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. Project Summary

OBJECTIVE, OUTCOME, & IMPACT

The objective is to develop heat exchanger technology
for low-GWP refrigerants to enhance performance and
reduce refrigerant charge of compact heat exchangers.
Extensive experimental data and models to evaluate
performance of the heat exchanger using emerging
refrigerants will be developed with a focus on charge
minimization, refrigerant distribution, and capacity
improvement.
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STATS

Performance Period: May 2022—September 2025

DOE Budget: $650k/year (FY23)/ $500k/year (FY24)

Milestone 1: Development of test facility for evaluating
compact heat exchangers (Q3 FY23)

Milestone 2: Review of refrigerant flow distribution in
compact heat exchangers (Q1 FY24)

Milestone 3: Evaluation of various low-GWP refrigerants in
the selected heat exchanger (Q2 FY24)
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. Problem

« Development of a novel heat exchanger for low-GWP refrigerants is vital to improve system
efficiency and reduce refrigerant charge

* In the last few decades, research on heat exchangers has focused on investigating the evaporation
and condensation behavior of high-GWP refrigerants (e.g., R-134a, R-404A, and R-22) under
different operating conditions

» Refrigerant mixtures are attractive alternatives because their composition can be tailored to comply
with environmental regulations while preserving favorable thermophysical properties. However, new
low-GWP zeotropic mixture refrigerants have temperature glides, which may cause refrigerant flow
maldistribution and degradation of overall heat transfer performance

Brazed plate heat exchanger Refrigerant flow maldistribution in heat exchangers
Vapor outlet mm— ]

Brazed plate HX
(Zhang et al., 2021)
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Alignment and Impact

« Support the nation’s ambitious climate mitigation goals
by reducing GHG emissions 50%—-52% by 2030 vs.
2005 levels

v Implementing low-GWP refrigerants (<150) in heat
exchangers would lead to >90% reduction in direct GHG

emissions. This project aims to reduce refrigerant charge by
10%, which will diminish hazards of flammable refrigerants

» Support DOE BTO'’s goal to reduce onsite use intensity
in buildings 30% by 2035 and 45% by 2050, compared
with 2005 levels

v’ Increasing heat exchanger capacity by at least 10% would
lead to significant annual energy savings.

» Support DOE BTO to decarbonize the US building stock
in line with economywide net-zero emissions by 2050

Oo

L

Greenhouse gas
emissions reductions

50-52% reduction by 2030
vs. 2005 levels

Net-zero emissions economy
by 2050

Increase building @
energy efficiency

Accelerate onsite
emissions reductions
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Approach

» Extensive experimental database for heat exchanger performance using ultralow-GWP
refrigerants at various operating conditions

» Models to predict heat exchanger performance and evaluate the potential of charge reduction
for emerging refrigerants

* Investigation and quantification of refrigerant flow distribution in the heat exchanger

R-1233zd(E) Pure fluid 4 A1
R-1336mzz(Z)  puyre fluid 2 A1
R-1336mzz(E) pyre fluid 26 A1
R-457A R-32, R-1234yf, R-152a (18%, 70%, 12%) 137 A2L
R-516A R-1234yf, R-134a, R-152a (77.5%, 8.5%, 14.0%) 140 A2L
R-454C R-32, R-1234yf (21.5%, 78.5%) 146 A2L
R-455A R-32, R-1234yf, R-744 (21.5%, 75.5%, 3%) 146 A2L

TANSI/ASHRAE Standard 34-2022; 2EPA, https://www.epa.gov/climate-hfcs-reduction/technology-transitions-gwp-reference-table
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Approach

Phase I:

Facility development

Review state-of-the-art test
facility in literature

Develop detailed test plan
and design test apparatus
Build infrastructure for
measuring performance of
compact heat exchangers
Validate the test facility
Characterize geometric
details of heat exchangers

Phase ll:
Evaluation of low-GWP
refrigerants

» Evaluate thermal-hydraulic
of liquid-to-refrigerant heat
exchangers for various
low-GWP refrigerants

* Compare the results with
existing correlations

* Develop a model to predict
performance of new
refrigerants

» Conduct parametric studies

Phase lll :
Improvement of flow
distribution in heat
exchangers

Simulate flow distribution in
heat exchangers through
CFD

Design new manifold or
distributor to reduce flow
maldistribution in heat
exchangers

Experimentally investigate
and quantify refrigerant flow
distribution in compact heat
exchangers




Approach Development of Liquid-to-Refrigerant HX Test Apparatus
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. Approach Development of Liquid-to-Refrigerant HX Test Apparatus
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':’) Progress Flow Boiling Experiments of Plate HX with R-134a

Subcooled liquid and superheated vapor at the inlet and outlet to check energy balance (1.78%)
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Total pressure drop APtotal [kPa]
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. Progress Low-GWP Mixture Refrigerants: R-454C and R-455A
R-454C (GWP = 148) and R-455A Refrigerant  Composition  Temperature glide

(GWP = 148) are intended replace R-454C 3;23" 2?534)” rATe
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. Progress Heat Transfer

Overall heat transfer coeff. U [kW/m?-°C]
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Port diameter

Flow configuration (U and Z type)
Pass (single and multiple
Chevron angle

Number of channels

Geometrical
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and density)
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Progress Analysis of Refrigerant Flow Maldistribution in Plate HXs

Flow maldistribution in plate heat exchangers

Plate Pocie.,. Improved
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Innovative distributors in the heat exchanger
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PI'OQI'GSS Flow Distribution in Heat Exchangers through CFD Simulation
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Future Work

* Investigate and quantify refrigerant flow distribution in
selected heat exchanger

 Evaluate potential of charge reduction for various low-GWP
refrigerants

» Test more low-GWP refrigerants in liquid-to-refrigerant heat
exchangers

» Develop a correlation to predict performance of low
GWHP-refrigerant for selected heat exchanger
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Thank you

Oak Ridge National Laboratory

Cheng-Min Yang, R&D Associate Staff
(865) 341-0340 / yangc1@ornl.gov

WBS 03.02.02.80.NS04b
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Climate Simulator Environmental
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Energy Efficiency
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Chamber and Moisture
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Testing

Aaralus

The Building Technologies Research and Integration Center (BTRIC)
at ORNL has supported DOE BTO since 1993. BTRIC is composed of
more than 60,000 square feet of lab facilities conducting RD&D to
develop affordable, efficient, and resilient buildings while reducing
their greenhouse gas emissions 65% by 2035 and 90% by 2050.

Scientific and Economic Results
139 publications in FY24 BTRIC is a
140+ industry partners .

60+ university partners DOE-Designated
16 R&D 100 awards National User Facility
64 active CRADAs




Reference Slides




. Project Execution

Planned budget $650k $500k

Spent budget

Q1 Milestone: Design liquid-to-refrigerant HX test setup
Q2 Milestone: Validate the test facility using R134a

Q4 Milestone: Modeling strategy for compact HXs

Q1 Milestone: Review refrigerant flow in heat exchangers
Q2 Milestone: Test various low GWP refrigerants
Current/Future Work

Q4 Milestone: Study refrigerant flow distribution
Q2 Milestone: Investigate two-phase flow pattern
Q3 Milestone: CFD simulation of two-phase flow
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