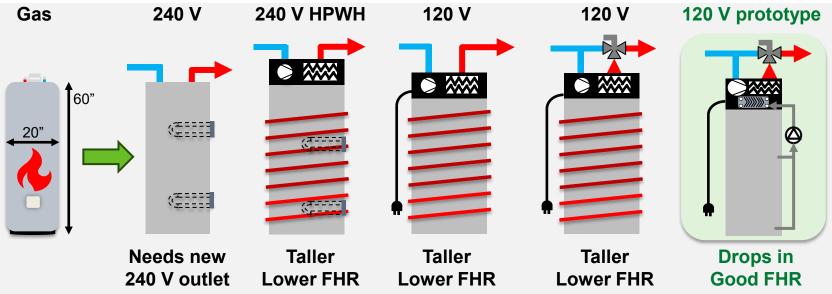


U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE


BTO Peer Review:

120 V Heat Pump Water Heater

Replacement Solution for 30–40 gal Gas Water Heaters

120 V Heat Pump Water Heater Replacement Solution for 30–40 gallon Gas Water Heaters

Oak Ridge National Laboratory Kyle Gluesenkamp, Distinguished R&D Staff gluesenkampk@ornl.gov 03.02.02.36

Project Summary

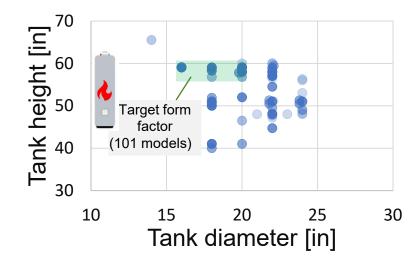
Objective

- Existing Drop-in retrofit Develop and evaluate in the laboratory a 120 Vpowered electric heat pump water heater (HPWH) as direct replacement for 30-40 gallon tall and slim gas gas water 120 V HPWH heater no building water heaters (<20 inch diameter) modifications Maximize FHR within the form factor constraint ٠ Outcome ©.© Development of a prototype 120 V HPWH diameter 20" and height of 60" with minimum FHR = 65 gal. and . Gas Line ENERGY STAR-qualified UEF ≥ 2.20 **ORNL TEAM** STATS Kyle Gluesenkamp (PI) Performance Period: FY24-FY26 Bo Shen DOE Budget: \$450k/yr (FY23-25) Melanie Moses-DeBusk ✓ Milestone 3: Baseline characterize a commercial WH (FY24) Brian Kolar Milestone 4: Prototype Fabrication and shakedown (FY24) James Manley
 - Milestone 5: Gen 1: FHR > 50gal; UEF > 2.2 (FY24)
 - ✓ Milestone 6: Gen 2: design and parts (FY24)
 - Milestone 7: Gen 2: Fabrication and shakedown (FY25)

Ū

 \square Milestone 8: Gen 2: FHR > 65gal; UEF > 2.2 (FY25)

Ed Vineyard


Ahmed Elatar

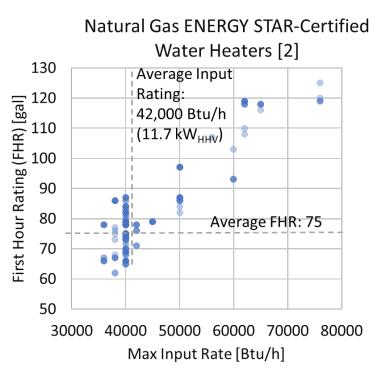
Damilola Akamo

Problem how to decarbonize existing gas water heaters

- 60 million^[1] US homes have gas-fired water heaters
 - 93% of California water heaters are gas
- Many do not have electrical connections for conventional 240 V electric water heaters
- A common form factor is the "tall and slim" (~60 in. tall, and 20 in. diameter) gas-fired water heater, which lacks direct drop options on the market
- These have large burners to achieve high water delivery capacity from a small tank – much higher than a HPWH with the same tank

Natural gas ENERGY STAR-certified water heaters [2] (~360 models)

[2] Data from ENERGY STAR qualified product list https://www.energystar.gov/productfinder/product/certified-water-heaters/results


U.S. Energy Information Administration, Office of Energy Demand and Integrated Statistics, Form EIA-457A of the 2020 Residential Energy Consumption Survey

Problem: deliver the same with 88% less power

Challenges of replacing a gas unit:

