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Project Description and Goals
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Plug-and-play multi-split vapor compression system with modular thermal 
energy storage (TES) components that shift loads in the summer and winter.

Project Goals:
1. Develop low-cost (<$15/kWh) salt-hydrates for the proposed system 

with <10% degradation over 1000 cycles
2. Design modular thermal storage cells that reduce demand by >40% for 

4 hours in the summer and winter
3. Develop TES controller that can connect to a Daikin multi-split unit with 

minimal modifications to the supervisory controller
4. Measure performance and experimentally show:

• Peak demand reduction >40% for 4 hours
• >50% CO2 reduction compared to 90% AFUE/SEER-13
• Net-positive energy savings throughout the year

Phase Change Materials
Initial PCM selection:
Selected commercial PCM for bench-scale prototype considering:
• Thermophysical properties (melt temperature, energy density, etc.)
• Performance in graphite matrix (ease of integration, expected 

degradation, etc.) based on past work.
Identified 12 candidates, selected PureTemp 23.
Low-Cost salt-hydrate PCMs:
Selected 4 candidate systems:
• Zn(NO3)2·6(H2O)-KNO3
• TBAF·29(H2O)
• CaCl2·6(H2O)-NH4Cl
• CaCl2·6(H2O)- MgCl2·6(H2O)
Cycling neat, +graphite, and 
+graphite, polymer, and NP.

TES Heat Exchanger Design
Developed finite difference model of TES:
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Phase Change Composite

Condensing/Evaporating Refrigerant

Using approximate COP relationship, modified key design parameters and 
selected TES that can provide at least 40% peak shaving at 35°C and 0°C 
ambient temperatures.

Identified relevant inputs and developed optimization-based approach to 
maximize benefits of TES across the US.

 

 
(a) Cooling season, TES discharge 

 
(b) Cooling season, TES charge 

 
(c) Heating season, TES discharge 

 
(d) Heating season, TES charge 

 

• Developed thermodynamic model with compressor performance 
curves (Daikin) and TES operating pressures/ flow rates (ANN)

• Controlled discharge rate with refrigerant pressure and charge rate 
with refrigerant flow rate.  ANN maps made for each mode

• Baseline is the same system without TES

Cooling season results (similar results for heating season):
Discharge Mode: Charge Mode:

Key Takeaways:
• Reduces power by 41% - 80% over 4-hour 

window in the summer and by 56% - 72% in 
the winter

• If charging & discharging occur at same 
ambient temperature, 14% net increase in 
total energy use 
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Season Room load 
(kW)

Ambient T 
during discharge 

(°C)

Indoor dry-bulb T 
(°C)

Indoor wet-bulb T 
(°C)

Cooling 10.5 35 26.7 19.4 
Heating 10.5 0 25 N/A

Used model to train artificial neural network (ANN) maps when freezing/ 
thawing the TES in different control modes. Mean errors < 0.01%.
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