

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

BTO Peer Review:

Compressor Technologies for Low and Ultra-Low GWP Refrigerants

Compressor Technologies for Low and Ultra-Low GWP Refrigerants

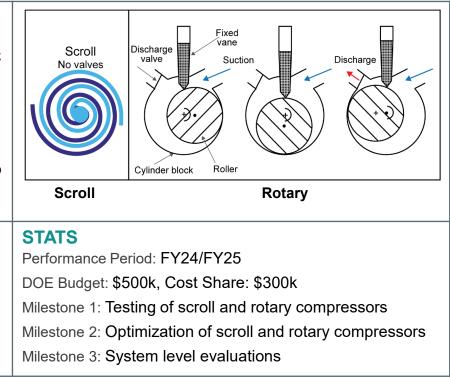
Oak Ridge National Laboratory Samuel F. Yana Motta, Distinguished R&D Staff <u>yanamottasf@ornl.gov</u>, (716) 4183945 WBS: 03.02.02.79

Project Summary

OBJECTIVE, OUTCOME, AND IMPACT

Objective: Enable development of compressors for low-GWP refrigerants in residential and light commercial A/C heat pumps

Outcome: Redesigned compressors that achieve optimal performance with low-GWP refrigerants


Impact: Reduce direct CO₂ emissions by 96.4% (32,500,000 tons of CO₂); potential energy savings of up to 5.6% (37,934 TWh/year, equivalent to 16,000,000 tons of CO₂)

TEAM AND PARTNERS

ORNL: Samuel F. Yana Motta (PI), Junjie Luo

CRADA partner: Copeland

```
Collaborators: Purdue University team (Steven Liang,
Yash Shantilal Parmar, Haotian Liu, Riley Barta,
Eckhard Groll)
```


- The **refrigeration**, **air-conditioning**, **and heat pump market** must reduce GHG emissions by 70% to comply with US (EPA) and global (Kigali) regulations
 - > Direct CO_2 emissions from refrigerants amount to 32.5 million tons of CO_2 per year
 - > Annual energy consumption is 682,827 TWh, leading to indirect emissions of 289 million tons of CO₂
- Highly efficient systems using low-GWP refrigerants are needed to reduce emissions
- Compressors greatly influence system energy efficiency as heart of the system; current R-410A scroll compressors have isentropic efficiency as high as 74%
- Compressors for new refrigerants (e.g., R-454C, propane) should be optimized to match or improve efficiency of current technologies (e.g., scroll, rotary)

This project aims to enable development of highly efficient compressors

[2] de Bock, P., V. Lecoustre, C. Noyes, T. Bress, R. Radhakrishnan, and J. Gallagher. 2021. "Cooling Compute Systems Efficiently, Anytime, Anywhere." *Energy Efficiency Computing Workshop*, December 21, 2021. [Online] Available at <u>https://www.arpa-e.energy.gov/sites/default/files/4.%20Vision%20Pitch%20-%20deBock.pdf</u>

^[1] https://www.statista.com/statistics/1228433/data-centers-worldwide-by-country

Alignment with Nation's Goals and Impact

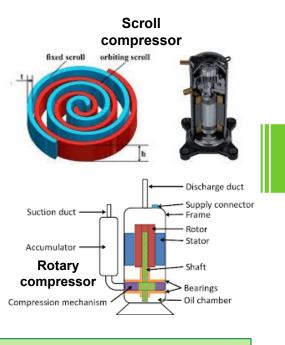
<u>Alignment</u>

- GHG emission reduction
 - > Use of low and ultra-low GWP refrigerants reduces direct emissions
 - > Highly efficient compressors increase system efficiency, reducing indirect emissions
- Power system decarbonization
 - > Heat pump electrification reduces reliance on fossil fuels for heating and cooling needs
 - > Integration of heat pumps with smart grids supports grid stability when using renewable energy sources

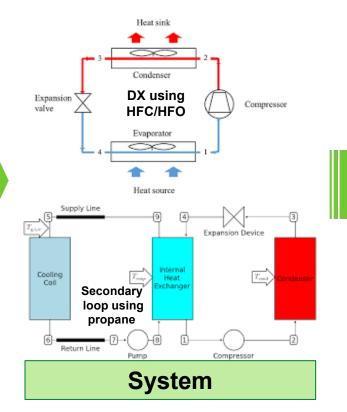
Energy justice

- > Efficient compressors with costs similar to that of current ones makes equipment available for everyone
- > Transition from electric heating to efficient heat pumps can reduce energy bills for low-income individuals

