means there are no Ag ppts inside the simulation cell. The 

nucleation of ppts could be homogeneous or heterogeneous . For homogeneous nucleation, thermal 

fluctuations cause the formation of different size clusters of Ag atoms. When the size of clusters exceeds 

the critical nucleus size, clusters grow and form Ag ppts. Thermal fluctuations and ppt nucleation can be 

mimicked by introducing a random fluctuation of order parameter 𝜂𝐴𝑔(𝒓, 𝑡) and concentration field 

𝑐𝐴𝑔,𝑖(𝒓, 𝑡). For heterogeneous nucleation, the inhomogeneous chemical potentials result in segregation of 

species at extended defects such as interfaces, which may promote nucleation at defects. The fact that Ag 

ppts are mostly present at the interface between AgM and CS indicates that  Ag precipitation occurs via 

heterogeneous nucleation. The simulations use two model parameters (i.e., the critical concentration 

𝑐𝐴𝑔
 ∗  and the frequency of nucleation searching 𝑁𝑁𝑢𝑐𝑙𝑡

∗ ) to mimic the heterogeneous nucleation process. 

The nucleation scheme is described as follows: (1) search for the nucleation sites where the concentration 

is larger than 𝑐𝐴𝑔
 ∗  and 𝜂𝐴𝑔(𝒓, 𝑡) = 0 at every nucleation step 𝑁𝑁𝑢𝑐𝑙𝑡

∗ ; (2) assign 𝜂𝐴𝑔(𝒓, 𝑡) = 1 at the 

nucleation sites; and (3) repeat steps 1 and 2. With this nucleation scheme, the nuclei of Ag ppt can be 

continuously introduced at the nucleation sites. The introduced nuclei may grow or shrink depending on 

the driving force for local phase transition.  

5.2.3.4 Model Parameters  

In solving the equations, Eq. 5.6 and Eq. 5.7, all the thermodynamic and kinetic properties are normalized 

by the characteristic energy density 𝑚0, characteristic length 𝑙0, and characteristic time 𝑡0, respectively. 

The following normalization is used: 

 𝑡∗ =
𝑡

𝑡0
, 𝑀𝑖

∗ =
𝑀𝑖

𝑀𝑐
, ∇∗= 𝑙0∇= 𝑙0 (

𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
), 𝜅𝑝

∗ =
𝜅𝑝

𝑚0𝑙0
2, 𝐿𝑝

∗ =
𝐿𝑝

𝐿0
, and 𝐴𝑝,𝑖

∗ =
𝐴𝑝,𝑖

𝑚0
,  

where 𝑡0 =
𝑙0

2

𝑀𝑐𝑚0
, and 𝑀𝑐 =

𝑉𝑚𝑜𝑙𝐷0

𝑅𝑇0
, 𝐿0 = 𝑀𝑐/𝑙0

2 =
1

𝑚0𝑡0
. 

Eq. 5.19 

where 𝑉𝑚𝑜𝑙 is the molar volume and 𝐷0 is the diffusion coefficient of diffusive species that has the 

maximum diffusivity; 𝑚0 is usually set to 𝑅𝑇0. 𝑅 is the gas constant; 𝑇0 is the absolute temperature of a 

reference state. Generally, the mobility of species depends on temperature and material structure, so the 

following expression is assumed: 



PNNL-37528 

Theme 4: Modeling of Cracking in Grout 5.23 
 

𝑀𝑝,𝑖 =
𝐷𝑝,𝑖𝑉𝑝,𝑖

𝑅𝑇
 Eq. 5.20 

𝐷𝑝,𝑖 = 𝐷𝑝,𝑖
0 𝑒𝑥𝑝( −

𝛥𝑄𝑝,𝑖

𝑅𝑇
) Eq. 5.21 

where 𝐷𝑝,𝑖
0  is the diffusion coefficient, 𝑉𝑝,𝑖 is the molar volume, and 𝛥𝑄𝑝,𝑖 is the active energy of the 

considered species in phase 𝑝, respectively. 𝑇 is the temperature. Similarly, the interface mobility, 𝐿𝑝, 

depends on temperature and is expressed as 𝐿𝑝 = 𝐿𝑝
0 𝑒𝑥𝑝 (−

𝛥𝑄𝑝

𝑅𝑇
).  

The free energy coefficients 𝜅𝑝, 𝑚, and 𝜆𝑝𝑞 can be assessed by the interface energy, σ, and interface 

thickness, 𝑙𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 as 𝜎 =
√2

3 √𝑚𝜅𝑝  and 𝑙𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = √
8𝜅𝑝

𝑚
  when the dimensionless model parameter 

𝜆𝑝𝑞=1.5 (Moelans et al. 2008). The normalized coefficients are calculated by 𝜅𝑝
∗ =

3𝜎𝑙𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

4𝑚0𝑙0
2   and 𝑚∗ =

6𝜎/(𝑙𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑚0). The chemical free energy coefficient 𝐴𝑝,𝑖 and equilibrium concentration 𝑐𝑝,𝑖
𝑒𝑞

 can be 

determined by measured absorption coefficient 𝑘𝑑(𝑎𝑑𝑠𝑜𝑟𝑏) and desorption coefficient 𝑘𝑑(𝑑𝑒𝑠𝑜𝑟𝑏) in 

absorption and desorption batch experiments of different pure phases (AgM, FA, BFS, CS) with PW. For 

a given temperature, pH, Eh, chemistry in the PW, and the measured coefficient at equilibrium have the 

relationship with equilibrium concentration 𝑘𝑑(𝑎𝑑𝑠𝑜𝑟𝑏) = 𝑐𝑝,𝑖
𝑒𝑞

/𝑐𝑃𝑊,𝑖
𝑒𝑞

, and/or 𝑘𝑑(𝑑𝑒𝑠𝑜𝑟𝑏) = 𝑐𝑝,𝑖
𝑒𝑞

/𝑐𝑃𝑊,𝑖
𝑒𝑞

. 

These measured coefficients can be used to develop the chemical free energy functional 𝑓𝑝(𝒄𝒑). The 𝐴𝑝,𝑖 

is associated with the second derivative of 𝑓𝑝(𝒄𝒑) with respect to concentration 𝑐𝑝,𝑖 at equilibrium 

concentrations 𝑐𝑝,𝑖
𝑒𝑞

. The chemical potential increment 𝜇𝑝𝑞,𝑖 of species 𝑖 at the interface of phase 𝑝 and 𝑞 is 

related to the formation energy increment of species 𝑖 at the interface and the bulk reference phase. The 

diffusivity 𝐷𝑝,𝑖 of species 𝑖 in phase 𝑝 can be calculated by density functional theory and molecular 

dynamics simulation. Leaching experiments are often used to measure the effective diffusivity of species 

𝑖 in different phases. For example, measured effective diffusivity of iodine in CS and CS with AgM 

particles was about 5.8 × 10−13 ~ 5.0 × 10−17𝑚2/𝑠 (Cantrell et al. 2016). The reaction rate coefficient 

𝑟𝑝,𝑖 can be calculated by the energy barrier of the reaction. All the model parameters can be assessed by 

the thermodynamic and kinetics properties of species in the system. This report aimed to develop and 

validate the model capability with parametric studies. Model parameters were therefore estimated. Hence, 

all the results are qualitative. The normalized model parameters are given in Table .  



PNNL-37528 

Theme 4: Modeling of Cracking in Grout 5.24 
 

Table 5.5. Non-zero model parameters used in the mesoscale simulations which employed equations 5.6 

through 5.21 . 

Symbols Value Symbols Value 

𝑚0 107𝐽/𝑚3 𝜅𝑝
∗  0.12 

𝑙0 5.7𝜇𝑚 𝑚∗ 0.12 

𝐷0 1.5 × 10−16𝑚2/𝑠 𝐿𝑝
∗  10.0 

𝑉𝑚𝑜𝑙  7.85 × 10−5𝑚3/𝑚𝑜𝑙 𝐴𝑝,𝑖
∗  

𝑖 = 𝐴𝑔, 𝐴𝑔+, 𝑃𝑊 

100, 𝑝 = 𝐴𝑔𝑀, 𝐹𝐴, 𝐵𝐹𝑆 

0.2, 𝑝 =  𝐴𝑔, 𝐶𝑆 

𝑇 = 𝑇0 423𝐾 𝑐𝑝,𝑃𝑊
𝑒𝑞

 

 

0.1, 𝑝 = 𝐴𝑔𝑀, 𝐶𝑆 

0.0001, 𝑝 = 𝐹𝐴, 𝐵𝐹𝑆, 𝐴𝑔 

𝑑𝑡∗ 0.000002 𝑐𝑝,𝐴𝑔
𝑒𝑞

 0.0001, 𝑝 = 𝐴𝑔𝑀, 𝐶𝑆, 𝐹𝐴, 𝐵𝐹𝑆 

0.8, 𝑝 = 𝐴𝑔 

𝐷𝐶𝑆,𝑖
∗  10 𝑐

𝑝,𝐴𝑔+
𝑒𝑞

 0.001, 𝑝 = 𝐴𝑔𝑀, 𝐶𝑆, 𝐹𝐴, 𝐵𝐹𝑆, 𝐴𝑔 

∆𝐷𝑝𝑞,𝑖
∗  

𝑝, 𝑞 = 𝐴𝑔𝑀, 𝐶𝑆 

4,2,1,0.1 

𝑖 = 𝐴𝑔, 𝐴𝑔+ 

∆𝜇𝑝𝑞,𝑖
∗  0.65,0.3,0, 𝑝 = 𝐴𝑔𝑀, 𝑞 =  𝐶𝑆 

0.65,0.3,0, 𝑝 = 𝐹𝑎, 𝐵𝐹𝑆, 𝑞 =  𝐶𝑆 

𝑐𝐴𝑔
∗  0.4 𝑟𝑝,𝐴𝑔

∗  0.05,0.1,0.15,0.2, 𝑝 = 𝐴𝑔 

𝑁𝑁𝑢𝑐𝑙𝑡
∗  6000 𝑟𝑝,𝐴𝑔+

∗  0.05,0.1,0.2,0.3,0.4, 

𝑝 = 𝐴𝑔𝑀, 𝐶𝑆 

5.2.3.5 Simulation Cell, Initial and Boundary Conditions  

For given microstructure features, including the volume fraction of different phases and average particle 

size, a phase-field model of multiphase grain growth is used to generate the initial microstructure for the 

developed model (Moleans et al. 2011). Figure  illustrates the simulation cell with a large AgM and some 

small FA and BFS particles embedded in a CS matrix. The developed mesoscale model of Ag dissolution 

is generic in three dimensions. For the sake of computer resource, the simulations are carried out in quasi 

three dimensions. There is a small dimension in the y-direction and a larger dimension in x- and z- 

dimensions, and periodic boundary conditions are applied in the x-, y- and z- directions. The physical 

dimension of the simulation cell is 256𝑙0 × 4𝑙0 × 256𝑙0, where 𝑙0 is the characteristic length.  
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Figure 5.17. Schematic of the simulation cell including AgM, FA, BFS particles, porous CS matrix, and 

meso-pores inside AgM. The AgM particle is viewed as a cluster of small AgM grains. 

