

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

BTO Peer Review:

High-performance Lower-cost Plastic Heat Exchangers

High-performance Lower-cost Plastic Heat T2M Gl&bal Exchangers

T2M Global, LLC Pinakin Patel, Co-Founder and President (203) 300-6130, ppatel@t2mglobal.com DE-SC0021902, DE-FOA-0002572

Project Summary

OBJECTIVE, OUTCOME, & IMPACT

- Scaleup the P-HEX technology by 10X.
- Validate high-speed manufacturing processes.
- Design market responsive P-HEX module for different market sectors.
- Increase P-HEX pressure capability to meet the need of these market sectors.
- Outcome and Impact: Validate feasibility of >70% recovery of waste heat → GHG reduction: up to 25%.

TEAM & PARTNERS

Trevi Systems: High-speed extrusion, P-HEX assembly and characterization.

OTS R&D: P-HEX heat transfer modeling to guide technology development and scale-up.

LARTA: Commercialization assistance.

STATS

Performance Period: 06/28/2021 – 08/21/2024 DOE Budget: \$1,350k, Cost Share: \$0

Milestone 1: 10 kW P-HEX prototype assembled

Milestone 2: P-HEX Testing in real environment

Milestone 3: Validate advanced P-HEX design

Problem

- On average, more than half of a household's annual energy consumption is for heating and air conditioning.
- 25 quads of total low-level heat, ~\$200 billion, are wasted annually in the U.S.
- Metallic heat exchangers are prohibitively expensive for low-level heat.
- Lack of heat recovery contributes to poor ventilation, increasing the risk of sick building syndrome and heightening vulnerability to airborne pathogens.

Opportunity:

• Advanced High-performance Plastic Heat Exchanger (P-HEX) technology can efficiently recover this wasted heat at low costs for reuse.

Alignment and Impact

- Increase Building Energy Efficiency: P-HEX cuts building energy use by up to 25%.
- Cost Benefits to Residential Consumers: Recovered heat \rightarrow \$2 billion/yr savings.
- Accelerate Building Decarbonization: Potential to reduce GHG emissions by 25% using P-HEX.
- Resiliency to Climate Change: Improved reliability of heating and cooling systems at lower cost.
- Accelerate Building Electrification: Natural gas savings support intermittency of solar and wind.
- Transform the Grid Edge at Buildings: Energy savings contribute to grid resiliency.
- **Prioritize Equity, Affordability, and Resilience:** Attractive for deployment in disadvantaged communities. P-HEX energy savings are most impactful for low-income families.

Project Deliverables

- 10X Scaleup; 1-kW \rightarrow 10 kW-Class P-HEX, >70% heat recovery, 10 psi pressure capability.
- Scaleup high-speed manufacturing process; laboratory \rightarrow bench scale.
- Commercialization Plan Create Pathway for technology scaleup to attract investment.
- DEI Plan Outreach to disadvantaged communities.
- Final Project Report Project accomplishments and recommendations.

- Reduce Material Costs: Cheaper material; Increased packing density \rightarrow less material use.
- Increase Heat Recovery: High performance additives boost heat transfer.
- Improve Production Efficiency: Ultra-high production rates enable faster manufacturing.

T2M Gl\$\$ Belevant Sectors: Commercial and Residential

Near-term Targets are Building Heating/Cooling Systems: Cross-cutting integration with HVAC, boilers, and furnaces.

Increasing Packing Density for P-HEX T2M Gl pal 500x 0.5" Diameter Stainless Steel 3,000x 0.04" Polymer **Commercial M-HEX** Lab Scale P-HEX 0.04" 1 0.5"

Novel Process: Tube Diameter Reduced by >10X: Light-weight P-HEX weighs <u>90%</u> less than M-HEX.

××°

- Low Manufacturing Yield: Formulation for high-speed extrusion and tube assembly.
 Mitigation: Selection of conductivity enhancers and sealants.
- Poor Thermal Performance: Undesirable bypass of process fluids.
 Mitigation: Self-aligning tube geometry for enhanced heat transfer, rapid assembly.
- Pressure Capability: Thicker walls increase heat transfer resistance.
 Mitigation: Composite formulations for enhanced heat transfer.
- Host Site Requirements: Constrained access, variable heat duty.

