

Operational Excellence: 0&M Beyond the Basics

T03-S01, August 5th, 2025

Cassandra Johnson

Federal Energy Advisory Practice Lead

Jacobs

Agenda

- Session Learning Objectives
- Alternative O&M Strategies
- Reliability Centered Maintenance
- Conclusion and Q&A

Session Learning Outcomes

- Identify potential O&M opportunities, including best practices and innovative approaches, that can be implemented in facilities.
- 2. Recognize condition-based (or predictive) maintenance strategies and how they differ from other O&M activities.
- Identify useful O&M tools that facilities can use to maximize the effectiveness of current resources.
- 4. Identify the related benefits of O&M to overall life-cycle cost and reliability of assets.

What is Operational Excellence? And How Can We Achieve It?

REACTIVE

Repair it AFTER it breaks

- High Cost
- Overtime
- Unplanned
- Breakdown
- Outages

PREVENTATIVE

Repair it BEFORE it breaks

- Scheduled/Planned
- Coordinated
- Moderate Cost
- Improved Operations

PROACTIVE

Don't repair it! ELIMINATE the cause

- Predictive
- Life Extension
- Defect Elimination
- Precision
- Redesign
- ☐ Life Cycle Cost Effective

JoeDon Breda, PE

Managing Research Engineer
Research & Consulting | Advanced Energy

My Background

20 years in engineering

Design & operations roles:

- 14 years in design & consulting
- 6 years in facilities at OSU Medical Center (2018-2024)
- Joined TRC in 2024

Facilities highlights

Led BAS initiatives implementing:

- High-performance HVAC control sequences
- Controller-embedded AFDD
- New and retrofit applications

Format

Section 1: Traditional O&M

Section 2: Problems with Traditional O&M

Section 3: Alternative Solutions

1: Traditional O&M

Reactive

- Complaints
- Alarms & equipment failures

Outsourced

- Multi-year contracts
- Public bids
- Constrained staff resources

1: Traditional O&M

Documented?

- Computerized Maintenance Management System (CMMS)
- Manually logged on paper

Preventative maintenance?

- Task-oriented
- Scheduled

Unplanned repairs

- Equipment downtime
- Alarm fatigue from Building Automation System (BAS)

- Staff turnover
- Access to training & guidance
- Field investigation takes time

Insufficient documentation & preventative maintenance

- CMMS might be siloed
- Capital planning impacts

Safety is compromised

 Example: The desuperheater tech was on vacation

Efficiency is compromised

- Example of reheat valves not functioning properly
- Example of space heaters

Reliability is compromised

- Equipment fails prematurely
- Example of incorrect pump application w/ frequent, undocumented tear-downs

Leverage Technology

- BAS are becoming increasingly powerful
- Advanced HVAC control strategies
- Automated Fault Detection & Diagnostics (AFDD)

Figure 1. Categories of available FDD configurations

Image source: Brian Clark (Research Engineer at USACE CERL

Standardize Rules for Alarming and Monitoring

- What conditions need to be alarmed immediately?
- What conditions can be deferred until demonstrating persistence?

Alarm Log				
Date/Time	Monitored Object	Clg Setpoint	High Limit	Present Value
08/05 @ 6:01 am	Building 1 – 1 st Floor – VAV-1 High Temp Alarm	74 °F	77 °F	77 °F
08/05 @ 6:01 am	Building 1 – 1 st Floor – VAV-2 High Temp Alarm	73 °F	76 °F	77 °F
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-3 High Temp Alarm	74 °F	77 °F	78 °F
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-4 High Temp Alarm	75 °F	78 °F	78 °F
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-5 High Temp Alarm	73 °F	76 °F	77 °F
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-6 High Temp Alarm	74 °F	77 °F	78 °F
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-7 High Temp Alarm	75 °F	78 °F	79 °F
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-8 High Temp Alarm	73 °F	76 °F	77 °F
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-9 High Temp Alarm	73 °F	76 °F	78 °F
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-10 High Temp Alarm	74 °F	77 °F	77 °F

"Cumulative % Hours" = Accumulated Zone Alarm Hours ÷ Run Hours

Alarm Log			
Date/Time	Monitored Object	High Limit	Present Value
08/05 @ 6:01 am	Building 1 – 1 st Floor – VAV-1 High Temp Cumulative % Hours	50%	6%
08/05 @ 6:01 am	Building 1 – 1 st Floor – VAV-2 High Temp Cumulative % Hours	50%	8%
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-3 High Temp Cumulative % Hours	50%	17%
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-4 High Temp Cumulative % Hours	50%	14%
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-5 High Temp Cumulative % Hours	50%	3%
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-6 High Temp Cumulative % Hours	50%	9%
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-7 High Temp Cumulative % Hours	50%	80%
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-8 High Temp Cumulative % Hours	50%	3%
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-9 High Temp Cumulative % Hours	50%	8%
08/05 @ 6:02 am	Building 1 – 1 st Floor – VAV-10 High Temp Cumulative % Hours	50%	11%

Appoint at Least One O&M Champion

- Bridge operations, BAS shop, engineering, leadership
- Close feedback loops clearly demonstrate challenges to leadership, make sure designer knows what didn't work
- Engage key stakeholders
- Hold contractors accountable
- Leverage data track repeat problems

The 80/20 Rule

- Make decisions seek to move in the right direction
- Celebrate the wins
- Share the lessons

The "optimum" solution or strategy will always be a moving target, and that's ok.

