

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

BTO Peer Review: Manufacturing and Deployment of Liquid Desiccant **Dehumidifier with Multiple Regeneration Technologies**

Material in this presentation includes unpublished and/or preliminary data and analysis that is subject to change.

Manufacturing and Deployment of Liquid Desiccant Dehumidifier with Multiple Regeneration Technologies

National Renewable Energy Laboratory Jason Woods, PhD. Senior Research Engineer jason.woods@nrel.gov WBS 3.2.2.141

Project Summary

OBJECTIVE, OUTCOME, & IMPACT

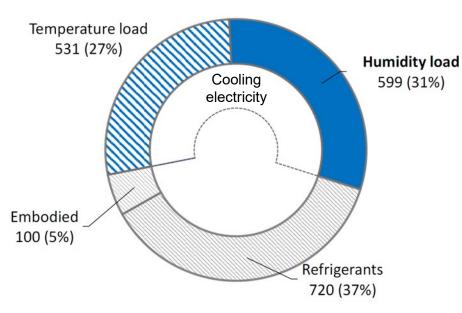
This project aims to reduce air conditioning energy use by building and field testing 5 liquid desiccant air conditioners

NREL's role is to perform laboratory testing of the Mojave system, report on its performance over a range of inlet conditions, and validate numerical models.

This will help potential customers understand this technology and its performance, and enable building simulations to provide realistic annual energy performance.

TEAM & PARTNERS

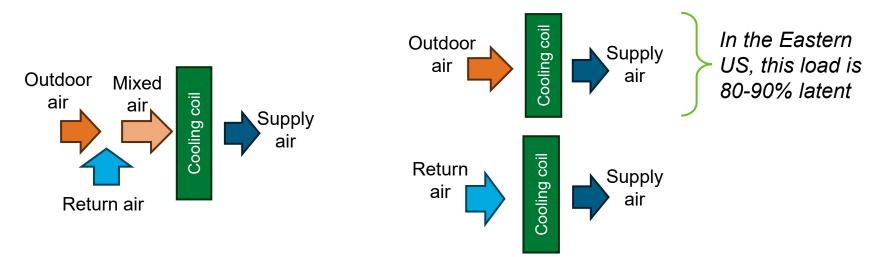
National Renewable Energy Laboratory Mojave


STATS

Performance Period: 06/01/2024-09/30/2025 DOE Budget: \$2.23M (NREL's budget is \$384.4k) Cost Share: \$702k Milestone 1: Equipment instrumented in the laboratory Milestone 2: Laboratory testing complete Milestone 3: Model validation

Air conditioning accounts for 4% of global greenhouse gas emissions, which come from:

- Cooling electricity
- Refrigerant leaks
- Embodied emissions


Managing humidity accounts for 31% of the total, **more than the emissions due to reducing the temperature.**

HVAC systems cool both return air and ventilation air, with the ventilation cooling accounting for ~1/2 the load

Traditional Approach: RTU with outdoor air damper

Improved Approach:

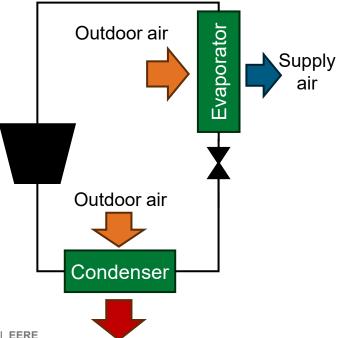
Separate dedicated outdoor air system (DOAS) for ventilation air

Alignment and Impact

In this project, NREL's role is to:

- Evaluate the performance of Mojave's DOAS unit, which efficiently controls humidity.
- Validate prior system models, suitable for use in EnergyPlus, which enables prediction of energy performance in different climates.

Impact:

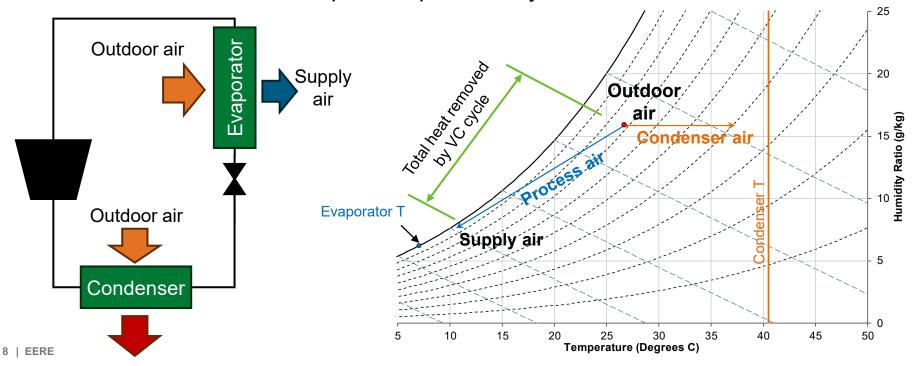

A successful demonstration paves the way for commercialization and deployment of a system with over 20% lower electricity use and emissions for conditioning ventilation air.