To simulate Ag dissolution under batch experiment conditions, it is assumed that PW in the porous CS 

matrix quickly reaches a saturated concentration 𝑐𝐶𝑆,𝑃𝑊
0 . This should be true if the pore volume fraction in 

CS matrix is high and pores are well connected. In that case, the material has closed pores which can be 

viewed as a uniform phase with identical thermodynamic and kinetic properties. The large AgM particle 

is made of small AgM grains (polycrystalline zeolite) (Fujii Yamagata et al. 2022). The pores between the 

small AgM grains are small, about tens to hundred nanometers, and are called meso-pores. The effective 

diffusivity should depend on the average size of AgM grains and meso-pores. During Ag dissolution, it is 

assumed that PW diffuses into the meso-pores and microchannel in AgM grains; reacts with AgM and 

produces Ag; Ag diffuses, segregates, and forms Ag ppts; and Ag may be oxidized depending nonlocal 

chemistry. The dissolution mechanisms are discussed in literature (Inagaki et al. 2008). Table  lists the 

initial and equilibrium concentrations used in the simulations, which are assigned for the validation of 

model capability. More accurate data is required to predict leaching experiments for setting the initial and 

boundary conditions, which will be targeted in Year 2.  

Table 5.6. Initial concentrations of species in the AgM-CS mesoscale model 

Initial concentration Porous CS FA BFS AgM Ag 

𝑐𝑝,𝑃𝑊
0  0.5              0.001 0.001 0.001 0.001 

𝑐𝑝,𝐴𝑔+
0  0.001        0.001 0.001 0.001 0.001 

𝑐𝑝,𝐴𝑔
0  0.001          0.001 0.001 0.001 1.0 

5.2.3.6 Numerical Method 

With the mesoscale model of Ag dissolution in CS with AgM particles, an in-house FORTRAN code was 

developed. In the simulations, the normalized Eq. 5.6 and Eq. 5.7 are solved by the Fastest Fourier 

Transform in the WEST (FFTW) with semi-explicit scheme (Chen and Shen 1998). For Ag precipitation, 
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a nucleation scheme is used to introduce nuclei when the local Ag concentration is higher than a critical 

value. Solving the equations, the temporal and spatial evolution of concentration fields 𝑐𝑖(𝒓, 𝑡) and order 

parameter fields 𝜂𝑗(𝒓, 𝑡) are obtained, hence, Ag segregation and precipitation. 

5.2.4 Results to Date  

In Year 1, a mesoscale model of Ag dissolution in CS with AgM particles was developed. The model 

considers the effect of microstructures and inhomogeneous thermodynamic and kinetics properties on Ag 

dissolution and Ag precipitation. In particular, the model has the following capabilities: 

1. For given microstructure features, including the volume fractions of different phases and average 

particle sizes, the model can generate a 3-D microstructure to mimic the CS grout.  

2. The model takes into account the physics processes: (a) multi species diffusion (i.e., 𝐴𝑔+, 𝐴𝑔     

and 𝑃𝑊)  driven by chemical potential gradient; (b) two non-equilibrium reactions: 𝐴𝑔+ +
𝑃𝑊 → 𝐴𝑔 and 𝐴𝑔 → 𝐴𝑔+ + 𝑒; (c) Ag segregation at interface and nucleation/growth of Ag ppts 

3. The model considers inhomogeneous thermodynamic properties, including microstructure 

dependence of chemical potential and energy barrier of reactions. 

4. The model considers inhomogeneous kinetic properties, including microstructure dependence of 

species diffusivity and reaction rates 

A comprehensive parametric study was carried out to validate the model capability. The project team 

defined two quantities [i.e., 𝑤𝐴𝑔,𝑝𝑝𝑡(𝑡)  and 𝑤𝐴𝑔,𝑀𝑎𝑡𝑟𝑖𝑥(𝑡)] to capture the 𝐴𝑔 dissolution kinetics. 

𝑤𝐴𝑔,𝑝𝑝𝑡(𝑡) is the percentage of 𝐴𝑔 in 𝐴𝑔 ppts. 𝑤𝐴𝑔,𝑀𝑎𝑡𝑟𝑖𝑥(𝑡) is the percentage of 𝐴𝑔 in the matrix. They 

are described as: 

𝑤𝐴𝑔,𝑝𝑝𝑡(𝑡) = ∫ 𝑐𝐴𝑔,𝐴𝑔(𝑡)𝑑𝑉/ ∑ ∫ [𝑐𝑝,𝐴𝑔(0) + 𝑐𝑝,𝐴𝑔+(0)]𝑑𝑉
⬚

𝑉𝑝𝑝

⬚

𝑉𝐴𝑔

 Eq. 5.22 

𝑤𝐴𝑔,𝑀𝑎𝑡𝑟𝑖𝑥(𝑡) = {∑ ∫ [𝑐𝑝,𝐴𝑔(𝑡)]𝑑𝑉
⬚

𝑉𝑝

− ∫ 𝑐𝐴𝑔,𝐴𝑔(𝑡)𝑑𝑉
⬚

𝑉𝐴𝑔

}

𝑝

/ ∑ ∫ [𝑐𝑝,𝐴𝑔(0) + 𝑐𝑝,𝐴𝑔+(0)]𝑑𝑉
⬚

𝑉𝑝𝑝

 

Eq. 5.23 

The denominators in Eq. 5.22 and Eq. 5.23 are the total 𝐴𝑔 and 𝐴𝑔+ in the simulation domain at initial 

stage 𝑡 = 0. The numerators in Eq. 5.22 and Eq. 5.23 are the amount of 𝐴𝑔 in ppt and in the matrix at 

time 𝑡, respectively.  

5.2.4.1 Effect of Ag Chemical Potential at the Interface on Ag Dissolution 

The chemical potentials of Ag at the interfaces among AgM, FA, BFS, and porous CS may be different 

from their chemical potentials in different phases. At the initial stage, Ag is present in the AgM particles. 

With time, Ag diffuses and precipitates. Figure (a) and (b) show the evolution of percentage of Ag ppt, 

i.e., 𝑤𝐴𝑔,𝑝𝑝𝑡(𝑡), and the percentage of Ag dissolving into the matrix, i.e., 𝑤𝐴𝑔,𝑀𝑎𝑡𝑟𝑖𝑥(𝑡). In Figure , 

∆𝜇𝑝𝑞,𝐴𝑔
∗   represents the chemical potential increment of 𝐴𝑔 at interface of phase 𝑝1 = 𝐶𝑆 and 𝑞1 =

𝐹𝐴 and  𝐵𝐹𝑆. It is clear there is no Ag segregating to form Ag ppt at the interface of phase 𝑝 = 𝐴𝑔𝑀 and 

𝑞 = 𝐶𝑆 if ∆𝜇𝑝𝑞,𝐴𝑔
∗ = 0. Figure (b) shows the Ag segregation at the interface of phase 𝑝1 = 𝐶𝑆 and 𝑞1 =
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𝐹𝐴 and  𝐵𝐹𝑆 with the decrease of ∆𝜇𝑝1𝑞1,𝐴𝑔
∗ . All Ag is dissolved in the CS matrix and interfaces as shown 

in Figure (b). The large increase in the percentage of Ag in ppt shown in Figure (a) indicates the 

nucleation of Ag ppts at the specified conditions.  

 

Figure 5.18. Temporal evolution of 𝐴𝑔 content inside the Ag precipitates and CS matrix. (a) 𝑤𝐴𝑔,𝑝𝑝𝑡(𝑡),  

and (b) 𝑤𝐴𝑔,𝑀𝑎𝑡𝑟𝑖𝑥(𝑡).  

The distribution of Ag is very inhomogeneous due to the variation in chemical potentials at interfaces in 

the microstructure. Figure a,c show the distribution of overall Ag concentration. It is seen in Figure a that 

Ag has a high concentration at the interface between AgM and CS if ∆𝜇𝑝𝑞,𝐴𝑔
∗ = −0.65 and ∆𝜇𝑝1𝑞1,𝐴𝑔

∗ =

0.0. Figure c shows that Ag has a low concentration on the interface of AgM and CS, while it has a higher 

concentration on the interface among FA, BFS, and CS if ∆𝜇𝑝𝑞,𝐴𝑔
∗ = 0.0 and ∆𝜇𝑝1𝑞1,𝐴𝑔

∗ = −0.65. The 

lower chemical potential ∆𝜇𝑝𝑞,𝐴𝑔
∗ = −0.65 causes Ag ppt to form at the interface of AgM and CS, while 

the lower chemical potential ∆𝜇𝑝1𝑞1,𝐴𝑔
∗ = −0.65 results in Ag segregation on the interface among FA, 

BFS, and CS. To illustrate more clearly the distribution of the low Ag concentration in the CS matrix, the 

concentration was assigned to be zero inside Ag ppt. Figure b,d show the distribution of Ag concentration 

resulting from the Ag ppt. There is a diffusion field in CS matrix, and no Ag segregation at the interfaces 

among Fa, BFS, and CS was observed because of ∆𝜇𝑝1𝑞1,𝐴𝑔
∗ = 0.0. Figure d shows that Ag diffuses much 

further than that shown in Figure b because more Ag is available when ∆𝜇𝑝𝑞,𝐴𝑔
∗ = 0.0 and Ag segregation 

at the interfaces among FA, BFS, and CS due to ∆𝜇𝑝1𝑞1,𝐴𝑔
∗ = −0.65. The results demonstrate that Ag 

distribution strongly depends on the chemical potential of Ag on interfaces, and the model can capture the 

effect of inhomogeneous chemical potentials on dissolution and precipitation.  
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Figure 5.19. Distribution of Ag concentration inside the Ag ppt and CS matrix at normalized time 

5820000. (a-b) for ∆𝜇𝑝𝑞,𝐴𝑔
∗ = −0.65 and ∆𝜇𝑝1𝑞1,𝐴𝑔

∗ = 0.0, and (c-d) for ∆𝜇𝑝𝑞,𝐴𝑔
∗ = 0.0 and  

∆𝜇𝑝1𝑞1,𝐴𝑔
∗ = −0.65, respectively. 

