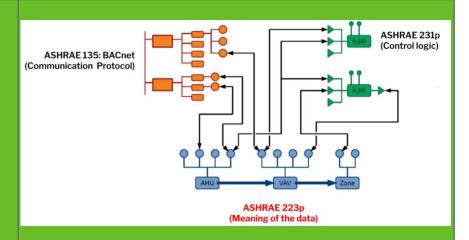

Reduce Barriers to Deployment of Building **Control and Analytics Applications**

Building	Data
-----------------	-------------

Data-driven Applications

ORG	WBS	Туре	PI Name	Email
NREL	3.2.6.19	AOP	Avijit Saha	Avijit.Saha@nrel.gov
LBNL	3.4.6.69	AOP	Marco Pritoni	Mpritoni@lbl.gov
PNNL	3.2.1.05	AOP	Michael Poplawski	Michael.Poplawski@pnnl.gov
NIST	-	-	Steven Bushby	Steven.Bushby@nist.gov


Project Summary

OBJECTIVE: Disseminate and support adoption of "semantic" interoperability standard in collaboration with ASHRAE, industry, and building owners.

OUTCOME: Coordination efforts and developed tools, resources, and field implementations will facilitate the adoption of the standard in industry products and building systems.

IMPACT: Reduce the cost of installation,

IMPACT: Reduce the cost of installation, configuration, and commissioning of building controls, analytics, and data-driven applications, accelerating their adoption.

TEAM & PARTNERS

Team: NREL, LBNL, PNNL, NIST

Standard committee: ASHRAE - SSPC 135

(BACnet)

Significant representation from industry: JCI, Siemens, Schneider Electric, Trane, Delta,

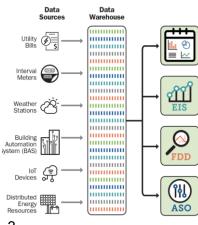
Clockworks Analytics.

STATS

Performance Period: 10/1/2022-9/30/2025

DOE Budget: \$925k/year

Milestone 1: Standard release


Milestone 2: Reference models and tooling

Milestone 3: Field testing with partners

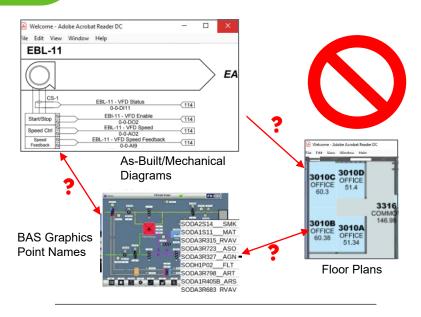
Emerging Controls, Analytics, and Data-Driven Applications Can Help Decarbonize Buildings

- Advanced Controls
 - Energy-related emissions from commercial buildings: 34% ¹
- Fault Detection & Diagnostics (FDD)
 - Waste due to poor operation: ~30% ²
- Automated Demand Response
 - Peak load reduction potential of emerging control apps: 20% ³
- Advanced Visualization, Reporting & Analytics

These applications need to access, understand/contextualize and use building data

Barriers to Implementation

- Specification/delivery of controls is error-prone, time-consuming and costly ¹
 - Performance can vary >60% by implementation ²


- Data analytics, AFDD are too expensive to deploy widely, in part due to manual configuration ⁴
- The next generation workforce must be proficient in data analysis and software 3
 - Cost and penetration of data-driven apps are also impacted by shrinking workforce which is not digital-ready ³

- Data workers spend 50-80% of time collecting and preparing data for use, in part due to lack of standards ⁵
- Standards for semantic interoperability are crucial to reducing cost of development and deployment of controls, analytics, and data-driven applications

Standard Semantic Data Model Reduces **Soft-Costs**

- a s223:OuantifiableObservableProperty: s223:hasAspect s223:Role-Outside : qudt:hasQuantityKind quantitykind:Temperature gudt:hasUnit unit:DEG C .
 - Digital 223P Models

- Provides human- and machine-readable representation of:
 - **Building data points**
 - Building equipment
 - **Building subsystems**
- **Eliminates time-consuming** and confusing mapping between ad-hoc BAS point conventions, as-built diagrams, BAS graphics, floor plans, etc.
- Significantly **reduces site-specific** configuration **effort** for applications
- Massively reduces costs for controls + analytics **deployment,** and enables automated reasoning and configuration of applications