- · Small electrical power replaces large gas power
- Consumer expects the same hot water delivery capacity (65-85 gal FHR) with 88% less power
- Installations are often in tight quarters (e.g., closet), so replacement unit's external dimensions must fit

Water heater type	Power source	Source power available					
Tall and slim gas-fired	Gas burner	40 kBtu _{thermal} /h	11.7 kW _{thermal}				
120 V HPWH dedicated circuit	120 V × 12 A (80% of 15 A breaker)	4.9 kBtu _{elec} /h	1.44 kW _{elec}				

Alignment and impact

Affordability and Equity

- Develop an electric option to replace gas with similar FHR are cost ٠ \$
 - Currently available electric options on the market to replace gas with similar FHR are cost prohibitive: either require costly 240 V electrical upgrades, or don't fit the space
 - The "tall and slim" gas water heaters are extremely common, including in lowand moderate-income households; typically installed in a tight space

Increase building energy efficiency

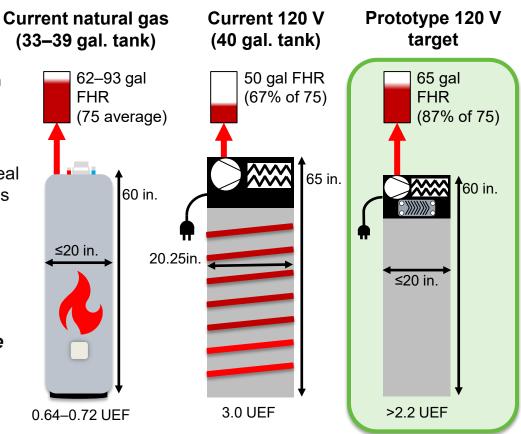
Project demonstrates a 120 V HPWH with ENERGY STAR efficiency, with delivery capacity and size equivalent to the "tall and slim" gas form factor

Accelerate onsite emissions reductions

Transform the grid

Enable electrification of residential water heating, by developing an affordable ٠ replacement option for gas units

edge at buildings


Electrical infrastructure costs are reduced by using lower power draw, and by using existing 120 V outlet (avoiding electrical upgrades for 240 V)

Approach: maximize FHR using 120 V

Focus on consumer acceptance

- Critical parameters for a direct drop-in:
 - Physical dimension of current gas-fired tall and slim unit
 - FHR water delivery capacity
- Commercially available 120V HPWHs are not ideal for direct drop-in replacement for tall and slim gas units
 - Too tall (65 in. vs. 60 in.)
 - Too low FHR (50 gal vs. 75 gal average)

This project targets achieving market adoption by meeting space constraints while maintaining hot water delivery capacity that meets consumer expectations

××°

Approach – reduce installed cost of electrifying

		Baseline 240 V elec. resistance	BaselineCommercialized240 V HPWH120 V dedicatedhybridcircuit (<12 A)		Commercialized 120 V shared circuit (<7.5 A)	ORNL 120 V prototype	
Product price (list price)		\$0.5k	\$1k–\$2k	\$1.9k-\$3.1k ^[7]		Yet to be estimated	
	Electrical panel upgrade ^[3]		\$0–\$3k	\$0 \$0		<u>\$0</u>	
Installation	Carpentry modifications to space to fit larger product ^[4]	\$0–\$3k	\$0–\$3k	\$0–\$3k	\$0–\$3k	<u>\$0</u>	
cost	Service line to house ^[5]	\$0\$2.5k	\$0–\$2.5k	\$0	\$0	<u>\$0</u>	
	Water heater general installation costs ^[6]	\$0–\$1.4k	\$0–\$1.4k	\$0\$1.4k	\$0–\$1.4k	\$0–\$1.4k	
Total installed cost		\$0.5k–\$10.4k	\$1.7k–\$11.9k	\$1.9k–\$7.5k	\$1.9k–\$7.5k \$1.9k–\$7.5k		

[5] https://homeguide.com/costs/cost-to-run-power

[6] DOE BTP Res Htg Prod Final Rule Analytical Tool

[3] https://www.thisoldhouse.com/electrical/reviews/cost-to-upgrade-electrical-panel

