

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

BTO Peer Review: Low–Global Warming Potential Refrigerant Leak-Sensing Methods for Commercial Refrigeration

Low–Global Warming Potential Refrigerant Leak-Sensing Methods for Commercial Refrigeration

Oak Ridge National Laboratory Vishaldeep Sharma 865-574-5810/ Sharmav@ornl.gov WBS 3.2.2.81.2101

Project Summary

OBJECTIVE, OUTCOME, & IMPACT

- Enable successful adoption of low and ultralow-GWP refrigerants in commercial refrigeration
- A2L and A3 sensor, standards and equipment design are parallelly evolving
- Holistic approach to realize flammable refrigeration system complying with existing standards and beyond
- Smart control, leak detection/isolation multiple refrigeration system architectures
- CO₂,eq impact 44 MMT/year

TEAM & PARTNERS

- ORNL
- Collaborators Nevadanano, Emerson, Figaro, Senseair, Kolpak, HEB, Food City

STATS

Performance Period: 10/1/2022 - 9/30/2025

DOE Budget: \$1400k, Cost Share: \$200k

Milestone 1: Comprehensive experimental setup Milestone 2: Evaluation of A2L refrigerant sensors

Problem

Direct emissions from supermarkets and large food retail stores

- Direct expansion refrigeration systems is most common system (90% of current refrigeration system)
- refrigerant charge ranges from 1000 lb 3500 lb
- annual refrigerant leaks of 25%, 70% of total emissions
- Common working fluid: R-404A (GWP 3922)

Solution and Impact

- Low-GWP (<150) and ultra low-GWP options such as hydrocarbons, R454C and R455A are flammable (A3 and A2L class)
- Due to flammability concerns, robust safety solutions are necessary
- Reliable sensor integrated with control system are required to mitigate risks
- Sensors should have accuracy, sensitivity, fractionation, selectivity

	Lower	Higher
Higher Flammability	A3	B3
Flammable	A2	B2
Lower Flammability	A2L	B2L
No Flame Propagation	A1	B1

Accelerate building electrification Reduce onsite fossil-based CO₂

emissions in

compared to

by 2050,

2005

buildings – 25%

by 2035 and 75%

Greenhouse gas emissions reductions 50-52% reduction by 2030 vs. 2005 levels Net-zero emissions economy by 2050

Most important sensor requirements for flammable sensors in HVAC&R Industry

Capable of operating safely with any flammable refrigerant without becoming an ignition source

Very high reliability during the lifetime (10+ years)

Ready to operate with smart control and fault detection and diagnostics systems employed in these applications

Wireless capabilities (Internet of Things connectivity) to simplify deployment in typical supermarket stores

Capable of measuring refrigerant concentration with sufficient accuracy for WCF and WCFF, and adequate response time per safety standards (UL 60335-2-89, 2-40)

Sensing mechanisms for detecting refrigerants

- Sensing capabilities are constrained by the physical properties of the sensing mechanism
- Multi-objective testing can determine the most appropriate sensor for a specific application

Table 1: Test matrix for selecting an appropriate sensor solution.

Attribute	Range	Test method
Concentration / accuracy	• 5% – 25% LFL; ±3%	Signal response vs concentration
Time constant / response time	• 1% – 25% LFL	Signal response time after leak initia- tion
Sensitivity and selectivity	 Humidity (10%-90%) Temperature (-30F to +275F) CO₂ (0.05% to 1%) Other refrigerants (134a, 404A, 407A) (NO_X - ppmv; CO - ppmv) Impact of fractionation, oil, cleaning agents, engine exhaust 	Presence of humidity, temperature CO ₂ , other refrigerants, poison species: co-injection
Repeatability	Signal variance between sensors	Simultaneous evaluation
Reliability	 Continuous exposure time Oversaturation (pure refrigerant exposure) On/off cycling Powered sensor Signal drift vs. time 	Exposure to different test conditions
Location	Floor vs. Ceiling	Impact of density
Robustness (vi- bration/shock)	-	Vibration sensitivity, shock sensitivity
Flexibility	Multiple A2L blends	Cross compatibility feasibility

6 | EERE

Literature Review

- UL 60335-2-89, 2-40 and ASHRAE 34 Standards
- AHRTI Study
 - Test method development and evaluation of 6 sensors
 - 4 sensing principles using R32
 - Response time evaluation
 - Test method for robustness and reliability evaluation
 - Fluid Resistance and Poisoning test
 - Temperature (-20°C and 55°C, **30-70%**RH)
 - Humidity (40°C, 20%RH)
 - Air velocity
 - Altitude
 - Sensor Orientation
 - Principles selected: NDIR, Speed of sound, IR, Spectrometry, MOS, Thermal Conductivity

Letter Code	Sensor type	% of requirements passed	Average time delay (sec)	Average time constant (sec)
А	MMM	100%	4.5	0.25
В	NDIR	96%	1.6	15.8
С	TC	86%	0.0	0.1
D	NDIR	79%	0.1	13.7
Е	MOS	75%		
F	MOS	64%		

Experimental Campaign

- Composition Sensitivity
 - Nominal composition
 - WCF
 - WCFF
- Humidity Impact
- Pollutants
 - CO
 - NO₂
- Contaminants
 - Common household cleaning agents
- Temperature
- CO₂
- Misc. contaminants