Project Goals

- Support development of a consensus-based standard for semantic modeling
 - Advisory Public Review Completed for ASHRAE 223P Semantic Data Model for Analytics and Automation Applications in Buildings
 - via ASHRAE SSPC 135 (BACnet)
 - Potential for an ISO standard
 - Developed with input from future users

- Provide supporting tools/technologies for semantic model construction, maintenance and conformance testing
- Field test, demonstrate proof of value, provide reference implementations

Alignment and Impact

Alignment with Blueprint Cross-Cutting Goals and Strategic Objectives

- Affordability: Reduce "soft-costs" required to deploy decarbonization solutions.
- ** Resilience: Ease integration of DERs that facilitate resilience and demand flexibility.
- ③ **EE**: Accelerate adoption of control and analytics in new and existing buildings.
- Onsite Emissions Reduction: Reduce barriers to deployment of more complex heating systems (i.e., soft-costs of supporting control applications)
- Transform the Grid Edge: Reduce barriers to using building demand flexibility.

<u>Blueprint Goal:</u> By 2035, More than 50% (By 2050, More than 75%) of all homes and businesses have automated control platforms that reduce energy waste and enable flexibility.

Madeline Shunk US Army Corps of Engineers

"...Efforts like building metadata provides an enterprise approach to operational technology data usage using an industry standard and is incredibly valuable to the Army and industry as a whole."

Chariti Young Automated Logic

"The DOE's investment in supporting the creation and dissemination of ASHRAE Standard 223 will have a profound impact on the industry, fostering innovation and setting new benchmarks for energy efficiency."

Jayson Bursill Delta Controls

"The collaboration between National Labs, ASHRAE, and Industry through the semantic interoperability project will accelerate the adoption of advanced data-driven building applications (e.g. AFDD, grid-responsive control, predictive control)."

Alignment and Impact

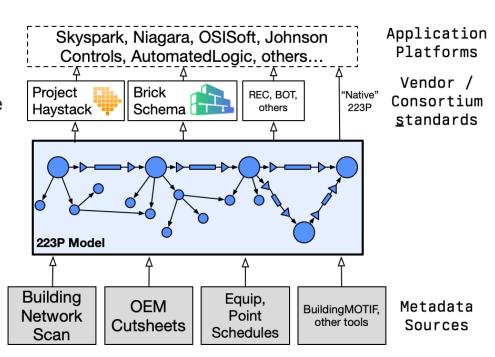
Software Providers

- Reduce deployment (i.e., installation, configuration) time and cost
- New business opportunities

Owners

- Enable easier procurement of intelligent controls, FDD, and more
- Reduce vendor lock-in
- Allows verification of software conformance

Society

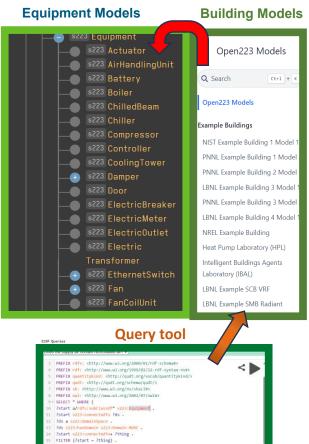

Facilitate scalable deployment of analytics and controls to support the energy efficiency and decarbonization goals of BTO

Harmonization with Current Solutions

ASHRAE 223P:

- More detailed, fine-grained model than existing solutions
- Defines "building blocks", not exhaustive dictionary of terms
- Complement, don't compete
 - Formalize existing schemas using 223P
 - Unifies independent efforts!
- Standard representation of building systems
 - Vendor/equipment models
 - Operational system models

Model Capabilities, Features, and Use cases


ASHRAE 223P is built upon existing technologies of semantic web such as RDF (Resource Description Framework), SHACL (Constraint Language), SPARQL (Query Language)

1. Formal Modeling (RDF, SHACL)

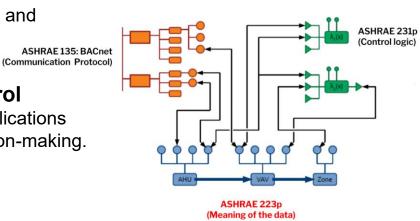
- Real Equipment Type: Detailed representations of HVAC systems, sensors, and controls.
- Tested to model various types pf real buildings and research labs designed for HVAC operations research.