5.2.4.2 Effect of Reaction Rate on Ag Dissolution 

The rates of reactions 𝐴𝑔+ + 𝐺𝑊 → 𝐴𝑔 and 𝐴𝑔 → 𝐴𝑔+ + 𝑒 depend on the local concentrations of 

𝐴𝑔+ and 𝐺𝑊 and their energy barrier as well as pH and Eh. Figure  presents the evolution of the 

percentage of the overall Ag formed as Ag ppt and the percentage of Ag that dissolves in the CS matrix 

under different reaction rates. With a smaller reaction rate 𝑟𝑝,𝐴𝑔+
∗ = 0.1 and 𝑟𝑝,𝐴𝑔

∗ = 0.0, more 𝐴𝑔+ 

dissolves into that CS matrix, which delays the nucleation of Ag ppt at the interface of AgM and CS. The 

dashed lines in Figure a,b indicate the nucleation of Ag ppt. Increasing the reaction rate 𝑟𝑝,𝐴𝑔+
∗ from 0.1 to 

0.4 promotes the nucleation and growth of Ag ppt and reduces the amount of Ag dissolving into CS 

matrix as shown in Figure b. Figure  shows the temporal evolution of 𝐴𝑔 and 𝐴𝑔+ concentrations for the 

two cases (a) 𝑟𝑝,𝐴𝑔+
∗ = 0.4 and 𝑟𝑝,𝐴𝑔

∗ = 0.2 , and (b) 𝑟𝑝,𝐴𝑔+
∗ = 0.05 and 𝑟𝑝,𝐴𝑔

∗ = 0.2. The same color bars 

are used for overall 𝐴𝑔 and 𝐴𝑔+ concentrations. Comparing the results shows that reaction rate has an 

important impact on Ag ppt growth and the distribution of 𝐴𝑔 and 𝐴𝑔+concentrations. 
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Figure 5.20. Effect of reaction rates on the temporal evolution of 𝐴𝑔 content inside Ag precipitate (ppt) 

(a) and CS matrix (b). 
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Figure 5.21. Temporal evolution of 𝐴𝑔 and 𝐴𝑔+ concentrations (a) for 𝑟𝑝,𝐴𝑔+
∗ = 0.4 and 𝑟𝑝,𝐴𝑔

∗ = 0.2 and 

(b) for 𝑟𝑝,𝐴𝑔+
∗ = 0.05 and 𝑟𝑝,𝐴𝑔

∗ = 0.2. 

5.2.4.3 Effect of Ag and Ag+ Diffusivity on Ag dissolution 

The diffusivity of 𝐴𝑔 and 𝐴𝑔+could be different inside phase 𝑝. Figure  presents the effect of the 

diffusivity 𝐷𝑝,𝑖
∗ , where 𝑝 = 𝐴𝑔𝑀, 𝐹𝐴, 𝐵𝐹𝑆, and porous 𝐶𝑆, and  𝑖 = 𝐴𝑔 and 𝐴𝑔+. The general 

conclusions are (1) larger 𝐷𝑝,𝐴𝑔
∗  and 𝐷𝑝,𝐴𝑔+

∗  speeds up the nucleation of Ag ppt as well as Ag dissolution 

into CS and (2) smaller 𝐷𝑝,𝐴𝑔+
∗ delays the nucleation of Ag ppt. 
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Figure 5.22. Effect of Ag and Ag+ diffusivity on the temporal evolution of 𝐴𝑔 content inside Ag 

precipitate (ppt) (a) and CS matrix (b). 

5.2.4.4 Effect of AgM Particle Size on Ag Dissolution 

AgM particle size affects the distance of Ag diffusion during dissolution. Figure  summarizes the effect of 

AgM particle size on Ag dissolution. The radius 𝑅0 of AgM particle is normalized by the simulation 

domain size as 𝑅 = 𝑅0/(256𝑙0). The results demonstrate that (1) decreasing the AgM particle size delays 

the nucleation of Ag ppt, and (2) decreasing the AgM particle size results in more Ag segregating in ppt 

as well as in CS. This implies that reducing the AgM size increases the Ag dissolution kinetics as 

expected due to the increased surface area to accessible Ag.  

 

Figure 5.23. Effect of AgM particle size on the temporal evolution of 𝐴𝑔 content inside Ag precipitate 

(ppt) (a) and CS matrix (b). 

In summary, the inhomogeneous thermodynamic and kinetics properties of species due to the 

inhomogeneous microstructures dramatically affect the nucleation and growth of Ag ppt and Ag 

dissolution kinetics into the CS matrix. The results demonstrated that the developed mesoscale model of 

Ag dissolution enables one to assess the effect of microstructure and thermodynamic and kinetic 

properties on Ag dislocation kinetics.  
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5.2.5 Path Forward and Integration  

In Year 1, a first-of-its-kind mesoscale model was developed for an example Hanford grout system. This 

mesoscale model was able to predict Ag migration into a CS matrix over time based on input values 

compiled from the literature. In Year 2, the mesoscale model efforts will focus on refining and publishing 

this original model while also targeting integration with two other efforts. 

Subtask 4.2.1 – Complete Ag Model: The developed mesoscale model has a number of model parameters 

that are associated with the microstructure features and thermodynamic and kinetic properties. In 

principle, absorption and desorption experiments, lower length scale simulations such as density 

functional theory and molecular dynamics simulations, and thermodynamic calculations such as phase 

diagram calculations can provide all the data to determine the model parameters. This will be attempted 

using existing data. In addition, the thermodynamic and kinetic properties used in geochemical speciation 

models (Chen et al. 2021) can also be used to assess the model parameters. The output of local fields such 

as chemistry, pH, and Eh in the geochemical speciation modeling can be used as boundary conditions in 

the mesoscale model. The mesoscale modeling can be used to determine when mean field methods fail 

and when  the microstructure of the grout material needs to be considered in predictions of macroscopic 

properties. Therefore, the path forward and integration include the following tasks: 

1. Assess the model parameters with thermodynamic and kinetics properties used in geochemical 

speciation models and absorption/desorption experiments for Ag and radionuclide dissolution in 

CS with AgM particles. 

2. Assess an expanded test case where iodine is also present and leaching from the AgM particle. 

3. Predict the dissolution kinetics and effective diffusivity, study the effect of inhomogeneous 

microstructures on effective material properties, and develop the effective properties for 

macroscale performance models. 

4. Improve the understanding of dominant physics and/or mechanisms behind the observed 

phenomena.  

5. Extend the model by adding more physics such as the effects of pH, Eh, deformation, and 

cracking on radionuclide dissolution and material property degradation.  

• Subtask 4.2.2 – Integration with Geochemical Modeling of Grout Phases: This task will link with 

Theme 1 Task 2 to develop a mesoscale model of a slag particle reacting long-term within a grout 

matrix. This effort will be supported with characterization of slag particles at VU. This effort will be 

the first attempt to link long-term phase evolution in grouts. The long-term goal would be to expand 

this effort to phases present to enhance contaminant retention (e.g., iron oxides). 

• Subtask 4.2.3 – Integration with Peridynamic Modeling: This task will attempt to build a chemo-

mechanical link between processes in the microstructure with bulk property changes predicted by PD 

modeling. Local strength and hardness measurements will be made on select grout phases (e.g., 

nano-indentation) and any resulting softening measured near particles will allow for a mesoscale 

model to be constructed to predict the local physics, while similar information could be used to build 

the foundation of a PD model. This effort would lay the groundwork for a modeling tool to link local 

properties at the microscale to bulk properties in the grout, a capability long sought-after in the 

cement and concrete research community. 
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6.0 Theme 5: Grout Database 

6.1 Theme 5 Task 1: Grout Database 

6.1.1 Team Members 

Sarah Saslow (PNNL), Xiaonan Lu (PNNL), Chloe Curry (PNNL), Mayra Diaz-Acevedo (PNNL), Jacob 

Anderson (PNNL), Dewei Wang (PNNL), Mirina Enderlin (PNNL), Wyatt Kiff (PNNL, now WSU) 

6.1.2 Background 

To assess grout waste forms of various types in the Hanford Grout Modeling Framework, a database that 

presents available data in a consistent format is required. To date, information on the performance, aging, 

and degradation of waste forms relevant to Hanford is only present in individual reports, journal articles, 

and a set of data packages supporting the 2018 IDF PA (which themselves only consider a small subset of 

samples). Theme 5 is dedicated to developing a comprehensive grout database (GDB) to (1) facilitate 

future modeling updates (e.g., conceptual models, Hanford Grout Modeling Framework, PA simulations, 

predictive tools), (2) provide a centralized database of grout data curated for general use, (3) capture 

quality assurance (QA) status of the data to define use limits, and (4) offer training and test datasets for 

future ML predictive model development for grout properties based on formulation and waste 

composition inputs. The database will incorporate successes and lessons learned from an in-development 

online database for glass properties that is farther along in the development process (publication in 

progress).1 

The GDB will be available as an online resource for future grout efforts of interest.  

6.1.3 Grout Database Objectives and Approach 

The overarching goal of the GDB is to improve Hanford grout waste form performance data curation, 

accessibility, and interpretation for long-term efficiency and use consistency. Specific objectives include: 

• Evaluation of existing resources: Assess reports, data formats, and existing datasets to identify 

gaps, standardization needs, and test data that is most useful for capturing overall grout waste form 

performance.  