Mitigation: Modular design for rapid deployment, efficient control system.

Stakeholder Engagement for Market Transformation

INSTITUTE

- Technology Advisory Committee (TAC): Representatives from different market sectors, utility companies, research institutions, sponsors, and investors.
- TABA: Engaged with highly skilled experts from LARTA Institute for near-term markets, financing, and IP.
- **DEI Communities:** Engaged multiple stakeholders in California for outreach of P-HEX benefits.

Multiprong Approach for Stakeholder Input: Technical guidance, commercialization experts, and DEI community.

T2M Gl&bal P-HEX Application: Validation in a Real Environment

High Thermal Performance P-HEX Developed and Validated: Performance on par with M-HEX proven in liquid-to-liquid applications.

Evaluation of Heat Exchange

	Hot Bo	re Side			Cold S					
Flow (GPM)	Temp In (°C)	Temp Out (°C)	Pressure Drop (PSI)	Flow (GPM)	Temp In (°C)	Temp Out (°C)	Pressure Drop (PSI)	Heat Exchanged (kW)	Effective ness (%)	
5	90.4	74.5	17	1	15.2	86.4	3	18.6	94.3	
5	83.5	54.8	14	2	15.2	74.2	5	30.9	86.4	
5	71.6	44.1	20	3	14.8	60.5	6	35.8	80.3	
2.9	70.8	55.1	12	1	15.2	66.8	1	13.5	81.7	
2.9	78.9	39.5	15	2	15.2	68.1	4	27.7	82.9	

Highly Promising Heat Recovery Performance: >80% heat transfer efficiency and up to 35 kW heat exchange.

Evaluation of P-HEX Durability

Stable P-HEX Operation During Five Month Test Period: Exceeded project performance targets with four flow regimes.

 \odot

• T2M Gløbal Modeling of P-HEX Thermal Performance

Excellent Match Between Estimated and Measured Capacity: The modeling tool will guide P-HEX technology scaleup.

• Yield in High-Speed Manufacturing: Variability in composite formulations has a strong impact on the quality of P-HEX products and manufacturing efficiency.

 \succ Improved sensors with real-time adjustments to increase manufacturing yield.

• Heat Supply and Demand Mismatch: Waste heat availability doesn't always align with demand.

>Demand-side management for thermal load ramping or thermal storage.

• Handling High Temperature Waste Heat: Some waste heat sources may be outside of the P-HEX operating window.

➤ Guard M-HEX to pre-condition waste heat for safer operation of P-HEX.

Highly Skilled TABA Consultants Guiding Commercialization: Develop market responsive prototype at lower cost.

Thank you

T2M Global, LLC Pinakin Patel, Co-Founder and President (203) 300-6130, ppatel@t2mglobal.com DE-SC0021902, DE-FOA-0002572

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

Reference Slides

	FY2022				FY2023			FY2024				
Planned budget												
Spent budget												
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work												
Milestone A: A homogenous composite formulation ready for extrusion												
Milestone B: High performance tubes for P-HEX with enhanced heat transfer capability (target 500% increase)					<							
Milestone C: Test report on baseline P-HEX in real environment testing								<				
Go/No Go Milestone: Validate low-cost 10-kW class baseline P-HEX design with >60% heat recovery effectiveness												
Milestone D: Description of improved fabrication process for Baseline and Advanced P-HEX									<			
Milestone E: Test report on P-HEX performance degradation Test report on P-HEX performance degradation											<	
Milestone F: Summary report on design improvements using developed models											<	
Milestone G: MW-class module design description for multiple market sectors											<	
Current/Future Work												
Milestone H: Final technical report as per DOE requirements												

u∎u IIII

Team

Pinakin Patel

President T2M Global

Ludwig Lipp

Vice President T2M Global

John Webley

President Trevi Systems

Michael Greene

Vice President of Engineering Trevi Systems