

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

BTO Peer Review: Low-Charge Heat Pump Water Heater Using Propane

Low-Charge Heat Pump Water Heater Using Propane

Oak Ridge National Laboratory (ORNL) PI: Bo Shen 865-816-4795, <u>shenb@ornl.gov</u> WBS#03.02.02.43, Lab Call CRADA with Rheem

Project Summary

OBJECTIVE AND OUTCOME

- Develop compact condensers to reduce charge and achieve similar heat transfer effectiveness as wrapped tank *D*-shape coils
- Develop and calibrate a propane heat pump water heater (HPWH) system design tool
- Motivate the supply chain to develop propane-enabling technologies (i.e., a propane-specific compressor @ 60 Hz) and optimized microchannel condensers
- Perform laboratory verification and accelerated life tests on a 220 V HPWH prototype reaching a 3.3 Uniform Energy Factor (UEF) with propane <150 g or UEF> 2.2 with propane < 115 g

TEAM AND PARTNERS

- Rheem Manufacturing Company
- ORNL: Bo Shen, Mingkan Zhang

Propane (R290), natural refrigerant

STATS

Start date: 04/01/2022 Planned end date: 01/30/2025 Budget: DOE total—\$300K; Rheem cost share—\$300K

Key Milestones

- 1. Develop compact condenser coil sizing and a propane HPWH system design tool, 06/30/2022
- 2. Experimentally study the performance of compact condensers (i.e., microchannel and submerged condensers), 09/30/2022
- 3. One-year life test of a submerged condenser, 08/30/2023
- 4. Initial lab tests to verify a UEF >3.0 using a propane charge near 200 g, 09/30/2023
- 5. Design optimization and built lab prototypes, 09/30/2024
- 6. Experimental results prove a measured UEF >3.3 and a system charge <150 g, or UEF > 2.2, charge < 115 g, 01/30/2025

EERE

- The HPWH industry is phasing out R-134a (global warming potential [GWP] of 1,430).
- Propane has an ultralow GWP (<3.3) and is less expensive and more environment-friendly than hydrofluoroolefin alternatives (R-1234yf and R-1234ze). But propane is extremely flammable and subject to a charge limit (<150 g/115 g) for indoor use.
- The European market prefers propane over fluorinated-gas refrigerants. Propane HPWHs have better marketing potential internationally. However, no propane HPWHs are on the US market.
- Component technologies are not fully ready for propane (i.e., a propane-specific compressor @ 60 Hz) and compact heat exchangers with reduced charge.

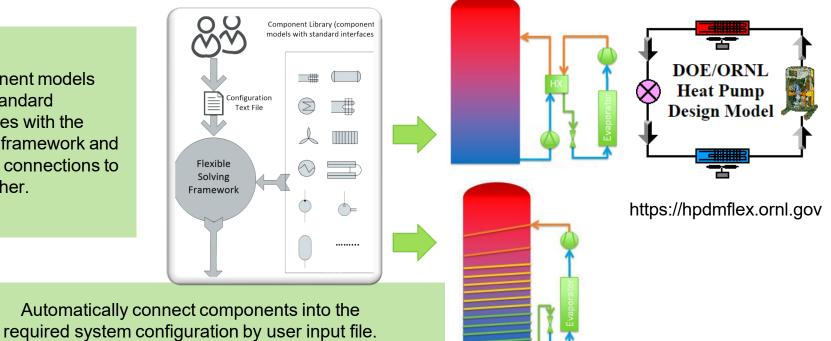
Alignment and Impact

- Greenhouse gas emissions reductions: Replace high-GWP refrigerants in Rheem's residential HPWH product families
- Energy justice: propane leads to HPWHs with low prices
- Develop and calibrate a high-fidelity, publicdomain HPWH and heat exchanger modeling and design tool for propane to accelerate product development

Greenhouse gas emissions reductions 50-52% reduction by 2030 vs. 2005 levels Net-zero emissions economy by 2050

Power system decarbonization

100% carbon pollutionfree electricity by 2035

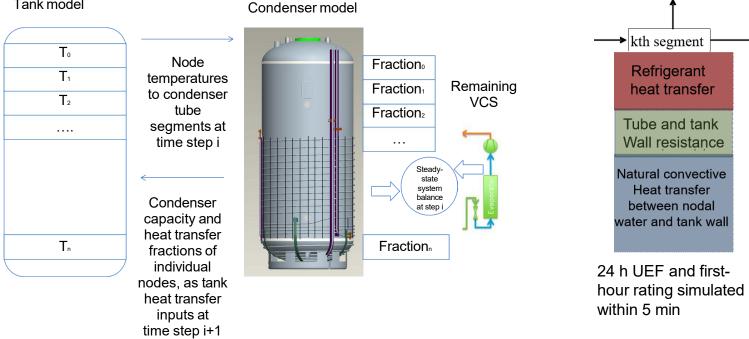

Energy justice

40% of benefits from federal climate and clean energy investments flow to disadvantaged communities

Approach Upgrade DOE/ORNL Heat Pump Design Model

Component models have standard interfaces with the solving framework and generic connections to each other.

