

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

BTO Peer Review: Compressor is a Sensor

Compressor is a Sensor CRADA Copeland

Oak Ridge National Laboratory PI: Bo Shen, Senior R&D Staff; Presenter: Zhenning Li, Associate R&D Staff 865-574-5745, <u>shenb@ornl.gov</u> WBS# 03.02.06.83, Lab call CRADA

Pump-down commissioning

Project Summary

OBJECTIVE, OUTCOME, AND IMPACT

- Develop accurate charge fault detection and diagnosis
 technology embedded in existing compressor sensor board
- New technology automatically identifies refrigerant charge faults during regular heat pump commissioning operation and makes refrigerant charge value available at technician's fingertips
- New technology featured fast response, high accuracy, and universal applicability for various residential and commercial systems

TEAM AND PARTNERS

ORNL Team: Bo Shen, Zhenning Li CRADA Partner: Drew Welch (The Helix Innovation Center in Copeland)

COPELAND

Residential heat pump for charge prediction validation

Commercial roof-top unit for charge prediction validation

STATS

Performance Period: 10/01/2021-09/30/2025
Total DOE budget: \$500k, Total Cost Share: \$500k
Milestone 1: Dynamic modeling report
Milestone 2: Develop charge prediction algorithm
Milestone 3 (Go/No-go): Laboratory verification on residential system to capture system charge within ±10% accuracy
Milestone 4 (Go/No-go): Laboratory verification on commercial system to capture system charge within ±10% accuracy
Milestone 5: Field installation and instrumentation
Milestone 6: Final reporting

- Charge faults (overcharge or leakage) have significant impacts on HP performance
- Evacuating and weighing the refrigerant is time-consuming and cost-ineffective
- Subcooling and superheat degrees at steady-state operation are commonly used as prediction indices for charge fault
 - However, steady-state operation requires long data acquisition time owing to ambient temperature and building load variations
- ML-based charge prediction method requires large amount of experimental data for training; ML model is system-dependent
- Existing charge prediction method based on steady-state operation of vapor compression system cannot predict inactive charge in refrigerant buffers (i.e., accumulator and receiver)

Alignment and Impact

Increase building energy efficiency and reduce GHG emissions

Accurate charge prediction method improves system reliability and energy efficiency, reduces indirect GHG emission

Greenhouse gas emissions reductions

- Reliable charge FDD method mitigates refrigerant leakage, mitigates danger of flammable refrigerants, and reduces direct GHG emission
- Prioritize equity, affordability, resilience

- Seamless integration into existing compressor sensors and commissioning operations to accommodate current manufacturing and installation processes
- Pump-down based charge FDD technology features fast response, high accuracy, and universal applicability for various residential and commercial systems

Approach

- Develop an accurate universal charge fault detection method that requires small amount of experiment data with high prediction accuracy
- Take advantage of existing sensors and control of compressor and identify charge fault during regular heat pump commissioning operations
- Predict the charge in refrigerant buffers (i.e., accumulator and receiver)
- Does not require indoor heat exchanger geometry, length of pipelines, and internal volume of accumulator and receiver

Approach (Cont'd)

- A novel charge prediction method based on pump-down operation
- Total charge consists of four parts
 - **Part 1:** condenser charge during static state operation
 - **Part 2:** Charge migrated from low-pressure side to high-pressure side via compressor
 - **Part 3:** Charge leaked from high-pressure side to low-pressure side via four-way valve
 - **Part 4:** Remaining charge in low-pressure side after pump-down (negligible)

Pump-down (a typical commissioning operation performance by HVAC technicians)

Progress Predict Condenser Charge

- DOE/ORNL heat pump design model (Shen and Rice [2016]) is used to predict condenser charge
- Heat exchanger model uses segment-to-segment modeling approach to predict local heat transfer and pressure drop

Progress Predict Condenser Charge (cont'd)

- Use heat exchanger model to predict subcooled liquid length and condenser charge
- Fine tuning the charge prediction based on previous research [1]
- The tuned charge prediction equation can be obtained by fitting OEM performance data

9 | EERE [1] Shen, B., Braun, J. E., & Groll, E. A. (2009). Improved methodologies for simulating unitary air conditioners at off-design conditions. Int. Journal of Ref., 32(7), 1837-1849.