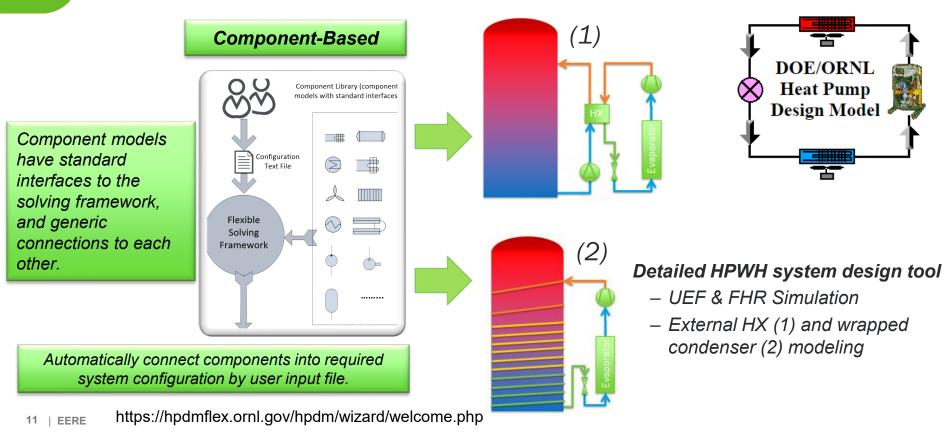
[4] https://www.homeadvisor.com/cost/additions-and-remodels/mudroom/

[7] depending on options https://www.canarymedia.com/articles/heat-pumps/finally-aheat-pump-water-heater-that-plugs-into-a-standard-outlet

8 | EERE

××°

Project approach for market impact

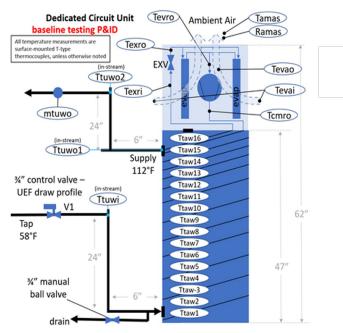

- Catalyze market innovation by experimentally demonstrating the maximum technically achievable delivery capacity from a 120 V power source.
- ORNL is implementing:
 - combination of techniques used in commercially available products
 - additional novel techniques developed by ORNL
- Project plan: after prototype laboratory evaluation, seek a CRADA partner to optimize the system for manufacturability and cost, for the widest market impact.
- In parallel, ORNL is fabricating a second generation prototype to demonstrate the maximum technically achievable.

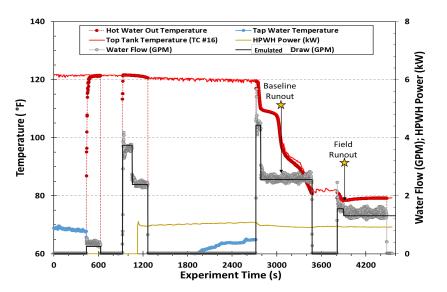
××°

×××	Approa	ach: Max-	Fech FH	२		
	Cold Water Hot Water 240V Element 🚝					
	Heat Pump					
	Mixing Valve	-				
	Brazed Plate					•
		Baseline 240 V EF		Commercialized 120 V	Commercialized 120 V	ORNL 120 V
			HPWH Hybrid	Dedicated Circuit (<12 A)	Shared Circuit (<7.5 A)	Prototype
ا ير	Electrical drop-in?	needs 30 A/240 V	needs 30 A/240 V	\checkmark	\checkmark	\checkmark
what	Physical drop-in?	\checkmark	no, taller	no, taller	no, taller	\checkmark
≥	Delivery capacity	🗸 comparable	✓ comparable	low	low	✓ comparable
(Heat pump size		normal	larger	normal	larger
	Mixing valve				\checkmark	\checkmark
Noh	Brazed-plate HX					\checkmark
느	Ports switching					\checkmark
	Packaging optimizations	6				✓
10	EERE	1				