Component-based

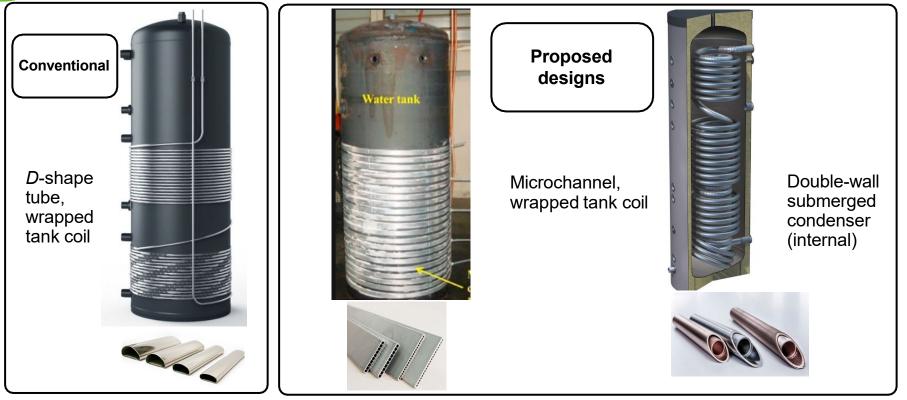


××°

Segment-to-Segment Tank Coil Model

Tank model

××°

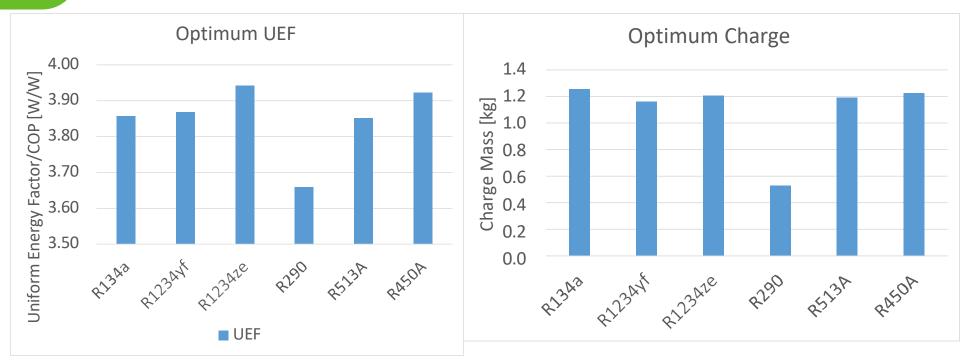

Coupled a segment-to-segment coil model to a stratified tank model

- Pattern of the wrapped-tank coil affects stratification
- Water stratification is a boundary condition to the segment-to-segment coil model

Approach Laboratory Investigations of Compact Condensers

- Investigate a microchannel condenser for charge reduction: The refrigerant charge (inner volume) in a tube relative to its surface area is (π × d²/4 × Tube Length)/(π × d × Tube Length) = d/4.
- Evaluate a finned, double-wall submerged condenser and study the impact of water-side scaling via an extended period of life test.

Progress Propane HPWH System Model with Other Alternatives


Refrigerant	GWP	Safety Class	Glide/Pressure in Condenser @ 54.4°C [K/kPa]	Glide/Pressure in Evaporator @ 4.4°C [K/kPa]	Critical Temperature/ Mole Weight [C/(g/mol)]	Volumetric Vaporization Heat @ 54.4°C [kJ/m³]	Volumetric Vaporization Heat @ 4.4°C [kJ/m³]	
R-134a (baseline)	1,430	A1	0/1469	0/342	101.06/102.03	10,959.4	3,276.0	
R-290	3	A3	0/1883	0/541	97.0/40.06	11,800.3	4,335.3	
R-1234yf	4	A2L	0/1444	0/366	95.0/114.04	10,024.4	3,263.7	
R-1234ze	6	A2L	0/1114	0/254	153.7/114.04	8,522.1	2,473.2	
R-450A ^a	547	A1	0.60/1284	0.64/297	104.4/108.67	9,700.5	2,861.0	
R-513Ab	573	A1	0.01/1530	0.01/377	96.5/108.43	10,832.0	3,442.8	

^a R-450A has mass-based compositions of R-1234ze (0.58) / R-134a (0.42). ^b R-513A has mass-based compositions of R-1234yf (0.56) / R-134a (0.44).

Propane has a higher working pressure and volumetric capacity (smaller compressor).