2. Finding Solutions for Practical Use Cases (SPARQL)

Users can guery about specific information related to equipment performance, system topology, and operational data.

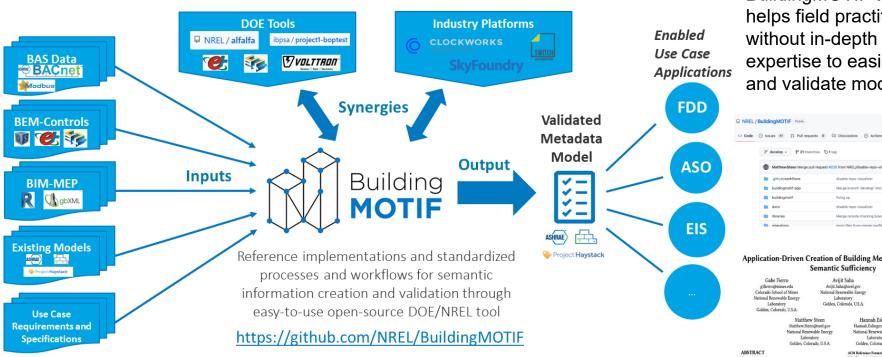
Model Capabilities, Features, and Use cases

3. Conformance Checks (SHACL)

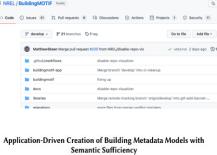

 Ensuring conformance check against existing guidelines and standards (e.g., ASHRAE 231P, G36).

4. Software Configuration for Analytics and Control

 Advancing the configuration of analytics and control applications for enhanced performance analysis and informed decision-making.


5. Coordinated Development of Standards

• 223p describes the inputs and outputs of a 231p control model, and links to the actual network points to access the data or control the systems.



Developing and Publishing Open-source Tools Helps Adoption

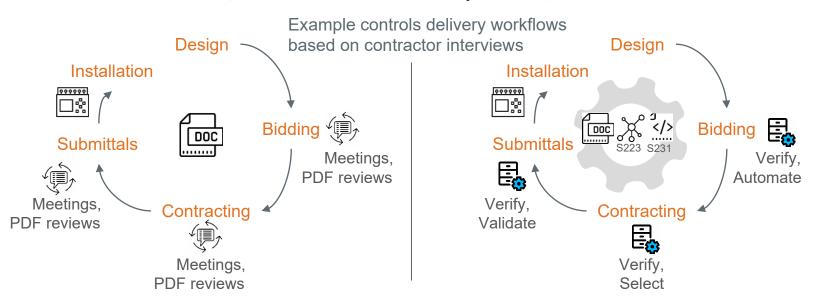
BuildingMOTIF tool helps field practitioners without in-depth RDF expertise to easily create and validate models.

Tobias Shapinsky Tobias.Shapinsky@nrel.gov National Renewable Energy

Hannah Eslinger Hannah Eslinger@nrel.eo National Renewable Energy Laboratory Golden, Colorado, U.S.A.

Semantic metadata models such as Brick, RealEstateCore, Project Havstack, and BOT promise to simplify and lower the cost of develoning software for smart buildings, enabling the widespread leployment of energy efficiency applications. However, creating these models remains a challenge. Despite recent advances in creating models from existing digital representations like point labels

Gabe Fierro, Aviit Saha, Tobias Shapinsky, Matthew Steen, and Hanna Eslinger. 2022. Application-Driven Creation of Building Metadata Models with Semantic Sufficiency. In The 9th ACM International Conference on Systems for Energy-Efficient Buildings Ottes, and Transportation (BuildNes 22), November 9-38, 2022, Boston, MA, USA, ACM, New York, NY, USA,


Laboratory

Golden, Colorado, U.S.A.