• Database format transition: Replace the current Excel-based data files with a file format better 

suited for databases and data analysis to enhance efficiency, scalability, and maintainability. 

• Data entry standardization: Develop a user-friendly data entry interface to ensure consistency and 

accuracy in future data collection. 

• Literature search and organization: Conduct comprehensive literature reviews, implement efficient 

methods for downloading and managing papers and reports, and organize them for easy access. 

• Artificial intelligence (AI) integration for data curation: Evaluate and modify existing AI tools for 

automated data scraping, improving data acquisition efficiency. 

 
1 A beta version of the online tool for glass waste form properties can be found at 

https://srnl.mcdc.cecas.clemson.edu/general/glass-database. 

https://srnl.mcdc.cecas.clemson.edu/general/glass-database


PNNL-37528 

Theme 5: Grout Database 6.2 
 

6.1.4 Grout Waste Form Data Needs 

Based on the project’s June 2024 contributors’ workshop (Asmussen 2024) and the first iteration of the 

GDB, developed in Microsoft Excel between June 2021 and June 2024, grout waste form formulation, 

characteristics, and performance qualification data have been identified as useful for downstream 

modeling, data visualization, and analysis efforts. Table 6.1 presents the information recommended for 

entry into the GDB. Section 6.1.8 describes how this data is entered into the GDB. 

Table 6.1. Recommended grout waste form data for entry into the GDB. 

Information Need Purpose Examples 

Documentation Provide information needed 

to locate the source of the 

data entered into the 

database. 

• Document title 

• Authors and lead institution 

• Digital object identifier (DOI)  

• Publication date 

• Web link 

• Quality assurance program or code 

• Public availability 

Sample Fabrication Describe the basic 

conditions used to fabricate 

the grout waste form batch 

or individual sample.  

• Sample or batch ID 

• Targeted waste stream, e.g., LAW, liquid secondary 

waste, solid secondary waste, real waste streams, or 

water 

• Conventional grout waste form name, e.g., Cast 

Stone, Hanford Grout Mix 5, unknown, other.  

• Water-to-dry-mix ratio 

• Curing time 

• Dry ingredients and the amount added of each 

• Liquid waste composition 

Slurry Properties Determine the workability of 

a freshly made grout slurry 

and determine if certain 

storage, handling, and 

transportation criteria are 

met.  

• Reabsorption time of residual free liquids 

• Initial and final set times 

• Flowability  

Cured Properties Understand how the grout 

waste form may withstand 

external stress.  

• Compressive strength 

• Saturated hydraulic conductivity to describe the 

passage of water through the grout waste form 

• van Genuchten parameters that capture water 

retention in the grout waste form 

Contaminant 

Leachability 

Quantify grout waste form 

performance for 

immobilizing, sorbing, and 

releasing contaminants of 

interest. 

• Toxicity characteristic leaching procedure 

contaminant concentrations 

• Sorption and desorption partition coefficient (Kd) 

values 

• Observed/effective diffusivity values 
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6.1.5 Data Sourcing from Published Literature 

6.1.5.1 Literature Inputs 

The primary literature search engines used to generate a list of candidate publications for GDB entry were 

those hosted by the DOE Office of Science and Technology Information (OSTI) and peer-reviewed 

publisher, Elsevier. Both resources offer an Application Programming Interface (API) that allows users to 

query their publication database based on keywords and other search criteria (publication date, institution, 

etc.). Other search engines were used, like Web of Science, but Elsevier accounted for over 50% of the 

peer-reviewed publications returned in our queries. Other publications not published by Elsevier were 

mostly captured in searches on OSTI; therefore, these two APIs were used to generate an initial list of 

candidate publications for GDB entry.  

In addition to capturing most relevant literature for this effort, access permissions established between 

PNNL and Elsevier and OSTI allowed full text files to be downloaded and exported from each search. 

With Elsevier, an Extensible Markup Language (XML) file is downloaded. This file type is advantageous 

for data extraction because it retains the file data structure encountered in tables, making it both human 

and machine readable. PNNL secured a memorandum of understanding with OSTI for an API key that 

allows the team to export the publication’s full text file, e.g., PDF, and associated metadata, for data entry 

efforts. The API key is limited to PNNL use to support the aims of this project and is not intended for 

external or other project use. To the team’s knowledge and as of the time of this publication, Web of 

Science does not offer a tool to extract full text documents.  

An initial search in the OSTI and Elsevier search engines for keywords “Hanford” and “Cast Stone” 

mentioned in Elsevier publications returned 19 records in OSTI and only 15 records in Elsevier. 

Therefore, OSTI was used to generate the first list of candidate records for entry into the GDB because it 

was more inclusive. After removing the filter for Elsevier-specific records, an OSTI search for entries 

mentioning both “Hanford” and “Cast Stone” returned 279 records. To date, the team has determined that 

at least 105 of these records do not contain data of interest to the GDB; 24 records have been determined 

to contain test data of interest and 16 have been successfully entered into the GDB. After all records have 

been considered in this OSTI search, the search terms will be expanded to include other terms, like other 

grout waste form formulations and legacy waste sites.  

6.1.5.2 AI/ML for Data Extraction from Published Reports and Papers 

Manually evaluating the content of candidate publications for GDB entry is time-consuming. Therefore, 

one of the first needs identified by the GDB team was to evaluate AI/ML tools that could be used to 

extract relevant data from candidate reports. However, the tools used to extract data depend on the file 

type the publication was saved as. The file types most commonly encountered included XML files and 

PDF files formatted as text, an image, or an image-Optical Character Recognition (OCR). The tools 

evaluated to extract data from these file types are described in the subsections below.  

Overall, these extraction tools are useful for performing a first pass on available data contained within 

candidate publications. Often though, the data desired for entry into the database is found in the main text, 

not the supporting tables. How the data was analyzed and the conditions for data use are also commonly 

found in the main text, which still requires human interpretation before database entry.  
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6.1.5.3 Data Extraction from XML Files 

XML files retain the data structure in a document, which makes it easier to retain the format in which data 

is presented in a publication. This is especially important when navigating data tables with merged or 

empty data cells and/or tables that are inserted into a document formatted to have two text columns. The 

script provided in Appendix A was used to read an input XML file, create an Excel file with a sheet for 

each identified data table, and export the structured table data to the respective sheet. After generating the 

Excel file, it is essential for users to review the data extracted because embedded images and complex 

formatting (e.g., tables without column titles or more than one header) can cause some extracted data to 

be formatted incorrectly in the Excel file. 

6.1.5.4 Data Extraction from PDF Files 

The most common PDF files are formatted as a text, an image, or an image-OCR. Text-formatted PDFs 

contain text and/or data that is selectable and can be copied and pasted into another document. These files 

allow readers to search for keywords without additional document processing. Image-formatted PDFs 

present the content as images rather than actual text. Attempts to select specific text result in the entire 

page being highlighted. Image-based files are often encountered with older reports and scanned 

publications. Finally, image-OCR formatted PDFs are image-based files that have undergone OCR 

conversion, which allows the reader to search and select text contained in the document. Each file type 

poses different challenges when extracting data tables. For this effort, the team primarily focused on data 

extraction from text-formatted PDF files.  

One of the most effective tools tested for extracting data tables from text-formatted PDF files was 

PNNL’s AI-Incubator API, which leverages the OpenAI API. A script provided in Appendix B was 

written to use this API. With an active Project-Use API key, the script reads PDF files placed in a 

designated “pdf” folder and extracts table data while also summarizing non-table text. The extracted and 

summarized data is saved to text (.txt) or Excel (.xlsx) files. Tables identified in a PDF are summarized in 

a spreadsheet, with each table on a separate sheet. Several Python-based PDF extraction packages were 

evaluated for similar use in this project, but faced some challenges. Table 6.2 presents the benefits and 

challenges of the extraction packages tested.  
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Table 6.2. Evaluated PDF data table extraction methods and packages. 

Extraction Package Benefits Challenges 

PDFplumber • Ideal for single-column formatted text 

• Works best for tables that have solid lines 

• Struggles with multi-column layouts 

• Extracts extra text due to its top-to-

bottom, then left-to-right reading order 

PyMuPDF • Exports clean tables 

• Detects all data tables during testing 

• Often misses the column titles and 

first data row 

• Some tables are not written to the 

created Excel file 

• Challenges handling rotated tables 

• May split a single table into two tables 

Tabula • Eliminates extra text during extraction 

• Allows user to select tables for extraction 

• Requires user to manually select table 

area for extraction, not ideal for 

documents with multiple tables/pages 

and/or multiple PDF files 

• Templates are specific to each PDF 

pdf2image + 

pytesseract 
• Can be used on image-formatted pdfs 

• Includes a prebuilt feature of searching 

for tables 

• Inconsistent accuracy in detecting 

tables  

• Often captures extra text from the 

document 

pdf2image +  

TATR  +  

pytesseract 

 

• Effective for image-based pdfs 

• Highly accurate in recognizing standard 

tables 

• Efficient as it processes cropped table 

regions 

• May miss non-standard tables (e.g., 

rotated tables) 

• Cannot extract information from the 

surrounding text 

6.1.6 Data Organization 

The first version of the GDB was developed in Microsoft Excel due to the familiarity of staff, site 

contractors, and stakeholders with this software and its ease of use. However, with Excel and similar file 

formats like comma separated values (.csv) and Parquet file types, the amount of data that can be stored in 

a single file is much lower compared with SQLite Database (.db) or Pandas Hierarchical Data Format 

version 5 (HDF5; .hf) file types. As the database grows, the time required to load and enter data would 

increase due to increased demand on processing power. 