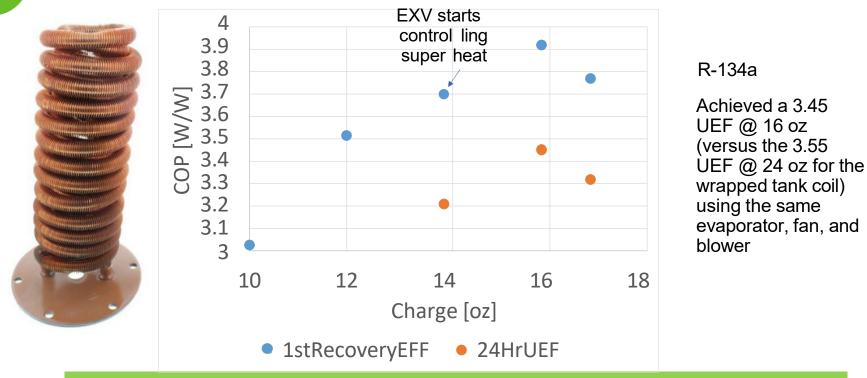
Progress Feasibility Study by Simulation (direct drop in)

A propane HPWH can reach a similar 24 h uniform heating efficiency (95%) as and the required 50% charge of R-134a because of propane's small molecular weight.

Progress Development of a Submerged Capillary Tube Condenser

First version

Third version


Four prototypes to find optimized parameters

R-134a	Baseline <i>D</i> -shape tube	First microtube bundle	Second microtube bundle	Third microtube bundle	Fourth microtube bundle
Tube outside diameter [mm]	10.6	3	3	3	3
Total tube length [ft]	118	400	250	136	180
# circuits	1	8	12	12	16
Tube surface area at water side [ft²]	4.1	12.4	7.7	4.2	5.6
UEF [W/W]	3.55	2.8	3.0	3.20	3.26
Charge [oz]	22	22	22	14	18
Coil pressure drop [psid]	20	80	40	30	20

Achieved 40% charge reduction with a 10% lower UEF than the baseline

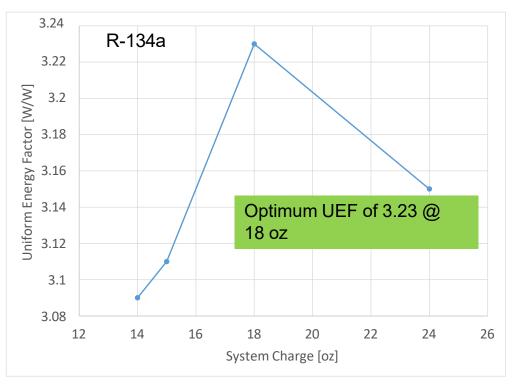
 \bigcirc

Progress Evaluate a Finned, Double-Wall Submerged Condenser

Performed an 8-month life test (Draw 55 gal UEF test, Tennessee city water every day); no apparent performance degradation due to water scaling

Progress Lab Tests to Verify a UEF Near 3.0 Using a Propane Charge of 200g

UEF @ Medium Draw Pattern - 55-Gallon/day 3.05 24-Hr Uniform Energy Factor [w/w] 3 2.95 2.9 2.85 2.8 2.75 2.7 160 170 180 210 220 230 240 190 200 Propane Charge [g]

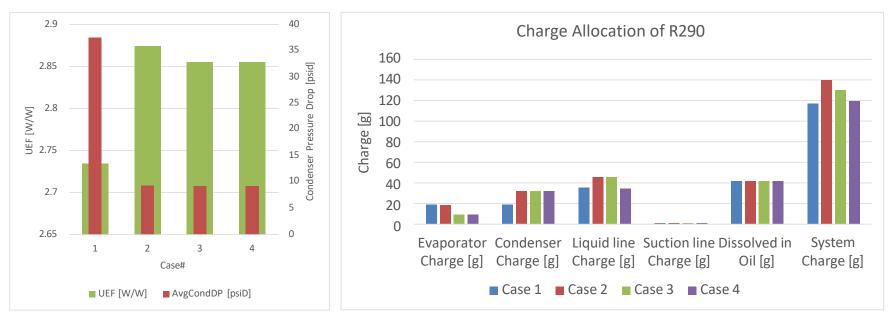

- Laboratory investigations @ UEF test condition
- 50 gal tank
- 24 h medium draw pattern
- Entering water @ 58°F
- Temperature set @120°F
- Finned, double-wall submerged condenser
- Confirmed control (electronic expansion valve) is directly workable for propane systems

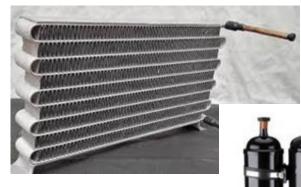
Progress Evaluate Microchannel Condenser

