

Thermal Storage-Ready High Performance Multi-Split Heat Pump System

Allison Mahvi^{1*}, Michael Wagner¹, Morgan Edwards¹, Jason Woods², Ransisi Huang², Neera Jain³, Patrick Shamberger⁴, Said Al-Hallaj⁵, Monica Cook⁵, Yana Galazutdinova⁵, Khaled Saleh⁶, and Keitarou Hoshika⁶

Project Description and Goals

Plug-and-play multi-split vapor compression system with modular thermal energy storage (TES) components that shift loads in the summer and winter.

Phase Change Materials

Initial PCM selection:

Selected commercial PCM for bench-scale prototype considering:

- Thermophysical properties (melt temperature, energy density, etc.)
- Performance in graphite matrix (ease of integration, expected degradation, etc.) based on past work.

Identified 12 candidates, selected *PureTemp* 23.

Low-Cost salt-hydrate PCMs: Selected 4 candidate systems:

 $Zn(NO_3)_2 \cdot 6(H_2O) - KNO_3$

Project Goals:

- Develop low-cost (<\$15/kWh) salt-hydrates for the proposed system with <10% degradation over 1000 cycles
- Design modular thermal storage cells that reduce demand by >40% for 2. 4 hours in the summer and winter
- Develop TES controller that can connect to a Daikin multi-split unit with 3. minimal modifications to the supervisory controller
- Measure performance and experimentally show: 4.
 - Peak demand reduction >40% for 4 hours
 - >50% CO₂ reduction compared to 90% AFUE/SEER-13
 - Net-positive energy savings throughout the year

Net Benefits Screening Tool

Identified relevant inputs and developed optimization-based approach to maximize benefits of TES across the US.

- $\mathsf{FBAF} \cdot 29(\mathsf{H}_{2}\mathsf{O})$
- $CaCl_2 \cdot 6(H_2O) NH_4Cl$
- $CaCl_2 \cdot 6(H_2O) MgCl_2 \cdot 6(H_2O)$

Cycling neat, +graphite, and +graphite, polymer, and NP.

TES Heat Exchanger Design

Using approximate COP relationship, modified key design parameters and selected TES that can provide at least 40% peak shaving at 35°C and 0°C

thawing the TES in different control modes. Mean errors < 0.01%.

Modeled System Performance

- Developed thermodynamic model with compressor performance curves (Daikin) and TES operating pressures/ flow rates (ANN)
- Controlled discharge rate with refrigerant pressure and charge rate with refrigerant flow rate. ANN maps made for each mode
- Baseline is the same system without TES

35

0

26.7

25

19.4

N/A

BTO Peer Review 2024

Cooling

Heating

10.5

10.5

¹University of Wisconsin – Madison, ²National Renewable Energy Laboratory, ³Purdue University, ⁴Texas A&M University, ⁵NETenergy, ⁶Daikin Comfort Solutions, *allison.mahvi@wisc.edu

Oct. 21-24, 2024