

Hydrogen Loss Mitigation with Active Refrigeration

GenH2 Overview

WHY LH2?

Advantages of LH2

- Safety
 - > LH2 stored at only 1-10 bar
 - > GH2 stored at 300 to 1000 bar
- Value and Control
 - Purity liquefaction is inherently a purification process
 - Cryogenic distillation ensures the purity required of fuel cell systems
- Transport LH2 (1) to GH2 (10) ratio
 - Latest published results indicate a transport capacity of approximately 4500 kg of LH2 per truck (US DOE)
 - A 40-ton truck carrying compressed hydrogen can deliver only 450 kilograms
- Increased energy storage capacity with dramatically less footprint and weight

CHALLENGES WITH LIQUID HYDROGEN

Normal Evaporation Rate (NER)

> Liquid hydrogen storage generally loses 1% per day due to heat leak into the tank.

Compression

- Saturated liquid is being pumped
- Causes cavitation
- Gas blow-by on piston rings
- > Significantly more losses due to the gaseous hydrogen being directed back to the storage tank.

> Filling and dispensing losses

- 18,000gal tank @ 25% full contains 350kg of gaseous hydrogen in the ullage space.
- > The gaseous hydrogen is displaced and vented while filling the tank with liquid.

Super-saturated liquid

Vapor eruption occurs when the liquid is disturbed which releases heat and causes pressure to build and tank to vent.

Existing Liquid Hydrogen Method

Operational Losses 16-31%

Also: hydrogen recovery and recondensation from vehicle tank filling processes and blowdowns

Cost Benefit Analysis based on Transit Buses

18K-gallon (4800kg) LH2 tank is usually refilled when level reaches 25%, Tank is full at 90% with 10% ullage space for boil off which leaves 3600kg of usable Hydrogen.

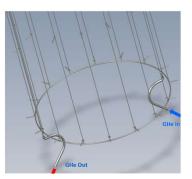
- I5 transit buses using 30kg per day will require 450kg per day to support the buses: Tank fill once a week.
- 30 transit buses using 30kg per day will require 900kg per day to support the buses: Tank fill twice a week.
- 45 transit buses using 30kg per day will require 1350kg per day to support the fleet: Tank fill three times a week.
- > From 45 to 60 buses, a fill every day is needed

Transit agencies should understand that as the fleet grows, the losses greatly increase. From the analysis, three tank fills a week will result in \$1,248,000 losses per year. (Based on 25% loss, at \$10 per kg)

Cost-Benefit Analysis cont...

			Transfer Loss	Assumption	25%		
		Transfers Per Week					
		1	2	3	4	5	
kg/transfer	3,200	800	1600	2400	3200	4000	
	Transfers Per Year						
		1	2	3	4	5	
kg/transfer	3,200	41,600	83,200	124,800	166,400	208,000	
				Price	e/kg	\$10.00	
Annual \$ Saved/Year							
Transfers Per Year							
		52	104	156	208	260	
kg/transfer	3,200	\$ 416,000	\$ 832,000	\$ 1,248,000	\$ 1,664,000	\$ 2,080,000	

Typical venting loss illustration

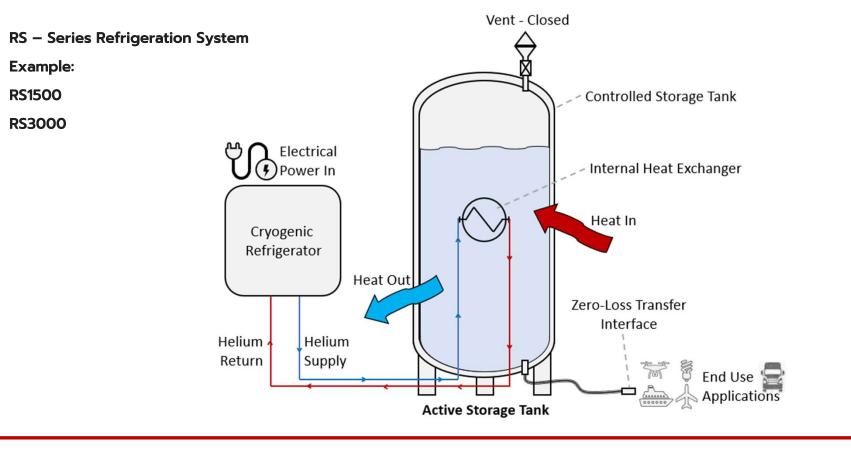


CRYOGENIC CONTROLLED STORAGE

- Next generation Liquid Hydrogen Storage
- New technology controlled refrigerated storage inspired by NASA Integrated Refrigeration and Storage (IRaS) system and utilizes active helium refrigeration
- Enables complete control over the state of the cryogenic fluid, including ullage pressure control
- LH2 densification allows for effective zero-loss transfer of hydrogen for vehicle tank filling or off-take from a tanker
- Subcooled Liquid enables increased performance of pumps, increased reliability of system, less maintenance
- Capability for both Zero-loss transfer and Zero-boiloff

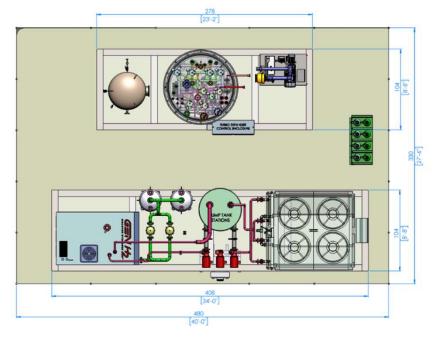
Existing Liquid Hydrogen Method

GenH2 Liquid Hydrogen Value Chain


Zero Loss*	0% Daily Storage Loss with active refrigeration (NER)	0% Transfer Loss to Dispensing Interface
		ration system
* Time dependent		-

Zero or Reduced Loss Transfer & Zero Tank Boiloff

Cryogenic Controlled Storage Using Active Refrigeration


LH2 CONTROLLED STORAGE, WITHOUT LIQUEFIER

Helium Refrigeration System

- > 1200 Watts of cold power @ 20kelvin
- ➢ Compact design
- ➤ Ease of maintenance
- > Reliability very high due to turbo expansion gas bearings

Example - Integrated Refrigeration and Storage (IRaS) Demonstration Site

Photos are from Cryogenics Test Laboratory at NASA Kennedy Space Center, Florida. Head & Senior Principal Investigator, James E Fesmire



Now put into service for rocket engine testing at NASA Marshall Space Flight Center, Huntsville., AL

Controlled Refrigerated Transfer to address the Transfer-Loss Challenge

Three Operational Conditions of LH₂

IRaS Results - Tanker Offloading

- Storage without NASA IRaS
 - Based on NASA Space Shuttle STS Program data, approximately one half of the LH2 was lost including an average of 13% due to tanker transport and offload processes.
 - Heat ingress causes ullage pressure buildup which leads to venting and tank blowdown losses
 - Extensive losses normally occur by conventional methods such as tanker transfer which requires tank blow-downs to relieve ullage pressures.
- Storage with NASA IRaS
 - Heat from transport and line cool down is removed by an RS-series refrigerator, allowing zero-loss offload.
 - > Zero-loss tanker offloads were achieved for fill levels of 0-33%, 33-67%, and 67-100%
- > Conclusion controlled storage enables zero-loss tanker offload