- US electricity use due to ventilation air conditioning¹: 85,000 GWh (7% of electricity used in buildings)

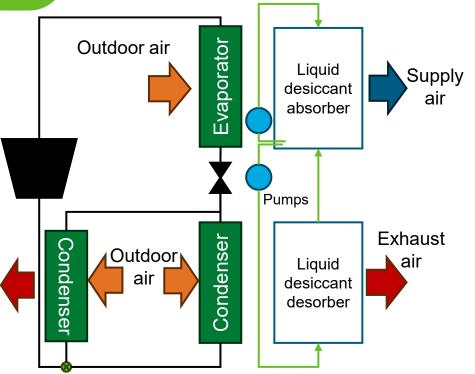
¹ CBECS data: <u>https://www.eia.gov/consumption/commercial/data/2018/ce/pdf/e5.pdf</u> (assuming 1/2 of air conditioning electricity use is due to ventilation)

Today's DOAS units are not designed for high-latent ××° conditions

DOAS unit with conventional vapor-compression cycle

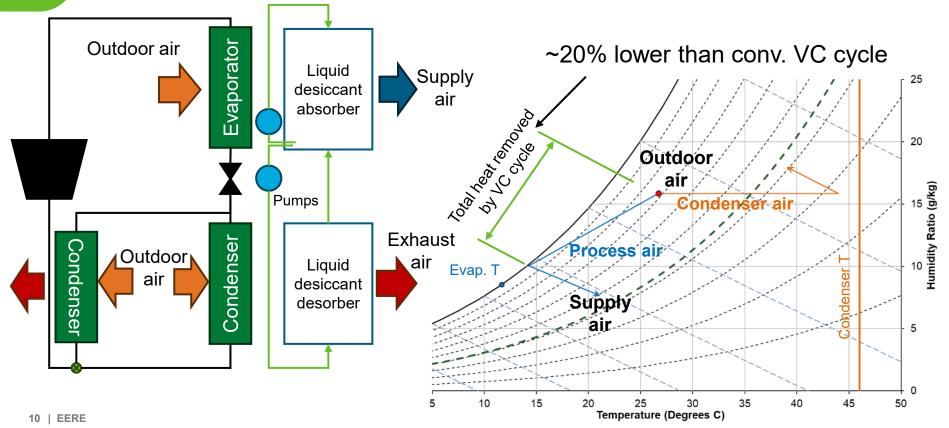


Today's DOAS units are not designed for high-latent conditions

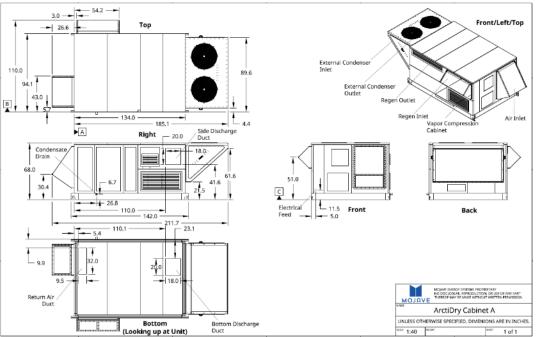

Preliminary results

DOAS unit with conventional vapor-compression cycle

××°



Mojave's technology: efficient high-latent cooling


××°

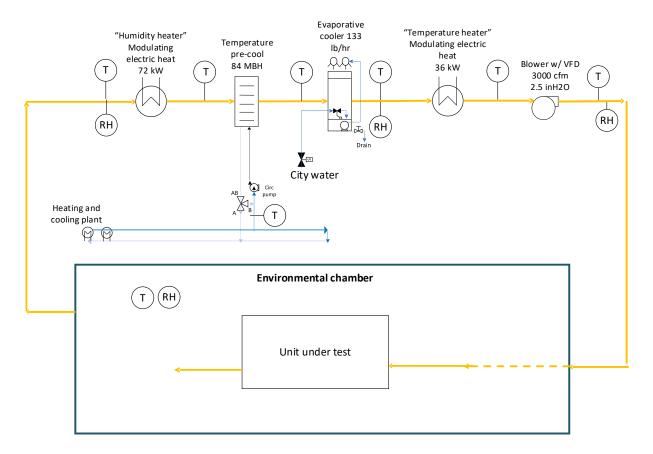
Mojave's technology: efficient high-latent cooling