A .db or .hf file is designed to organize large amounts of data within a single file and allow researchers to 

quickly query the entire dataset or subsets of data. The difference between these file types is how the data 

is organized. A .db file is a compilation of structured tables, where each table row and column represent 

fields of interest. Using Structured Query Language (SQL), the data can be queried similar to how one 

might index data in Excel but can support more complexity. This organization structure is ideal for 

correlating datasets. A HDF5 file can stores data in a hierarchical structure that can consist of multiple 

datasets and groups of data akin to a directory. This organization approach is better for very large data 

sets but has limited data query functionality when compared to .db files queried by SQL. Since 

identifying relationships within the GDB is a primary aim of this effort, the team chose to transfer the 

existing database to a SQLite database file and continue data entry and GDB entry with this organization 

structure.  
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6.1.7 Database Access 

Currently, the GDB is only accessible to PNNL staff as development and troubleshooting efforts 

continue. A GitLab group was created for internal sharing of the GDB and supporting data entry files. 

Contributing staff use assigned access tokens to collaborate on the GDB. In Year 2, this will be expanded 

to project partners with the goal of hosting the GDB on an online platform by the end of Year 2. The 

online tool aims to incorporate data analysis and visualization tools that will guide user interpretation of 

available data for application-specific needs.  

6.1.8 Data Entry  

Figure 6.1 offers a view of the GDB entry form after launching from the Python script. This form is 

intended to be used for test data pertaining to a single test condition, e.g., formulation, curing time, liquid 

waste data. After filling out the report information and general sample formulation information, the user 

continues by using the data entry buttons at the bottom of the form for capturing liquid waste 

composition, slurry properties and flowability, compressive strength, saturated hydraulic conductivity, 

water characteristic curve, contaminant leachability according to EPA Methods 1315 and 1311, as well as 

contaminant sorption and desorption partition coefficients (Kd values). Figure 6.2 through and Figure 6.4 

provide examples of how data is entered into the corresponding window that pops up when a data entry 

button is selected. After a user is done entering data into a window, they save the data and the window 

will close. If the user reopens a window for entering data, the fields will no longer be populated but that 

data has not been lost. If changes need to be made, the user enters the new data and clicks save to 

overwrite the previous values. Future modifications to the GDB entry form will allow users to return to 

previously entered values after saving data, but not after submitting data to the GDB. When the user is 

done entering data into the entry form, they must click the “Submit Data” button to upload it to the GDB.  

Controls have been put in place to help maintain uniformity in how data is imported into the GDB. For 

instance, the format of the publication date (YYYY-MM-DD) is checked, and if the entered text does not 

match this format, a warning message appears that states “Date published must be a date in YYYY-MM-

DD format.” Similarly, text appears when entering the dry ingredient weight percent values to indicate if 

the sum is equal to 100 wt% (Figure 6.5 top) Once this criterion, and other formatting criteria, are met, 

the data can be submitted to the GDB (Figure 6.5 bottom).  

If a paper or report tested multiple sample conditions, formulations, and/or waste types, an option is also 

provided to upload data from an Excel document. Bulk data entry is standardized using an Excel 

template; however, data formatting controls put in place for the grout data entry form are not available. 

The purpose of this functionality is to make data entry faster at the beginning of this effort. When the 

GDB is released for public access and contribution, a bulk entry form that incorporates these data 

formatting controls would be required or the option to submit data using Excel will be removed from the 

entry form.  
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Figure 6.1. The GDB entry form used when entering single sample or batch data into the GDB. This main 

window is where document information and sample formulation and curing conditions are 

logged, except for the liquid composition, which has its own pop-up window that is accessed 

by the “Add Liquid Waste Data” button at the bottom. Annotations are overlayed describing 

the type of information being logged for key entry fields.  
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Figure 6.2. Examples of the pop-up windows that appear for entering relevant sample or batch test data. 

(A) The composition of the aqueous (liquid) phase used to formulate the respective batch 

identified in the main GDB entry form window. (B) The compressive strength of the 

respective sample or test batch, which can be entered as an average value with the standard 

deviation identified or as replicate samples with their individual compressive strength values 

provided. (C) Saturated hydraulic conductivity value(s), entered as an average with a standard 

deviation or single replicate values. (D) Slurry properties of the formulated batch or sample, 

including the number of days required to reabsorb residual free liquids, initial and final set 

times, and flowability measurements using the adapted procedure from Harbour et al. (2005).  
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Figure 6.3. Pop-up window for logging EPA 1315 effective diffusivity values. 

 

Figure 6.4. Pop-up windows for entering (A) Toxicity Characteristic Leaching Procedure (TCLP) 

concentrations for RCRA metals and (B) sorption partition coefficient test data. Note that the 

desorption coefficients data entry window (not shown) has the same data entry format used for 

sorption coefficients. 
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Figure 6.5. One control incorporated into the GDB entry form is that the dry blend components’ weight 

percent values must sum to 100 weight percent. (top) Red text appears indicating the current 

weight percent total and (bottom) turns to green text when the criterion is met.  

6.1.9 Path Forward to Integration  

Year 1 GBD efforts primarily focused on establishing a database structure that positions the project for 

future efforts involving data visualization and AI/ML model development. Database population efforts 

are ongoing, and lessons learned help refine the user interface that will eventually be opened for external 

user contributions. As these efforts continue, the following aims have been identified for Year 2 efforts 

considering what has been learned in Year 1.  

• Subtask 6.1.1 – Efficient Data Entry: As previously mentioned, scripts written and tested for 

extracted data from tables often neglects key data provided and described in the main text; this 

missing information can limit the completeness of the built dataset. As Large Language Models 

(LLMs) improved recently, many models have the potential to bridge this gap by extracting relevant 

data from both publication tables and report text, providing a more comprehensive dataset. Several 

promising tools, like PNNL’s AI-Incubator, OpenSearch, and LLMWhisperer, were identified in 

Year 1 for this purpose. PNNL AI-Incubator, powered by the OpenAI, can conduct complex text 

analysis, summarization, and interpretation of unstructured text. OpenSearch can offer real-time data 

access and analysis. LLMWhisperer is known for its accurate speech-to-text conversion capabilities, 

providing a potential for capturing spoken contents into a text-based dataset. Efforts in Year 2 will 

explore implementation of these advanced tools to help build the GDB dataset more efficiently and 

effectively.  

• Subtask 6.1.2 – GDB Expansion: A pathway for database expansion without disrupting existing 

GDB entries will be defined in Year 2 in anticipation of evolving and growing needs and use of the 

GDB. Select GWF properties and performance data are currently being entered in the GDB (Table 

6.1); however, many reports and journal articles include other test data that may be of interest or 
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relevant to modeling efforts in the future. To date, most reports with data entered in the database 

have not included test results from EPA Method 1313. This test method evaluates contaminant 

retention in grout waste forms as a function of pH and is used in some modeling efforts. As data 

entry is expanded to include grout waste form formulations that are not Hanford specific, more EPA 

Method 1313 data may come available and warrant inclusion in the database.  

• Subtask 6.1.3 – Quality Assurance: To effectively use the database for developing models 

applicable to plant design and operation, certain data must be collected or meet specific nuclear 

quality assurance requirements. However, consolidating this information presents challenges due to 

varying QA standards across different property types. For example, product-quality-related 

properties often have stricter requirements compared to processing-related properties. Additionally, 

some reports reference internal documents for QA statements, requiring extra efforts to obtain and 

verify these documents. QA statements are often presented in text format within reports, making 

manual extraction inefficient. Integrating AI-based text scraping tools can streamline the extraction 

and organization of QA information, enhancing data accessibility and ensuring compliance with 

relevant standards. 

• Subtask 6.1.4 – External Access: The ultimate goal is to create a hosting website that consolidates 

all project developments, including the existing database, data entry interface, data scraper tools, and 

ML models. This platform will provide a centralized, consistent, and open-access resource for the 

broader community to use, contribute to, and enhance. A user guide will be authored and published 

with the site. Data export functions may also be incorporated so custom modeling tools can use the 

assembled data. Eventually, data visualization and ML functionality will be incorporated into the 

online tool to make it easier to work with and understand data relevant to specific application needs.  

By sharing these tools and data, this project aims to support external researchers in developing models, 

adding their data, and advancing knowledge in the field. A unified, freely accessible platform ensures data 

consistency, fosters collaboration, and maximizes the impact of these efforts on plant design and 

operation. 

6.2 Theme 5 Task 2: Completing Data Gaps 

6.2.1 Team Members 

Jon Lapeyre (PNNL), Suraj Rahmon (PNNL), Miroslava Peterson (PNNL), Joelle Reiser (PNNL) 

6.2.2 Background 

Based on the evaluation of the current information in the GDB, significant data gaps exist for information 

that is crucial to successful modeling of grout using the Hanford Grout Modeling Framework. These gaps 

are due to the continued improvement in understanding of processes key to grout aging that have not been 

a focus in previous Hanford-related testing and are a result of sporadic grout development at Hanford over 

the last three decades. This task will be initiated in Year 2 and will seek to fill some of the most pressing 

data gaps to support development of the Hanford Grout Modeling Framework. However, a focused 

program guided to fill these data gaps will be required to achieve complete fidelity of the Hanford Grout 

Modeling Framework. 

6.2.3 Target Experiments and Task Integration 

• Slag dissolution testing: This experiment will support Theme 1 Task 2 to study the dissolution of 

slag in different simulated cement pore waters to represent different ages of grouts to allow 

expansion of the geochemical modeling approach to longer timeframes. This testing will also assess 
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slag dissolution in simulated waste environments to replicate the early-age hydration processes. It 

will be supported by ongoing characterization of slag containing samples at VU.  

• Carbonated grout for peridynamics: One of the most prominent aging processes related to the 

physical characteristics of grout is carbonation. This task will fabricate grout samples for carbonation 

tests of long timeframes to assess physical changes for data to be fed into the PD modeling in Theme 

4 Task 1. 

• Aged grout leaching: Geochemical speciation models have been developed for the CS formulation 

on samples that have been oxidized and carbonated to assess their impact on leaching. This 

experiment will provide data on aged alternative grout formulations to support expansion of the 

geochemical speciation modeling in Theme 3 Task 1.  