Automating Application Delivery Processes

Today's Controls delivery Workflow is a largely human-centric process that transfers paper materials between actors, and relies on human interpretation, validation & verification

The envisioned Application delivery Workflow is a largely automated process that transfers digital material between machines, and leverages more rigorous validation & verification

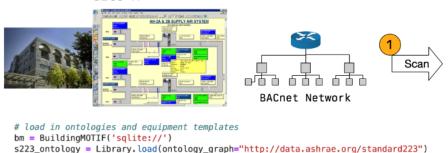
Progress and Future Work

FY20 - FY23

- Consensus on needs by collecting inputs from all types of stakeholders. Held Technical Advisory Group meetings. Project Merit Reviewed.
- ASHRAE 223 standard development with strong industry engagement.
- DOE vision papers and technical publications. First release of tools.

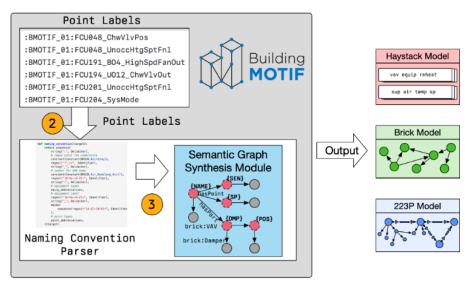
FY23 – FY24

- ASHRAE advisory public review of Standard 223.
- Released improved version of model creation and validation tool.
- · Public release of reference models.
- Preliminary field testing and starting partnership with industry for tech transfer.


FY25 -Future

- Release of Final Standard and full suite of tools, reference models, practitioner guidance, preliminary field-testing results
- Deploy with vendors in implementation workflows, real building demonstration, demonstrate integration of standard into procurement specifications

Semantic Modeling in Existing Buildings from **BACnet Data**




```
equipment types = Library.load(directory="my libraries/equipment")
# define the BMS point label naming convention
def naming convention(point label):
    # ...
```

- # scan the network, apply the naming convention to each label, # and synthesize the metadata model
- network = BACnetNetwork("10.0.0.1/24") -parsed = NamingConventionIngress(network, naming_convention) model = SemanticGraphSynthesizer(parsed, [equipment_types]).graph
 - Turnkey development of metadata models
 - BuildingMOTIF scans a BACnet network to find point labels

 - Express point naming convention to BuildingMOTIF
 BuildingMOTIF uses ontology definitions to create valid metadata models automatically

Delivered Reference Models

guideline36-2021-A-1.ttl guideline36-2021-A-2.ttl auideline36-2021-A-3.ttl guideline36-2021-A-4.ttl guideline36-2021-A-7.ttl guideline36-2021-A-8.ttl guideline36-2021-A-9.ttl

Example models and use-case centered validation requirements are publicly available, demonstrating how standard can be used

mysystem:VAVCoolingOnly a s223:SingleDuctTerminal, g36:VAVTerminalCoolingOnly ; rdfs:label "Vavcoolingonly"; s223:cnx mysystem:VAVCoolingOnly-in, mysystem:VAVCoolingOnly-out ; s223:contains mysystem:VAVCoolingOnly-damper .

https://models.open223.info/intro.html

Validate

ex: Guideline 36 validation requirements use 223P to facilitate modeling and validation of systems that support G36 sequences

```
g36:VAVTerminalCoolingOnly a s223:Class, sh:NodeShape;
   rdfs:label "VAVTerminalCoolingOnly";
   sh:property [sh:minCount 1;
       sh:path s223:contains;
       sh:qualifiedValueShape [ sh:class g36:Damper ]; ]
```


Field Testing in Real Buildings

UC Berkeley Sutardja Dai Hall
Large Commercial Building
Streamlined Controls Deployment

Anthony Quinn Library
Small Commercial Building
Application-Driven Modeling + MPC