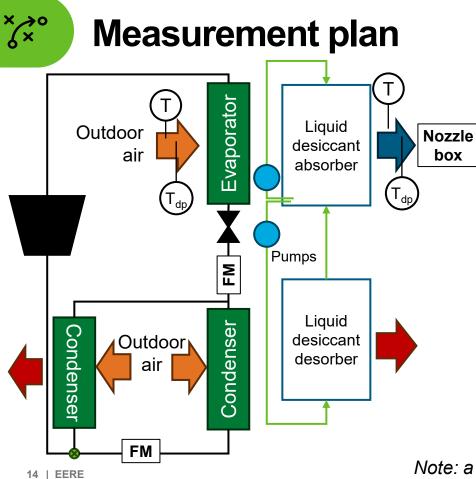
Progress and Future Work

15-ton unit ready for testing

Capacity:	15 tons
Airflow:	3,000 cfm
Supply air drybulb:	60-75 F
Supply air dewpoint:	40-55 F
Refrigerant:	R454B
ISMRE (claimed):	9 lb/kWh

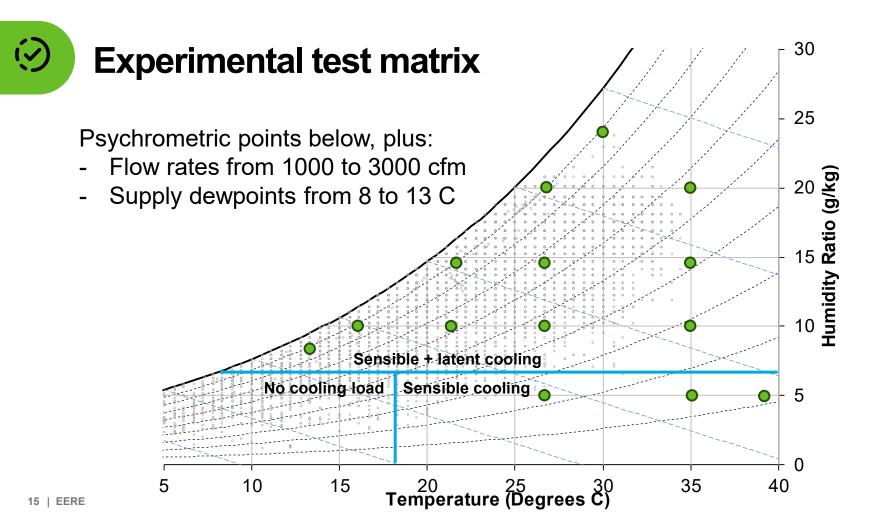
 \odot

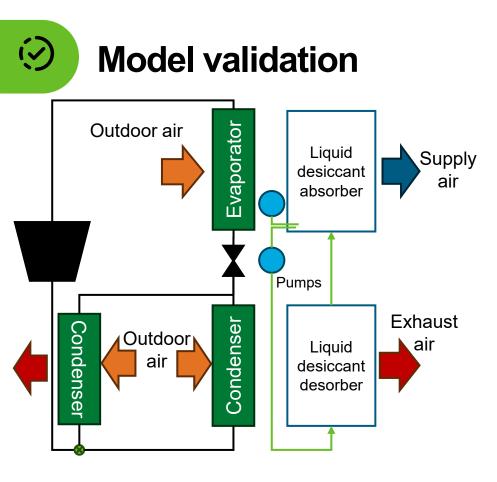




For Mojave's portion of the project, they have installed two of the five field units (Orlando, FL and Houston, TX).

For the lab testing, we will leverage Mojave's large environmental chamber.

