
U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

#### Low-GWP Refrigerant Leakage Detection Sensor Development



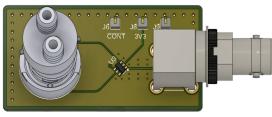


#### Low-GWP Refrigerant Leakage Detection Sensor Development



Performing Organization: Pacific Northwest National Laboratory

- Pls: Dr. Daniel Deng Mechanical Engineer zhiqun.deng@pnnl.gov (509) 372-6120
- Christian Valoria Mechanical Engineer christian.valoria@pnnl.gov (971) 940-7130




#### **Project Summary**

#### **OBJECTIVE, OUTCOME, & IMPACT**

The project aims to develop a reliable, low-cost A2L refrigerant sensor. This will enable the safe deployment of low-GWP heat pumps, reduce fugitive refrigerant emissions (about 5% of building sector GHG), and maintain optimal refrigerant charge levels for improved equipment efficiency.





Coated QCM Sensor and Prototype Signal Extractor

#### **TEAM & PARTNERS**

PNNL team consists of multi-discipline engineers with extensive experience in sensor development.

Technical Advisory Group



STATS

Performance Period: FY23 Q3 – FY26 Q2

DOE Budget: \$1,350K

- Establish technical advisory group, determine sensor specs (12/31/23)
- Optimize sensor film (7/30/24)
- Go/No-Go: Approval to move to sensor assembly (8/15/24)



- With the current transition to mildly flammable A2L refrigerants, and a probable transition to highly flammable A3 refrigerants, safety becomes a critical concern for residential and commercial building occupants.
- Several A2L sensors are available on the market, however low-cost options that meet all requirements of the relevant safety standards (UL 60335-2-40, ASHRAE 15 &15.2) are limited. Key stakeholders in the DOE Refrigerants R&D Working Group have also identified support of better, faster, cheaper, and more selective A2L and A3 leak detection sensors as a priority.
- Outside of safety concerns, refrigerant leakage also accounts for roughly 5% of building sector GHG emissions and is expected to increase by roughly 60% over 2021 levels due to increased electrification.<sup>1</sup>
- Refrigerant leakage not only leads to direct GHG emissions, but also indicates a loss of refrigerant charge which results in decreased reliability and performance of the HVAC system.
- This project aims to develop a sensor that will address these concerns, increasing safe deployment of heat pumps, reducing direct emissions from refrigerant leakage, and maintaining operational efficiency of HVAC systems.

4 | PNNL




#### **Alignment and Impact**

**Goal** • Develop fast, reliable, and low-cost A2L refrigerant sensor

- **Impact** Fugitive emissions from leaking refrigerants account for around 5% of total building GHGs
  - Reliable refrigerant leak detection sensor will enable safe and wide-scale deployment of low-GWP HVAC equipment

Accelerate onsite emissions reductions

Increase building energy efficiency



- Eliminate fugitive refrigerant gas emissions
- Maintain efficiency through optimal system refrigerant charge



# **Approach:** Need For Faster, Lower-Cost, and More Selective Refrigerant Leak Sensors

- Several A2L sensors available on the market, but limited options meet all requirements of relevant safety standards (UL 60335-2-40, ASHRAE 15 & 15.2)
- The DOE R&D Refrigerant Working Group has also identified improved sensors as a need
- Existing products use a variety of sensing technologies, each with advantages and disadvantages
  - Infrared, electrochemical cell, metal oxide semiconductor, catalytic type, micro machined membrane, speed of sound
- Research question: Can better, faster, lower-cost, and more selective sensors be developed?