Progress Predict Migrated Charge via Compressor

- Compressor map was used to predict volumetric efficiency degradation and refrigerant mass flow rate during pump-down process
- Accumulated refrigerant mass flow rate during pump-down is the migrated charge via compressor

10 | EERE

Refrigerant mass flow rate via compressor, @71°F, 7 lbm charge

Progress Predict Migrated Charge via Four-Way Valve

- Calculated reversed refrigerant flow via four-way valve owing to valve leakage
- Refrigerant flow in four-way valve is driven by pressure difference between discharge and suction points

Refrigerant mass flow rate via four-way valve

Progress Validation on a Residential Heat Pump

- R-410A 3-ton split heat pump was used for experiment validation
- Outdoor unit placed on scale to measure charge migration
- Pump-downs were conducted at 3 charge levels and 4 ambient conditions
- The charge prediction deviation is within 6%

Progress Validation on a Commercial System

- R-410A 4-ton roof-top packaged system was used for experiment validation
- Pump-downs were conducted at 4 charge levels and 4 ambient conditions
- The charge prediction deviation is within 5%

4-ton package roof-top heat pump system

Future Work and Publication

- Future work
 - Field installation and validation for the charge prediction method

Outcomes

1 Li, Zhenning, Welch, Drew, Shen, Bo, Gluesenkamp, Kyle, Butler, Brian, and Morgan, Stuart. 2022. "A Universal Refrigerant Charge Fault Detection and Diagnostics Method Based on Pump Down Operation." International Refrigeration and Air Conditioning Conference. Paper 2433.

2 Li, Z., Shen, B., Welch, D., and Gluesenkamp, K. 2024. "A Pump-Down Based Refrigerant Charge Fault Detection and Diagnostics Method Validated on Residential and Commercial Heat Pumps." Gustav Lorentzen Conference. University of Maryland, College Park.

Thank you

Oak Ridge National Laboratory

Bo Shen, Sr. R&D staff (865) 574-5745 / <u>shenb@ornl.gov</u>

WBS # 03.02.06.83, Lab call CRADA

The **Building Technologies Research and Integration Center (BTRIC)** at ORNL has supported DOE BTO since 1993. BTRIC is comprised of more than 60,000 square feet of lab facilities conducting RD&D to develop affordable, efficient, and resilient buildings while reducing their greenhouse gas emissions 65% by 2035 and 90% by 2050.

Scientific and Economic Results

139 publications in FY24 140+ industry partners 60+ university partners 16 R&D 100 awards 64 active CRADAs

BTRIC is a DOE-Designated National User Facility

Project Execution

	FY2022				FY2023				FY2025			
Planned budget	\$150k				\$150k				\$200k			
Spent budget	\$150k				\$100k				0			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work												
FY22 Q1 Milestone: Charge fault detection market												
assessment												
FY22 Q2 Milestone: Development of dynamic model												
FY22 Q3 Milestone: Select sensors and instrumentation												
FY22 Q4 Milestone: Validation on residential system												
FY23 Q1 Milestone: Validation on commerical system												
Current/Future Work												
FY25 Q1 Milestone: Fabrication of a FDD controller												
FY25 Q2 Milestone: Field demonstration												
FY25 Q3 Milestone: Field installation and instrumentation												
FY25 Q4 Milestone: Reporting of automatic charge fault detection technology												

Dr. Bo Shen Pl

Development of new charge FDD approach and Team coordination

Dr. Zhenning Li

Pump-down simulation, Laboratory investigation, and Reporting **Drew Welch** Senior Lead HVAC Systems Engineer

Led development of Emerson compressor technology

17 | EERE