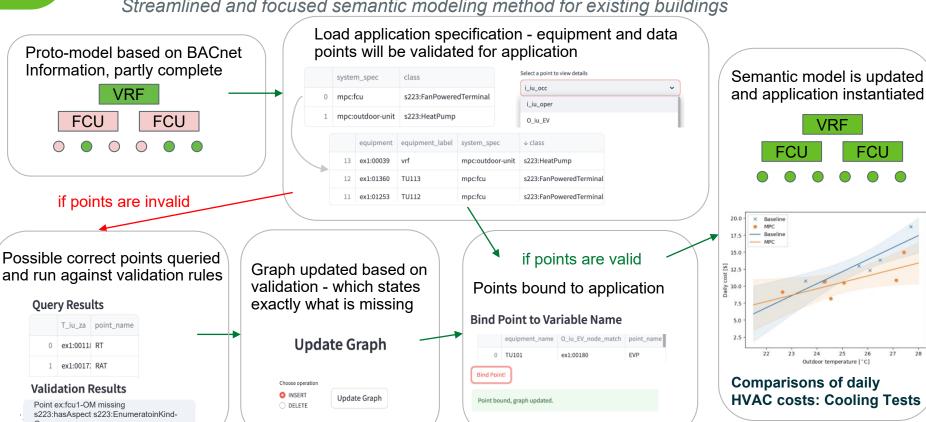
UC Davis Offices
Small Commercial Building
Application-Driven Modeling + MPC

LBNL Building 33
Large Commercial Building
G36 Extension Assisted Modeling

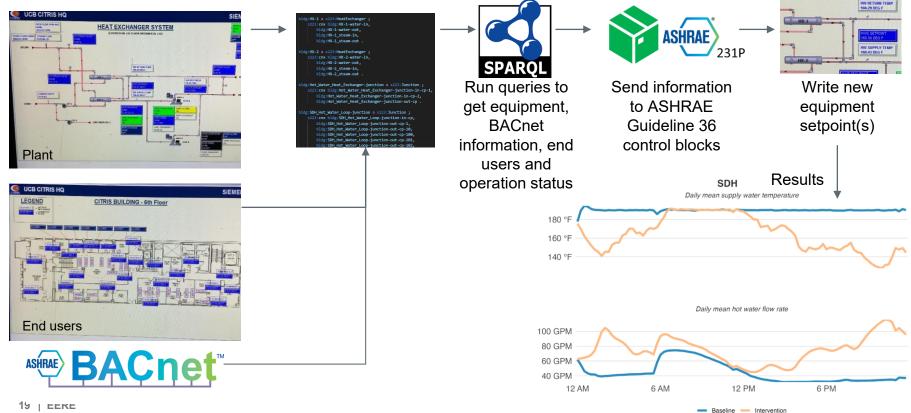
David Brower Center

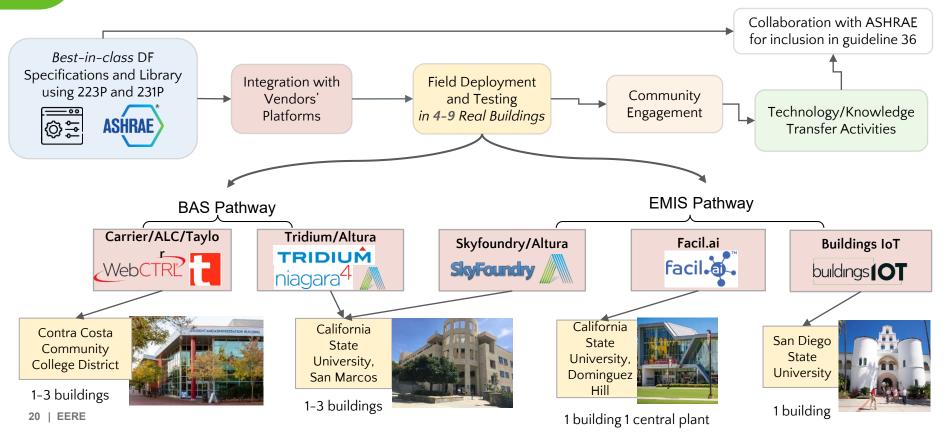
Medium Commercial Building

Streamlined Controls Deployment


LBNL Building 59
Large Commercial Building
Automated Large Building MPC

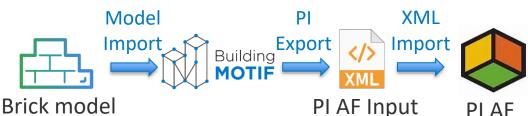
Field Test - Application Driven Modeling


Streamlined and focused semantic modeling method for existing buildings



Field Testing - Controls Deployment

Commercial Pilot Project - OBC Flex



Demonstration with Army and Navy through Synergistic ESTCP Project

- Partnering with US Army Corps of Engineers: Construction Engineering Research Laboratory (CERL)
- Demonstration Sites:
 - Navy Base at Norfolk
 - Army Base at Ft Liberty
- Demonstration Objectives:
 - Metadata modeling and integration with DoD Control Systems
 - Integration of metadata requirements within DOD's Construction Specifications