#### **Approach:** Collect Industry Feedback to Inform **Research Approach and Outcome**

- Established a technical advisory group for feedback and guidance
  - · Feedback on refrigerants of interest, sensor applications, and key criteria
  - Review project progress and testing results
- Attended 2024 AHR Expo
  - Spoke with OEMs to understand their sensor needs
  - Learned about commercially available refrigerant leak detection products

#### **Technical Advisory Group**





National Institute of Standards

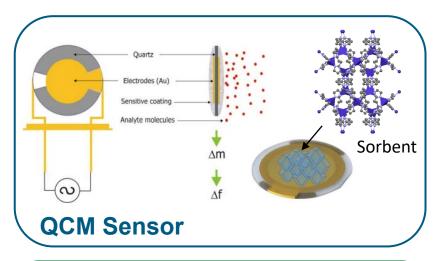
and Technology







#### Approach: Commercially Available Sensors


|                   |                    | PIR & NDIR     | EC          | MOS         | Catalytic-type |
|-------------------|--------------------|----------------|-------------|-------------|----------------|
| Cost Range        | Stationary         | \$1,000-12,000 | \$250-1,600 | \$500-1,300 | \$700-1,500    |
|                   | Sensing<br>Element |                | \$100-200   | \$3-100     | \$50-100       |
| T90 Response Time |                    | 5-30s          | <90s        | 15-90s      | 20-30s         |
|                   | Lifetime           | 10-15 years    | 1-3 years   | 3-5 years   | 2-5 years      |

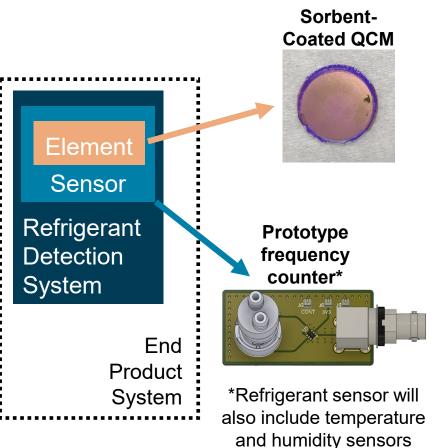
- Summarized from <u>AHRTI-9009</u> (Published 2017)
- Other sensors (e.g., micro machined membrane, speed of sound) have come to market and been tested but pricing is not transparent

## ××°

#### Approach: Novel Sensing Technologies

- Leverage previous work on proof-ofconcept Surface Acoustic Wave (SAW) and Quartz Crystal Microbalance (QCM) sensors
- Refrigerant gas is collected in a sorbent layer on the QCM or SAW sensor
- SAW sensor uses acoustic waves and measures shift in wave phase which is associated with uptake of refrigerant gas
- QCM sensor vibrates at a specific frequency which is associated with uptake of refrigerant gas




Why is this technology promising? Fast response, low cost, and low power requirements

QCM image from: Yuwono, A. and Schulze Lammers, P., 2004. Odor pollution in the environment and the detection instrumentation.

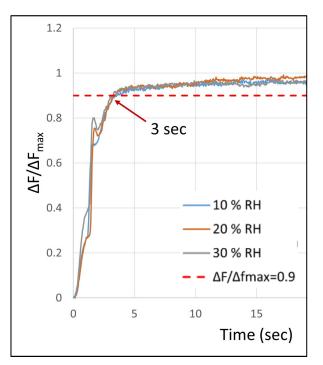
## ××°

#### Approach: Scope of Work

- Development and optimization of sensing element
- Assembly and testing of the refrigerant sensor, including housing, circuit board, and sensors for humidity & temperature compensation
- Future scope of work includes working with an industry partner to develop full refrigerant detection and end product system






#### Approach: Risks, Challenges, & Mitigation Strategies

| Project Risk or<br>Challenge     | Description                                                                                                                                                               | Mitigation Strategy                                                                                                                                                                                 |  |  |  |  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Ability to meet safety standards | <ul> <li>Requirements governed by UL<br/>60335-2-40, ASHRAE 15, &amp; 15.2.</li> <li>Status unknown until testing is<br/>completed</li> </ul>                             | <ul> <li>Materials improvements<br/>or adjustments</li> <li>Include Go/No-Go<br/>decisions at various points<br/>following testing</li> </ul>                                                       |  |  |  |  |  |
| Market<br>competitiveness        | <ul> <li>OEM &lt;&gt; sensor manufacturer-<br/>negotiated price points are<br/>unknown. This makes it<br/>challenging to determine a<br/>specific cost target.</li> </ul> | <ul> <li>Competitive analysis and<br/>continued feedback from<br/>industry</li> <li>Consider transition of<br/>project scope (or addition)<br/>to develop sensor for A3<br/>refrigerants</li> </ul> |  |  |  |  |  |