• Chemo-mechanical links through local hardness: This task will take hardness measurements (e.g., 

nano-indentation) across a grout sample to assess any changes locally to specific microstructure 

components. This information can be used in the design of mesoscale models in Theme 4 Task 2 to 

predict cracking and link to the PD models in Theme 4 Task 1. 
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7.0 Summary 

Year 1 development of the Hanford Grout Modeling Framework has laid the groundwork for formation 

of the full system tool and provided substantial advancement of new tools in the modeling of grout. Based 

on conceptual models of the three main applications of grout at Hanford, liquid waste immobilization, 

solid waste stabilization/encapsulation, and tank closure are the main processes and mechanisms that 

control grout properties during aging. Five original themes were defined to support the development of 

the Hanford Grout Modeling Framework, and the associated subtasks were initiated during Year 1. The 

significant developments in each subtask presented in this report are as follows. 

• Theme 1 Task 1 – Hanford Mineral Network: A main component of the Hanford Grout Modeling 

Framework was developed in which the mineral composition of grouts is now defined using a 

geochemical speciation model. A software link between eSTOMP and LXO was developed to 

facilitate this information transfer. 

• Theme 1 Task 2 – Geochemical Modeling of Reactive Grout Phases: Predictive dissolution models 

developed originally for glass waste forms have been successfully applied to predict the early-life 

dissolution of BFS, showing promise for a long-term predictive tool of dissolution of key phases in 

the grout microstructure. 

• Theme 2 Task 1 – Integration of Variably Saturated Flow Modeling to eSTOMP: This task was 

able to demonstrate that previous predictions of moisture pathways and transport times in the 

disposal facility using Variably Saturated Flow modeling can be replicated in eSTOMP. These 

calculations will provide the bases for reaction times in modeling in the Hanford Grout Modeling 

Framework. 

• Theme 2 Task 2 – Integration of Variably Saturated Flow Modeling to Field Experimental Data: 

This task was a first step of validating the Hanford Grout Modeling Framework against field data by 

comparing moisture content models against measurements in the Hanford field lysimeter test. 

• Theme 3 Task 1 – Application of Geochemical Speciation Modeling to Other Hanford Grout 

Examples: This task further evaluated geochemical speciation models for predicting the behavior of 

grout components and contaminants. Prior demonstration of this tool was on a single grout 

formulation, and this has now shown success on other Hanford grouts. This tool will provide a key 

component to predict the chemical state of the grout. 

• Theme 3 Task 2 – Application of Geochemical Speciation Modeling to Other Hanford Grout 

Examples: This task demonstrated for the first time a reactive transport representation of oxidation 

of grout in a Hanford disposal environment, laying the groundwork for spatial and dynamic aging 

processes to be captured in the Hanford Grout Modeling Framework. 

• Theme 3 Task 3 – Contaminant Interactions with Microbial Processes: This task developed an 

approach within eSTOMP to represent microbial conversions in grout leachates in disposal using 

nitrate as an example. 

• Theme 4 Task 1 – Peridynamic Modeling: This task successfully built, for the first time, a PD 

model of a Hanford-relevant grout (using tank concrete as an example) and compared failure 

predications against experimental data. 

• Theme 4 Task 2 – Maturation of Mesoscale Models for Hanford Grout: This task built a Hanford-

relevant mesoscale model for the first time of a silver zeolite solid waste in a grout waste form to 

model silver migration in the grout matrix that will be expanded to contaminant migration and 

physical evolution. 
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• Theme 5 Task 1 – Grout Database: An online hosting tool has been developed for a database of 

Hanford-relevant grout data and population with data has been ongoing.  
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Appendix A – Python Script to Extract Table Data from XML 
Files 

The purpose of this script is to extract all table data from a publication’s XML file to a new Excel file, 

with each sheet being a different table in the paper. 

 

import pandas as pd 

import requests 

from bs4 import BeautifulSoup 

import os 

from datetime import datetime 

import numpy as np 

import re 

 

papers_path = 'C:\\[User defined path]\\Unique File Name.xlsx' 

download_path = 'C:\\ [User defined path]' 

 

folder_name = f'{datetime.now().strftime('%Y-%m-%d')}_ [User Name]_XML' 

 

 

PDF_folder = os.path.join(download_path, folder_name, 'PDF') 

XML_folder = os.path.join(download_path, folder_name, 'XML') 

data_folder = os.path.join(download_path, folder_name, 'DATA') 

 

os.makedirs(PDF_folder,  exist_ok =True) 

os.makedirs(XML_folder,  exist_ok =True) 

os.makedirs(data_folder,  exist_ok =True) 

 

api_key = '[User specific API Key]' 

headers_xml = { 

'x-els-apikey': api_key, 

'User-Agent': 'Mozilla/5.0' 

} 

 

headers_pdf = { 

'x-els-apikey': api_key, 

'accept': 'application/pdf' 

} 

 

def get_table_body(body, num_cols): 

all_rows = [] 

more_rows = [0] * num_cols 

for row in body: 

entries = row.find_all_next('entry') 

row = [] 

i = 0 

while i < len(more_rows): 

if more_rows[i]!= 0: 

row.append('') 
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more_rows[i] -= 1 

else: 

entry = entries.pop(0) 

text = (''.join(entry.text.strip('\n'))) 

# if text == '–':   looses semantic meaning without the - i think :/ 

#     text = np.nan 

row.append(text) 

if entry.attrs != None: 

if 'namest' in entry.attrs: 

start = int(entry['namest'].strip('col')) - 1 

end = int(entry['nameend'].strip('col')) - 1 

num_fill = end - start 

for j in range(num_fill): 

row.append('') 

if 'morerows' in entry.attrs: 

more_rows[i] = int(entry['morerows']) 

i+=1 

if 'morerows' in entry.attrs: 

more_rows[i] = int(entry['morerows']) 

i+=1 

all_rows.append(row) 

 

return all_rows 

 

def get_column_titles(head, num_cols): 

all_rows = [] 

more_rows = [0] * num_cols 

for row in head: 

entries = row.find_all_next('entry') 

row = [] 

i = 0 

while i < len(more_rows): 

if more_rows[i] != 0: 

row.append("") 

more_rows[i] -= 1   

else: 

if len(entries) != 0:  

entry = entries.pop(0) 

col_text = ' '.join(entry.text.split('\n')).strip() 

row.append(col_text) 

if 'namest' in entry.attrs: 

start = int(entry['namest'].strip('col')) - 1 

end = int(entry['nameend'].strip('col')) - 1 

num_fill = end - start 

for j in range(num_fill): 

row.append(f'{col_text}') 

if 'morerows' in entry.attrs: 

more_rows[i] = int(entry['morerows']) 

i+=1 

if 'morerows' in entry.attrs: 

more_rows[i] = int(entry['morerows']) 
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i+=1 

all_rows.append(row) 

 

col_titles = [] 

for col in range(len(all_rows[0])): 

combined_column = '' 

for row in all_rows: 

if row[col] != '': 

combined_column = combined_column + ' ' + str(row[col]) 

col_titles.append(combined_column) 

 

if len(col_titles) != len(set(col_titles)): 

counts = {} 

result = [] 

 

for item in col_titles: 

if item in counts: 

counts[item] += 1 

result.append(f"{item}{counts[item]}") 

else: 

counts[item] = 0 

result.append(item) 

col_titles = result 

return col_titles 

 

def get_tables(tables): 

all_tables = {} 

errors = [] 

for i in range(len(tables)): 

table = tables[i] 

try: 

title = table.find("ce:label").text 

except: 

title = "Unnamed table {}".format(i) 

print(title) 

try: 

num_cols = table.find_all('tgroup') 

except:  

errors.append(title) 

try: 

col_titles = [] 

heads = table.find_all("thead") 

for i in range(len(heads)): 

head = heads[i].find_all("row") 

col_titles.append(get_column_titles(head,int(num_cols[i].get('cols')))) 

except Exception as e: 

col_titles = [i for i in range(num_cols)] 

try: 

table_data = [] 

bodies = table.find_all("tbody") 

all_tables[title] = [] 
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for i in range(len(bodies)): 

body = bodies[i].find_all("row") 

table_data.append(get_table_body(body, int(num_cols[i].get('cols')))) 

for i in range(len(col_titles)): 

table_df = pd.DataFrame(table_data[i], columns=col_titles[i]) 

all_tables[title].append([table_df]) 

 

captions = table.find_all("ce:caption") 

captions.extend(table.find_all("ce:legend")) 

captions.extend(table.find_all("ce:table-footnote")) 

if len(captions) != 0: 

captions = [' '.join(caption.text.split('\n')) for caption in captions] 

captions_df = pd.DataFrame(captions, columns=["captions"]) 

all_tables[title].append(captions_df) 

except Exception as e: 

errors.append(title) 

if len(errors) != 0: 

all_tables['ERROR'] = [pd.DataFrame(errors, columns=['ERROR'])] 

return all_tables 

 

def num_check(val): 

try: 

#remove comma from number 

val_num = ''.join(str(val).split(',')) 

 

#replace − with - 

val_num = val_num.replace('−', '-') 

 

# if scientific notation (ie 1X10-1) 

if re.search('[  ]?[Xx×][  ]?10', val_num): 

val_num = re.sub("[  ]?[Xx×][  ]?10", "e", val_num) 

 

return float(val_num) 

except: 

return val 

 

def format_df(df): 

new_columns = {} 

percent_columns = []  

for col in df.columns: 

#convert to float if digit 

df[col] = df[col].apply(lambda val: num_check(val)) 

 

#plus or minus symbol 

if df[col].astype(str).str.contains('±').any(): 

#split columns 

expansion = df[col].astype(str).str.split('±', expand=True) 

#strip whitespace and convert to numbers, replace NA with 0 

expansion = expansion.map(lambda x: str(x).strip()) 

expansion = expansion.map(lambda val: '-' if val == 'None' else val) 

expansion = expansion.map(lambda val: num_check(val)) 
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#name columns 

if '±' in str(col): 

expansion.columns = [col.strip() for col in col.split('±')] 

else: 

columns = [col] 

for i in range(len(expansion.columns)-1): 

columns.append(f'(error{i}){col}') 

expansion.columns = columns 

new_columns[col] = expansion 

 

df = df.drop(columns=col) 