Example Implementation in Navy's PI System

Access through PI Web API

Metadata Stored in PI
Asset Framework (AF)

Direct integration within PI System

Data Stored in PI Archive

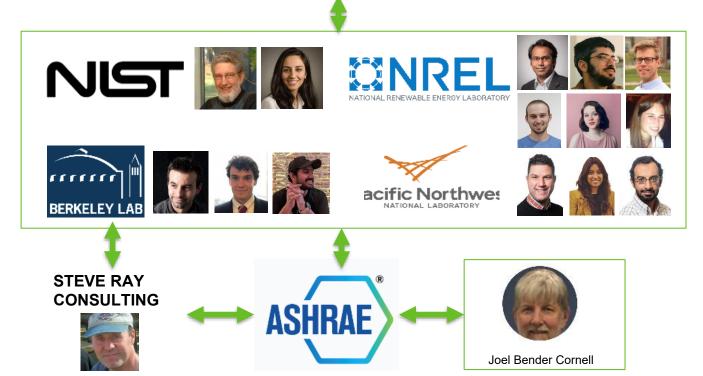
Thank you

ORG	WBS	Туре	PI Name	Email
NREL	3.2.6.19	AOP	Avijit Saha	Avijit.Saha@nrel.gov
LBNL	3.4.6.69	AOP	Marco Pritoni	Mpritoni@lbl.gov
PNNL	3.2.1.05	AOP	Michael Poplawski	Michael.Poplawski@pnnl.gov
NIST	-	-	Steven Bushby	Steven.Bushby@nist.gov

Reference Slides

Project Execution

		FY2	2023			FY2	024					
Planned budget	\$925,000			\$925,000				\$925,000				
Spent budget												
	Q1	Q2	Q3	Q4	Q1 Q2 Q3 Q4				Q1 Q2 Q3 C			Q4
Past Work												
Q1 Milestone: Finalize methodology for evaluating the potential impact of the standard by targeting use cases for LCB and SMCB that are most relevant to stakeholders												
Q2 Milestone: List planned features for Beta version of BuildingMOTIF Tool for model creation and validation												
Q3 Milestone: Define the first set of partners and plans for field tests for SMCB and LCB.												
Q3 Milestone: Publish the first set of reference models for LCB and SMCB.												
Q4 Milestone: Release Beta version of BuildingMOTIF Tool for model creation and validation, and related tutorials.												
Q4 Milestone: Release Alpha version of Revit-to-TTL tool for lighting and electrical system model creation, and related workflow and tutorials.												
Q4 Milestone: Document early results of field deployment of 223P standard integrated with CDL/231P (Topic B)												
Q4 Milestone: Document status of and contribution to ASHAE 223 standard publication and adoption, and outreach activities during FY23.												



Project Execution

Q2 Milestone: List planned features for next release of BuildingMOTIF Tool for model creation and validation				•			
Q2 Milestone: Beta release of turk-key BIM (Revit) to 223 model workflow, building on FY23 alpha release, focused on lighting and electrical systems				•			
Q2 Milestone: Design of turn-key semi-automated point-mapping solution (focusing on point labels to graphs) to be integrated with BuildingMOTIF				•			
Q2 Milestone: Confrim partners and workplan for field testing the use of 223 models				•			
Q3 Milestone: Progress/update report on collaboration with VOLTTRON and OpenBuildingControl for metadata Integration							
Q3 Milestone: Complete 223 models for field testing of 223 and define the advanced features that will be deployed using the models							
Q4 Milestone: Polish the https://open223.info/ site, and enable the hosting of example models and software integration workflows for standard dissemination.					•		
Q4 Milestone: Release updated version of BuildingMOTIF Tool for model creation and validation, and related tutorials, with integrated turn-key solutions as designed							
Q4 Milestone: Document status of and contribution to ASHAE 223 standard publication and adoption, and outreach activities during FY24.							
Q4 Milestone: Demonstrate the use of 223 models to facilitate the configuration of controls at multiple field testing sites							

