
U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

BTO Peer Review:

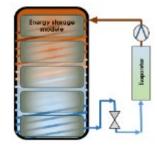
Flexible Heat Pump Water Heater with Embedded Energy Storage

Flexible Heat Pump Water Heater with Embedded Energy Storage

Oak Ridge National Laboratory PI: Kashif Nawaz (Section Head) Presenter: Jian Sun (Senior R&D Staff) (865) 241-0972 WBS 03.02.02.36, FY 21 AOP Water Heating R&D

Project Summary

OBJECTIVE, OUTCOME, & IMPACT


- This project is focused on the development and performance optimization of a next-gen heat pump water heater (HPWH) with an embedded thermal energy storage (TES) solution
- Demonstration of cost-effective technology to enhance the performance through selection and deployment of an energy storage medium

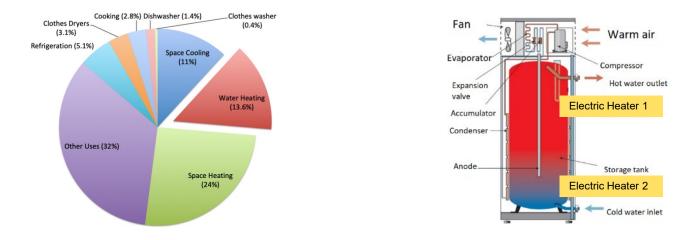
TEAM & PARTNERS

Oak Ridge National Laboratory

Kashif Nawaz, Joe Rendall, Jian Sun, Ahmed Elatar, Jamieson Brechtl, Muneeshwaran Murugan, Easwaran Krishnan

A.O. Smith (CRADA) Steven Memory, Jiamin Yin, Timothy Rooney

STATS


Performance Period: FY21-FY24
DOE Budget: \$1.05M, Cost Share: \$250K
Milestone 1: Alpha prototype enables at least 20% higher capacity (2021)
Milestone 2: Demonstration of beta prototype with an efficiency improvement (2022)
Milestone 3: Demonstration of epsilon prototype with both capacity and efficiency improvements (2023)
Milestone 4: Demonstration of load shifting (2024)

3 | EERE

<u>♪</u> F

Problem

- Space constraints exist in some applications.
- HPWHs are unable to meet the demand through the base operation (heat pump), requiring ancillary heat through electric heaters (hybrid configuration)
- Potential solutions through the deployment of a suitable thermal energy storage medium are required for cost-effective load shifting

Alignment and Impact

Increasing the capacity by at least 20%, reducing carbon by 60%, reducing cost by 30%: aligned with BTO's goal of reducing U.S. building emissions 60% by 2035 and 90% by 2050.

Increase resilience & transform the grid edge

- Enabling development of grid-interactive efficient buildings
- Improved capacity (higher first-hour rating [FHR]): >20% higher capacity with the same footprints
- At minimum, 4 hours of load-shifting capability for medium and higher usage patterns

Accelerate on-site emissions reductions

\$

Increase affordability

Extendable

- A highly flexible water-heating technology
- Reduced carbon emissions (~60% compared with electric resistive and 10% compared with hybrid HPWHs)

Low cost to broaden HPWH utilization

- At least 30% cost savings compared with the state of the art
- Reduced required maintenance due to compact design
- Embedded energy storage solution (no engagement of additional vendors)

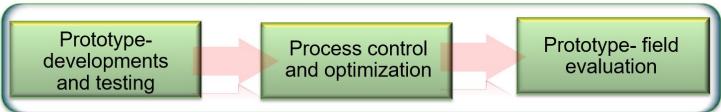
Implications for additional processes

· Residential air cooling/heating, refrigeration, process water heating

5 | EERE

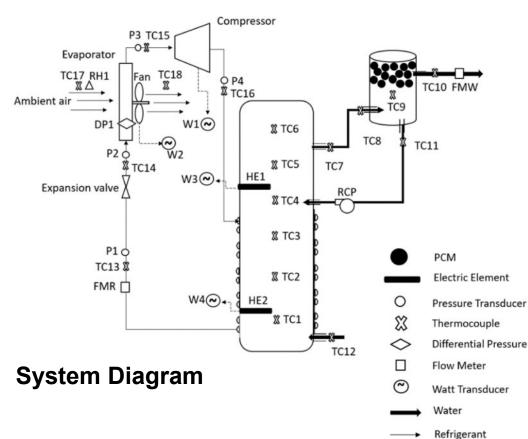
××°

Approach – Project Execution


Phase 1Phase 2Market assessmentPreliminary evaluationSystem& D

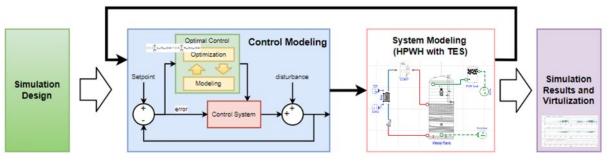
Phase 3 System optimization & Demonstration