Design approach using DOE/ORNL HPDM

XXO

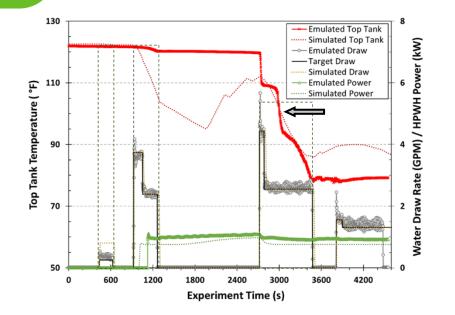




Progress: Emulation of field runout event

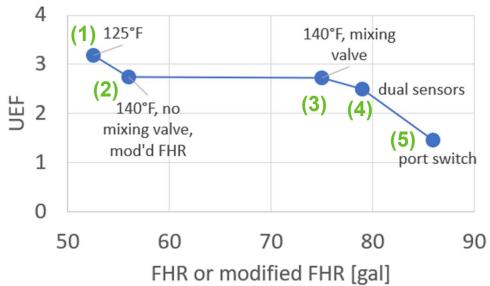
40 gal, 120 V dedicated circuit

Baseline HPWH system



- ORNL analyzed Advanced Water Heater Initiative field data from New Buildings Institute*
- Hot water runout search criteria:
 - < 100°F for >30 s, AND
 - 0.5 gal during 1 min window
- Hot water runout occurs during Draw #3 at around 3,200 s

*New Buildings Institute, July 2023: Amruta Khanolkar, Mischa Egolf, Noah Gabriel. "Plug-In Heat Pump Water Heater Field Study Findings & Market Commercialization Recommendations." Prepared for Pacific Gas and Electric, Southern California Edison, Sacramento Municipal Utility District, TECH Clean California Program, and Department of Energy. Link


Model validation using runout scenario results

- Model-predicted condenser temperature fluctuation is larger than that of experimental wrapped-tank condenser configuration
- Simulation and experiment reach same run-out moment when supply water temperature dropped below 100°F at around 3,000 s
- Both results show identical HPWH power consumption

Simulation can provide reasonable representation of FHR and UEF values of the baseline 120 V HPWH system

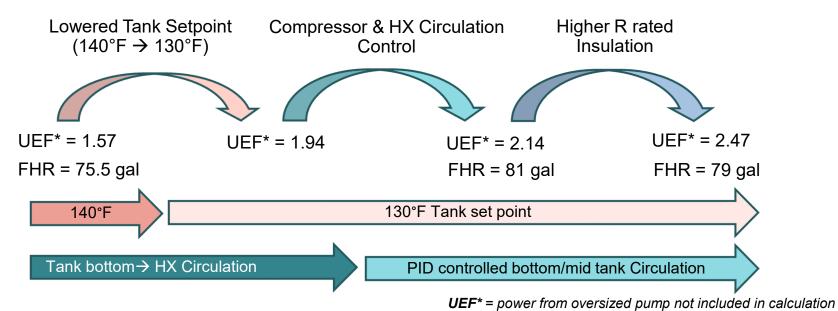
5 Simulated Cases to Maximize FHR/UEF

Case (1): Baseline

14 | EERE

(V)

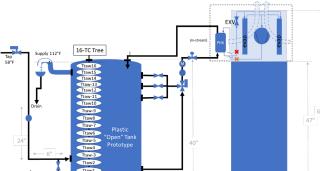
Case (2): High initial tank temperature


Case (3): Mixing valve addition

Case (4): Enhanced control with dual sensors Case (5): Circulation location adjustment

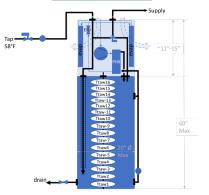
Prototype results and evolution: UEF

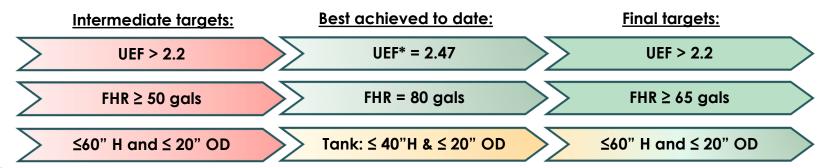
Goals: FHR > 65 gal; ENERGY STAR–rated UEF > 2.2


Setpoint	Compressor control		PID set pt	Tank circula	UEF*			
	тс	High °F	Low °F	Thxwo	тс	High °F	Low °F	
140°F	Tavg	139	134	wide open				1.57*
130°F	Tavg	128	124	wide open				1.94*
130°F	#6	130	115	115°F	# 12	130	125	2.14* 🗸 🗖
130°F	#6	130	115	115°F	# 12	130	125	2.47*