# $\odot$

#### **Progress:** Major Milestones and Progress

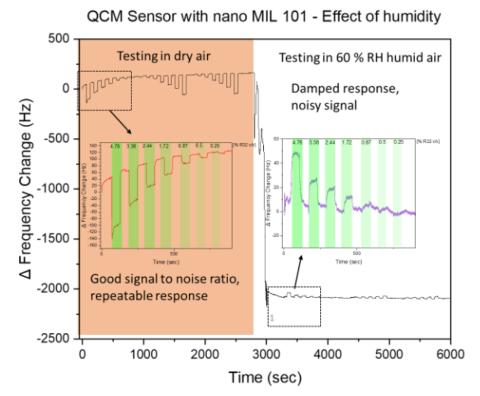
- Convened technical advisory group twice for project feedback
  - Key refrigerants of interest (R-32, R-454B, R-290) – optimizing for R-32 first
  - Key sensor criteria: cost, lifetime, response time, and poisoning/interfering chemicals
  - TAG also provided feedback on Go/No-Go Milestone after initial sensor optimization testing
- Screened several candidate sorbents and optimized selection for R-32
- After testing, found QCM sensors to be more promising than SAW sensors



T90 Sensor Response (R-32 @ 25% LFL)



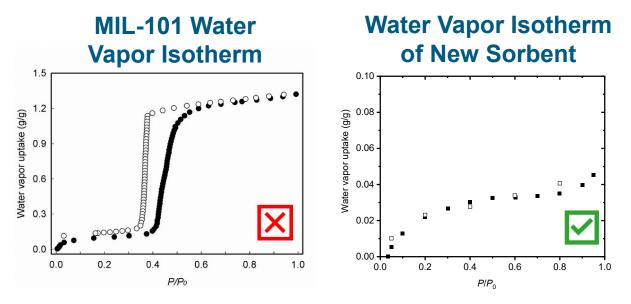
### **Progress:** Key Findings


| Features              |                                                    |  |  |  |  |  |
|-----------------------|----------------------------------------------------|--|--|--|--|--|
| Cost range            | \$25/piece, sensing element \$10-15                |  |  |  |  |  |
| Size                  | <20 g                                              |  |  |  |  |  |
| Power                 | <0.25 W                                            |  |  |  |  |  |
| Refrigerant type      | R32                                                |  |  |  |  |  |
| Limitations           |                                                    |  |  |  |  |  |
| Measurement range     | 5,000-1,000,000 ppm                                |  |  |  |  |  |
| Response time         | T90 ~3 seconds                                     |  |  |  |  |  |
| Operating temperature | 10-45 °C, requires further testing to expand range |  |  |  |  |  |
| Humidity              | 0-60% RH, requires further testing to expand range |  |  |  |  |  |
| Lifetime              | Requires further testing                           |  |  |  |  |  |

#### **Sensor Strengths**

- Fast response
- Low cost
- Low power
- Regenerates in ambient air




#### Progress: Unexpected Issues – Humidity

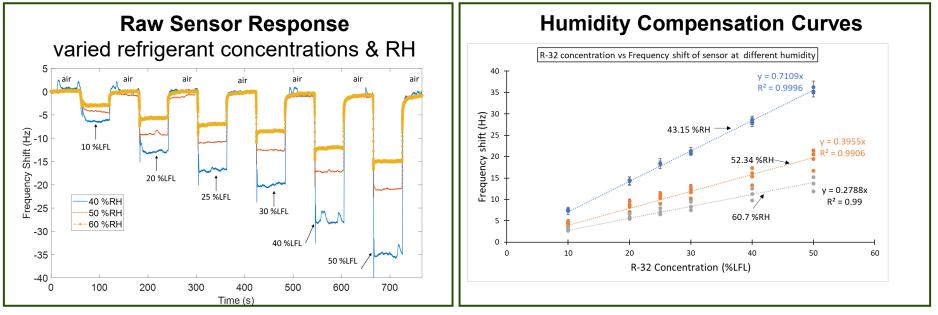


- Testing in humid air yielded a damped response and noisy signal
- Several humidity mitigation strategies were tested, including:
  - Carbonization of MOFs
  - Two types of hydrophobic polymer coatings
  - Hydrophobic sorbent selection
- Ultimately, we selected a new hydrophobic sorbent



