

ITIAC Kickoff: EEII Program Overview

Paul Majsztrik, PhD: *Program Manager* Industrial Efficiency and Decarbonization Office March 21, 2024

EEII Program: Mission & Strategy

Mission: accelerate the readiness of emerging, industry-specific technologies to decarbonize the most energy- and emissions-intensive industrial subsectors.

Motivation: Industrial Emissions Profile

Each EEII Sector has

- BIG emissions \rightarrow BIG impact potential
- Important role \rightarrow hard to replace products
- Unique decarb challenges & solutions

Approach

- Sectoral strategic plans \rightarrow Net-Zero 2050
- Identify levers & enabling technologies
- Target multiple pathways & big RD&D impacts
- Seek transformative innovations (not incremental)

Sector Value Chains: Raw Materials, Process, Final Products

Chemicals and Fuels Priorities

70,000 Products 70 > 0.5MT/yr CO2 ~70% of Emissions from top 6

Project Awarded to E2H2Nano – Novel Ammonia Synthesis

Background:

- Ammonia global production capacity: ~235 million metric tons in 2019
 - ~2% of global energy consumption •
 - ~1% of global CO₂ emission
 - Produced using energy-intensive Haber-Bosch process •

Innovation:

- Compact catalytic membrane reactor incorporating
 - High activity, low-cost catalyst
 - lower process temperatures and pressures
 - Revolutionary membrane reactor improves efficiency and eliminates need for cryogenic separations

Project Impact:

Energy & Emissions: Reduce >80% energy consumption	Cost & Competitiveness: Reduce > 80% operating cost
Technical & Scientific: >50 % N ₂ conversion in single-pass	Other Impacts: Compact, simplified modular design
 End of Project Goal: 0.2 kg/day prototype system 	

Commercial Process: Haber-Bosch	Proposed Technology: Compact membrane reactor
<u>Operating conditions</u> : 450-550 °C, 200-300 bar	<u>Mild operating conditions</u> : 300-400 °C, 10-70 bar
N_2 conversion: ~15% single pass, large quantity of unreacted gas recycling and reheating	<u>High N₂ conversion</u> : >50% single pass
<u>Cryogenic condensation:</u> (-18 – -24 °C) for NH ₃ recovery	Cryogenic condensation: eliminated
High cost and energy consumption	Low cost, energy efficient

Sustainable Chemistry

Cement and Concrete Priorities

Cement & Concrete Decarbonization Project

Advanced Electrolytic Cement production W/ alternative calcium sources (FY23)

\$6.7M Federal Awarded to Sublime Systems

Innovation:

- Scale up and Integration of a novel electrolyzer to produce hydraulic cement binder and SCMs
- Use of **industrial waste as feedstock** for cement production (non-carbonates)
- Low temperature, aqueous process (no kiln)
- Fully electrified process (electrolysis)

Project Impact:

- Reduced energy demand
- Reduced CapEx & OpEx
- Increase in feedstock availability (no limestone)
- Reduced CO2 emissions (~90% vs OPC clinker)

Funding Opportunity: FY24 EEII FOA

\$83M for Applied RD&D to Decarbonize Heavy Industry

Date	Milestone
Jan 25	FOA Issue Date
Mar 19	Concept Papers Due
Jun 11,	Full Application Due
Oct '24	Award Announcements

Topic 1: Chemicals & Fuels

- 1. Sustainable feedstocks \rightarrow chem/fuel
- 2. Non-hydrocarbon products
- 3. Value chain approach

Topic 2: Iron and Steel

- 1. Alternative ironmaking (non-H₂ DRI)
- 2. Ore beneficiation
- 3. Recycling (tramp metal solutions)
- 4. Steelmaking with low-carbon iron

Topic 3: Food and Beverage

- 1. Food packaging
- 2. Commercial food services
- 3. Energy recovery/redistribution
- 4. Post-Harvesting activities

Topic 4: Cement, Asphalt, Glass

- 1. Binders & SCMS \rightarrow Concrete
- 2. Novel lime/OPC processing
- 3. Asphalt
- 4. Glass

Topic 5: Forest Products

- 1. Dewatering & drying
- 2. Fiber prep, pulping, chemical recovery

Topic 6: Industrial Pre-FEEDs

- 1. H_2 feedstock integration (HFTO)
- 2. Carbon Capture, heavy industry (FECM)
- 3. Process integration (IEDO, FECM, HFTO)

www.energy.gov/eere/iedo/iedo-fy24-energy-and-emissions-intensive-industries-foa

EEII Program to play leading role in industrial transformation

Vision of the future

- Net-zero industrial emissions (2050)
- Sustainable transformation of EEII industries
 - Circularity, CO₂/waste feedstocks, low environmental impact
- Improve energy & material efficiency
- US leadership in clean manufacturing
- Strong stakeholder partnerships & collaborations
- Transformative technologies enabled by RD&D