#replace column with new columns 

for col, exp_cols in new_columns.items(): 

col_idx = len(df.columns)  # By default, add at the end if column not found 

if col in df.columns: 

col_idx = df.columns.get_loc(col) 

df = pd.concat([df.iloc[:, :col_idx], exp_cols, df.iloc[:, col_idx:]], axis=1) 

return df 

 

def download_papers(papers_df): 

summary = "Title,num_tables,has_supps,errors\n" 

for index, paper in papers_df.iterrows(): 

doi = paper["DOI"].strip('https://doi.org/') 

paper_title = re.sub(r"(<.[^>]*>)|([\\\/:|?*$#\".,;\'\(\)]|(\s(CH2MHILL)))", "", 

paper['Title'])[0:245].strip() 

authors = paper["Authors"] 

date = paper['Publication Date'].split('T')[0] 

 

metadata = { 

"DOI": doi, 

"Title": paper_title, 

"Authors": authors, 

"Publication Date": date  

} 

api_url = f'https://api.elsevier.com/content/article/doi/{doi}' 

xml_response = requests.get(api_url, headers=headers_xml) 

pdf_response = requests.get(api_url, headers=headers_pdf) 

if xml_response.status_code != 200: 

print("ahh! {}: {}".format(xml_response.status_code, xml_response.content)) 

break 

soup = BeautifulSoup(xml_response.content, 'lxml') 

 

article_info = soup.find('xocs:articleinfo') 

has_sup_data = False 

 

if 'appendices' in str(article_info): 

has_sup_data = True 

 

tables = soup.find_all('ce:table') 

 

summary += f'{paper_title},{len(tables)},{str(has_sup_data)},' 
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print(f'**********{paper_title}************') 

 

if len(tables) != 0: 

all_tables = get_tables(tables) 

 

if('ERROR' in all_tables.keys()): 

summary += 'True' 

else: 

summary += 'False' 

 

metadata_df = pd.DataFrame(metadata, index=[0]) 

with pd.ExcelWriter(os.path.join(data_folder, f'{paper_title}.xlsx')) as writer: 

for table in all_tables: 

data = all_tables[table] 

 

startrow = 0 

for i in range(len(data) - 1): 

data[i] = format_df(data[i][0]) 

data[i].to_excel(writer, sheet_name=table, startrow=startrow, startcol=0, 

index=False) 

startrow += data[i].shape[0]+1 

data[-1].to_excel(writer, sheet_name=table, startrow=0, 

startcol=len(data[0].columns)+2, index=False) 

 

metadata_df.to_excel(writer, sheet_name="metadata", index=False) 

else: 

print("No tables found in paper {}".format(index)) 

with open(os.path.join(XML_folder, f'{paper_title}.xml'), 'wb') as file: 

file.write(xml_response.content) 

with open(os.path.join(PDF_folder, f'{paper_title}.pdf'), 'wb') as file: 

file.write(pdf_response.content) 

summary += '\n' 

 

with open(os.path.join(download_path, folder_name, 

'summary_{}.csv'.format(datetime.now().strftime("%Y-%m-%d_%H-%M"))), 'w') as file: 

file.write(summary) 

 

 

if __name__ == '__main__': 

 

papers_df = pd.read_excel(papers_path, "Records") 

papers_df = papers_df[papers_df['XML?'] == 'Y'] 

download_papers(papers_df)
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Appendix B – Python Script for Extracting Data Tables from 
PDF Files Using LLM API Key 

The Python script below was used to extract data tables from publication PDF files as output text (.txt) or 

Excel files. Each table is exported as its own .txt file or in its own sheet within the Excel file created. This 

script was written by coauthor Dewei Wang for specific use with the Pacific Northwest National 

Laboratory AI Incubator, which is an internal capability built on the same technology used by OpenAI.  

 

# -*- coding: utf-8 -*- 

""" 

Created on Wed Feb  4 12:45:10 2025 

 

@author: wang109 

""" 

 

#%% Import necessary libraries 

import numpy as np 

import pandas as pd 

import os 

import PyPDF2 

import openai 

import re 

from src.common_utils import load_environment_variables 

load_environment_variables() 

API_KEY = os.getenv("OPENAI_API_KEY") 

client = openai.OpenAI( 

    api_key=API_KEY, 

    base_url=os.environ["OPENAI_BASE_URL"] 

) 

 

#%%   

def aiprocessor(page_no, text): 

    print(f"\n\n..AI processing page {page_no}") 

     

    messages = [ 

        { 

            "role": "system", 

            "content": """You are a PDF table extractor, a backend processor. 

- User input is messy raw text extracted from a PDF page by PyPDF2. 

- Do not output any body text, we are only interested in tables. 

- The goal is to identify tabular data, and reproduce it cleanly as pipe-separated (|) table. 

- Reply with the table data only, no title or summary. 

- Reproduce each separate table found in page, separate tables by an empty line.""" 

        }, 

        { 

            "role": "user", 

            "content": "raw pdf text; extract and format tables: " + text 

        } 

    ] 
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    my_ai_model = os.environ["OPENAI_MODEL"] 

    api_params = {"model": my_ai_model, "messages": messages, "stream": True} 

     

    try: 

        api_response = client.chat.completions.create(**api_params) 

        reply = "" 

        for delta in api_response: 

            # if 'choices' in delta and delta['choices'][0].get('finish_reason') is None: 

            if delta.choices and delta.choices[0].finish_reason is None: 

                word = delta.choices[0].delta.content or '' 

                reply += word 

                print(word, end="") 

        return reply 

     

    except Exception as err: 

        error_message = f"API Error on page {page_no}: {str(err)}" 

        print(error_message) 

        return error_message 

 

def parse_pipe_table(raw_text): 

    lines = raw_text.splitlines() 

     

    clean_rows = [] 

 

    for line in lines: 

        line = line.strip() 

         

        # 1) Skip empty lines 

        if not line: 

            continue 

         

        # 2) Skip lines with triple backticks 

        if '```' in line: 

            continue 

         

        # 3) Skip lines that are just dashes (the header separators) 

        if re.match(r'^\|\-+\|$', re.sub(r'\s+', '', line)): 

            continue 

         

        # 4) Split on the pipe 

        row_parts = line.split('|') 

 

        # 5) Trim leading/trailing empties if the row starts or ends with '|' 

        #    e.g. ['', ' Leachant ...', ' Al', ... , ''] 

        if row_parts and not row_parts[0].strip(): 

            row_parts = row_parts[1:] 

        if row_parts and not row_parts[-1].strip(): 

            row_parts = row_parts[:-1] 

         

        # 6) Strip each cell; convert repeated dashes or a single dash into None 
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        cleaned_cells = [] 

        for cell in row_parts: 

            cell = cell.strip() 

            # Convert dash-like cells ("-", "–", "--", "—", "-----", etc.) to None 

            if re.match(r'^[-–]+$', cell): 

                cell = None 

            cleaned_cells.append(cell) 

         

        # skip a row that is entirely None 

        if all(x is None or x == '' for x in cleaned_cells): 

            continue 

         

        clean_rows.append(cleaned_cells) 

 

    if len(clean_rows) < 2: 

        # Not enough data to form a header + rows 

        return None 

     

    # # First row as header 

    # header = clean_rows[0] 

    # data = clean_rows[1:] 

     

    # # Create DataFrame 

    # df = pd.DataFrame(data, columns=header) 

     

    # Create DataFrame 

    df = pd.DataFrame(clean_rows) 

 

    # Drop columns that are entirely None / empty 

    df = df.dropna(axis='columns', how='all') 

 

    # Drop rows that are entirely None / empty 

    df = df.dropna(axis='rows', how='all') 

 

    return df 

 

def save_tables_to_excel_ai(tables, output_xlsx): 

     

    with pd.ExcelWriter(output_xlsx) as writer: 

        table_count = 0 

         

        for i, table_text in enumerate(tables): 

 

            individual_tables = [t.strip() for t in table_text.strip().split("\n\n") if t.strip()] 

 

            for table in individual_tables: 

                 

                try: 

                    df = parse_pipe_table(table) 

                    if df is None: 

                        print("No valid data was found in the table.") 
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                    else: 

                        print("DataFrame:") 

                        print(df) 

                     

                    # Save each table to a separate sheet 

                    sheet_name = f"Table_{table_count+1}" 

                    df.to_excel(writer, sheet_name=sheet_name, index=False, header=False) 

                except Exception as e: 

                    # If DataFrame conversion fails, write as plain text 

                    sheet_name = f"Table_{table_count+1}_plain_text" 

                    pd.DataFrame({"Table Text": [table]}).to_excel(writer, sheet_name=sheet_name, 

index=False) 

                    print(f"Warning: Could not convert table to DataFrame. Saved as plain text in {sheet_name}. 

Error: {e}") 

                     

                table_count += 1 

 

    print(f"Tables saved to {output_xlsx}") 

 

def extract_tables_openai(pdf_path, output_folder="output_ai"): 

     

    tables = [] 

    if not os.path.exists(output_folder): 

        os.makedirs(output_folder) 

     

    # Open the PDF file in binary mode 

    with open(pdf_path, 'rb') as pdf_file: 

        pdf_reader = PyPDF2.PdfReader(pdf_file) 

     

        # Iterate through each page and extract text 

        for page_num in range(len(pdf_reader.pages)): 

            page = pdf_reader.pages[page_num] 

            page_text = page.extract_text() 

     

            if len(page_text)>20: 

                # # Dump unprocessed pages if desired 

                # page_text_file = f"{output_folder}/" + pdf_file.name + "-extractedpage" + str(page_num) + 

".txt" 

                # with open(page_text_file, 'w', encoding='utf-8') as output_file: 

                #     output_file.write(page_text) 

     

                # Process with AI 

                ai_processed_text = aiprocessor(page_num, page_text) 

     

                # Dump AI pages if desired 

                # page_text_file = f"{output_folder}/" + pdf_file.name + "-AIpage" + str(page_num) + ".txt" 

                page_text_file = os.path.join(output_folder, f"{os.path.basename(pdf_file.name)}-

AIpage{page_num}.txt") 

                 

                with open(page_text_file, 'w', encoding='utf-8') as output_file: 

                    output_file.write(ai_processed_text) 
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                # Append the AI-processed text to the list 

                tables.append(ai_processed_text) 

         

    return tables 

 

#%% 

if __name__ == '__main__': 

     

    #%% load PDF for the scrape 

    work_path = './pdf/' 

    result_path = './excel/' 

     

    #%% for multiple files 

    pdf_files = [file for file in os.listdir(work_path) if file.endswith('.pdf')] 

    for file_name in pdf_files: 

     

        #%% extract tables containing identifiers 

        print('extract tables from ', file_name, ' ...')  

        extracted_tables = extract_tables_openai(os.path.join(work_path, file_name))  

 

        #%% save tables to excel 

        if not os.path.exists(result_path): 

            os.makedirs(result_path) 

        print('saving tables from ', file_name, ' ...') 

        file_name_output = result_path+file_name[: -4]+'.xlsx' 

        save_tables_to_excel_ai(extracted_tables, file_name_output) 
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Appendix C – Oxidation Model Inputs 

Table C.1. Waste Burial Box input file. 