Composition Sensitivity

	Application	Refrige	Refrigerant			WCF	WCFF	
	Refrigeration	R454	R454C			Х	Х	
	Refrigeration	R454	A	х		Х	Х	
	Refrigeration	R455	5A	х		Х	Х	
	Refrigeration	R457	'A	х		Х	Х	
	Air-conditioning	R454	IB	х		Х	Х	
	R454C	R454A	R45	55A	I	R457A	R454B	
ominal	R-32/1234yf (21.5/78.5)	R-32/1234yf (35.0/65.0)	R-744/32 (3.0/21.	2/1234yf 5/75.5)	R-32/1 (18.0/	L234yf/152a /70.0/12.0)	R-32/1234yf (68.9/31.1)	
WCF	R-32/1234yf (19.5/80.5)	R-32/1234yf (33.0/67.0)	R-744/32/1234yf (2.0/20.5/77.5)		R-32/1 (18.0/	.234yf/152a /70.0/12.0)	R-32/1234yf (67.9/32.1)	
WCFF	R-32/1234yf (0/100)	R-32/1234yf (0/100)	R-744/32 (0/0.15/	-744/32/1234yf R-3 (0/0.15/99.85) (18		L234yf/152a /70.0/12.0)	R-32/1234yf (1.69/98.3)	

N

Results: R32 - R1234yf blends

- Sensor response towards composition
 - 1.6 vol % (20% LFL R454B) refrigerant in air at room temperature
 - Cases studied
 - R454B WCFF– R32/R1234yf (3.7%/96.3% vol: 1.7%/98.3% mass)
 - Equimolar blend- R32/R1234yf (50%/50% vol: 31.3/68.7% mass)
 - R454B WCF R32/R1234yf (83%/17% vol: 67.9%/32.1% mass)
 - Pure R32

Results: R32 - R1234yf blends

- Sensor response varied by type
 - More responsive to WCFF, enhancing safety margin
 - Quick response to WCF, negative response to WCFF
- Response time behavior of some sensors varied with blend composition

Humidity Impact

Sensor 4

- Measured with R454C
- 5 working principles
- 20% RH to 70% RH at ~ 24°C (T_{dew}: -0.4°C to +18.4°C)
- All sensors showed signal strength variance

12 | EERE

Humidity Impact (continued)

-20%RH -50%RH -70%RH

CO and NO₂ sensitivity

Sensor	CO (25 ppmv)	NO ₂ (20 ppmv)
1		
2	•	
3	•	
4	•	•
5		
6	•	•

Cleaning agents

Cleaning agent	Description
1	Rust and lime removing agent (glycol, acetate, ketone)
2	Deodorizing spray (IPA, NPPEE)
3	Floor cleaning liquid (PEG, Ether)
4	Lysol (ethanol, benzyl compound)
5	Clorox (NaOCI)
6	Floor polish (Ketone, acetate, alcohol)

	Sensor Type	1	2	3	4	5	6
	1						
	2	•	•		•		•
	3						
	4			٠			٠
	5						
15 EERE	6	•		•			

Real World Implications

- Sensor location is critical
- Leak dispersion dynamics in real world installations need to be considered
- Sensitivity towards humidity was noticed
- Extreme temperatures and humidity
- Contaminants

Conclusions

- Sensor's sensitivity towards numerous operational and installation scenarios can present a challenge
 - Signal strength variance
 - Response time
 - False positive
- Need to be considerate towards sensor location
- Standard needs to be expanded for other scenarios not yet implemented (e.g. higher humidity, WCFF, contaminants)
- Recommendations
 - Sensor accuracy analysis should be added to routine refrigeration system maintenance schedules
 - Application specific bump kit
 - Sensor Location identification
- We will analyze the entire data set in identifying hybrid sensor combination suitable for addressing all hypothetical real-world scenarios

Next Steps

- Sensor performance evaluation at colder conditions (-20 °F/ 90% RH)
- Lubricants impact
- Cross contamination with HFC
- Unique scenarios: Citrus juices, lead acid battery vapors, CO2
- A3 sensor evaluation
- Literature review
- Developing test setup
- Detailed analysis of sensor location and leak dispersion dependency
 - Multiphysics modeling of different HVACR equipment
 - Experimental study of WIF
- Field study
- Journal publications to disseminate the data

Thank you

Oak Ridge National Laboratory Vishaldeep Sharma (865) 574-5810 / <u>sharmav@ornl.gov</u> WBS 3.2.2.81.2101

The **Building Technologies Research and Integration Center (BTRIC)** at ORNL has supported DOE BTO since 1993. BTRIC is comprised of more than 60,000 square feet of lab facilities conducting RD&D to develop affordable, efficient, and resilient buildings while reducing their greenhouse gas emissions 65% by 2035 and 90% by 2050.

Scientific and Economic Results

139 publications in FY24 140+ industry partners 60+ university partners 16 R&D 100 awards 64 active CRADAs

BTRIC is a DOE-Designated National User Facility

Reference Slides

Project Execution

	FY2023				FY2024				FY2025			
Planned budget	600			600				200				
Spent budget												
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work												
Q1 Milestone: Commercial sensor screening												
Q2 Milestone: Lab setup complete												
Q3 Milestone: A2L sensor performance evaluation complete												
Q4 Milestone: Data analysis and gap identification												
Current/Future Work		_										
Q5 Milestone: A3 sensor performance evaluation complete												
Q6 Milestone: Data analysis and gap identification												
Q7 Milestone: Modeling and HVAC&R system evaluation												
Q4 Milestone: Final Report												

Praveen Cheekatamarla

Sr. R&D Staff

Hongbin Sun

Viktor Reshniak

Samuel Yana Motta

Distinguished R&D Staff

R&D Staff

R&D Staff