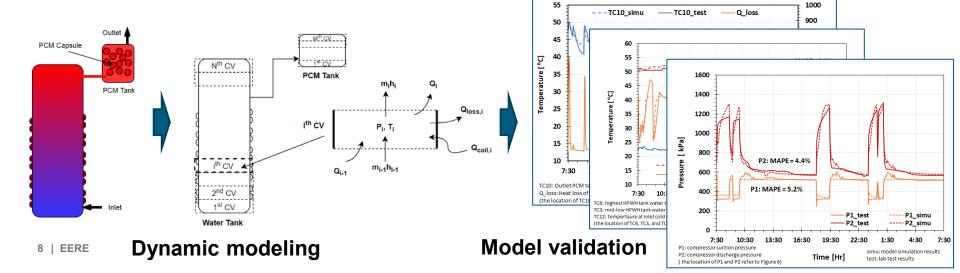
Phase 2- Preliminary evaluation



Phase 3- System optimization and demonstration

Approach—Experimental Platform


××°

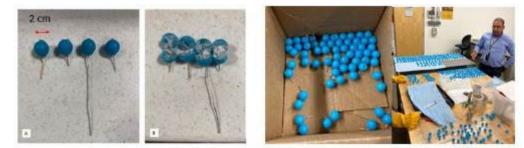


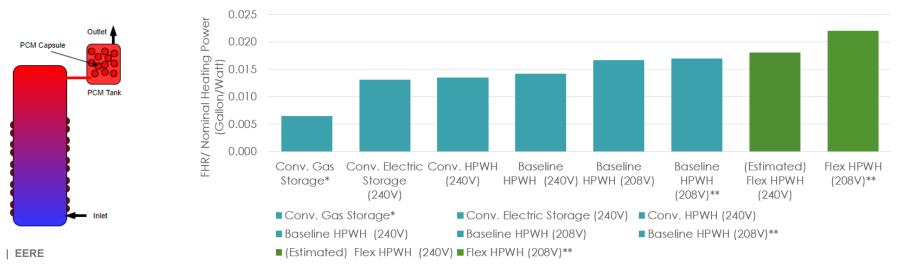
Approach—Modeling Platform

Model-Based Development

- Model-in-the-loop framework
- Physical-based dynamic models
- Calibration and validation with experimental data

Approach – Prototype Development Strategy


- Experimental validation of phase change material (PCM) heat transfer
- Prototyping to reduce the number of components while keeping heattransfer performance high

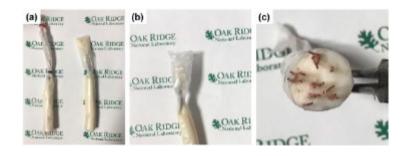


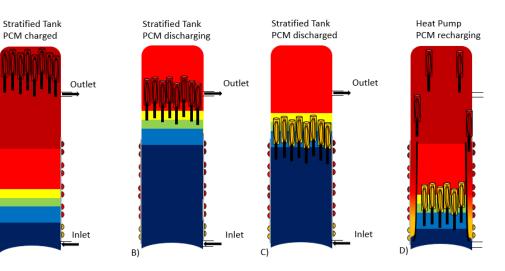
Progress: Experimental Prototype Alpha

- Two-tank system
- Higher FHR by 30%
- Best FHR/nominal heating power
- Large surface area on spheres
- Significant heat losses

10

\odot


Progress: Experimental Prototype Beta


Modification

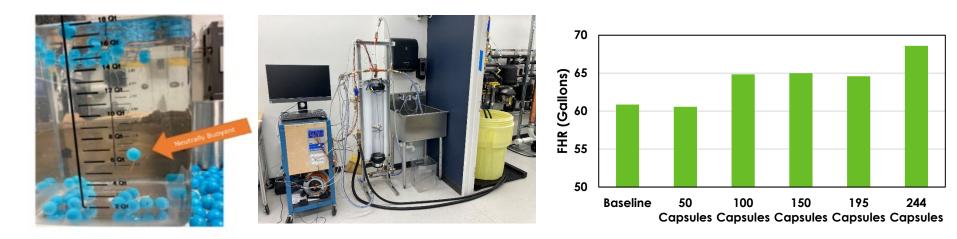
- Single Tank
- Few capsules
- Distributed internal fins
- Density control

