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Hydrogen's warming potency

Hydrogen’s warming potency is stronger than CO, per mass but short-lived.
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History of the science

Studies published showing the climate risks
. of hydrogen emissions in the near- and
Studies warn about the long-term. The IPCC Sixth Assessment

climate risks of a . e

- Report identifies hydrogen leakage as a
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Climate Impacts of Hydrogen and Methane Emissions Can
Considerably Reduce the Climate Benefits across Key Hydrogen Use

Cases and Time Scales
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ABSTRACT: Recent investments in “clean” hydrogen as an  Factors affecting the climate impact of switching to H,
EMISSIONS H,

alternative to fossil fuels are driven by anficipated climate benefits.

However, most dimate benefit calculations do not adequately

account ﬁrdlrlnmmwmnmgmmmandlmpammm
This study

a life cyde
as an illustrative example to show how the climate impacts of

hydrogen deployment can be far greater than expected when
induding the warming effects of hydmgen emissions, observed
methane emission intefisities, and near-erm time scales; this
reduces the perceived dimate benefits upon replacement of fossil
fuel technologies. For example, for blue (natural gas with carbon
«capture} hydrogen pathways, the inclusion of upper-end hydrogen
and methane emissions can yield an increase in warming in the
near term by up to 50%, whereas lower-
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end emissions decrease warming impacts by at least 70%. For green (renewahble-based

electrolysis) hydrogen pathways, upper-end hydrogen emissions can reduce climate benefits in the near term by up to 25%. We also
consider renewable electricity availability for green hydrogen and show that if it is not additional to what is needed to decarbonize
the electric grid, there may be more warming than that seen with fossil fuel alternatives over all time scales. Assessments of
hydrogen's climate impacts should include the aforementioned factors if hydrogen is to be an effective decarbenization tool.

KEYWORDS: hydrogen, life cycle asessment, climate change, hydrogen emissions, liydragen leakage, methane leakage, renewable electricity,

time horizons, global warming potential, decarbonization, clean energy

1. INTRODUCTION
The urgency of the climate crisis has accelersted
global momentum for low-carbon (herein termed “dean”)
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billion on more than 1000 hydrogen projects over the next
decade.’ Decisions to scale up clean hydrogen systems are
often driven by the assumption that they will accrue large
climate benefits when compared to fossil fuels.”~* However,
dummmdmmmmmﬁunﬂzhydmgmmm
frameworks that are often the basis for esti

th!mlpllcmm:lsuf' loying hyd at scale. Hydrogen's
effects have been documented over the past
mamdzs,‘-“m a consensus emerging that hydro-
gen’s global warming potential {GWP) is approximately 12
over 2 L00-year period and approzimately 35-40 over 3 20-
year period. """ The largest uncertainties in hydrogen's GWP
are associated with the removal of atmospheric hydrogen by
soil and potential future changes in the atmospheric
concentrations of other GHGs such as methane.’™~"*
First, hydrogen emissions are of particular concern given
that molecular hydrogen is the smallest molecule and can easity
leak from infrastructure in addition to being roatinely released

gE
benefits.
Crently, e B gl
lack consideration of hydrogen emissions and their warming
effects,” "7 yet hydrogen is & leak-prone gas with a potent
indirect warming effect in the near term due to the fact that its
chemical oxidation in the atmosphere increases the levels of
Dthnsthlmd gmmhmugms {GHGs) in the stmosphere
ic orome, and water
)‘Llammmhmdu!dtnﬁlﬂynnduihnd

g ACS Publications AR A

to the through venting and purging opera-
tions >~ Emission estimates o date (leakage, venting and
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The purpose of this study is to examine the importance of including
overlooked factors in hydrogen climate impact assessments
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Example

Hydrogen Council (2021)
Hydrogen decarbonization
pathways: A life-cycle
assessment

8 well-to-use hydrogen
pathways in the industry,
transport, and power
sectors and fossil fuel
technology counterparts

Our study

Reanalyze exact same
pathways and fossil fuel
counterparts



Climate impacts of switching to hydrogen technologies from fossil fuel
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NOTE: climate impacts across applications and production methods ARE NOT directly comparable given the variations in pathways




Climate impacts of switching to hydrogen technologies from fossil fuel
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Climate impacts of switching to hydrogen technologies from fossil fuel
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Climate impacts of switching to hydrogen technologies from fossil fuel
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Including the latest science in assessments of clean hydrogen’s climate
impacts will lead to a significantly better climate outcomes because we
can make better decisions and determine mitigation strategies.

We have an opportunity to ensure the enormous investment in hydrogen
projects worldwide yields the climate benefits being sought — and avoids
unintended climate consequences by

e accurately accounting for hydrogen’s climate impact,

* keeping hydrogen and methane emissions to a minimum,

* producing green hydrogen using additional renewable electricity, and
* deploying high efficiency and permanence for carbon capture.



I
How much hydrogen is emitted today?
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Electrolysis (L, R, Pu) Compression (L, V, Pe) Pipelines (L, D, V) Industry (L, R)
SMR (L, R, V, Pu) Liquefaction (L) Tube trailer gas (L, Pu) Buildings (L, Pu)
Above-ground gas (L, Pe) Truck liquid (B) Power gen FC (L, V, Pu)
Above-ground liquid (L, Pe, V, B) Shipping (L, B) Power gen ICE, gas turbine
Underground (L, Pe, V, Pu) Liquid handling (L, V, B) (L, V, Pu)

Refueling gas (L, Pe, V, Pu)
Refueling liquid (L, B, Pu)

EDF Research: Esquivel Elizondo et al. (2023)



How much hydrogen is emitted today?

No data e Wide range in published estimates (<1 to 20%)
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Collaborative H, Emissions Measurement Campaign

Campaign studies structure

Campaign Coordination EDF
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Advocating for including the latest science in assessments of clean
hydrogen’s climate impacts for better decision-making and determining
mitigation strategies.

v=] Working on additional GHG assessments comparing clean hydrogen with
fossil fuels and other clean alternatives (e.g., electrification, carbon
capture) across 11 end use applications, which can inform where to best
deploy hydrogen.

Launching a collaborative initiative with academia and industry to
measure and quantify hydrogen emissions from today’s value chain,
better constrain emission rates, and inform best practices and mitigation
strategies to minimize hydrogen emissions as the industry scales up.
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LCA COMPONENT ORIGINAL! OUR STUDY

Hydrogen emissions None 1-10% pathway
warming impact emission rate

BOTH

emissions intensity Oil: 0.35g/kwh  (0-01&5.4%)
Oil: 0.6-2.6 g/kWh

(0.006 & 11.4 g/kWh)
Carbon capture 98% 98%
efficiency 60%

& Observed methane Gas: 0.2-0.5% Gas: 0.6-2.1%
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Hydrogen Council, Hydrogen decarbonization pathways: A life-cycle assessment, 2021




