Global Warming Potential (GWP) Modelling & Climate
Impacts of Increased Hydrogen Production and Use

David Stevenson, Hannah Bryant, Alex Chaudhri (The University of Edinburgh)
Dick Derwent (rdscientific)

Bill Collins, Tanusri Chakraborty, Max Coleman (Reading University)

Megan Brown, Nicola Warwick, Alex Archibald and others (Cambridge University)
Maria Sand and others on the HYDROGEN project (CICERO, Oslo)

David.S.Stevenson@ed.ac.uk

Funding from:

The Research Council of Norway HYDROGEN Project, NERC HECTER Project, EU HyWay project
Supercomputing resources: UKRI ARCHERZ2

A% THE UNIVERSITY The Research
Way o EDINBURGH Council of Norway
°CICERO

Center for International @ anrc hep :'
Climate Research

Funded by the Horizon 2020
Framework Programme of the

European Union
Natural P

Environment
Research Council



mailto:David.S.Stevenson@ed.ac.uk

Hydrogen indirectly impacts Earth’s climate

* H,is not a direct greenhouse gas

e But it reacts with hydroxyl (OH) to produce ozone

* Reduction of OH lengthens methane’s lifetime

* |t increases stratospheric water vapour

* By changing oxidants it affects aerosol formation and clouds
* Need to quantify these impacts

 The GWP climate metric is one way of doing this



Global Warming Potential (GWP)

* Integrates the impact of an emission on radiative forcing (RF) over a specified time
horizon

* The GWP is normalised to CO, —i.e. CO, has a GWP=1

* Model emission of a pulse of a unit mass of a gas, compare the time evolution of the
resulting RF with that of emission of same mass of CO,

 Formal definition:

=
JO RF, (1) dt i = specific gas
i = r = reference gas (CO,)
(JHPI' o TH TH = ‘time horizon’
- RF = radiative forcing
J RF, (1) dr
0




Global burden perturbations relative to control run

1Tg Add 1 Tg instantaneous pulse of H, to a model with free to evolve H, and CH, concentrations:

AH, H, increases, then initially decays with hydrogen perturbation e-fold (~2 years),

but later with methane perturbation e-fold (~12 years)

~50 >
yr time
0 ”

AOH OH decreases due to extra H, (and extra CH,)
Initially decays with hydrogen perturbation e-fold (~2 years),
but later with methane perturbation e-fold (~12 years)

Also more
stratospheric
water vapor

CH, increases due to lower OH. Increase peaks after few years
CH, decays with methane perturbation e-fold (~12 years)

Hy, GWPy =

Convert CH,, O; & H,0
0 — to RFs and integrate

A 0-100 yrs.

Divide by equivalent for
1 Tg CO, pulse.

Ozone increases due to extra H, and extra CH,
AO; Initially decays with hydrogen perturbation e-fold (~2 years),
but later with methane perturbation e-fold (~12 years)




THE ATMOSPHERIC HYDROGEN BUDGET

% 7-13Tg

The isotopic
composition is set by a
H, conc. 530 ppb balance of contributions
Isotopic comp. + 130 % from sources and
H, SOURCES ‘ ’ fractionation during soil
- uptake and OH reaction.
[ Photooxidation \
Geological 40-43Tg H, SINKS
sources
0-20 Tg Fossil fuels f \
13-16Tg OH sink
w4« Biomassburning ol 2

19-21Tg

Soil uptake

Isotopic and flux mass balance

Burden: 136-157 Tg
Lifetime: 1.4-2.1 yr

Uncertainty in soil sink
leads to uncertainty in
lifetime (and GWP)

Ratio of
soil sink : OH sink
controls the total lifetime.

Only H, oxidised by OH
affects climate.

Paulot et al (2021) https://doi.org/10.1016/j.ijhydene.2021.01.088

Price et al. (2007)

https://doi.org/10.1029/2006JD008152
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Add H, pulse to model: CH, increases

Differences in CH, mixing ratios and radiative

ings
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Fig. 1 — Differences in global mean CH; mixing ratios and
radiative forcing between the base case and perturbed
scenario model runs.

Derwent et al. (2020) https://doi.org/10.1016/|.ijjhydene.2020.01.125

H, depletes OH:
H,+OH->H+H,0

Less OH leads to a longer CH,
lifetime; CH, increases over ~3
years.