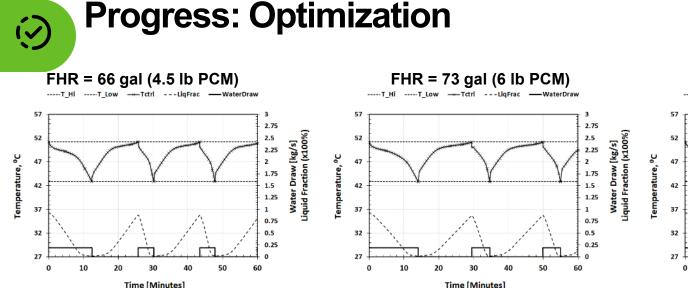
Results

- Lower heat losses
- Less improvement to FHR

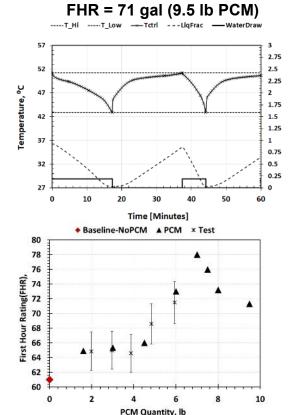
Progress: Experimental Prototype Epsilon

- One tank system and spherical capsule to have a large surface area.
- Orifice design to maintain a high Reynolds number.
- 3D-printed flexible design allows for density tuning of the capsules.


12 | EERE


Re ~ 10,000 Surface area = 5 m	n ²	Nominal Storage (gal)	FHR Rating	UEF (Uniform Energy Factor) Rating	Reynolds Number	Surface Area (m²)
	Baseline HPWH	50	61	3.9		
D D D	Prototype Alpha HPWH	56	79.0	2.78	10,000	5
0 0 0	Prototype Beta HPWH	50	69.0	3.86	250	3.2
HE2 Cold wa Reynold	ter inlet Prototype s ~ 5,000 Epsilon HPWH	50	75	3.5	10,000	5

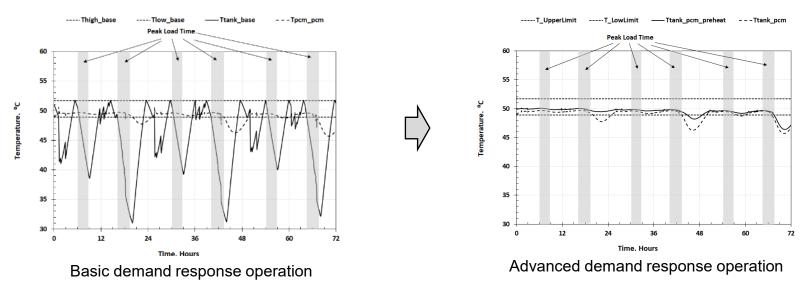
Progress: Experimental Prototype Epsilon


- Buoyancy optimization: the behavior of the 3D-printed flexible capsule material with 1.5 mm wall thickness yielded the desired results.
- FHR testing with different number of PCM capsules

 \bigcirc

- Increasing PCM lengthens both HPWH discharge and charge/recovery time, reduces the number of times for the water draw in the first hour
- Increasing PCM does not always improve FHR: there is an optimal amount of PCM (7 lb) that maximizes the FHR (78 gal)

iquid Fraction (x100%


[kg/s]

Draw

Water

Progress: Demand Response Operation

A 3 h morning curtailment (6:00–9:00) and a 4 h evening curtailment (17:00–21:00)

- More consistent hot water supply temperature, thereby reducing temperature fluctuations.
- More sophisticated operation strategies will be needed to maximize the demand response benefit of the embedded PCM-TES HPWH.

Experimental Study

- Field pilot/demonstration: FHR, efference, and load shifting
- Precommercial prototype
- Commercialization: cost, reliability...
- Work with manufacturers for mass production of the capsules.

Design, Modeling and Control

- Better design to enhance heat transfer among refrigerant, water and PCMs.
- Control optimization: manage the discharge/charge cycle according to the water draw schedule and peak load demand.