• Because of the inlet and outlet headers, eliminating contact resistance is difficult

 \odot

• Refrigerant flow merges and separates in multiple intermediate passes, causing two-phase refrigerant flow maldistribution at downstream passes




Simulation based design and charge minimization

Case 1: 3.2cc compressor, 6 microchannel wraps, 16mm width, fin-and-tube evaporator, 16 mm microchannel liquid line
Case 2: 3.2cc compressor, 5 microchannel wraps, 32mm width, fin-and-tube evaporator, 32mm microchannel liquid line
Case 3: 3.2cc compressor, 5 microchannel wraps, 32mm width, equivalent microchannel evaporator, 32mm microchannel liquid line
Case 4: 3.2cc compressor, 5 microchannel wraps, 32mm width, equivalent microchannel evaporator, 5mm round tube liquid line

^{16 | EERE} Charge percentages in liquid line and compressor oil become considerable

Ongoing Project Work

- Design optimization to size the compressor; configuration of the condenser and evaporator
- Prototyping:
- Acquired three propane-specific compressors with different capacities
- ✓ Built two HPWH prototypes that <u>both use</u> <u>microchannel condensers</u>: one with a microchannel evaporator and the other with a fin-and-tube evaporator

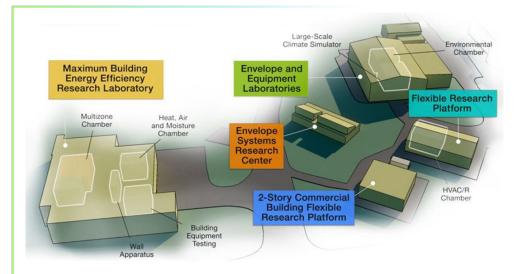
Note: Waiting for ORNL to upgrade test facilities to evaluate propane >120 g

Publication:

"A Numerical Modelling Study on Submerged Condensers for Heat Pump Water Heaters Using Low-GWP Refrigerants," Mingkan Zhang, Bo Shen, International Refrigeration Conference at Purdue, 2022.

17 | EERE Heat Pump Design Model online version: https://hpdmflex.ornl.gov/

Suture Work and Commercialization Plan


• Rheem to launch propane HPWHs with a charge limit of <115 g and a UEF of >2.2

Thank you

Oak Ridge National Laboratory

Bo Shen, Senior Research Staff (865) 8164795 / <u>shenb@ornl.gov</u>

WBS#03.02.02.43, Lab Call CRADA with Rheem

The **Building Technologies Research and Integration Center (BTRIC)** at ORNL has supported DOE BTO since 1993. BTRIC is comprised of more than 60,000 square feet of lab facilities conducting RD&D to develop affordable, efficient, and resilient buildings while reducing their greenhouse gas emissions 65% by 2035 and 90% by 2050.

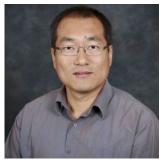
Scientific and Economic Results

139 publications in FY24 140+ industry partners 60+ university partners 16 R&D 100 awards 64 active CRADAs

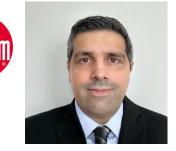
BTRIC is a DOE-Designated National User Facility

Stakeholder Engagement

Industry Partner – Rheem Manufacturing Company


- Supported Rheem team to use DOE/ORNL Heat Pump Design Model to optimize heat exchanger design and accelerate HPWH system development.
- Rheem motivated its suppliers to improve microchannel condenser design and make propane specific compressor @ 60 Hz.
- Rheem fabricated system prototypes embedded with numerous condenser technologies for ORNL's system level experiments.
- Weekly meetings with Rheem engineers to monitor the progress.

Project Execution


	FY2022		FY2023			FY2024						
Planned budget		100K			100K			100K				
Spent budget	100K			100K			50K					
	Q1 Q2 Q3 Q4 (Q1 Q2 Q3 Q4		Q4	Q1	Q2	Q3	Q4			
Past Work												
Develop compact condenser coil sizing and propane HPWH system design tool												
Experimentally study performance of compact condensers, i.e., microchannel and submerged condensers												
One year life test of submerged condenser												
Initial lab tests verify a UEF > 3.0 using propane charge												
near 200 grams												
Current/Future Work												
Design optimization and built lab prototypes												
Experimental results prove measured UEF > 3.3, system charge < 150 grams; or UEF > 2.2, system charge < 115 grams												
	ХЕ											

Team

Dr. Bo Shen

- System design and modeling
- Laboratory testing

Dr. Saman Beyhaghi

Manager, Advanced Technology Research

- Procure parts
- Manufacture prototypes

Dr. Mingkan Zhang

- CFD analysis
- Laboratory testing

22 | EERE