Card Parameter Value 

Simulation Title Card Title Water mode (STOMP-W) 

 Parameters Solidification, Oxidizing conditions (ACM1), Long term Infiltration 3.5mm/yr 

 Researcher Xuehang Song, Jacob Anderson 

 Institution PNNL 

 Date 11/07/2019, 01/2025 

Solution Control Card Method normal w/petsc 

 Convergence Criteria 1.0E-12, 1.0E-25 

 Water mode Water w/ECKEChem w/courant 

 Time step 10, s, 1 yr 

 Maximum Time Step 1e+30, yr 

Rock/Soil Zonation Card Zonation file grout.zon 

 Zonation Levels HD_BACKF, LD_BACKF, W1 

Mechanical Properties Card Material HD_BACKF, LD_BACKF, W1 

 Density 2.710 g/cm^3 (for HD_BACKF and LD_BACKF), 2.820 g/cm^3 (W1) 

 Porosity 0.35 (HD_BACKF), 0.37 (LD_BACKF), 0.557 (W1) 

Hydraulic Properties Card 
Hydraulic 

Conductivity 

4.91e-03 hc cm/s (HD_BACKF), 1.86e-02 hc cm/s (LD_BACKF), 1.54E-09 hc 

cm/s (W1) 

Saturation Function Card Function Model van Genuchten 

 Parameters 6.50e-02 (HD_BACKF), 5.70e-02 (LD_BACKF), 6.03E-06 (W1) 

Aqueous Relative Permeability 

Card 
Model Mualem 

Solute/Porous Media Interactions 

Card 
Interaction 0.0 cm (for HD_BACKF, LD_BACKF, W1) 

Aqueous Species Card Species O2(aq), 0.315 cm^2/yr (Conventional) 

Solid Species Card Species slag, solution, O2_product, solution_product 

 Density 1.7 g/cm^3 

Conservation Equations Card Equations Total_slag, Total_o2(aq), Total_solution 

Kinetic Equations Card Kinetic Reactions KnRc-1, KnRc-2 

Kinetic Reactions Card Reactions Forward-Backward for slag to O2(aq) and solution to solution_product 

Output Options Card Output Variables 
Aqueous Saturation, species aqueous conc, species volumetric conc, species 

integrated mass 

 Time Intervals 0 s, 1 yr, 10 yr, 50 yr, etc. 

Grid Card Grid Dimensions 31, 25, 281 

 Coordinates 0.0m, 0.01m, 0.025m, etc. 

Initial Conditions Card Parameters Gas Pressure, Aqueous Pressure, Species Volumetric (slag, solution_product) 

 Value Various pressure and volumetric values for different time steps 

Boundary Conditions Card Boundary Type Neumann, Dirichlet 

 Species O2(aq) 

 Boundary Values Various values for top, bottom, east, north 
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Table C.2. B-25 Waste Box input file. 

Card Parameter Value 

Simulation Title Card Title 1 

 Input Xuehang Song, Jacob Anderson 

 Organization PNNL 

 Date 11/07/2019, 01/2025 

Solution Control Card Solver normal w/petsc 

 Tolerance 1.0E-12 

 Convergence 1.0E-25 

 Water Model Water w/ECKEChem w/courant 

 Time Step 10 s 

 Time Interval 10000 yr 

 Maximum Iterations 1 

 Solver Method solute diffusion, harmonic 

 Diffusion Constant 1e-20 

Rock/Soil Zonation Card File formatted zonation file, grout.zon 

 Zones HD_BACKF, LD_BACKF, W1 

Mechanical Properties Card HD_BACKF Density 2.710 g/cm³ 

 HD_BACKF Porosity 0.35 

 LD_BACKF Density 2.710 g/cm³ 

 LD_BACKF Porosity 0.37 

 W1 Density 2.820 g/cm³ 

 W1 Porosity 0.557 

Hydraulic Properties Card HD_BACKF 4.91e-03 hc cm/s 

 LD_BACKF 1.86e-02 hc cm/s 

 W1 1.54E-09 hc cm/s 

Saturation Function Card HD_BACKF Model van Genuchten 

 HD_BACKF Parameter 1 6.50e-02 1/cm 

 HD_BACKF Parameter 2 1.7 

 HD_BACKF Parameter 3 0.086 

 LD_BACKF Model van Genuchten 

 LD_BACKF Parameter 1 5.70e-02 1/cm 

 LD_BACKF Parameter 2 2.8 

 LD_BACKF Parameter 3 0.081 

 W1 Model van Genuchten 

 W1 Parameter 1 6.03E-06 1/cm 

 W1 Parameter 2 1.649 

 W1 Parameter 3 0.108 

Aqueous Relative Permeability Card HD_BACKF Model Mualem 

 LD_BACKF Model Mualem 

 W1 Model Mualem 

Solute/Porous Media Interactions Card HD_BACKF 0.0 cm 

 LD_BACKF 0.0 cm 

 W1 0.0 cm 

Aqueous Species Card O2(aq) Diffusion 0.315 cm²/yr 
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Card Parameter Value 

 O2(aq) Behavior Constant 

 O2(aq) Rate 1.0 

Solid Species Card Slag 1.7 g/cm³, 27.027027 g/mol 

 Solution 1.7 g/cm³, 27.027027 g/mol 

 O2 Product 1.7 g/cm³, 27.027027 g/mol 

 Solution Product 1.7 g/cm³, 27.027027 g/mol 

Conservation Equations Card Total Slag 3 slag, 1 solution_product, 1 O2_product 

 Total O2(aq) 2 O2(aq), 1 O2_product 

 Total Solution 2 solution, 1 solution_product 

Kinetic Equations Card Kinetic O2 Product 1 O2_product, 1 KnRc-1, 1.0000 

 Kinetic Solution Product 1 solution_product, 1 KnRc-2, 1.0000 

Kinetic Reactions Card KnRc-1 Forward Backward, 2 slag, 1 O2(aq), 1 O2_product 

 KnRc-1 Rate 1e-3 1/yr, 0 1/yr 

 KnRc-2 Forward Backward, 2 slag, 1 solution, 1 solution_product 

 KnRc-2 Rate 1e-3 1/yr, 0 1/yr 

Output Options Card 1 1, 1, 1 

 2 1, 1, yr, m, 6, 6, 6 

 13 Aqueous Saturation 

 14 species aqueous conc, O2(aq), mol/L 

 15 species volumetric conc, O2(aq), mol/L 

 16 species volumetric conc, solution, mol/L 

 17 species volumetric conc, solution_product, mol/L 

 18 species volumetric conc, O2_product, mol/L 

 19 species volumetric conc, slag, mol/L 

 20 Species Integrated Mass, O2_product, mol 

 21 Species Integrated Mass, solution, mol 

 22 Species Integrated Mass, solution_product, mol 

 23 Species Integrated Mass, slag, mol 

 24 Species Integrated Mass, O2(aq), mol 

 25 diffusive porosity 

Grid Card Type Cartesian 

 Grid Size 28, 25, 281 

 Grid Spacing 0.0 m to 12.75 m (spanning several specific distances) 

Initial Conditions Card Gas Pressure 1.0135e+5 Pa 

 Aqueous Pressure 5e5 Pa 

 Species Volumetric Slag 0.0010569 mol/liter 

 Species Volumetric Solution Product 0 mol/liter 

Boundary Conditions Card Top Boundary Neumann Aqueous, Aqueous Concentration 

 O2(aq) Concentration 1.06e-3 mol/L 

 East Boundary Neumann Aqueous, Aqueous Concentration 

 O2(aq) Concentration 1.06e-3 mol/L 

 North Boundary Neumann Aqueous, Aqueous Concentration 

 O2(aq) Concentration 1.06e-3 mol/L 
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Appendix D – Additional Batch Grout Model Output 

 

Figure D.1. Comparison between the expected dissolved components controlled by mineral assemblages 

in grout as predicted by BIOGEOCHEM (blue) and ORCEHSTRA (red) for carbonate 

species. 

 

Figure D.2. Comparison between the expected dissolved components controlled by mineral assemblages 

in grout as predicted by BIOGEOCHEM (blue) and ORCEHSTRA (red) for silicate species. 
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Figure D.3. Aluminum speciation with pH from the batch model BIOGEOCHEM. 

 

Figure D.4. Carbonate speciation with pH from the batch model BIOGEOCHEM. 
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Figure D.5. Calcium speciation with pH from the batch model BIOGEOCHEM. 

 

Figure D.6. Silicate speciation with pH from the batch model BIOGEOCHEM. 
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Figure D.7. Magnesium speciation with pH from the batch model BIOGEOCHEM. 

 

Figure D.8. Manganese speciation with pH from the batch model BIOGEOCHEM. 
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Figure D.9. Nitrogen speciation with pH from the batch model BIOGEOCHEM. 

 

Figure D.10. Sodium speciation with pH from the batch model BIOGEOCHEM. 
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Figure D.11. Phosphorous speciation with pH from the batch model BIOGEOCHEM. 

 

Figure D.12. Sulfate speciation with pH from the batch model BIOGEOCHEM. 
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Figure D.13. Technetium speciation with pH from the batch model BIOGEOCHEM.  

 



PNNL-37528 

 

 

Pacific Northwest  
National Laboratory 

902 Battelle Boulevard 

P.O. Box 999 

Richland, WA 99354 

 

1-888-375-PNNL (7665) 

www.pnnl.gov 

 

http://www.pnnl.gov/