Extra CH, then decays with CH,
perturbation lifetime (~12 yrs) —

extrapolate to 100 years

Convert ppb to radiative forcing.


https://doi.org/10.1016/j.ijhydene.2020.01.125

Add H, pulse to model: CH, increases

Peak CH, response
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Fig. 1 — Differences in global mean CH; mixing ratios and

radiative forcing between the base case and perturbed (Bill Collins & Tanu Chakraborty,
scenario model runs. using model developed by

Hannah Bryant & Megan Brown
Derwent et al. (2020) https://doi.org/10.1016/j.ijhydene.2020.01.125 Y 8 )




Add H, pulse to model: O, increases

O; responds faster H, increases HO,, NO, and O;:

0.004 ~6 months - 0.2

{ 0.16 HZ +OH->H+ HZO
H+ O, ->HO,
HO, + NO -> NO, + OH
NO,+hv->NO+0O

O+0,+M->0;+M

0003 -/ |

1 0.12

0.002 -DU difference

1 0.08

DU difference

= mWm-2 Difference

0.001 {
1 0.04

Radiative forcing difference, mWm-2

0 0 O; increases over first year, then decays
with H, perturbation lifetime (~2 years).
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Fig. 2 — Differences in tropospheric ozone amounts in )
Dobson Units and radiative forcing between the base case 1 he extra CH, will also produce O,.

e Convert DU to radiative forcing.

Derwent et al. (2020) https://doi.org/10.1016/].ijhydene.2020.01.125
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Global burden perturbations relative to control run

ACH,

>
S

CH, model results just shown
Extrapolate to 100 yrs:
CH, decays with methane perturbation e-fold (~12 years)

Ozone results just shown
Initially decays with hydrogen perturbation e-fold (~2 years),
but later with methane perturbation e-fold (~12 years)

Hy GWPy0 =

Convert CH, and O,

to RFs and integrate
0-100 yrs.

Divide by equivalent for
1 Tg CO, pulse.




Step change experiments vs pulses

 Several studies use step changes in emissions rather than pulses to
evaluate GWP.

» Sand et al. (2023) and Warwick et al. (2023) use step-changes
* Derwent et al. (2001, 2020) use pulses

* Both are examples of using idealised model experiments that can be scaled
to real-world situations

* |tis generally accepted that these methodologies are equivalent, although
the analysis of the initial transient responses is more obviously seen in
pulse experiments

* Need to check for differences in GWPs between methodologies
* Now possible with free-running CH, flux models



Stratospheric H20 ERF per Hj flux
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Increased production of water
vapor in the stratosphere
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GWP,y, Of H,

GWP100 H2
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All literature estimates compared (Hauglustaine et al., 2022, Warwick et al., 2023, Sand et al., 2023 and Derwent, 2023) fit within the
deposition range, except Derwent et al., 2006.

Total Hydrogen Global Warming Potential (Including Stratopsheric Water Vapour)
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*Uncertainty is based on the range of deposition fluxes in Sand et al., 2023 Hannah Bryant, PhD work



Sources of uncertainty in H, GWP

Model range (various studies) ~¥12 + 6

Methodology (pulse v step change; transient shapes) — ongoing

ERFs (including cloud adjustments) — UKESM model suggests large effect

Soil sink — H, lifetime

Background composition (different NOx levels; small effects in UKESM)

Emission location (land v sea; SH v NH)

Chemistry (e.g. HCHO chemistry)

Aerosol effects



Climate metrics (ERFs)

 Effective radiative forcing (ERF) calculations from

UKESM1 model

 Large contribution from changes in clouds

» Can put these into the FalR model to calculate

climate implications

* Integrated forcing over 100 years = GWP100

* Qverall results: GWP100 =19

0.2+

Total

e =
&
-

naso3 [
=
&
-
* AHzs Al
Bchaan
$ AH2403

H4:03

Boa,
b
Bchaisimz

8
= []
4 ®» O F3
383 o
5 & g
k. 3 hak
©
s:85% 3
T < & 08 o = &
o £ X £+ € = 00 T
g 3855325382
T I o < o @
< dedi
< <

* Without clouds: GWP100 =13.3

» Use Warwick et al. parameters: GWP100 = 11.5

» Clouds seem to make a very large contribution, but

may be specific to the UKESM1 model

. (Bill Collins, Tanu Chakraborty)
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Climate effects