Publication and Intellectual Property

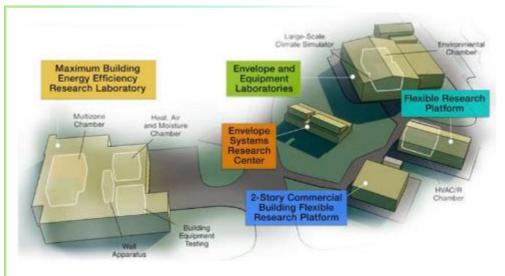
Conference proceedings or presentations

- Sun, J., Nawaz, K., Rendall, J., Brechtl, J., and Elatar, A., 2022, "Model-based co-simulation of heat pump water heater with embedded phase change materials thermal energy storage," *Herrick Conferences*.
- Rendall, J., Asher, W., Brechtl, J., Li, K., Yang C., Sun, J., and Nawaz K., 2022, "Experimental results of density-controlled phase change material capsules for increased first hour rating for heat pump water heaters," *Herrick Conferences*.

Journal publications

- Sun, J., Nawaz, K., Rendall, J., Elatar, A., Kowalski, S., and Li, Y., 2024, "Unlocking the potential of using embedded phase change materials as thermal energy storage in a heat pump water heater," *Applied Energy*, under review.
- Sun, J., Nawaz, K., Rendall, J., Elatar, A., and Brechtl, J., 2023, "Heat pump water heater enhanced with phase change materials thermal energy storage: modeling study" *ICHMT*, 146, 106917.
- Rendall, J., Elatar, A., Nawaz, K., and Sun, J., 2023, "Medium-temperature phase change material integration in domestic heat pump water heaters for improved thermal energy storage," *Renewable and Sustainable Energy Reviews*, 185, 113856.
- Rendall, J., Brechtl, J., Nawaz K., Elatar, A., Sun, J., An, K., Liu, X., and Asher, W., 2023, "Experimental results of density-controlled phase change material capsules for increased first hour rating for heat pump water heaters," *ICHMT*, 145, 106806.

· Patent applications or invention disclosure


- Rendall, J., Nawaz, K., Asher, W., Elatar, A., Sun, J., Brechtl, J., Liu, X., An, K., Zhang, M., 2023, "Density controlled phase-changing materials (PCM) spheres for increased heating power and optimal delivery temperature in hot water tanks," *patent application US* 20230082570A1.
- Sun, J., Nawaz, K., Rendall, J., Wang, P., Gao, L., Kowalski, S., Elatar, A., Brechtl, J., Murugan, M., Krishnan, E., Li, Y., Enhance the heat transfer of heat pump water heater with embedded phase change material thermal energy storage, *invention disclosure*, 2024

Thank you

Oak Ridge National Laboratory

Kashif Nawaz Section Head of Building Technology Research (865) 241-0972 / nawazk@ornl.gov

WBS 03.02.02.36, FY 21 AOP Water Heating R&D

The **Building Technologies Research and Integration Center (BTRIC)** at ORNL has supported DOE BTO since 1993. BTRIC is comprised of more than 60,000 square feet of lab facilities conducting RD&D to develop affordable, efficient, and resilient buildings while reducing their greenhouse gas emissions 65% by 2035 and 90% by 2050.

Scientific and Economic Results

139 publications in FY24
140+ industry partners
60+ university partners
16 R&D 100 awards
64 active CRADAs

BTRIC is a DOE-Designated National User Facility

Reference Slides

Project Execution

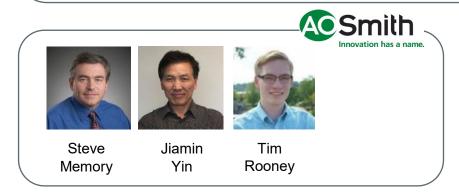
		FY2021		FY2022			FY2023				FY2024					
Planned budget		300K		300K			300K			150K						
Spent budget	300K		300K			300K			150K							
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work																
Q1 Milestone: Literature Review		•														
Q2 Milestone: Downselection of TES Materials																
Q3 Milestone: Alpha Prototype Construction				•												
Q4 Milestone: FHR Testing Showing 20% Savings (G/NG)				•												
Q2 Milestone: CFD Analaysis of Alpha Design																
Q3 Milestone: Beta Prototype Construction																
Q4 Milestone: FHR Testing Showing 5% Increase (G/NG)																
Q2 Milestone: Market Analysis																
Q3 Milestone: CFD Capsule Optimization																
Q4 Milestone: Epsilon Prototype Testing																
Current/Future Work																
Q2 Milestone: Optimization																
Q3 Milestone: Epsilon Testing: Capsule wall and buoyance																
Q4 Milestone: Control Analsyis																

Kashif Nawaz

Joe Rendall

Jian Sun

Ahmed Elatar



on Muneesh Itl Murugan