Impact


- Direct emissions: reduced by up to 96.4% (32,500,000 tons of CO₂)
- Indirect emissions: reduced by up to 5.6% owing to energy savings (16,000,000 tons of CO₂)
- Deliverables: (1) Precompetitive research shows potential to optimize compressors beyond what is available today; (2) partnership with compressor manufacturers to enable commercialization of highly efficient compressors

Greenhouse gas emissions reductions 50-52% reduction by 2030 vs. 2005 levels Net-zero emissions economy by 2050 Power system decarbonization 100% carbon pollutionfree electricity by 2035



40% of benefits from federal climate and clean energy investments flow to disadvantaged communities

Approach Why improve components?

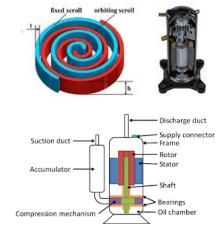
Component

Houses

××°

Approach Technical Methodology

Critical literature review


- Identify top two compressor technologies for residential A/C applications
- Ensure they are not just exploratory but rather established technologies that can be further developed

Compressor modeling and optimization

- Modeling/optimization of top two compressor technologies identified in literature review: scroll and rotary
- > Collaborate with industry to ensure feasibility of designs

Performance validation

- > Validate compressor performance with experimental testing
- Evaluate top compressor/refrigerant technologies using simulation of residential AC 3-ton systems

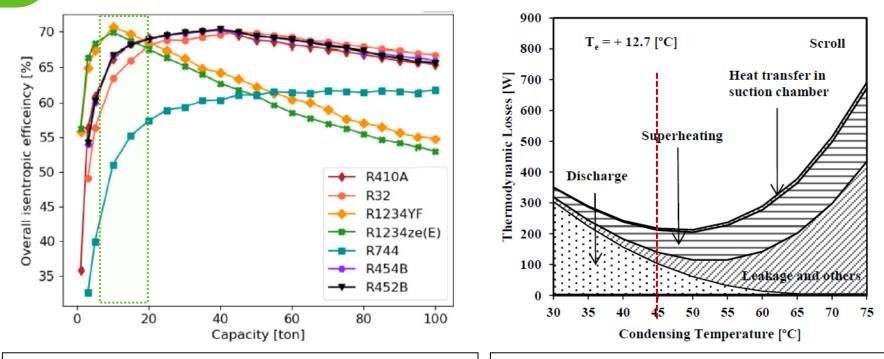
Approach Risks and Implementation Strategies

Barriers, technical challenges, risks

> Achieving equivalent or better performance compared with existing compressors

Mitigation strategies for risks

Iterate designs to achieve modeled results using experimental testing


Demonstration strategy

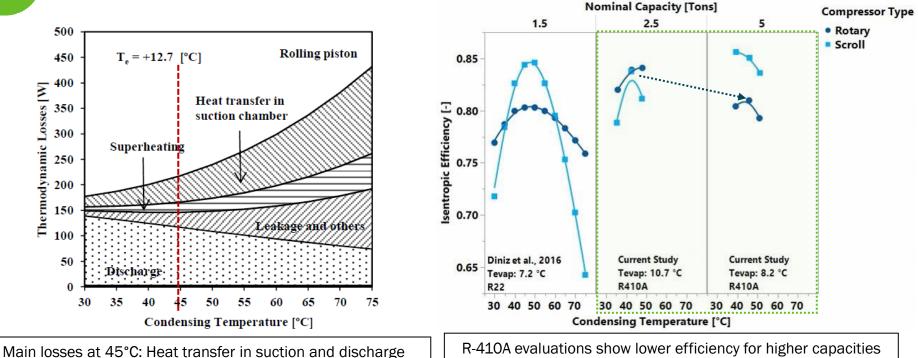
> Install compressors in residential heat pumps and conduct performance tests

Commercialization strategy

Work with manufacturers to implement new compressor designs for low-GWP refrigerants

Progress Literature Review on Scroll Compressors

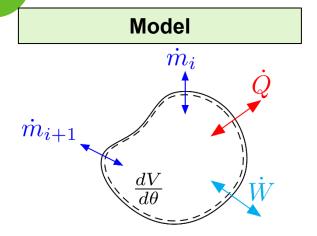
Low-pressure refrigerants such as R-1234yf and R-1234ze(E) show higher efficiencies for lower capacity range (7–20 tons)


