

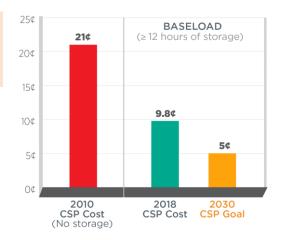
Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Concentrating Solar-Thermal Technologies for Industrial Process Heat

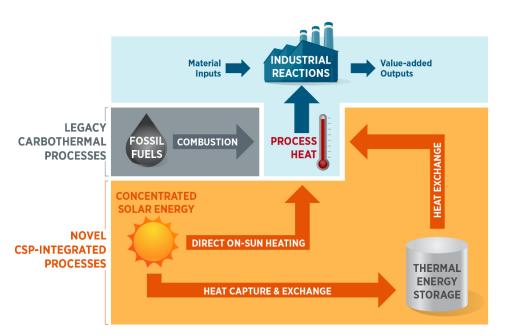
Dr. Kamala C. Raghavan

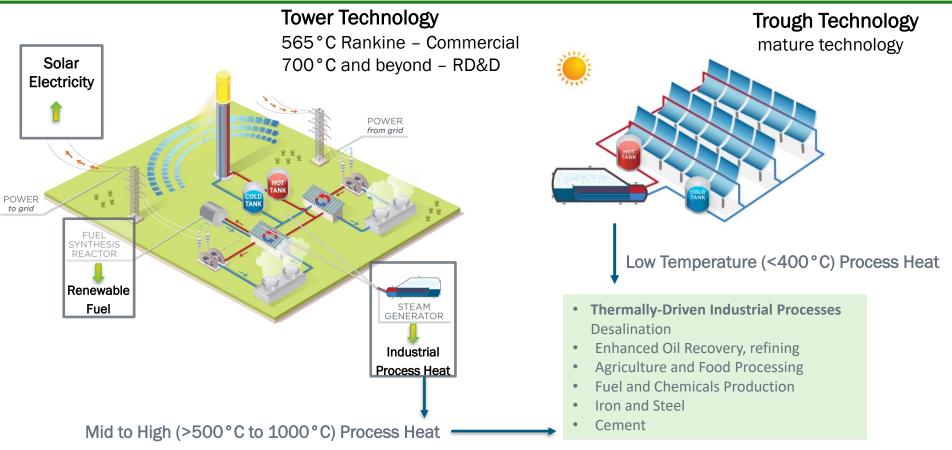
Solar Energy Technologies Office

Concentrating Solar-Thermal Power Status and Goals


The goal for SETO's CSP research is to achieve **\$0.05/kWh** for dispatchable CSP with >12 hours of thermal energy storage (TES), with a 50% thermal-to-electric power cycle efficiency at a turbine inlet temperature of > 700 °C

Where we are now:

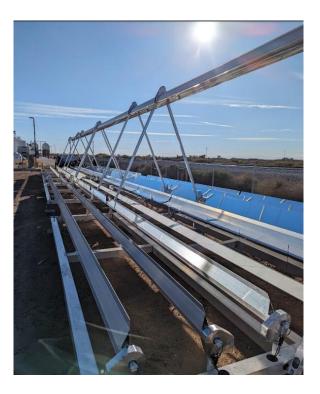

- Modeled LCOE of \$0.095/kWh for a U.S. plant with 14 hours of TES
- 1.7 GW CSP deployed in the U.S., 6.3 GW globally
- 5.1 GW of global deployment is parabolic trough, 1.2 GW is tower
- 45% of global tower capacity and 34% of trough capacity has 6 or more hours of storage
 - With > 33 GW-hours of Thermal Energy storage operating globally


Priority Research Areas:

- Reduce the levelized cost of heat, with
 thermal energy storage, in temperature
 ranges of high priority to industrial processes
 - Roughly \$0.02/kWh_{th} would be competitive with natural gas
- Improve the **thermal efficiency** of solarthermal-coupled processes
- Develop long-duration, thermochemical storage of solar energy (i.e. solar fuels and chemical commodities)

SETO Goals by 2025:

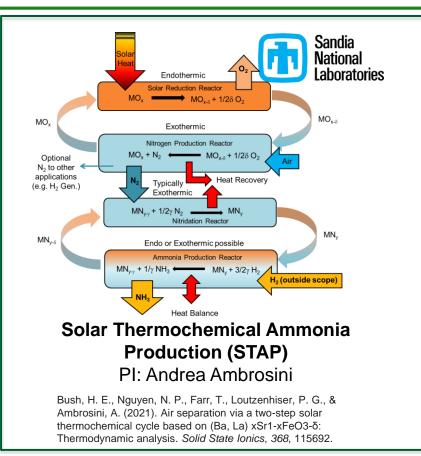
 Define system concepts and key components for solar process heat for carbon-emissionsintensive, high-heat-demand industries

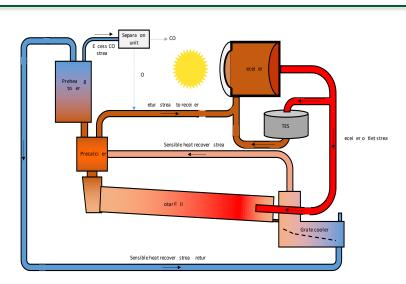

Concentrating Solar-Thermal Technology for Power and Heat-Based Applications

First Steps by CSP Team in IPH Area: Steam for Di-methyl Ether from Ethanol

- Sunvapor's solar steam customer and site host Oberon Fuels produces DME from methanol at the site
- Line Focussing Collectors produce solar steam with a steam accumulator as TES

Solar Desalination – 2017


Natural Energy Laboratory of Hawaii Authority (NEHLA) Hawaii Ocean Science and Technology Park


"Hawaii Solar Desalination Project"

2 MW Trough Solar Field Coupled with Forward Osmosis

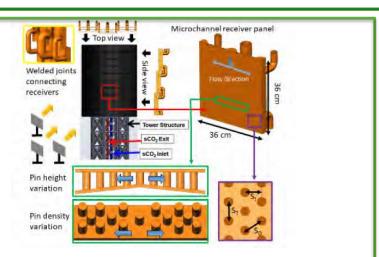
Capstone Demonstration

Novel Process Chemistries – High Temperature



Solar-Thermal Mixed-Media Enhancement and Decarbonization of Clinker Formation (Solar MEAD) Pl: Nathan Schroeder

High T Component Research – Material R&D, Prototyping, On-Sun Testing



Design, Fabrication and Testing

Ultra-High Operating Temperature SiC-matrix Solar Thermal Receivers (HOTSSTAR) Enabled by Additive Manufacturing

PI: Reza Sarrafi-nour

Enabling Micro-pin Array Receivers For Power Generation and High-temperature Process Heating Using Metal Additive Manufacturing

Funding Opportunities with Decarbonization Focus

SETO FY 2021 PV/CSP FOA	Solar Receivers and Reactors (Component development for SIPH)	High temperature materials for reactors and receivers
CSP FY22 RD&D	Concentrating Solar Thermal for Industrial Decarbonization – Production of Hydrogen, Cement, Steel, Chemicals	High temperature industrial processes (cement, chemicals)
Solar-thermal Fuels and Thermal Energy Storage (FY23)	Solar Thermal Fuels – Hydrogen, Ammonia, Methanol, Liquid Fuels (kerosine, jet fuels,)	Proposals under review, focused on CST for fuel production, novel chemistries
FY 2025 – 2027 National Lab Call	CST – Sector Specific Analysis, Engineering Design & Case Studies	Proposals under review

SETO is continuously addressing the decarbonization goals that includes process heat applications along with electrification

QUESTIONS?