#### Progress: Lessons Learned in Sorbent Selection




Important elements to consider:

- Reversible adsorption/desorption isotherms
- Low water capacity (notice scale of water vapor uptake)

- Desorption
- Adsorption



#### Progress: New Sorbent Enables Humidity Compensation



- Selecting an optimal sorbent led to good sensor response
- Testing at varied humidities to construct RH compensation curves
- Test setup modifications required to perform tests for RH > 60%

### Future Work: Near Term Actions

- Sensor benchtop testing
  - Increase temperature and humidity ranges
  - Other key tests listed in safety standards (e.g., selectivity/poisoning, pressure, etc.)
- Sensor placement testing
- Manufacturer and industry partnerships
- Other refrigerants to consider (R-290 [A3], R-454B [A2L])

## Future Work: To Be Successful...

- Continued industry engagement and feedback
- Explore other applications of this sensor technology (e.g., multisplit, combination, VRF, Monobloc, commercial refrigeration, mechanical room, HPWH, etc.)
- Gain a better understanding of the market and the competitiveness of this sensor technology
- Monitor the status of safety standard updates and future transition to A3 refrigerants

#### Thank you

Pacific Northwest National Laboratory Dr. Daniel Deng (zhiqun.deng@pnnl.gov) Christian Valoria (christian.valoria@pnnl.gov) WBS#: 3.2.2.72



U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE 

#### **Project Execution**

|                                                 | FY2023 |        | FY2024 |    |        | FY2025 |    |        |    |    |    |    |
|-------------------------------------------------|--------|--------|--------|----|--------|--------|----|--------|----|----|----|----|
| Planned budget                                  |        | \$100K |        |    | \$560K |        |    | \$690K |    |    |    |    |
| Spent budget                                    | \$40K  |        | \$492K |    |        |        |    |        |    |    |    |    |
|                                                 | Q1     | Q2     | Q3     | Q4 | Q1     | Q2     | Q3 | Q4     | Q1 | Q2 | Q3 | Q4 |
| Past Work                                       |        |        |        |    |        |        |    |        |    |    |    |    |
| Establish Advisory Committee                    |        |        |        |    |        |        |    |        |    |    |    |    |
| Acquire Sensor Components                       |        |        |        |    |        |        |    |        |    |    |    |    |
| Sensor Component Optimization                   |        |        |        |    |        |        |    |        |    |    |    |    |
| Go/No-Go: Approval to Move to Sensor Assembly   |        |        |        |    |        |        |    |        |    |    |    |    |
| Assemble Sensor Components for Benchtop Testing |        |        |        |    |        |        |    |        |    |    |    |    |
| Current/Future Work                             |        |        |        |    |        |        |    |        |    |    |    |    |
| Benchtop Testing Summary                        |        |        |        |    |        |        |    |        | •  |    |    |    |
| Final Specifications and Integration            |        |        |        |    |        |        |    |        |    |    |    |    |



Team



**Dr. Daniel Deng** Project Manager and Co-Pl



**Dr. Jian Liu** Sensing Material Development



**Dr. Jun Lu** Sensor Circuits and Integration



**Dr. Huidong Li** Sensor Circuits and Integration

#### **Technical Advisory Group**









Dr. Abhishek Kumar Sensor Film Coating



**Dr. Wenwen Ye** Sensor Performance Testing



Dr. Habilou Ouro-Koura Sensor Performance Testing



Christian Valoria

HVACR Industry Engagement, Co-PI