Observational constraints on the budget of H₂

Fabien Paulot (NOAA Geophysical Fluid Dynamics Laboratory)

Overview of the H₂ budget (~2010)

Overview of the H₂ budget (recent developments)

Adapted from Arigoni et al. JRC (2022)

Overview of the H₂ budget (recent developments)

Adapted from Arigoni et al. JRC (2022)

Decrease in observing capabilities

NOAA, isotopes

Overview of the H₂ budget: overarching questions?

Adapted from Arigoni et al. JRC (2022)

- How much have anthropogenic activities already perturbed H₂ sources?
- What controls H₂ soil sink (and how do we represent it in models)?

Reviving NOAA GML H₂ observations

Global coverage and weekly sampling provides observational constraints on the distribution of H_2 and its changes since 2010

Addresses biases caused by drift in standard and non-linearity in instrument

→ Public release of NOAA GML flask air H₂ dry air mole fraction for 70 sites [2009-2021]

Pétron et al. - AMT (2024)

Evaluation of NOAA GFDL chemistry-climate model

Paulot et al, ACP (2024)

Ehhalt (2009)

- 1. Similar to Ehhalt et al. (2009)
 - a. Photochemical yield (CH₂O)
 - b. Natural emissions
- 2. Except for biomass burning. GFED5 has 50% higher H_2 emissions than GFED4s
- 3. Anthropogenic activities account for ~40% of the overall H_2 source

BASE model fails to capture observed increase in H₂ from 2010-2019

Anthropogenic emissions may not have declined over the last 10 years

Change in H_2 at background sites

- Fossil fuel emissions are all estimated from CO:
 - More comprehensive treatment of fossil fuel sources of H₂ (emission standard, gasoline vs diesel, ...)
 - Uncertainty in CO emissions (industry)
- Release of H₂ from H₂ industrial use (2% increasing)

Updated anthropogenic emissions largely eliminate model bias

Can we really assume that the soil H₂ removal rate has remained constant?

Sensitivity of $vd(H_2)$ to (T,s)

Biology Diffusion Bertagni et al. (2021) Simulated change in vd 2010–2019

w increase uptake in the Northern Hemisphere

Drier conditions can decrease or increase H_2 uptake in arid regions