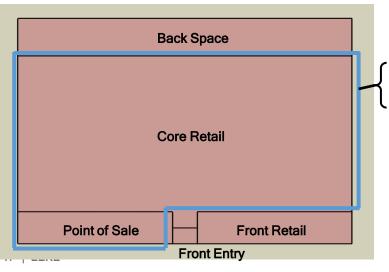


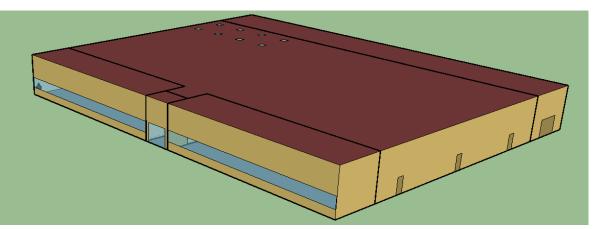

We will use NREL-installed sensors and data acquisition system

Key measurements:

- Refrigerant flow rate (2)
- Supply air flow rate
- Inlet T and humidity
- Supply T and humidity
- Electric power draw

Note: a complete list of sensors is shown in the extra slides


This data will be used to validate:


- System model (outlet conditions and power use)
- Finite-difference models of absorber and desorber

Stand-alone Retail DOE Prototype Model (24,700 ft²)

Preliminary Mojave DOAS model added to two zones below. Will update with validated system model.

Zone	Floor Area (ft ²)	Total capacity (tons)
Back Space*	4,089 ft ²	10.5 tons
Core Retail**	17,228 ft ²	50 tons
Point of Sale**	1,623 ft²	6.5 tons
Front Retail*	1,623 ft ²	5 tons
Front Entry	129 ft ²	No cooling
	24,693 ft ²	72 tons
	Back Space* Core Retail** Point of Sale** Front Retail*	Back Space*4,089 ft2Core Retail**17,228 ft2Point of Sale**1,623 ft2Front Retail*1,623 ft2Front Entry129 ft2

*Served with separate, typical RTUs (no Mojave unit)

**Recirculating RTU for sensible loads and separate 12.5-ton Mojave DOAS

- January 2025: Ship data acquisition and instrumentation to Mojave
- February 2025: Commission DOAS unit and data acquisition system
- March-May 2025: Perform experiments
- June-July 2025: Data analysis, model validation, and updated building simulations

National Renewable Energy Laboratory Jason Woods, PhD. Senior Research Engineer jason.woods@nrel.gov WBS 3.2.2.141

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

Reference Slides

Project Execution

	FY2024		FY2025					
Planned budget	\$70k			\$314.4k				
Spent budget	\$70k			\$314.4k				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work								
Q2: Determine location for testing 15-ton DOAS unit								
Q3: Develop experimental test plan								
Q4: Order long-lead components and instrumentation								
Current/Future Work						_	_	
Q1: Receive instrumentation and NREL DAQ system components								
Q2: Commissioning of 15-ton DOAS unit at Mojave facility								
Q3: Complete experiments on 15-ton DOAS unit								
Q4: Final CRADA report and other reporting								

Eric Kozubal

Sr. Research Engineer ΡI

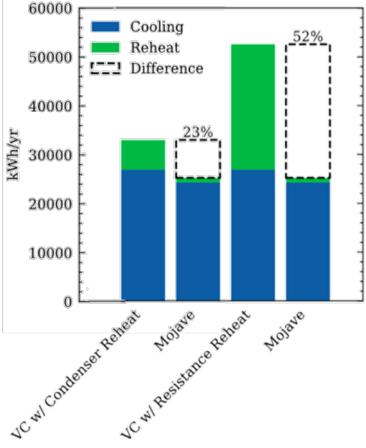
Sr. Mechanical Engineer Lead experiment design