Rob Bucey

Director of Operations - Federal Advisory Solutions Practice

Jacobs

Reliability Centered and Condition Based Maintenance

Logical, structured framework to sustain operational reliability

- ✓ Preserve system function
- ✓ Identify failure modes that can defeat the functions
- ✓ Prioritize function need (via failure modes)
- ✓ Select applicable and effective prioritized Preventive Maintenance (PM) tasks

Experience-centered approach utilized to deliver high value program that is practical to implement

Reliability Centered and Condition Based Maintenance

Summarized in 7 simple questions:

- 1. What are the functions of the asset?
- 2. In what ways can the asset fail to fulfill its functions?
- 3. What causes each functional failure?
- 4. What happens when each failure occurs?
- 5. What are the consequences of each failure?
- 6. What should be done to prevent or predict the failure?
- 7. What should be done if a suitable proactive task cannot be found?

Have you seen this before?

Managing Risk

- Assess Risk
- Clearly define mission requirements
- Identify failure modes
- O&M steps to address failure modes

Mitigating Risk Through Project Delivery

- ✓ Precision installation
- ✓ Maintainability
- ✓ Training
- √ Commissioning
- ✓ Turnover process

How do we get there?

Operations

- Define and implement maintenance strategy
- OEM vs. what meets your needs
- Run to fail
- Predictive techniques
- Root cause analysis
- Apply lessons learned over the lifecycle

SURVEY the situation.

TAKE control, TALK to everyone that can help you understand the system and the problem and take accurate notes.

ORGANIZE your information and action plan.

PROCEED within approved procedures and processes.

Pre-Pilot

- Recurring building system outages
- Costly, undesirable urgent and emergency repairs
- Assets are treated as collection of equals
- Limited resources

- Discovery & Data Collection
- 2 Testing & Analysis
- Optimization Recommendation
- 4 Training
- 5 Implement Pilot
- 6 Lessons Learned Program Updates
- 7 Expanded Program Development

- Pilot included
 - 21 HVAC buildings
 - 20 critical power buildings
 - Shipyard compressed air plants
 - 1 Lift station
- Apply RCM principles
- Maximize effectiveness of current resources
- Rollout to entire FEC
- Deliver reliability at lowest total ownership cost

Post-Pilot

- Analytical framework to support data driven decisions
- Optimized maintenance strategy asset level
- Operations sequences developed resulting in energy savings
- Design and construction feedback for future improved performance
- Integrated Priority List
- Savings of \$9.5M

HVAC (Base-wide) - PM vs. CM

When Predictive & Preventive Maintenance activities increase, Corrective Maintenance issues decrease!

Benefits and Desired Outcomes

Improved ability to meet mission requirements

Reduced system/equipment down-time

Engaged, productive workforce

Extended Lifecycles

Ownership at all levels of organization

Reduced Costs

- Improved effectiveness and efficiency
- Inherent reliability in future designs

Questions?

FEMP Summer Workshops

This Training Is Accredited

How to obtain your CEUs:

- 1. Log in to https://edu.wbdg.org/ using your WBDG credentials
 - The assessment and evaluation will be made available to attendees at 8:00am ET on Monday, August 11th
 - The assessment and evaluation will close on September 22nd
- 2. In the list of trainings you attended, click on the Visit link by the course you wish to complete
 - If the course you're looking for is not listed, click on My Account in the top right menu
 - If you still can't find your course, contact the WBDG support team to check your eligibility
- 3. Complete the assessment with a score of 80% or above
- 4. Upon passing the assessment, click the Post-Evaluation Survey button
- 5. Complete and submit the evaluation
- Click Download Your Certificate to generate your certificate of completion, which can be downloaded for your records

Questions or issues? Contact WBDG Support at wbdg@nibs.org.

What's an IACET CEU?

A continuing education unit (CEU) from the International Association for Continuing Education and Training (IACET) equals 10 hours of learning in an approved program for licensed or certified professionals.

Thank You

FEMP Summer CAMP (Courses Aligned with Mission Priorities)

Connect With FEMP!

Stay connected with FEMP by subscribing to newsletters, following along on LinkedIn, and submitting questions to the Technical Assistance Portal.

Ask Questions

Visit FEMP's <u>Technical</u> Assistance Portal.

Subscribe

Receive periodic emails to <u>stay informed</u>.

Find Trainings

Explore the <u>FEMP</u>
<u>Training Catalog</u> to find live and on-demand trainings and events.

Follow FEMP

Follow FEMP on LinkedIn for of-the-moment news.