Main losses at 45°C: superheating in suction passages, internal leaks, and discharge passages

Minimizing internal losses is essential for achieving higher efficiency

10

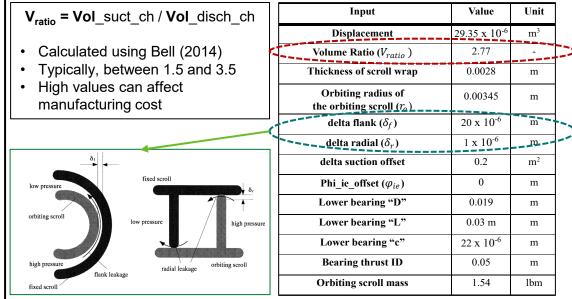
Progress Literature Review on Rotary Compressors



passages, leakage, and superheating

R-410A evaluations show lower efficiency for higher capacities when compared with scroll compressors

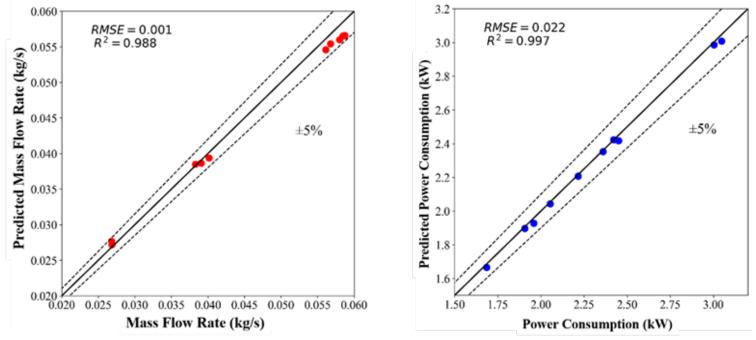
Widespread use in small systems (<2.5 ton)—should be explored for larger capacities (3–5 ton); failures owing to lubrication issues in 1980s limited their application


Progress Modeling of Compressors

Use PDSim framework to model compressors with following main assumptions:

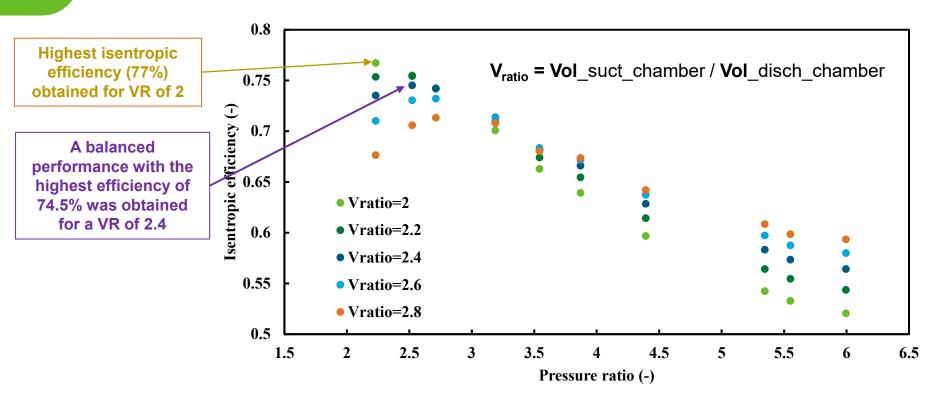
- Uses static and dynamic control volumes to represent each compressor part
- Apply mass and energy conservation laws
- Gravitational effects are considered negligible
- Thermal interactions evaluated through heat transfer
- Uses NIST Refprop 10 for properties