 $\langle \rangle$

Prototype FHR results and project plan


<u>Gen 1: Plan</u>

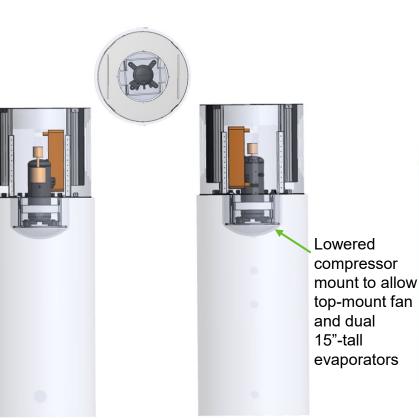


Gen 1: Breadboard Prototype

Gen 2: Plan

 \bigotimes

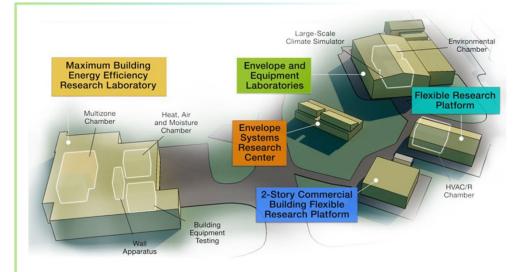
This second-generation prototype design to be fabricated and evaluated in FY25



Fit existing heat pump on Gen 1 tank

Maintain 20" diameter and 60" height

FY25: secure industry partnership to develop a market-viable product



Thank you

Oak Ridge National Laboratory

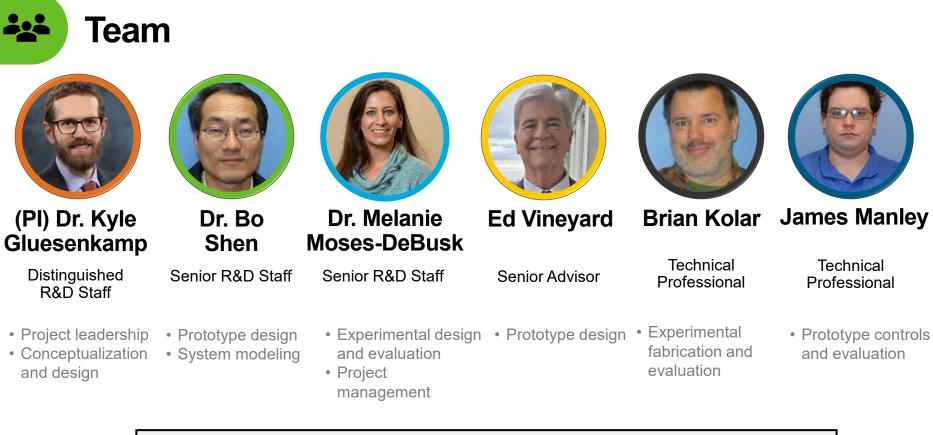
Kyle Gluesenkamp, Distinguished R&D Staff gluesenkampk@ornl.gov

03.02.02.36

The **Building Technologies Research and Integration Center (BTRIC)** at ORNL has supported DOE BTO since 1993. BTRIC is comprised of more than 60,000 square feet of lab facilities conducting RD&D to develop affordable, efficient, and resilient buildings while reducing their greenhouse gas emissions 65% by 2035 and 90% by 2050.

Scientific and Economic Results

139 publications in FY24
140+ industry partners
60+ university partners
16 R&D 100 awards
64 active CRADAs


BTRIC is a DOE-Designated National User Facility

Reference Slides

Project Execution

	FY2023			FY2024				FY2025				
Planned budget												
Spent budget												
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work												
Milestone 1: Identify key consumer issues of 120V HPWHs												
Milestone 2: Gen 1 Prototype design and procurement												
Milestone 3: Baseline Characterization of commercial WH												
Milestone 4: Gen 1 Prototype fabrication and shakedown												
Milestone 5: Gen 1 Evaluation: ≥ 50 gal FHR & > 2.2 UEF								go/no	p-go			
Milestone 6: Gen 2 Prototype design and parts ordered												
Current/Future Work												
Milestone 6: Gen 2 Prototype fabrication and shakedown												
Milestone 7: Gen 2 Evaluation: ≥ 65 gal FHR & > 2.2 UEF											•	
Milestone 8: Dissemination												

- Go/no-go decision: Exceeded targets with max FHR of 81 gallons with a UEF of 2.44
- GNG Milestone 5 slipped by 5 weeks
 - FHR target was met on time, but UEF was low at 2.14 (i.e. not > 2.2)
- Further optimization of controls and higher R-value insulation met UEF target without dropping FHR

21 | EERE

field data sets used in hot water runout event