Research Technologist Instrumentation and data collection

Team, continued

Aaron Meles Vice President – Product Mojave

Rachel Ellman Vice President – Engineering Mojave


	Parameter	Variable	Units	Measurement instrument
Electric power	System elec power	P_el_sys	kW	Power meter
	LD pump 1 elec power	P_el_pump_LD1	kW	Power meter
	LD pump 2 elec power	P_el_pump_LD2	kW	Power meter
	Condenser air fan elec power	P_el_fan_Cond	kW	Power meter
	Process air fan elec power	P_el_fan_P	kW	Power meter
	Regen air fan elec power	P_el_fan_R	kW	Power meter
	Volumetric process air flow rate	V_dot_air_P	m³/h	Nozzle box / code tester
	Process air inlet temperature - TC psychrometer	T_air_P_1-psychr-TC	С	type-TTC (pychrometer)
	Process air inlet temperature - RTD psychrometer	T_air_P_1_psychr-RTD	С	RTD (pychrometer)
	Process air inlet temperature - tree	T_air_P_1_tree-TC	С	type-TTC (tree)
	Process air inlet dew point	Tdp_air_P_1	С	DP hygrometer 1, w/ sampling tree
air	Evaporator outlet temperature	T_air_P_2	С	type-TTC (avg of ~9)
Process air	Supply air temperature - TC psychrometer	T_air_P_4-psychr-TC	С	type-TTC (psychrometer)
0.06	Supply air temperature - RTD psychrometer	T_air_P_4-psychr-RTD	С	RTD (pychrometer)
ā	Supply air temperature - tree	T_air_P_4_tree-TC	С	type-TTC (tree)
	Supply air dew point	Tdp_air_P_4	С	DP hygrometer 2, w/ sampling tree
	Process air abs out P	dP_air_P_3-amb	Ра	Setra dP#1
	Process air absorber delta P	dP_air_P_2-3	Ра	Setra dP#2
	Process air total static	dP_air_P_4-amb	Ра	Setra dP#3
	Evaporator condensate	m_dot_cndnst_E	kg/s	Tank on scale
	Volumetric regen air flow rate	V_dot_air_P	m³/h	Flow-power correlation using vane anemometer
	Regen air inlet temperature - TC psychrometer	T_air_R_1_psychr-TC	С	type-TTC (pychrometer)
	Regen air inlet temperature - RTD psychrometer	T_air_R_1_psychr-RTD	С	RTD (pychrometer)
	Regen air inlet temperature - tree	T_air_R_1_tree-TC	С	type-TTC (tree)
Regen air	Regen air inlet dew point	Tdp_air_R_1	С	DP hygrometer 1, w/ sampling tree
	Regen condenser outlet air T	T_air_R_2	С	type-TTC (avg of ~9)
	Regen desorber outlet air T - TC psychrometer	T_air_R_3_psychr-TC	С	type-TTC (psychrometer)
	Regen desorber outlet air T - RTD psychrometer	T_air_R_3_psychr-RTD	С	RTD (psychrometer)
	Regen air outlet dew point	Tdp_air_R_3	С	DP hygrometer 3, w/ sampling tree
	Regen air inlet pressure	P_air_R_2-amb	Ра	Setra dP #4
	Regen air regenerator delta P	P_air_R_1.5-2	Ра	Setra dP #5
	Regen air total delta P	P_air_R_2-3	Ра	Setra dP #6

	Parameter	Variable	Units	Measurement instrument
Ext. condenser air	Ext. condenser airflow rate	V_dot_air_ExtC	m³/h	Flow-power correlation using vane anemometer
	Ext. condenser Inlet T	T_air_extC_in_psychr-TC	С	type-T TC (pychrometer)
	Ext. condenser Inlet T	T_air_extC_in_psychr-RTD	С	RTD (pychrometer)
	Ext. condenser Inlet T	T_air_extC_in_tree-TC	С	type-TTCs
	Ext. condenser Outlet T	T_air_extC_out	С	type-TTC (avg of ~6)
	Refrigerant mass flow rate	m_dot_refr	kg/s	Refr Coriolis meter
	Refr evap inlet temperature	T_refr_1	С	type-TTC (surface mount)
	Refr evap outlet temperature	T_refr_2	С	type-TTC (surface mount)
	Refr suction temperature	T_refr_3	С	type-TTC (surface mount)
+	Suction pressure	P_refr_3	kPa	pressure transducer
ran	Suction temperature	T_refr_4	С	type-TTC (surface mount)
Refrigerant	Discharge pressure	P_refr_4	kPa	pressure transducer
	Discharge temperature	T_refr_4	С	type-TTC (surface mount)
_	Refr ext condenser outlet T	T_refr_5	С	type-TTC (surface mount)
	Refr regen condenser outlet T	T_refr_6	С	type-TTC (surface mount)
	Refr mixed condenser outlet T	T_refr_7	С	type-TTC (surface mount)
	Refr receiver outlet T	T_refr_8	С	type-TTC (surface mount)
	Refr SLHX liquid-side outlet T	T_refr_9	С	type-TTC (surface mount)
a e	Absorber LD mass flow rate	m_dot_LD_1	kg/s	Paddle meter
r LD stream	Absorber LD inlet temperature	T_LD_1	С	type-TTC (inserted)
st AD	Absorber LD inlet conc.	C_LD_1	kg/kg	Atago refractive index sensor
r n	Desorber LD mass flow rate in	m_dot_LD_2	kg/s	Paddle meter
sorber stream	Desorber LD inlet temperature	T_LD_2	С	type-TTC (inserted)
Desorber .D stream	Desorber LD inlet conc.	C_LD_2	kg/kg	Atago refractive index sensor
LD De	Desorber LD outlet temperature	T_LD_3	С	type-T TC (inserted)
	Ambient pressure	P_ambient	kPa	Pressure transducer

Preliminary building simulation results (uncalibrated model)

Standalone retail building New York City 12.5 ton DOAS