Compressor characterization

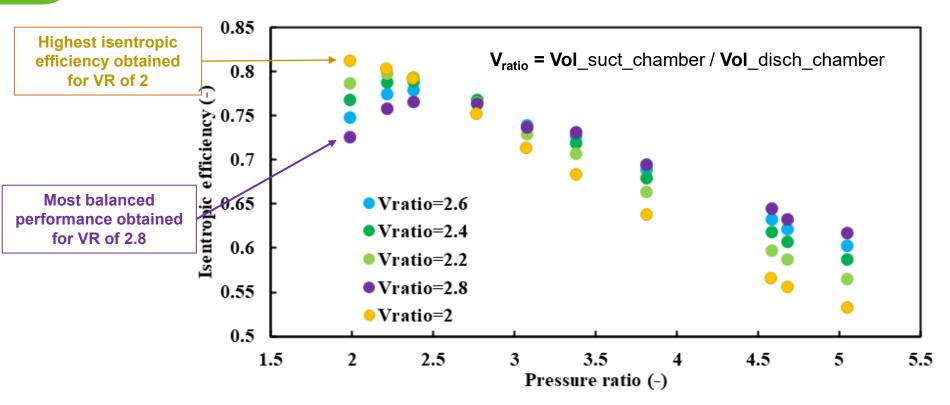


Delta flank

Delta radial


11 | EERE

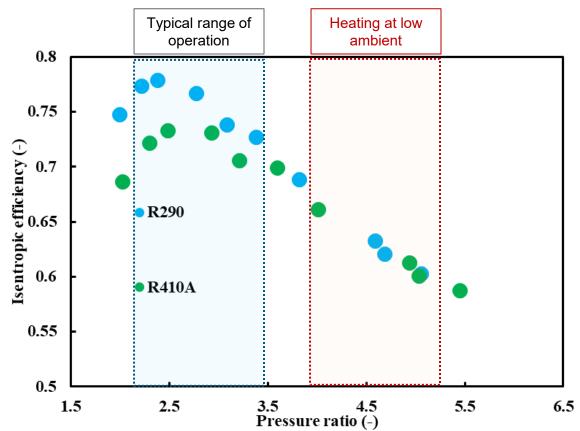
Progress Calibration of Scroll Compressor


Scroll compressor model was calibrated using data for R-410A; predictions of main parameters match experimental data within experimental error (±5%)

Progress Scroll Compressor Designs for R-454C

i v

Progress Scroll Compressor Designs for R-290


 \odot

Progress Balanced Scroll Compressor for R-290

A scroll compressor with a volume ratio of 2.6 can provide efficiencies as high as **78%**

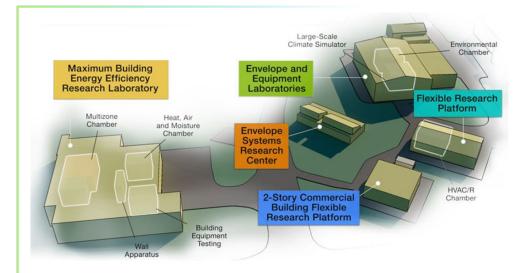
R-410A scroll compressor with volume ratio of 2.77 provides up to **74%** isentropic efficiency

Sector Future Work

Completion of current project tasks

- Continue experimental testing of scroll and rotary compressor using HFC/HFO refrigerants and propane
- Conduct simulation and optimization of scroll compressors with industry (Copeland) and research (Purdue University) partners
- Using simulation, evaluate effect of compressor optimization on system efficiency for two residential AC systems:
 - Direct expansion (DX) system using R-454C
 - Secondary loop system using propane

> Explore system enhancements through simulation using calibrated models


- > Improvements in system for direct expansion (DX) R-454C 3-ton RAC
- > Performance improvements of secondary loop R-290 3-ton RAC system

Thank you

Oak Ridge National Laboratory

Samuel F. Yana Motta, Distinguished R&D Staff (716) 418-3945 / <u>yanamottasf@ornl.gov</u>

WBS 03.02.02.79

The **Building Technologies Research and Integration Center (BTRIC)** at ORNL has supported DOE BTO since 1993. BTRIC is comprised of more than 60,000 square feet of lab facilities conducting RD&D to develop affordable, efficient, and resilient buildings while reducing their greenhouse gas emissions 65% by 2035 and 90% by 2050.

Scientific and Economic Results

139 publications in FY24
140+ industry partners
60+ university partners
16 R&D 100 awards
64 active CRADAs

BTRIC is a DOE-Designated National User Facility

Reference Slides

Project Execution

		FY2024			FY2025				FY2026			
Planned budget		\$500k				\$500k						
Spent budget		\$210k										
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work												
Critical literature review												
System modeling to estimate targets												
Modeling of scroll and rotary compressor												
Initial optimization for propane and R-454C												
Current/Future Work												
Testing of scroll and rotary compressors												
Optimization of scroll and rotary compressors												
System level evaluations												

Samuel F. Yana Motta

Distinguished R&D Staff

Technical Professional