Temperature change due to H2 pulse emission

« Temperature evolution following —— —— ClearClean (= GHG + albedo)
hydrogen emission can’t be M\ ——— Clean (=ClearClean + cloud)
) ] 0.008 - “""x;t’ —— All (=Clean + aerosol)
characterised by a single
number such as GWP100 = |
5
» FalR tuned to full climate model & |
can generate climate change on &g
any timescale 0.002 -
0.000 +
20I20 20|40 20I6O 20180 21|00 21|20

Year

New results using UKESM with interactive CH,

16 (Bill Collins, Tanu Chakraborty, Max Coleman)




Sources of uncertainty in H, GWP

Model range (various studies) ~¥12 + 6

Methodology (pulse v step change; transient shapes) — ongoing

ERFs (including cloud adjustments) — UKESM model suggests large effect

Soil sink — H, lifetime

Background composition (different NOx levels; small effects in UKESM)

Emission location (land v sea; SH v NH)

Chemistry (e.g. HCHO chemistry)

Aerosol effects



Constraining H, soil deposition with planetary
scale observations

2012-2018 Mean
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X
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Alex Tardito Chaudhri, David Stevenson, HECTER, Edinburgh



Decomposing the signal at each site

Observations for each site are decomposed into: Noise
20

* High-frequency noise: synoptic weather (<30 days)

0
e Seasonality: fit harmonics with amplitude (4) and
-20
phase (CD) Seasonality
4]
* Inter-annual mean and trends 204 A1
0 ..............
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= ~20
2 540
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Year Year

Alex Tardito Chaudhri, David Stevenson, HECTER, Edinburgh



Constraining H, deposition 20122018 Seasonality
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* The prototype scheme performs relatively well but
results in too high SH mixing ratios, does not capture
SH subtropics seasonality, and H, peaks too early in
the subtropics.

o
o
1

o
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1" Harmonic Amplitude (ppb)

* Invert 2D model to identify a deposition scheme that
achieves the best-fit H, signal as a perturbation to the
prototype deposition scheme.

1°* Harmonic Peak
>nOZ0mZ PR e ©

* Key difference: ~ 3 month later peak deposition in
the sub-tropics and tropics.

1 1 I I
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X  observations = prototype simulation

== == best-fit ===+ no deposition seasonality

Alex Tardito Chaudhri, David Stevenson, HECTER, Edinburgh



Constraining H, deposition

* The prototype scheme performs relatively well but
results in too high SH mixing ratios, does not capture
SH subtropics seasonality, and H, peaks to early in
subtropics.

* Invert 2D model to identify a deposition scheme that
achieves the best-fit H, signal as a perturbation to the
prototype deposition scheme.

» Key difference: ~ 3 month later peak deposition in
the sub-tropics and tropics.

Prototype Deposition Scheme

“HEPr R PndOZg

Best-Fit Deposition Scheme

2P 2Pz
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! ] g
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H> Deposition Rate (Tg year~! /°lat)

Alex Tardito Chaudhri, David Stevenson, HECTER, Edinburgh



Constrained scheme lowers soil deposition
timescales in the Southern Hemisphere

 Soil deposition timescales are compared for a

series of small H, perturbations at different 45 prototype

latitudes and different times of year (shading for deposiionsoncie | o

1 404N __ __ best-fit '
O-)- ' \\ deposition scheme

» Constrained best-fit scheme has shorter soil ]

deposition timescales for perturbations in the
SH - implies smaller GWP for these emissions
compared with prototype scheme (SH emission
GWPs are higher than NH, Derwent (2023)).

Soil Deposition Timescale (years)

-60 =30 0 30 60
Perturbation Latitude (°N)

Alex Tardito Chaudhri, David Stevenson, HECTER, Edinburgh

Approx. Total Lifetime (years)



Sources of uncertainty in H, GWP

Model range (various studies) ~¥12 + 6

Methodology (pulse v step change; transient shapes) — ongoing

ERFs (including cloud adjustments) — UKESM model suggests large effect

Soil sink — H, lifetime

Background composition (different NOx levels; small effects in UKESM)

Emission location (land v sea; SH v NH)

Chemistry (e.g. HCHO chemistry)

Aerosol effects



£ Original Research
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Summary

H, climate impact depends on:

— Climate effect of leaked H, is partly encapsulated by the GWP for H,
* Large uncertainty soil sink — constrain using global models/measurements
* Large effect from clouds/aerosols, when we use ERFs
* Checking GWP methodology and several other factors

...also impacts on air quality and stratospheric ozone
Much to check to ensure H, really is a “clean” fuel...
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