

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

BTO Peer Review:

Novel Compact Flooded Evaporators for Commercial Refrigeration

Novel Compact Flooded Evaporators for Commercial Refrigeration

Oak Ridge National Laboratory Kashif Nawaz, Section Head, Building Technologies Research 865-241-0972, nawazk@ornl.gov WBS 03.02.02.79.02

Project Summary

OBJECTIVE, OUTCOME, AND IMPACT

- Design and demonstrate a next-generation flooded evaporator with more than 40% reduction in refrigerant charge for commercial and process cooling use.
- Evaluate the performance of equipment for ultralow GWP (<10) refrigerants and identify the performance improvement opportunities.

TEAM AND PARTNERS

Oak Ridge National Laboratory: Kashif Nawaz, Cheng-Min

Yang, Muneeshwaran M., Brian Fricke Johnson Controls: Patrick Marks Isotherm Inc.: Zahid Ayub Copeland: Drew Welch

STATS

Performance Period: Oct. 2022–Sept. 2025 DOE Budget: \$250k, Cost Share: \$100k Milestone 1: Single tube and bundle experiments (completed) Milestone 2: Fabrication of large-scale metal foam tubes (completed) Milestone 3: Testing of large-scale tubes with low-GWP refrigerants (in progress)

Problem

- Development of energy-efficient equipment is critical to enhancing national energy security
 - Commercial processes such as refrigeration/process cooling (~2.67 Quads/year) are major energy users
- A flooded evaporator configuration is more common than a direct expansion configuration because of improved system efficiency
- The large flooded evaporator in such systems is a major disadvantage
 - Results in excessive refrigerant charge and increases pumping work

Flooded evaporator operation for water cooling

Vapor refrigerant

Water inlet

Water outlet

Problem

- Evaporator size depends on rate of heat transfer from fluid flowing through tubes to the refrigerant; heat transfer rate, in turn, is a function of heat transfer surface area and nucleation site density
- Most existing tubes in flooded evaporators have surface enhancements; however, these enhancements are not cost effective and provide limited advantages

Alignment and Impact

Aligned with BTO goal to develop energy-efficient technology to achieve net-zero GHG emissions by 2050 (~400 Mton CO₂ emission reduction)

- An improved refrigeration/commercial cooling technology
 - Unprecedented thermal-hydraulic performance (demonstrated 291% improvement)
 - Reduced footprints (~40% smaller equipment size)
 - Reduced manufacturing cost (20%-30%)
 - Reduced CO₂ footprints (20%-30%)
- Enables development for deployment of A2L and A3 refrigerants
 - Reduction in refrigerant charge (at least 40%)
 - Reduced maintenance owing to improved superheat
- Implications for additional processes
 - Power generation, waste heat recovery, electronics cooling

×××

Approach

- Metal foam has shown promising results for thermal applications
- Greater surface area (~2,500 m²/m³) and tortuous structure provide higher nucleation site density
- Variable porosity achieved through appropriate compression process is another obvious advantage

Complex structure of a metal foam (x-ray TC image)

Metal foam with variable pore size

Metal foam can provide a $\sim 35\% - 45\%$ enhancement in heat transfer coefficient, higher surface-area-to-volume ratio, and higher heat transfer coefficient leading to 40% higher heat transfer rate

Approach

- Deployment of metal foam–enhanced tubes can lead to ≥40% reduction in flooded evaporator size owing to improved heat transfer rate
- Volume occupied by foam material can further reduce refrigerant charge by 30%–40%; the design allows easy substitution of A2L and A3 refrigerants
- Wicking effect accommodates a larger heat flux to keep liquid always in contact with boiling surface → *Delayed dry-out*

Neutron radiograph of flow boiling for enhanced and plain tube

Wicking structures assist in delaying dry-out

Metal foam-enhanced tube bundle

Intellectual property, 2021, "High efficiency compact boilers/evaporators and condensers."

Approach

Design, demonstrate, and analyze performance of ultracompact flooded evaporator that can lead to at least 20% increased efficiency with 40% reduction in total system refrigerant charge

\odot

Progress Characterization of metal foam tubes

X-ray computed tomography (3D scanning) for metal foam–enhanced tubes

- Material of tube: aluminum (6101)
- Outer diameter of tube: 9.52 mm
- Length of tube: 76.5 mm
- Aluminum (6101) metal foam with 40 PPI was brazed around tube's outer surface
- Metal foam thickness: 2.54 mm
- Porosity of metal foam quantified using x-ray computed tomography

Metal foam porosities

Metal foam enhanced tube	Porosity
Uncompressed metal foam	81%
2× compressed metal foam	75%
3× compressed metal foam	62%

Progress Development of experimental facility

Progress Performance of metal foam tubes

- Metal foam tube bundles provide a maximum of 291% enhancement in HTC compared with bare tube bundle
- HTC increases with decreasing porosity
- Larger surface area and greater number of nucleation sites cause increased HTC in metal foam tubes

Plain bundle, q = 7.3 kW/m²

Plain bundle, q = 84.9 kW/m²

Metal foam bundle, q = 7.3 kW/m²

These images will be replaced by videos

12 | EERE

 \odot

Progress R-134a vs. R-1234yf vs. R-1234ze(E)

