Micro-cascade Supermarket Refrigeration Using Low-GWP Refrigerants

Samuel Yana Motta (PI), Junjie Luo, Vishaldeep Sharma, Bo Shen

Research Challenge

Over 38,000 stores in the US have significant levels of greenhouse

gas (GHG) emissions:

- 43.8 million tons $CO_2eq/year$ (69.7%) of direct emissions (related to HFC's use)
- 19.08 million tons $CO_2eq/year$ (30.3%) of indirect emissions (related to energy use)
- Current centralized systems can carry ≈3,500 lb (per store) of high-GWP refrigerant R-404A (GWP = 3,922) and have a high leakage rate
- The environmental impact clearly needs to be reduced using low-GWP refrigerants while maintaining or improving efficiency

Main Research Efforts (Activities)

- Critical review of refrigerants' environmental issues
 - Performed a thorough literature review of refrigerants' environmental effects: ozone depletion potential (ODP), GWP, and formation of pollutants (e.g., trifluoroacetic acid [TFA]).
 - The formation of TFA can affect the selection of refrigerant(s)
 - Current scientific assessments (UNEP EEAP, 2022) report no significant effect on the environment but advises continued monitoring
 - Significant uncertainty still exists regarding the yield of TFA formation, its dispersion in the environment, and the concentration in air, soil, and water.

Performance and life cycle climate performance (LCCP) evaluations of current supermarket technologies

- Includes current top-performing technologies: 1) distributed systems using HFC/HFO mixtures, 2) Alternatives using the transcritical booster CO₂ and water-cooled propane systems.
- Fluorinated options (e.g., R-454C, R-455A) reduce emissions significantly because of their acceptable energy efficiency
- Propane and CO_2 systems have larger emissions because of the higher yearly energy consumption (lower efficiency).
 - Optimized compressors and larger charge can increase propane efficiency
 - Improvements of the CO_2 system may be possible by using additional subcooling and integration with other supermarket systems

Preliminary assessment of new supermarket technologies

- A micro-cascade configuration was proposed to use a class 1 refrigerant in the medium-temperature loop; the low-temperature loop will be in a cascade configuration using flammables (A2L, A3)
- Preliminary performance and 15-year LCCP evaluations show significant reduction of energy consumption and GHG emissions

Planned/Future Research

- Conclude literature review of environmental issues of fluorinated materials (HFC, HF) by issuing a final report (CRADA Honeywell)
- Complete the experimental testing of micro-cascade system using lacksquaresynthetic and natural refrigerants (Honeywell CRADA)
- Perform field evaluation of new supermarket technologies in existent and new stores to evaluate energy consumption and GHG emissions (CRADA with supermarket chain - Food City)
- Support the commercialization of refrigeration technologies working with partners (Copeland, Hussmann, Honeywell, Food City)

BUILDING TECHNOLOGIES OFFICE