- Both bare and metal foam– enhanced tube bundles were tested using three refrigerants:
 - R-134a (GWP = 1,430)
 - R-1234yf (GWP = 4)
 - R-1234ze(E) (GWP = 7)
- R-1234yf performance is nearly 10% higher than that of R-134a for both bare and metal foam tubes, whereas R-1234ze(E) performance is nearly 5% lower than that of R-134a
- In summary:
 - ✓ R-1234yf > R-134a > R-1234ze(E)
 - ✓ 3× compressed ≈ 2× compressed > uncompressed

Progress Scaling up development of large specimens

Aluminum metal foam tubes—Fabrication

 \odot

Copper metal foam tubes—Fabrication

Parameters	Values
Tube outer diameter	3/4 in.
Total length	6 in.
Metal foam thickness	1.5 mm
Metal foam PPI	40 PPI (3× compressed)

- FY25 will focus on testing commercial scale tube size (3/4 in.)
- Inline tube arrangement with P/D ratio of 1.3 selected
- Tests will be conducted on ultra low-GWP refrigerants (e.g., R-290, R-1234yf, R-1234ze(E), and R-1233zd)
- Four tubes will be tested
 - Smooth
 - Aluminum foam
 - Copper foam
 - Commercial (e.g., GEWA, Turbo)

Publications Two journal and four conference articles

	Applied Thermal Engineering 236 (2024) 121812 Contents lists available at ScienceDirect	AppLied
	Applied Thermal Engineering	THERMAL ENGINEERING
ELSEVIER	journal homepage: www.elsevier.com/locate/apthermeng	Banching Barray and Anna Anna Anna. Parameter 17 Canada - Canada
Research Paper		
Augmentati	on of pool boiling heat transfer on tube bundles using	

Augmentation of pool boiling heat transfer on tube bundles using metal foam

M. Muneeshwaran^{a,*}, Cheng-Min Yang^a, Ercan Cakmak^b, Kashif Nawaz^{a,*}

^a Building Technologies Research and Integration Center, Oak Ridge National Laboratory, TN, USA ^b Materials Science and Technology Division, Oak Ridge National Laboratory, TN, USA

Research Paper

Pool boiling heat transfer characteristics of low-GWP refrigerants in a horizontal tube bundle configuration

M. Muneeshwaran^{a,*}, Cheng-Min Yang^a, Ercan Cakmak^b, Kashif Nawaz^{a,*}

^a Building Technologies Research and Integration Center, Oak Ridge National Laboratory, TN, USA ^b Material Science and Technology Division, Oak Ridge National Laboratory, TN, USA

Conference papers

- Zhang, Mingkan; Nawaz, Kashif; Yang, Cheng-Min; Sandlin, Matthew; Asher, William; Fricke, Brian; and Gehl, Anthony, "A Numerical Study on the Pool Boiling with Foam Surface Enhancement Using Different Refrigerants" (2021). International Refrigeration and Air Conditioning Conference. Paper 2179.
- Yang, Cheng-Min; Asher, William; Sandlin, Matthew; and Nawaz, Kashif, "Enhanced Pool Boiling of Low-Pressure Refrigerants on Round Tubes—An Experimental Evaluation" (2022). International Refrigeration and Air Conditioning Conference. Paper 2397.
- Yang, Cheng-Min; Muneeshwaran, M.; Wang, Pengtao; and Nawaz, Kashif, "Pool Boiling On Metal-Foam Enhanced Tube Bundle: Heat Transfer Characteristics and Flow Visualization" (2023). 14th IEA Heat Pump Conference. Paper 1098.
- Yang, Cheng-Min; Muneeshwaran, M.; and Nawaz, Kashif, "Experimental Investigation on Nucleate Boiling Heat Transfer of Low-GWP Refrigerants over Metal-Foam Enhanced Tube Bundles" (2023). ICR2023, 26th International Congress of Refrigeration.

Intellectual property

• US nonprovisional patent application, 6321-548, "Enhanced Pool Boiling System and Method."

Thank you

Oak Ridge National Laboratory

Kashif Nawaz, Section Head, Building Technologies Research 865-241-0972, nawazk@ornl.gov

WBS 03.02.02.79.02

The **Building Technologies Research and Integration Center (BTRIC)** at ORNL has supported DOE BTO since 1993. BTRIC is comprised of more than 60,000 square feet of lab facilities conducting RD&D to develop affordable, efficient, and resilient buildings while reducing their greenhouse gas emissions 65% by 2035 and 90% by 2050.

Scientific and Economic Results

139 publications in FY24140+ industry partners60+ university partners16 R&D 100 awards64 active CRADAs

BTRIC is a DOE-Designated National User Facility

Reference Slides

Project Execution

	FY2023				FY2024				FY2025			
Planned budget (\$)	250,000			250,000				250,000				
Spent budget (\$)	230,000			260,000								
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work												
Q1 Milestone: Evaluation of pool boiling on flat surfaces												
Q2 Milestone: Single tube experiments (low pressure fluids)												
Q3 Milestone: Tube bundle experiments (low pressure fluids)												
Q4 Milestone: Single enhanced tube experiments (HFOs)												
Q1 Milestone: Enhanced tube bundle experiments (HFOs)												
Current/Future Work												
Q3 Milestone: Large scale tube bundle preparation												
Q4 Milestone: Experiments using R290 and ammonia												

💒 Team

Kashif Nawaz

Section Head

Brian Fricke

Group Leader

Muneesh Murugan

Associate Research Staff Cheng-Min Yang

Associate Research Staff